
Demystifying the Real-Time Linux Scheduling
Latency
Daniel Bristot de Oliveira
Red Hat, Italy
bristot@redhat.com

Daniel Casini
Scuola Superiore Sant’Anna, Italy
daniel.casini@santannapisa.it

Rômulo Silva de Oliveira
Universidade Federal de Santa Catarina, Brazil
romulo.deoliveira@ufsc.br

Tommaso Cucinotta
Scuola Superiore Sant’Anna, Italy
tommaso.cucinotta@santannapisa.it

Abstract

Linux has become a viable operating system for many real-time workloads. However, the black-box
approach adopted by cyclictest, the tool used to evaluate the main real-time metric of the kernel,
the scheduling latency, along with the absence of a theoretically-sound description of the in-kernel
behavior, sheds some doubts about Linux meriting the real-time adjective. Aiming at clarifying the
PREEMPT_RT Linux scheduling latency, this paper leverages the Thread Synchronization Model
of Linux to derive a set of properties and rules defining the Linux kernel behavior from a scheduling
perspective. These rules are then leveraged to derive a sound bound to the scheduling latency,
considering all the sources of delays occurring in all possible sequences of synchronization events
in the kernel. This paper also presents a tracing method, efficient in time and memory overheads,
to observe the kernel events needed to define the variables used in the analysis. This results in
an easy-to-use tool for deriving reliable scheduling latency bounds that can be used in practice.
Finally, an experimental analysis compares the cyclictest and the proposed tool, showing that the
proposed method can find sound bounds faster with acceptable overheads.

2012 ACM Subject Classification Computer systems organization → Real-time operating systems

Keywords and phrases Real-time operating systems, Linux kernel, PREEMPT_RT, Scheduling
latency

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.9

Supplementary Material ECRTS 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.1.3.
Supplement material and the code of the proposed tool is available at: https://bristot.me/
demystifying-the-real-time-linux-latency/

Funding This work has been partially supported by CAPES, The Brazilian Agency for Higher
Education, project PrInt CAPES-UFSC “Automation 4.0.”

Acknowledgements The authors would like to thank Thomas Gleixner, Peter Zijlstra, Steven
Rostedt, Arnaldo Carvalho De Melo and Clark Williams for the fruitful discussions about the model,
analysis, and tool.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Daniel Bristot de Oliveira, Daniel Casini, Rômulo Silva de Oliveira, and
Tommaso Cucinotta;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 9; pp. 9:1–9:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4577-7855
mailto:bristot@redhat.com
https://orcid.org/0000-0003-4719-3631
mailto:daniel.casini@santannapisa.it
https://orcid.org/0000-0002-8853-9021
mailto:romulo.deoliveira@ufsc.br
https://orcid.org/0000-0002-0362-0657
mailto:tommaso.cucinotta@santannapisa.it
https://doi.org/10.4230/LIPIcs.ECRTS.2020.9
https://doi.org/10.4230/DARTS.6.1.3
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Demystifying the Real-Time Linux Scheduling Latency

1 Introduction

Real-time Linux has been a recurring topic in both research [5, 6, 30] and industry [10, 11,
12, 21, 39] for more than a decade. Nowadays, Linux has an extensive set of real-time related
features, from theoretically-supported schedulers such as SCHED_DEADLINE [27] to the
priority inversion control in locking algorithms and a fully-preemptive mode. Regarding
the fully-preemptive mode, Linux developers have extensively reworked the Linux kernel
to reduce the code sections that could delay the scheduling of the highest-priority thread,
leading to the well-known PREEMPT_RT variant. cyclictest is the primary tool adopted
in the evaluation of the fully-preemptive mode of PREEMPT_RT Linux [8], and it is used
to compute the time difference between the expected activation time and the actual start
of execution of a high-priority thread running on a CPU. By configuring the measurement
thread with the highest priority and running a background taskset to generate disturbance,
cyclictest is used in practice to measure the scheduling latency of each CPU of the
system. Maximum observed latency values generally range from a few microseconds on
single-CPU systems to 250 microseconds on non-uniform memory access systems [35], which
are acceptable values for a vast range of applications with sub-millisecond timing precision
requirements. This way, PREEMPT_RT Linux closely fulfills theoretical fully-preemptive
system assumptions that consider atomic scheduling operations with negligible overheads.

Despite its practical approach and the contributions to the current state-of-art of real-time
Linux, cyclictest has some known limitations. The main one arises from the opaque nature
of the latency value provided by cyclictest [4]. Indeed, it only informs about the latency
value, without providing insights on its root causes. The tracing features of the kernel are
often applied by developers to help in the investigation. However, the usage of tracing is
not enough to resolve the problem: the tracing overhead can easily mask the real sources of
latency, and the excessive amount of data often drives the developer to conjunctures that
are not the actual cause of the problem. For these reasons, the debug of a latency spike on
Linux generally takes a reasonable amount of hours of very specialized resources.

A common approach in the real-time systems theory is the categorization of a system as
a set of independent variables and equations that describe its integrated timing behavior.
However, the complexity of the execution contexts and fine-grained synchronization of the
PREEMPT_RT make application of classical real-time analysis for Linux difficult. Linux
kernel complexity is undoubtedly a barrier for both expert operating system developers and
real-time systems researchers. The absence of a theoretically-sound definition of the Linux
behavior is widely known, and it inhibits the application of the rich arsenal of already existing
techniques from the real-time theory. Also, it inhibits the development of theoretically-sound
analysis that fits all the peculiarities of the Linux task model [23].

Aware of the situation, researchers and developers have been working together in the
creation of models that explain the Linux behavior using a formal notation, abstracting the
code complexity [2]. The Thread Synchronization Model for the fully-preemptive PREEMPT
RT Linux Kernel [14] proposes an automata-based model to explain the synchronization
dynamics for the de facto standard for real-time Linux. Among other things, the model can
be used as an abstraction layer to translate the kernel dynamics as analyzed by real-time
Linux kernel developers to the abstractions used in the real-time scheduling theory.

Paper approach and contributions: This paper leverages the Thread Synchronization
Model [14] of Linux to derive a set of properties and rules defining the Linux kernel behavior
from a scheduling perspective. These properties are then leveraged in an analysis that derives

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:3

a theoretically-sound bound to the scheduling latency that comprehensively considers the
sources of delays, including all possible synchronization flows in the kernel code. The analysis
builds upon a set of practically-relevant modeling variables inspired by the foundational
principles behind the development of the PREEMPT_RT Linux Kernel. This paper also
presents an efficient tracing method to observe the kernel events, which are used to define
observed values for the variables used in the analysis, while keeping the runtime overhead
and storage space to figures that make its use feasible in practice. The tool also analyzes the
trace, serving to distinguish the various sources of the latency. Moreover, by exploring the
interference caused by adopting different interrupt characterizations, the tool also derives
latency bounds based on real execution traces. Finally, the experimental section compares
the results obtained by the cyclictest and the proposed tool, showing that the proposed
method can find sound bounds faster with acceptable overheads.

2 Background

This section provides background information on the main concepts used in this paper, and
discusses related research works.

2.1 Linux Execution Contexts, Scheduling Dynamics, and Tracing
With the PREEMPT_RT patchset, Linux has four different preemption models for kernel
space activities. This paper targets the fully-preemptive mode, in which there are three
different execution contexts: non-maskable interrupts (NMI), maskable interrupts (IRQs),
and threads [20]. Both NMIs and IRQs are asynchronous interrupts, i.e., mechanisms used
to deliver events coming either from external hardware or by code running on other CPUs
via inter-processor interrupts. The interrupt controller manages interrupts, both queueing
and dispatching one NMI per-CPU and multiple IRQs. For each CPU, the NMI is the
highest-priority interrupt, so it postpones and preempts IRQs. As a design choice, Linux (in
the fully-preemptive mode) handles IRQs with IRQs disabled. Hence an IRQ cannot preempt
another IRQ. Threads have no control over the NMI, but they can delay the execution of
IRQs by temporarily disabling (masking) them.

Given the potential interference on the execution of threads, one of the design goals of
PREEMPT_RT was to reduce the code executing in interrupt context to the bare minimum,
by moving most of it to thread context. Despite the existence of different memory contexts
in which a regular program can run, like kernel threads, or the process context in the
user-space, from the scheduling viewpoint they are all threads. Linux has not one but
five schedulers. When invoked, the set of schedulers are queried in a fixed order. The
following schedulers are checked: (i) stop-machine, a pseudo-scheduler used to execute kernel
facilities, (ii) SCHED_DEADLINE [27], (iii) the fixed-priority real-time scheduler, (iv) the
completely fair scheduler (CFS), (v) the IDLE scheduler. Every time the schedulers execute,
the highest-priority thread is selected for a context switch. When no ready threads are
available, the IDLE scheduler returns the idle thread, a particular thread always ready to
run. For simplicity, we refer hereafter with the term scheduler when mentioning the kernel
code handling all the scheduling operations related to all five schedulers. The scheduler
is called either voluntarily by a thread leaving the processor, or involuntarily, to cause a
preemption. Any currently executing thread can postpone the execution of the scheduler
while running in the kernel context by either disabling preemption or the IRQs. It is a goal
of the fully-preemptive kernel developers to reduce the amount of time in which sections of
code can postpone the scheduler execution.

ECRTS 2020

9:4 Demystifying the Real-Time Linux Scheduling Latency

nminon_nmi nmi_exit

nmi_entry

Figure 1 Example of automaton: the NMI generator (Operation O1).

Linux has an advanced set of tracing methods [28]. An essential characteristic of the
Linux tracing feature is its efficiency. Currently, the majority of Linux distributions have the
tracing features enabled and ready to use. When disabled, the tracing methods have nearly
zero overhead, thanks to the extensive usage of runtime code modifications. Currently, there
are two main interfaces by which these features can be accessed from user-space: perf and
ftrace. The most common action is to record the occurrence of events into a trace-buffer
for post-processing or human interpretation of the events. Furthermore, it is possible to take
actions based on events, such as to record a stacktrace. Moreover, tools can also hook to the
trace methods, processing the events in many different ways, and also be leveraged for other
purposes. For example, the Live Patching feature of Linux uses the function tracer to
hook and deviate the execution of a problematic function to a revised version of the function
that fixes a problem [32]. A similar approach was used for runtime verification of the Linux
kernel, proving to be an efficient approach [18].

2.2 Automata Models and the PREEMPT_RT Synchronization Model

An automaton is a well-known formal method, utilized in the modeling of Discrete Event
Systems (DES). The evolution of a DES is described with all possible sequences of events
e1, e2, e3, ...en, with ei ∈ E, defining the language L that describes the system.

Automata are characterized by a directed graph or state transition diagram representation.
For example, consider the event set E = {nmi_entry, nmi_exit} and the state transition
diagram in Figure 1, where nodes represent system states, labeled arcs represent transitions
between states, the arrow points to the initial state, and the nodes with double circles are
marked states, i.e., safe states of the system.

Formally, a deterministic automaton, denoted by G, is a tuple G = {X,E, f, x0, Xm};
where: X is the set of states; E is the set of events; f : X×E → X is the transition function,
defining the state transition between states from X due to events from E; x0 is the initial
state and Xm ⊆ X is the set of marked states.

An important operation is the parallel composition of two or more automata that are
combined to compose a single, augmented-state, automaton [7], enabling the model of complex
systems using the modular approach. In the modular approach, the system is modeled as
a set of two classes of automata: generators and specifications. Each sub-system has a
generator of events modeled independently. The synchronization rules of each sub-system
are stated as a set of specification automata. Each specification synchronizes the actions of
two or more generators. The parallel composition of all the generators and specifications
creates the synchronized model [33].

The Thread Synchronization Model for the PREEMPT_RT Linux Kernel [14] proposes an
automata-based model for describing the behavior of threads in the Linux PREEMPT_RT
kernel. The model defines the events and how they influence the timeline of threads’ execution,
comprising the preemption control, interrupt handlers, interrupt control, scheduling and
locking, describing the delays occurred in this operation in the same granularity used by
kernel developers. The model is constructed using the modular approach.

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:5

2.3 Related Work
Abeni et al. [1] defined a metric similar to cyclictest, evaluating various OS latency
components of several standard and real-time Linux kernels existing at the time (2002).

Matni and Dagenais [29] proposed the use of automata for analyzing traces generated by
the kernel of an operating system. Automata are used to describe patterns of problematic
behavior. An off-line analyzer checks for their occurrences. Cerqueira and Brandenburg [9]
described experiments with cyclictest to evaluate the scheduling latency experienced by
real-time tasks under LITMUSRT, vanilla Linux and Linux with the PREEMPT_RT patch.
The authors also discussed the advantages and limitations of using cyclictest for estimating
the capability of a system to provide temporal guarantees. A similar experimental study is
presented in [22]. Reghanzani et al. [36] empirically measured the latencies of a real-time
Linux system under stress conditions in a mixed-criticality environment.

Herzog et al. [24] presented a tool that systematically measures interrupt latency, at
run-time, in the Linux vanilla kernel. No attempt is made to model Linux kernel scheduling.
Regnier et al. [37] presented an evaluation of the timeliness of interrupt handling in Linux.

The ftrace preemptirqsoff tracer [38] enables the tracing of functions with either
preemption or IRQs disabled, trying to capture the longest window. The approach in [38]
does not differentiate between interference due to interrupts and the contribution due to
different code segments disabling preemption or interrupts. Moreover, by adding tracing of
functions it adds overhead to the measurement, thus potentially heavily affecting the result,
often mispointing the real source of the latency.

Previous work in [20] and [14] used the timeline and automata-based models, respectively,
to describe the Linux kernel behavior regarding threads and interrupt handlers context
switches. This work uses the Thread Synchronization Model [14] as the description of a
single-CPU PREEMPT_RT Linux system configured in the fully-preemptive mode. The
advantages of using the model is many-fold: (1) it was developed in collaboration with kernel
developers, and widely discussed by us with both practitioners [15, 16] and academia [13, 19];
(2) the model is deterministic, i.e, in a given state a given event can cause only one transition;
(3) the model was extensively verified; (4) it abstracts the code complexity by using a set
of small automata, each one precisely describing a single behavior of the system. Building
upon these approaches, in this work we derive a set of properties and rules defining the
Linux kernel scheduling behavior, from the mentioned Thread Synchronization Model [14]
based on automata. These properties are then used to derive a theoretically-sound bound
to the scheduling latency. The proposed bound is based on a formalization of the Linux
kernel behavior, where the value of the variables is experimentally measured. To the best of
our knowledge, this is the first time that such a detailed analysis of the Linux scheduling
behavior is done.

3 System Model

The task set is composed of a single NMI τNMI, a set ΓIRQ = {τ IRQ
1 , τ IRQ

2 , . . .} of maskable
interruptions (IRQ for simplicity), and a set of threads ΓTHD = {τTHD

1 , τTHD
2 , . . .}. The NMI,

IRQs, and threads are subject to the scheduling hierarchy discussed in Section 2.1, i.e.,
the NMI has always a higher priority than IRQs, and IRQs always have higher priority
than threads. Given a thread τTHD

i , at a given point in time, the set of threads with a
higher-priority than τTHD

i is denoted by ΓTHD
HPi

. Similarly, the set of tasks with priority lower
than τTHD

i is denoted by ΓTHD
LPi

. Although the schedulers might have threads with the same
priority in their queues, only one among them will be selected to have its context loaded, and
consequently, starting to run. Hence, when scheduling, the schedulers elect a single thread
as the highest-priority one.

ECRTS 2020

9:6 Demystifying the Real-Time Linux Scheduling Latency

disabledenabled local_irq_enable

local_irq_disable

Figure 2 IRQ disabled by software (O2).

irqnon_irq hw_local_irq_enable

hw_local_irq_disable

Figure 3 IRQs disabled by hardware (O3).

not_running running

sched_switch_in

sched_switch_suspend
sched_switch_preempt
sched_switch_blocking

Figure 4 Context switch generator (04).

preemptedrunning sched_switch_in_o

sched_switch_out_o

Figure 5 Context switch generator (05).

no_preempt

preempt

preempt_enable

preempt_disable

scheduling

preempt_disable_sched

preempt_enable_sched

Figure 6 Preempt disable (06).

schedthread schedule_exit

schedule_entry

Figure 7 Scheduling context (07).

runnablesleepable sched_set_state_sleepable

sched_waking
sched_set_state_runnable

Figure 8 Thread runnable/sleepable (08).

need_resched

sched_need_resched

Figure 9 Need re-schedule operation (09).

The system model is formalized using the modular approach, where the generators model
the independent action of tasks and synchronization primitives, and the specification models
the synchronized behavior of the system. The next sections explains the generators as the
basic operations of the system, and the specifications as a set of rules that explains the
system behavior.

3.1 Basic Operations
This section describes generators relevant for the scheduling latency analysis, starting with
the interrupt behavior:

O1: The NMI context starts with the entry of the NMI handler (nmi_entry), and exits
in the return of the handler (nmi_exit). This operation is modeled as in Figure 1 (in
Section 2).
O2: Linux allows threads to temporarily mask interrupts (local_irq_disable), in such
a way to avoid access to shared data in an inconsistent state. Threads need to unmask
interrupts (local_irq_enable) at the end of the critical section, as modeled in Figure 2.
O3: To enforce synchronization, the processor masks interrupts before calling an interrupt
handler on it. IRQs stays masked during the entire execution of an interrupt handler
(hw_local_irq_disable). Interrupts are unmasked after the return of the handler
(hw_local_irq_enable), as shown in Figure 3. In the model, these events are used to
identify the begin and the return of an IRQ execution.

The reference model considers two threads: the thread under analysis and an arbitrary
other thread (including the idle thread). The corresponding operations are discussed next.

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:7

O4: The thread is not running until its context is loaded in the processor (sched_switch-
_in). The context of a thread can be unloaded by a suspension (sched_switch_suspend),
blocking (sched_switch_blocking), or preemption (sched_switch_preempt), as in Fig-
ure 4.
O5: The model considers that there is always another thread ready to run. The reason is
that, on Linux, the idle state is implemented as a thread, so at least the idle thread is
ready to run. The other thread can have its context unloaded (sched_switch_out_o)
and loaded (sched_switch_in_o) in the processor, as modeled in Figure 5.
O6: The preemption is enabled by default. Although the same function is used to
disable preemption, the model distinguishes the different reasons to disable preemption,
as modeled in Figure 6. The preemption can be disabled either to postpone the scheduler
execution (preempt_disable), or to protect the scheduler execution of a recursive call
(preempt_disable_sched). Hereafter, the latter mode is referred to as preemption
disabled to call the scheduler or preemption disabled to schedule.
O7: The scheduler starts to run selecting the highest-priority thread (schedule_entry,
in Figure 7), and returns after scheduling (schedule_exit).
O8: Before being able to run, a thread needs to be awakened (sched_waking). A
thread can set its state to sleepable (sched_set_state_sleepable) when in need of
resources. This operation can be undone if the thread sets its state to runnable again
(sched_set_state_runnable). The automata that illustrates the interaction among
these events is shown in Figure 8.
O9: The set need re-schedule (sched_need_resched) notifies that the currently running
thread is not the highest-priority anymore, and so the current CPU needs to re-schedule,
in such way to select the new highest-priority thread (Figure 9).

3.2 Rules
The Thread Synchronization Model [14] includes a set of specifications defining the synchro-
nization rules among generators (i.e., the basic operations discussed in Section 3.1). Next,
we summarize a subset of rules extracted from the automaton, which are relevant to analyze
the scheduling latency. Each rule points to a related specification, graphically illustrated
with a corresponding figure.

IRQ and NMI rules. First, we start discussing rules related to IRQs and NMI.

R1: There is no specification that blocks the execution of a NMI (O1) in the automaton.
R2: There is a set of events that are not allowed in the NMI context (Figure 10),
including:

R2a: set the need resched (O9).
R2b: call the scheduler (O7).
R2c: switch the thread context (O4 and O5)
R2d: enabling the preemption to schedule (O6).

R3: There is a set of events that are not allowed in the IRQ context (Figure 11), including:
R3a: call the scheduler (O7).
R3b: switch the thread context (O4 and O5).
R3c: enabling the preemption to schedule (O6).

R4: IRQs are disabled either by threads (O2) or IRQs (O3), as in the model in Figure 12.
Thus, it is possible to conclude that:

R4a: by disabling IRQs, a thread postpones the begin of the IRQ handlers.
R4b: when IRQs are not disabled by a thread, IRQs can run.

ECRTS 2020

9:8 Demystifying the Real-Time Linux Scheduling Latency

Thread context. Next, synchronization rules related to the thread context are discussed.
We start presenting the necessary conditions to call the scheduler (O7).

Necessary conditions to call and run the scheduler.
R5: The scheduler is called (and returns) with interrupts enabled (Figure 13).
R6: The scheduler is called (and returns) with preemption disabled to call the scheduler
(i.e., via the preempt_disable_sched event, Figure 14).
R7: The preemption is never enabled by the scheduling context (Figure 15).

Regarding the context switch (O4 and O5), the following conditions are required.

Necessary conditions for a context switch.
R8: The context switch occurs with interrupts disabled by threads (O2) and preemption
disabled to schedule (O6, Figure 16).
R9: The context switch occurs in the scheduling context (O7, Figure 17)

The necessary conditions to set the need resched (O9) and to wakeup a thread (O8) are
the same. They are listed below, and show in Figure 18.

Necessary conditions to set the need resched and to wakeup a thread.
R10 Preemption should be disabled, by any mean (O6).
R11 IRQs should be masked, either to avoid IRQ (O2) or to postpone IRQs (O3).

Until here, we considered necessary conditions. From now on, we will present sufficient
conditions.

Sufficient conditions to call the scheduler and to cause a context switch.
R12 Disabling preemption to schedule (O6) always causes a call to the scheduler (O7,
Figure 19).
R13 Calling the scheduler (O7) always results in a context switch (O4,O5). Recall that
if the system is idle, the idle thread is executed after the context switch. (Figure 20).
R14 Setting need resched (O9) always results in a context switch (O4,O5, Figure 21).

4 Demystifying the Real-time Linux Scheduling Latency

4.1 Problem Statement
We start defining the scheduling latency (hereafter only latency) and then we leverage the
rules presented in Section 3 and the related automaton model to derive an upper bound
reflecting all the peculiarities of Linux. The latency experienced by a thread instance (also
called job) may be informally defined as the maximum time elapsed between the instant
in which it becomes ready while having the highest-priority among all ready threads, and
the time instant in which it is allowed to execute its own code after the context switch has
already been performed. By extension, the latency of a thread is defined as reported in
Definition 1.

I Definition 1 (Thread Scheduling Latency). The scheduling latency experienced by an
arbitrary thread τTHD

i ∈ ΓTHD is the longest time elapsed between the time A in which any job
of τTHD

i becomes ready and with the highest priority, and the time F in which the scheduler
returns and allows τTHD

i to execute its code, in any possible schedule in which τTHD
i is not

preempted by any other thread in the interval [A,F].

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:9

nminon_nmi

hw_local_irq_disable
hw_local_irq_enable

local_irq_disable
local_irq_enable
preempt_disable
preempt_enable

preempt_disable_sched
preempt_enable_sched
sched_need_resched

sched_set_state_runnable
sched_set_state_sleepable

sched_switch_blocking
sched_switch_in

sched_switch_in_o
sched_switch_out_o

sched_switch_preempt
sched_switch_suspend

sched_waking
schedule_entry
schedule_exit

non_atomic_events*

nmi_exit

nmi_entry

Figure 10 Operations blocked in the NMI con-
text (R2).

irqnon_irq
hw_local_irq_enable

hw_local_irq_disable

local_irq_disable
local_irq_enable

preempt_enable_sched
sched_set_state_runnable
sched_set_state_sleepable

sched_switch_in
sched_switch_in_o
sched_switch_out_o

sched_switch_preempt
sched_switch_suspend
sched_switch_blocking

schedule_entry
schedule_exit

non_atomic_events*

Figure 11 Operations blocked in the IRQ con-
text (R3).

irq_disabled

no_irq

local_irq_enable

irq_runninghw_local_irq_enable

local_irq_disable

hw_local_irq_disable

Figure 12 IRQ disabled by thread or IRQs (R4).

can_sched

schedule_entry
schedule_exit

cant_sched

local_irq_disable

local_irq_enable

Figure 13 The scheduler is called with inter-
rupts enabled (R5).

can_sched

schedule_entry
schedule_exit

cant_sched preempt_enable_sched

preempt_disable_sched

Figure 14 The scheduler is called with pre-
emption disabled to call the scheduler(R6).

schedulingthread schedule_exit

schedule_entry

preempt_disable
preempt_enable

preempt_disable_sched
preempt_enable_sched

Figure 15 The scheduler context does not en-
able the preemption (R7).

disabled

sched_switch_in
sched_switch_suspend
sched_switch_preempt

sched_switch_in_o
sched_switch_out_o

sched_switch_blocking

p_xor_i

local_irq_enable
preempt_enable_sched

enabled

local_irq_disable
preempt_disable_sched

local_irq_disable
preempt_disable_sched

local_irq_enable
preempt_enable_sched

Figure 16 The context switch occurs with
interrupts and preempt disabled (R8).

sched

sched_switch_in
sched_switch_in_o

sched_switch_suspend
sched_switch_preempt
sched_switch_out_o

sched_switch_blocking

thread schedule_exit

schedule_entry

Figure 17 The context switch occurs in the
scheduling context (R9).

disabled

sched_need_resched
sched_waking

p_xor_i

preempt_enable
preempt_enable_sched

local_irq_enable
hw_local_irq_enable

enabled

preempt_disable
preempt_disable_sched

local_irq_disable
hw_local_irq_disable

preempt_disable
preempt_disable_sched

local_irq_disable
hw_local_irq_disable

preempt_enable
preempt_enable_sched

local_irq_enable
hw_local_irq_enable

Figure 18 Wakeup and need resched requires
IRQs and preemption disabled (R10 and R11).

ECRTS 2020

9:10 Demystifying the Real-Time Linux Scheduling Latency

pd

schedschedule_entry

schedule_entry

thread

preempt_enable_sched

preempt_disable_sched

Figure 19 Disabling preemption to schedule
always causes a call to the scheduler (R12).

a_switch
thread

schedule_exit

b_switch

sched_switch_suspend
sched_switch_preempt
sched_switch_blocking

sched_switch_out_o

schedule_entry

Figure 20 Scheduling always causes context
switch (R13).

thread

pd_id

pd_ie

local_irq_enable
hw_local_irq_enable

pe_id

preempt_enable

sched_switch_in
sched_switch_in_o

ie_resched
hw_local_irq_disable
hw_local_irq_enable

pe_ie

preempt_enable_sched

sched

schedule_entry

local_irq_disable
hw_local_irq_disable

schedule_exit

preempt_enable
preempt_enable_sched

schedule_entry

preempt_disable

local_irq_enable
hw_local_irq_enable

preempt_disable_sched

hw_local_irq_disable
hw_local_irq_enable

preempt_disable_sched

local_irq_disable
local_irq_enable

hw_local_irq_disable
hw_local_irq_enable

schedule_entry

sched_switch_in
sched_switch_in_o

sched_need_resched

preempt_disable_sched preempt_enable_sched
hw_local_irq_disable hw_local_irq_enable

local_irq_disable local_irq_enable
preempt_disable preempt_enable

schedule_entry schedule_exit
sched_switch_in sched_switch_in_o

non_atomic_events*

ii-b

ii-a
i-c

i-b

i-a
Cases in Section 4.2

Figure 21 Setting need resched always causes a context switch (R14).

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:11

IRQ disabledNMI

IRQ disable

Hard IRQScheduling (Thread)Thread Preemption disabled

Preempt disable to sched
Schedule call

Context switch
Preempt enablePreempt disable

Preempt enable from sched
Schedule return

IRQ enable

IRQ disable IRQ enable

Dpoid DpsdA F
Dst

I (L)NMI

I (L)IRQ

EV1
EV2 EV3

EV4
EV5

EV6
EV7

Figure 22 Reference timeline.

For brevity, we refer next to the event that causes any job of τTHD
i becoming ready and

with the maximum priority as RHPi event1. With Definition 1 in place, this paper aims at
computing a theoretically-sound upper bound to the latency experienced by an arbitrary
τTHD

i ∈ ΓTHD under analysis. To this end, we extract next some formal properties and lemmas
from the operations and rules presented in Section 3. We begin determining which types of
entities may prolong the latency of τTHD

i .

I Property 1. The scheduling latency of an arbitrary thread τTHD
i ∈ ΓTHD cannot be prolonged

due to high-priority interference from other threads τTHD
j ∈ ΓTHD

HPi
.

Proof. By contradiction, assume the property does not hold. Then, due to the priority
ordering, it means that either: (i) τTHD

i was not the highest-priority thread at the beginning
of the interval [A,F] (as defined in Definition 1), or (ii) τTHD

i has been preempted in [A,F].
Both cases contradict Definition 1, hence the property follows. J

Differently, Property 2 shows that the latency of a thread may be prolonged due to
priority-inversion blocking caused by other threads τTHD

j ∈ ΓTHD
LPi

with a lower priority.

I Property 2. The latency of an arbitrary thread τTHD
i ∈ ΓTHD can be prolonged due to

low-priority blocking from other threads τTHD
j ∈ ΓTHD

LPi
.

Proof. The property follows by noting that, for example, a low-priority thread may disable
the preemption to postpone the scheduler, potentially prolonging the latency of τTHD

i . J

With Property 1 and Property 2 in place, we bound the Linux latency as follows, referring
to an arbitrary thread τTHD

i under analysis. First, as a consequence of Property 1, only
the NMI and IRQs may prolong the latency due to high-priority interference, and such an
interference is equal for all threads τTHD

i ∈ ΓTHD since NMI and IRQs have higher priorities
than threads. We model the interference due to the NMI and IRQs in a time window of
length t with the functions INMI(t) and I IRQ(t), respectively. We then show next in Section 5
how to derive such functions. Besides interference, the latency is caused by constant kernel
overheads (e.g., due to the execution of the kernel code for performing the context switch) and
priority-inversion blocking (see Property 2), which we bound with a term LIF. In principle,
the delays originating LIF may be different for each thread τTHD

i ∈ ΓTHD. However, for

1 Note that RHPi is an event external to the model, for instance, it can be a hardware event that dispatches
an IRQ, or the event that causes a thread to activate another thread.

ECRTS 2020

9:12 Demystifying the Real-Time Linux Scheduling Latency

simplicity, we conservatively bound LIF in a thread-independent manner as discussed next in
Section 4.2 and 5. The latency of τTHD

i is then a function of the above delays, and is bounded
by leveraging standard techniques for response-time analysis in real-time systems [3, 25, 26],
i.e., by the least positive value fulfilling the following equation:

L = LIF + INMI(L) + I IRQ(L). (1)

Next, we show how to bound LIF.

4.2 Bounding LIF

Analysis Approach. As discussed in Section 3, after the RHPi event occurs (i.e., when τTHD
i

becomes the ready thread with the highest priority), the kernel identifies the need to schedule
a new thread when the set_need_resched event takes place. Then, an ordered sequence of
events occurs. Such events are motivated by the operations and rules discussed in Section 3,
graphically illustrated in the lower part of Figure 22, and discussed below.
EV1 The necessary conditions to call the scheduler need to be fulfilled: IRQs are enabled,

and preemption is disabled to call the scheduler. It follows from rule R5 and R6;
EV2 The scheduler is called. It follows from R12;
EV3 In the scheduler code, IRQs are disabled to perform a context switch. It follows from

rule R8;
EV4 The context switch occurs. It follows from rule R13 and R14;
EV5 Interrupts are enabled by the scheduler. It follows from R5;
EV6 The scheduler returns;
EV7 The preemption is enabled, returning the thread its own execution flow.

Note that, depending on what the processor is executing when the RHPi event occurs, not all
the events may be involved in (and hence prolong) the scheduling latency. Figure 21 illustrates
all the allowed sequences of events from the occurrence of the set_need_resched event
(caused by RHPi) until the context switch (EV4), allowing the occurrence of the other events
(EV5-EV7). According to the automaton model, there are five possible and mutually-exclusive
cases, highlighted with different colors in Figure 21. Our strategy for bounding LIF consists in
deriving an individual bound for each of the five cases, taking the maximum as a safe bound.
To derive the five cases, we first distinguish between: (i) if RHPi occurs when the current
thread τTHD

j ∈ ΓTHD
LPi

is in the scheduler execution flow, both voluntarily, or involuntarily as a
consequence of a previous set_need_resched occurrence, after disabling the preemption to
call the scheduler and, (ii) otherwise.

We can distinguish three mutually-exclusive sub-cases of (i):
i-a if RHPi occurs between events EV1 and EV2, i.e., after that preemption has been disabled

to call the scheduler and before the actual scheduler call (black in Figure 21);
i-b if RHPi occurs in the scheduler between EV2 and EV3, i.e., after that the scheduler has

already been called and before interrupts have been disabled to cause the context switch
(pink in Figure 21);

i-c if RHPi occurs in the scheduler between EV3 and EV7, i.e., after interrupts have already
been masked in the scheduler code and when the scheduler returns (brown in Figure 21);

In case (ii), RHPi occurred when the current thread τTHD
j ∈ ΓTHD

LPi
is not in the scheduler

execution flow. Based on the automaton of Figure 21, two sub-cases are further differentiated:
ii-a when RHPi is caused by an IRQ, and the currently executing thread may delay RHPi only

by disabling interruptions (green in Figure 21).
ii-b otherwise (blue in Figure 21).

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:13

Table 1 Parameters used to bound LIF.

Param. Length of the longest interval

DPSD in which preemptions are disabled to schedule.
DPAIE in which the system is in state pe_ie of Figure 21.
DPOID in which the preemption is disabled to postpone the scheduler or IRQs are disabled.
DST between two consecutive occurrences of EV3 and EV7.

Variables Selection. One of the most important design choices for the analysis consists
in determining the most suitable variables to be used for deriving the analytical bound.
Since the very early stages of its development, the PREEMPT_RT Linux had as a target to
minimize the code portions executed in interrupt context and the code sections in which the
preemption is disabled. One of the advantages of this design choice consists indeed in the
reduction of scheduling delays. Nevertheless, disabling the preemption or IRQs is sometimes
merely mandatory in the kernel code. As pointed out in Property 2, threads may also disable
the preemption or IRQs, e.g., to enforce synchronization, thus impacting on the scheduling
latency. Building upon the design principles of the fully-preemptive PREEMPT_RT kernel,
Table 1 presents and discusses the set of variables selected to bound the latency, which are
more extensively discussed next in Sections 5, and graphically illustrated in Figure 22. Such
variables considers the longest intervals of time in which the preemption and/or IRQs are
disabled, taking into consideration the different disabling modes discussed in Section 3.

Deriving the bound. Before discussing the details of the five cases, we present a bound on
the interference-free duration of the scheduler code in Lemma 2.

I Lemma 2. The interference-free duration of the scheduler code is bounded by DPSD.

Proof. It follows by noting that by rule R6 the scheduler is called and returns with the
preemption disabled to call the scheduler and, by rules R2d, R3c, and R7, the preemption is
not enabled again until the scheduler returns. J

Next, we provide a bound to LIF in each of the five possible chains of events.

Case (i). In case (i), the preemption is already disabled to call the scheduler, hence
either set_need_resched has already been triggered by another thread τTHD

j 6= τTHD
i or the

current thread voluntarily called the scheduler. Then, due to rules R13 and R14, a context
switch will occur. Consequently, the processor continues executing the scheduler code. Due
to rule R5, the scheduler is called with interrupts enabled and preemption disabled, hence
RHPi (and consequently set_need_resched) must occur because of an event triggered by
an interrupt. By rule R2, NMI cannot cause set_need_resched; consequently, it must be
caused by an IRQ or the scheduler code itself. Due to EV3, IRQs are masked in the scheduler
code before performing the context switch. We recall that case (i) divides into three possible
sub-cases, depending on whether RHPi occurs between EV1 and EV2 (case i-a), EV2 and
EV3 (case i-b), or EV3 and EV7 (case i-c). Lemma 3 bounds LIF for cases (i-a) and (i-b).

I Lemma 3. In cases (i-a) and (i-b), it holds

LIF
(i−a) ≤ DPSD, L

IF
(i−b) ≤ DPSD. (2)

Proof. In both cases it holds that preemption is disabled to call the scheduler and IRQs
have not been disabled yet (to perform the context switch) when RHPi occurs. Due to rules

ECRTS 2020

9:14 Demystifying the Real-Time Linux Scheduling Latency

R2 and R5, RHPi may only be triggered by an IRQ or the scheduler code itself. Hence, when
RHPi occurs set_need_resched is triggered and the scheduler performs the context switch
for τTHD

i . Furthermore, in case (i-b) the processor already started executing the scheduler
code when RHPi occurs. It follows that LIF is bounded by the interference-free duration of
the scheduler code. By Lemma 2, such a duration is bounded by DPSD. In case (i-a), the
scheduler has not been called yet, but preemptions have already been disabled to schedule.
By rule R12, it will immediately cause a call to the scheduler, and the preemption is not
enabled again between EV1 and EV2 (rules R2d, R3c, and R7). Therefore, also for case (i-a)
LIF is bounded by DPSD, thus proving the lemma. J

Differently, case (i-c), in which RHPi occurs between EV3 and EV7, i.e., after interrupts
are disabled to perform the context switch, is discussed in Lemma 4.

I Lemma 4. In case (i-c), it holds

LIF
(i−c) ≤ DST +DPAIE +DPSD. (3)

Proof. In case (i), the scheduler is already executing to perform the context switch of a
thread τTHD

j 6= τTHD
i . Due to rules R2 and R5, RHPi may only be triggered by an IRQ or the

scheduler code itself. If the scheduler code itself caused RHPi before the context switch (i.e.,
between EV3 and EV4), the same scenario discussed for case (i-b) occurs, and the bound
of Equation 2 holds. Then, case (i-c) occurs for RHPi arriving between EV4 and EV7 for
the scheduler code, or EV3 and EV7 for IRQs. IRQs may be either disabled to perform the
context switch (if RHPi occurs between EV3 and EV5), or already re-enabled because the
context switch already took place (if RHPi occurs between EV5 and EV7). In both cases,
thread τTHD

i needs to wait for the scheduler code to complete the context switch for τTHD
j .

If RHPi occurred while IRQs were disabled (i.e., between EV3 and EV5), the IRQ causing
RHPi is executed, triggering set_need_resched, when IRQs are enabled again just before
the scheduler returns (see rule R5).

Hence, due to rule R14, the scheduler needs to execute again to perform a second context
switch to let τTHD

i execute. As shown in the automaton of Figure 21, there may exist a possible
system state in case (i-c) (the brown one in Figure 21) in which, after RHPi occurred and
before the scheduler code is called again, both the preemption and IRQs are enabled before
calling the scheduler (state pe_ie in Figure 21). This system state is visited when the kernel
is executing the non-atomic function to enable preemption, because the previous scheduler
call (i.e., the one that caused the context switch for τTHD

j) enabled IRQs before returning
(EV5). Consequently, we can bound LIF in case (i-c) by bounding the interference-free
durations of the three intervals: IST, which lasts from EV3 to EV7, IPAIE, which accounts
for the kernel being in the state pe_ie of Figure 21 while executing EV7, and IS, where
preemption is disabled to call the scheduler and the scheduler is called again to schedule τTHD

i

(from EV1 to EV7). By definition and due to Lemma 2 and rules R2d, R3c, R7, and R12,
IST, IPAIE, and IS cannot be longer than DST, DPAIE, and DPSD, respectively. The lemma
follows by noting that the overall duration of LIF is bounded by the sum of the individual
bounds on IST, IPAIE, and IS. J

Case (ii). In case (ii), RHPi occurs when the current thread τTHD
j ∈ ΓTHD

LPi
is not in the

scheduler execution flow. As a consequence of the RHPi events, set_need_resched is triggered.
By rule R14, triggering set_need_resched always result in a context switch and, since RHPi

occurred outside the scheduler code, the scheduler needs to be called to perform the context
switch (rule R9). Hence, we can bound LIF in case (ii) by individually bounding two time

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:15

intervals IS and ISO in which the processor is executing or not executing the scheduler
execution flow (from EV1 to EV7), respectively. As already discussed, the duration of IS is
bounded by DPSD (Lemma 2). To bound ISO, we need to consider individually cases (ii-a)
and (ii-b). Lemma 5 and Lemma 6 bound LIF for cases (ii-a) and (ii-b), respectively.

I Lemma 5. In case (ii-a), it holds

LIF
(ii−a) ≤ DPOID +DPSD. (4)

Proof. In case (ii-a) RHPi occurs due to an IRQ. Recall from Operation O3 that when an
IRQ is executing, it masks interruptions. Hence, the IRQ causing RHPi can be delayed by
the current thread or a lower-priority IRQ that disabled IRQs. When RHPi occurs, the
IRQ triggering the event disables the preemption (IRQs are already masked) to fulfill R10
and R11, and triggers set_need_resched. If preemption was enabled before executing
the IRQ handler and if set_need_resched was triggered, when the IRQ returns, it first
disables preemptions (to call the scheduler, i.e., preempt_disable_sched). It then unmasks
interrupts (this is a safety measure to avoid stack overflows due to multiple scheduler calls in
the IRQ stack). This is done to fulfill the necessary conditions to call the scheduler discussed
in rules R5 and R6. Due to rules R3a and R12, the scheduler is called once the IRQ returns.
Hence, it follows that in the whole interval ISO, either the preemption or interrupts are
disabled. Then it follows that ISO is bounded by DPOID, i.e., by the length of the longest
interval in which either the preemption or IRQs are disabled. The lemma follows recalling
that the duration of IS is bounded by DPSD. J

I Lemma 6. In case (ii-b), it holds

LIF
(ii−b) ≤ DPOID +DPAIE +DPSD, (5)

Proof. In case (ii-b) the currently executing thread delayed the scheduler call by disabling
the preemption or IRQs. The two cases in which the RHPi event is triggered either by a
thread or an IRQ are discussed below.

(1) RHPi is triggered by an IRQ. Consider first that RHPi is triggered by an IRQ. Then,
the IRQ may be postponed by a thread or a low-priority IRQ that disabled interrupts.
When the IRQ is executed, it triggers set_need_resched. When returning, the IRQ returns
to the previous preemption state2, i.e, if it was disabled before the execution of the IRQ
handler, preemption is disabled, otherwise it is enabled. If the preemption was enabled
before executing the IRQ, the same scenario discussed for case (ii-a) occurs, and the bound
of Equation 4 holds. Otherwise, if the preemption was disabled to postpone the scheduler
execution, the scheduler is delayed due to priority-inversion blocking. Then it follows that
when delaying the scheduler execution, either the preemption or IRQs are disabled. When
preemption is re-enabled by threads and interrupts are enabled, the preemption needs to be
disabled again (this time not to postpone the scheduler execution, but to call the scheduler)
to fulfill the necessary conditions listed in rules R5 and R6, hence necessarily traversing
the pe_ie state (shown in Figure 21), where both preemptions and interrupts are enabled.
Hence, it follows that ISO is bounded by DPOID +DPAIE if RHPi is triggered by an IRQ.

(2) RHPi is triggered by a thread. In this case, the thread triggers set_need_resched.
Since the set_need_resched event requires IRQs and preemption disabled, the scheduler

2 Note that, internally to the IRQ handler, the preemption state may be changed, e.g., to trigger
set_need_resched.

ECRTS 2020

9:16 Demystifying the Real-Time Linux Scheduling Latency

execution is postponed until IRQs and preemption are enabled (pe_ie state). Once both are
enabled, the preemption is disabled to call the scheduler. Then it follows that ISO is bounded
by DPOID +DPAIE if RHPi is triggered by a thread. Then it follows that ISO is bounded by
DPOID +DPAIE in case (ii-b). The lemma follows recalling that IS is bounded by DPSD. J

By leveraging the individual bounds on LIF in the five cases discussed above, Lemma 7
provides an overall bound that is valid for all the possible events sequences.

I Lemma 7.

LIF ≤ max(DST, DPOID) +DPAIE +DPSD, (6)

Proof. The lemma follows by noting that cases (i-a), (i-b), (i-c), (ii-a), (ii-b) are mutually-
exclusive and cover all the possible sequences of events from the occurrence of RHPi and
set_need_resched, to the time instant in which τTHD

i is allowed to execute (as required
by Definition 1), and the right-hand side of Equation 6 simultaneously upper bounds the
right-hand sides of Equations 2, 3, 4, and 5. J

Theorem 8 summarizes the results derived in this section.

I Theorem 8. The scheduling latency experienced by an arbitrary thread τTHD
i is bounded by

the least positive value that fulfills the following recursive equation:

L = max(DST, DPOID) +DPAIE +DPSD + INMI(L) + I IRQ(L) (7)

Proof. The theorem follows directly from Lemmas 7 and Equation 1. J

5 rt_sched_latency: Efficient Scheduling Latency Estimation
Tool Kit

The validation tool used in the development of the Thread Synchronization Model [14] exports
all the kernel events to the user-space using perf, for later analysis. Although useful for
the model validation purpose, the low granularity nature of the synchronization primitives
generates a prohibitive amount of information for a performance measurement tool. For
instance, one second of trace could generate more than 800 MB of data per CPU. Doing the
whole trace analysis in-kernel has shown to be very efficient [18]. The problem for such an
approach lies in the amount of information that can be stored in kernel memory. While only
the worst observed value for some variables, such as DPOID, are used in the analysis, the IRQ
and NMI analysis required the recording of all interrupts occurrence during the measurements.
So the experimental tool kit developed in this work, called rt_sched_latency, has a hybrid
approach: it uses an in-kernel event parsing and an extension to the perf script tool for a
post-processing phase. Figure 23 describes the interaction of the tools in the tool kit. The
tool kit comprises the latency parser and the perf script extension, named rtsl.

The latency parser uses the kernel tracepoints from the Thread Synchronization
Model to observe their occurrence from inside the kernel. The latency parser registers a
callback function to the kernel tracepoints. When a tracepoint from the model is hit,
rather than writing the trace to the trace buffer (a buffer maintained by the perf tool to store
trace data) the respective function is called. The callback functions are used to pre-process
the events, transforming them into relevant information. For example, nmi_entry event
records the arrival time (all the values are observed values, but the observed qualifiers are
omitted for simplicity) without printing the occurrence of the event. When the nmi_exit

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:17

tr
ac

ep
oi

nt
s

Kernel latency
parser perf

buffer

perf script
record rtsl

perf.data

perf
scheda
report

perf script
report rtsl

Analysis

Chart

Figure 23 rt_sched_latency: tool kit components.

occurs, it computes the execution time of the NMI, and prints the arrival time and the
execution time of the NMI. A similar behavior is implemented for other metrics, for instance
for the IRQ occurence. The difference is that the interference must be removed from other
metrics. For example, if an NMI and an IRQ occur while measuring a candidate DPOID, the
IRQ and the NMI execution time are discounted from the measured value.

The latency parser communicates with perf using a new set of tracepoints, and
these are printed to the trace buffer. The following events are generated by the latency
parser:

irq_execution: prints the IRQ identifier, starting time, and execution time;
nmi_execution: prints the starting time, and execution time;
max_poid: prints the new maximum observed DPOID duration;
max_psd: prints the new maximum observed DPSD duration;
max_dst: prints the new maximum observed DST duration;
max_paie: prints the new maximum observed DPAIE duration;

By only tracing the return of interrupts and the new maximum values for the thread
metrics, the amount of data generated is reduced to the order of 200KB of data per second
per CPU. Hence, reducing the overhead of saving data to the trace buffer, while enabling
the measurements to run for hours by saving the results to the disk. The data collection
is done by the perf rtsl script. It initiates the latency parser and start recording its
events, saving the results to the perf.data file. The command also accepts a workload as
an argument. For example, the following command line will start the data collection while
running cyclictest concurrently:

perf script record rtsl cyclictest –smp -p95 -m -q
Indeed, this is how the data collection is made for Section 6. The trace analysis is done

with the following command line: perf script report rtsl. The perf script will read
the perf.data and perform the analysis. A cyclictest.txt file with cyclictest output
is also read by the script, adding its results to the analysis as well. The script to run the
analysis is implemented in python, which facilitates the handling of data, needed mainly for
the IRQ and NMI analysis.

IRQ and NMI analysis. While the variables used in the analysis are clearly defined (Table 1),
the characterization of IRQs and NMI interference is delegated to functions (i.e., INMI(L)
and I IRQ(L)), for which different characterizations are proposed next. The reason being is
that there is no consensus on what could be the single best characterization of interrupt
interference. For example, in a discussion among the Linux kernel developers, it is a common
opinion that the classical sporadic model would be too pessimistic [17]. Therefore, this
work assumes that there is no single way to characterize IRQs and NMIs, opting to explore
different IRQs and NMI characterizations in the analysis. Also, the choice to analyze the

ECRTS 2020

9:18 Demystifying the Real-Time Linux Scheduling Latency

Interference Free Latency:
paie is lower than 1 us -> neglectable
latency = max(poid, dst) + paie + psd

42212 = max(22510, 19312) + 0 + 19702
Cyclictest:

Latency = 27000 with Cyclictest
No Interrupts:

Latency = 42212 with No Interrupts
Sporadic:

INT: oWCET oMIAT
NMI: 0 0
33: 16914 257130
35: 12913 1843 <- oWCET > oMIAT

236: 20728 1558 <- oWCET > oMIAT
246: 3299 1910321
Did not converge.

continuing....
Sliding window:

Window: 42212
NMI: 0
33: 16914
35: 14588

236: 20728
246: 3299

Window: 97741
236: 21029 <- new!

Window: 98042
Converged!
Latency = 98042 with Sliding Window

Figure 24 perf rtsl output: excerpt from the textual output (time in nanoseconds).

perf record -a -g -e rtsl:poid --filter "value > 60000"
perf script

php 25708 [001] 754905.013632: rtsl:poid: 68391
ffffffff921cbb6d trace_preempt_on+0x13d ([kernel.kallsyms])
ffffffff921039ca preempt_count_sub+0x9a ([kernel.kallsyms])
ffffffff929a507a _raw_spin_unlock_irqrestore+0x2a ([kernel.kallsyms])
ffffffff92109a55 wake_up_new_task+0x1c5 ([kernel.kallsyms])
ffffffff920d4c5e _do_fork+0x14e ([kernel.kallsyms])
ffffffff92004552 do_syscall_64+0x72 ([kernel.kallsyms])
ffffffff92a00091 entry_SYSCALL_64_after_hwframe+0x49 ([kernel.kallsyms])

7f2d61d7a685 __libc_fork+0xc5 (/usr/lib64/libc-2.26.so)
55d87cba3b15 [unknown] (/usr/bin/php)

Figure 25 Using perf and the latency parser to find the cause of a large DPOID value.

data in user-space using python scripts were made to facilitate the extension of the analysis
by other users or researchers. The tool presents the latency analysis assuming the following
interrupts characterization:

No Interrupts: the interference-free latency (LIF);
Worst single interrupt: a single IRQ (the worst over all) and a single NMI occurrence;
Single (worst) of each interrupt: a single (the worst) occurrence of each interrupt;
Sporadic: sporadic model, using the observed minimum inter-arrival time and WCET;
Sliding window: using the worst-observed arrival pattern of each interrupt and the
observed execution time of individual instances;
Sliding window with oWCET: using the worst-observed arrival pattern of each
interrupt and the observed worst-case execution time among all the instances (oWCET).

These different characterization lead to different implementations of INMI(L) and I IRQ(L).

perf rtsl output. The perf rtsl tool has two outputs: the textual and the graphical one.
The textual output prints a detailed description of the latency analysis, including the values
for the variables defined in Section 4. By doing so, it becomes clear what are the contributions
of each variable to the resulting scheduling latency. An excerpt from the output is shown
in Figure 24. The tool also creates charts displaying the latency results for each interrupt
characterization, as shown in the experiments in Section 6.

When the dominant factor of latency is an IRQ or NMI, the textual output already
serves to isolate the context in which the problem happens. However, when the dominant
factor arises from a thread, the textual output points only to the variable that dominates
the latency. Then, to assist in the search for the code section, the tracepoints that prints
each occurrence of the variables from latency parser can be used. These events are not
used during the measurements because they occur too frequently, but they can be used in

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:19

the debug stage. For example, Figure 25 shows the example of the poid tracepoint traced
using perf, capturing the stack trace of the occurrence of a DPOID value higher than 60
microseconds3. In this example, it is possible to see that the spike occurs in the php thread
while waking up a process during a fork operation. This trace is precious evidence, mainly
because it is already isolated from other variables, such as the IRQs, that could point to the
wrong direction.

6 Experimental Analysis

This section presents latency measurements, comparing the results found by cyclictest
and perf rtsl while running concurrently in the same system. The main objective of
this experimental study is to corroborate the practical applicability of the analysis tool.
To this end, we show that the proposed approach provides latency bounds respecting the
under millisecond requirement in scheduling precision (which is typical of applications using
PREEMPT_RT) for most of the proposed interrupt characterizations. The proposed perf
rtsl tool individually characterizes the various sources of latency and composes them
leveraging a theory-based approach allowing to find highly latency-intensive schedules in
a much shorter time than cyclictest. The experiment was made in a workstation with
one Intel i7-6700K CPU @ 4.00GHz processor, with eight cores, and in a server with two
Non-Uniform Memory Access (NUMA) Intel Xeon L5640 CPU @ 2.27GHz processors with
six cores each. Both systems run the Fedora 31 Linux distribution, using the kernel-rt
5.2.21-rt14. The systems were tuned according to the best practices of real-time Linux
systems [34].

The first experiment runs on the workstation three different workloads for 30 minutes.
In the first case, the system is mostly idle. Then workloads were generated using two
phoronix-test-suite (pts) tests: the openssl stress test, which is a CPU intensive
workload, and the fio, stress-ng and build-linux-kernel tests together, causing a
mixed range of I/O intensive workload [31]. Different columns are reported in each graph,
corresponding to the different characterization of interrupts discussed in Section 5. The
result of this experiment is shown in Figure 26: 1.a, 1.b and 1.c, respectively. In the second
experiment, the I/O intensive workload was executed again, with different test durations, as
described in 2.a, 2.b, and 2.c. The results from cyclictest did not change substantially as
the time and workload changes. On the other hand, the proposed approach results change,
increasing the hypothetical bounds as the kernel load and experiment duration increase.
Consistently with cyclictest results, the No Interrupts column also do not vary substantially.
The difference comes from the interrupt workload: the more overloaded the system is, and
the longer the tests run, the more interrupts are generated and observed, influencing the
results. In all the cases, the sporadic task model appears to be overly pessimistic for IRQs:
regularly, the oWCET of IRQs were longer than the minimal observed inter-arrival time of
them. The Sliding Window with oWCET also stand out the other results. The results are
truncated in the charts 2.b and 2.c: their values are 467 and 801 microseconds, respectively.

Although the reference automata model was developed considering single-core systems, the
same synchronization rules are replicated in the multiple-core (mc) configuration, considering
the local scheduling latency of each CPU. The difference between single and multiple-core
cases resides in the inter-core synchronization using, for example, spinlocks. However, such
synchronization requires preemption and IRQs to be disabled, hence, taking place inside the

3 The latency parser tracepoints are also available via ftrace.

ECRTS 2020

9:20 Demystifying the Real-Time Linux Scheduling Latency

467

La
te

n
cy

 i
n
 m

ic
ro

se
co

n
d
s

801

2.a) 15 min. 2.b) 60 min. 2.c) 180 min.

1.a) Idle

La
te

n
cy

 i
n
 m

ic
ro

se
co

n
d
s

1.b) CPU Intensive 1.c) I/O Intensive

Figure 26 Workstation experiments: single-core system.

already defined variables. Moreover, when cyclictest runs in the –smp mode, it creates a
thread per-core, aiming to measure the local scheduling latency. In a mc setup, the workload
experiment was replicated in the workstation. Furthermore, the I/O intensive experiment
was replicated in the server. The results of these experiments are shown in Figure 27. In
these cases, the effects of the high kernel activation on I/O operations becomes evident in the
workstation experiment (3.c) and in the server experiment(4.a). Again the Sliding Window
with oWCET also stand out the other results, crossing the milliseconds barrier. The source
of the higher values in the thread variables (Table 1) is due to cross-core synchronization
using spinlocks. Indeed, the trace in Figure 25 was observed in the server running the
I/O workload. The php process in that case was part of the phoronix-test-suit used to
generate the workload.

Finally, by running cyclictest with and without using the perf rtsl tool, it was
possible to observe that the trace impact in the minimum, average and maximum values are
in the range from one to four microseconds, which is an acceptable range, given the frequency
in which events occurs, and the advantages of the approach.

7 Conclusions and Future Work

The usage of the Thread Synchronization Model [14] was a useful logical step between the real-
time theory and Linux, facilitating the information exchange among the related, but intricate,
domains. The analysis, built upon a set of practically-relevant variables, ends up concluding
what is informally known: the preemption and IRQ disabled sections, along with interrupts,
are the evil for the scheduling latency. The tangible benefits of the proposed technique come
from the decomposition of the variables, and the efficient method for observing the values.
Now users and developers have precise information regarding the sources of the latency on
their systems, facilitating the tuning, and the definition of where to improve the Linux code,
respectively. The improvement of the tool and its integration with the Linux kernel and
perf code base is the practical continuation of this work.

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:21

La
te

n
cy

 i
n
 m

ic
ro

se
co

n
d
s

4.a) Server I/O Intensive

3.a) Workstation Idle

La
te

n
cy

 i
n
 m

ic
ro

se
co

n
d
s

3.b) Workstation CPU Intensive 3.c) Workstation I/O Intensive

2944

1900

Figure 27 Workstation and Server experiments: multicore systems.

References

1 L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole. A measurement-based analysis of
the real-time performance of linux. In Proceedings. Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium, September 2002.

2 Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. Frightening
Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, pages 405–418, New York, NY, USA, 2018.
ACM. doi:10.1145/3173162.3177156.

3 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. Software engineering journal,
8(5):284–292, 1993.

4 Bjorn Brandenbug and James Anderson. Joint Opportunities for Real-Time Linux and Real-
Time System Research. In Proceedings of the 11th Real-Time Linux Workshop (RTLWS 2009),
pages 19–30, September 2009.

5 B. B. Brandenburg and M. Gül. Global scheduling not required: Simple, near-optimal
multiprocessor real-time scheduling with semi-partitioned reservations. In 2016 IEEE Real-
Time Systems Symposium (RTSS), pages 99–110, November 2016. doi:10.1109/RTSS.2016.
019.

6 John M. Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C. Devi, and James H.
Anderson. LitmusRT : A testbed for empirically comparing real-time multiprocessor schedulers.
In Proceedings of the 27th IEEE International Real-Time Systems Symposium, RTSS ’06, pages
111–126, Washington, DC, USA, 2006. IEEE Computer Society. doi:10.1109/RTSS.2006.27.

7 Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event Systems.
Springer Publishing Company, Incorporated, 2nd edition, 2010.

8 F. Cerqueira and B. Brandenburg. A Comparison of Scheduling Latency in Linux, PREEMPT-
RT, and LITMUS-RT. In Proceedings of the 9th Annual Workshop on Operating Systems
Platforms for Embedded Real-Time applications, pages 19–29, 2013.

ECRTS 2020

https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1109/RTSS.2016.019
https://doi.org/10.1109/RTSS.2016.019
https://doi.org/10.1109/RTSS.2006.27

9:22 Demystifying the Real-Time Linux Scheduling Latency

9 Felipe Cerqueira and Björn Brandenburg. A comparison of scheduling latency in linux,
preempt-rt, and litmus rt. In 9th Annual Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, pages 19–29. SYSGO AG, 2013.

10 H. Chishiro. RT-Seed: Real-Time Middleware for Semi-Fixed-Priority Scheduling. In 2016
IEEE 19th International Symposium on Real-Time Distributed Computing (ISORC), pages
124–133, May 2016. doi:10.1109/ISORC.2016.26.

11 J. Corbet. Linux at NASDAQ OMX, October 2010.
URL: https://lwn.net/Articles/411064/.

12 T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo, and
F. Rusina. A real-time service-oriented architecture for industrial automation. IEEE Transac-
tions on Industrial Informatics, 5(3):267–277, August 2009. doi:10.1109/TII.2009.2027013.

13 D. B. de Oliveira, R. S. de Oliveira, T. Cucinotta, and L. Abeni. Automata-based modeling of
interrupts in the Linux PREEMPT RT kernel. In 2017 22nd IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), pages 1–8, September 2017.
doi:10.1109/ETFA.2017.8247611.

14 Daniel B. de Oliveira, Rômulo S. de Oliveira, and Tommaso Cucinotta. A thread synchroniza-
tion model for the preempt_rt linux kernel. Journal of Systems Architecture, page 101729,
2020. doi:10.1016/j.sysarc.2020.101729.

15 Daniel Bristot de Oliveira. Mind the gap between real-time Linux and real-time theory, Part
I, 2018.
URL: https://wiki.linuxfoundation.org/realtime/events/rt-summit2018/schedule#
abstracts.

16 Daniel Bristot de Oliveira. Mind the gap between real-time Linux and real-time theory, Part
II, 2018.
URL: https://www.linuxplumbersconf.org/event/2/contributions/75/.

17 Daniel Bristot de Oliveira. Mathmatizing the Latency - Presentation at the Real-time Linux
micro-conference, at the Linux Plumbers Conference, September 2019.
URL: https://linuxplumbersconf.org/event/4/contributions/413/.

18 Daniel Bristot de Oliveira, Tommaso Cucinotta, and Rômulo Silva de Oliveira. Efficient formal
verification for the linux kernel. In International Conference on Software Engineering and
Formal Methods, pages 315–332. Springer, 2019.

19 Daniel Bristot de Oliveira, Tommaso Cucinotta, and Rômulo Silva de Oliveira. Untangling the
Intricacies of Thread Synchronization in the PREEMPT_RT Linux Kernel. In Proceedings
of the IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC),
Valencia, Spain, May 2019.

20 Daniel Bristot de Oliveira and Rômulo Silva de Oliveira. Timing analysis of the PREEMPT_RT
Linux kernel. Softw., Pract. Exper., 46(6):789–819, 2016. doi:10.1002/spe.2333.

21 A. Dubey, G. Karsai, and S. Abdelwahed. Compensating for timing jitter in computing
systems with general-purpose operating systems. In 2009 IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, pages 55–62, March
2009. doi:10.1109/ISORC.2009.28.

22 Hasan Fayyad-Kazan, Luc Perneel, and Martin Timmerman. Linux preempt-rt vs commercial
rtoss: How big is the performance gap? GSTF Journal on Computing, 3(1), 2013.

23 Thomas Gleixner. Realtime Linux: academia v. reality. Linux Weekly News, July 2010. URL:
https://lwn.net/Articles/397422/.

24 B. Herzog, L. Gerhorst, B. Heinloth, S. Reif, T. Hönig, and W. Schröder-Preikschat. Intspect:
Interrupt latencies in the linux kernel. In 2018 VIII Brazilian Symposium on Computing
Systems Engineering (SBESC), pages 83–90, November 2018.

25 M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The Computer
Journal, 29(5):390–395, January 1986.

https://doi.org/10.1109/ISORC.2016.26
https://lwn.net/Articles/411064/
https://doi.org/10.1109/TII.2009.2027013
https://doi.org/10.1109/ETFA.2017.8247611
https://doi.org/10.1016/j.sysarc.2020.101729
https://wiki.linuxfoundation.org/realtime/events/rt-summit2018/schedule#abstracts
https://wiki.linuxfoundation.org/realtime/events/rt-summit2018/schedule#abstracts
https://www.linuxplumbersconf.org/event/2/contributions/75/
https://linuxplumbersconf.org/event/4/contributions/413/
https://doi.org/10.1002/spe.2333
https://doi.org/10.1109/ISORC.2009.28
https://lwn.net/Articles/397422/

D.B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta 9:23

26 J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact charac-
terization and average case behavior. In [1989] Proceedings. Real-Time Systems Symposium,
pages 166–171, December 1989.

27 Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline scheduling in the Linux
kernel. Software: Practice and Experience, 46(6):821–839, 2016. doi:10.1002/spe.2335.

28 Linux Kernel Documentation. Linux tracing technologies. https://www.kernel.org/doc/
html/latest/trace/index.html, February 2020.

29 G. Matni and M. Dagenais. Automata-based approach for kernel trace analysis. In 2009
Canadian Conference on Electrical and Computer Engineering, pages 970–973, May 2009.
doi:10.1109/CCECE.2009.5090273.

30 L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQuoSA – Adaptive Quality of Service
Architecture. Softw. Pract. Exper., 39(1):1–31, January 2009. doi:10.1002/spe.v39:1.

31 Phoronix Test Suite. Open-source, automated benchmarking. www.phoronix-test-suite.com,
February 2020.

32 Josh Poimboeuf. Introducing kpatch: Dynamic kernel patching. https://www.redhat.com/
en/blog/introducing-kpatch-dynamic-kernel-patching, February 2014.

33 P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.
SIAM J. Control Optim., 25(1):206–230, January 1987. doi:10.1137/0325013.

34 Red Hat. Inc,. Advanced tuning procedures to optimize latency in RHEL for Real
Time. https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_
for_real_time/8/html/tuning_guide/index, February 2020.

35 Red Hat. Inc,. Red Hat Enterprise Linux Hardware Certification. https:
//access.redhat.com/documentation/en-us/red_hat_enterprise_linux_hardware_
certification/1.0/html/test_suite_user_guide/sect-layered-product-certs#
cert-for-rhel-for-real-time, February 2020.

36 F. Reghenzani, G. Massari, and W. Fornaciari. Mixed time-criticality process interferences
characterization on a multicore linux system. In 2017 Euromicro Conference on Digital System
Design (DSD), August 2017.

37 Paul Regnier, George Lima, and Luciano Barreto. Evaluation of interrupt handling timeliness
in real-time linux operating systems. ACM SIGOPS Operating Systems Review, 42(6):52–63,
2008.

38 Steven Rostedt. Finding origins of latencies using ftrace, 2009.
39 Carlos San Vicente Gutiérrez, Lander Usategui San Juan, Irati Zamalloa Ugarte, and Víctor

Mayoral Vilches. Real-time linux communications: an evaluation of the linux communication
stack for real-time robotic applications, August 2018.
URL: https://arxiv.org/pdf/1808.10821.pdf.

ECRTS 2020

https://doi.org/10.1002/spe.2335
https://www.kernel.org/doc/html/latest/trace/index.html
https://www.kernel.org/doc/html/latest/trace/index.html
https://doi.org/10.1109/CCECE.2009.5090273
https://doi.org/10.1002/spe.v39:1
www.phoronix-test-suite.com
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://doi.org/10.1137/0325013
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/tuning_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/tuning_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_hardware_certification/1.0/html/test_suite_user_guide/sect-layered-product-certs#cert-for-rhel-for-real-time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_hardware_certification/1.0/html/test_suite_user_guide/sect-layered-product-certs#cert-for-rhel-for-real-time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_hardware_certification/1.0/html/test_suite_user_guide/sect-layered-product-certs#cert-for-rhel-for-real-time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_hardware_certification/1.0/html/test_suite_user_guide/sect-layered-product-certs#cert-for-rhel-for-real-time
https://arxiv.org/pdf/1808.10821.pdf

	Introduction
	Background
	Linux Execution Contexts, Scheduling Dynamics, and Tracing
	Automata Models and the PREEMPT_RT Synchronization Model
	Related Work

	System Model
	Basic Operations
	Rules

	Demystifying the Real-time Linux Scheduling Latency
	Problem Statement
	Bounding L^{IF}

	rt_sched_latency: Efficient Scheduling Latency Estimation Tool Kit
	Experimental Analysis
	Conclusions and Future Work

