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CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, 1 

also inhibits the 21-hydroxylase activity of CYP21A2  2 
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Abstract 42 
 43 

Abiraterone is an inhibitor of CYP17A1 which is used for the treatment of castration resistant 44 

prostate cancer. Abiraterone is known to inhibit several drug metabolizing cytochrome P450 45 

enzymes including CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, CYP3A4 and 46 

CYP3A5, but its effects on steroid metabolizing P450 enzymes are not clear. In preliminary 47 

results, we had observed inhibition of CYP21A2 by 1µM abiraterone. Here we are reporting 48 

the effect of abiraterone on activities of CYP21A2 in human adrenal cells as well as with 49 

purified recombinant CYP21A2. Cells were treated with varying concentrations of abiraterone 50 

for 24 hours and CYP21A2 activity was measured using [
3
H] 17-hydroxyprogesterone as 51 

substrate. Whole steroid profile changes were determined by gas chromatography-mass 52 

spectrometry. Binding of abiraterone to purified CYP21A2 protein was measured 53 

spectroscopically. Computational docking was used to study the binding and interaction of 54 

abiraterone with CYP21A2. Abiraterone caused significant reduction in CYP21A2 activity in 55 

assays with cells and an inhibition of CYP21A2 activity was also observed in experiments 56 

using recombinant purified proteins. Abiraterone binds to CYP21A2 with an estimated Kd of 57 

6.3 µM. These inhibitory effects of abiraterone are at clinically used concentrations. A loss of 58 

CYP21A2 activity in combination with reduction of CYP17A1 activities by abiraterone could 59 

result in lower cortisol levels and may require monitoring for any potential adverse effects. 60 

  61 
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1 Introduction 62 

Androgenic steroids are required for a wide range of functions necessary for life, from the salt 63 

balance by mineralocorticoids, sugar balance by glucocorticoids to the growth, reproductive 64 

and sexual functions by sex steroids. Biosynthesis of androgens occurs in the human adrenal 65 

cortex (zona reticularis) and gonads (ovaries / testes) [1]. Enzymes for production of 66 

androgens and genes encoding these enzymes are known but the mechanism of regulation of 67 

androgen production remains unclear [2]. Steroid hormones are synthesized from cholesterol 68 

starting from conversion of cholesterol to pregnenolone by CYP11A1, a member of 69 

cytochrome P450 gene family, which is the quantitative regulator of steroidogenesis [3]. 70 

Pregnenolone can then be directed to one of three principal pathways by CYP17A1, the 71 

qualitative regulator of steroidogenesis, which catalyzes both 17-hydroxylase and 17,20 72 

lyase activities [4, 5] (Fig. 1). 73 

 74 

In the absence of CYP17A1, pregnenolone is converted to C21 steroids, including 75 

progesterone, corticosterone and aldosterone. In presence of the 17-hydroxylase activity of 76 

CYP17A1, the adrenal zona fasciculata produces C21 17-hydroxy steroids including cortisol 77 

[6, 7]. When both 17-hydroxylase and 17,20 lyase activities are present, the adrenal zona 78 

reticularis and gonads produce dehydroepiandrosterone (DHEA), which is the precursor of 79 

androgens and estrogens. The CYP17A1 acts as a qualitative regulator of sex steroid 80 

biosynthesis in humans [8]. CYP17A1 catalyzes two distinct reactions in the steroid pathway 81 

[5, 9, 10]; its 17α-hydroxylase activity is essential for producing 17OH-pregnenolone and 82 

17OH-progesterone precursors of cortisol, and its 17,20 lyase activity is needed for the 83 

production of the precursor of sex steroids, dehydroepiandrosterone (DHEA) . The two 84 

activities of CYP17A1 determine the type of steroid hormone synthesized in different cells 85 

and tissues; if CYP17A1 is absent, mineralocorticoids are produced, if only 17α-hydroxylase 86 
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activity is present, glucocorticoids are made, and if both activities are present sex steroid 87 

precursors can be produced. Overproduction of androgens by specific activation of 88 

CYP17A1-17,20 lyase activity has been implicated in the pathogenesis of the polycystic 89 

ovary syndrome [8].  90 

 91 

The overproduction of steroid hormones, especially hypercortisolemia during the 92 

Cushing´s syndrome, is a potentially life-threatening situation [11, 12]. The 93 

hyperandrogenism is not a life threatening condition itself but brings many severe 94 

complications during fetal, childhood as well as adult phases of life [13]. Androgens are 95 

regulators of both, the female and male sexual differentiation [13, 14]. The hyperandrogenism 96 

during childhood and adulthood is mainly recognized in females due to virilisation, hirsutism, 97 

oligomenorhea, infertility etc. Non-tumoral cases of hyperandrogenism are polycystic ovary 98 

syndrome, Cushing syndrome or congenital adrenal hyperplasia due to 21-hydroxylase 99 

deficiency [15-18]. The hyperandrogenism can also be the first sign of adrenocortical or 100 

ovarian tumors [15, 19]. Overproduction of cortisol and androgens could be therapeutically 101 

influenced by drugs.  102 

 103 

The adrenal steroidogenesis inhibitors block various steps in steroid production. 104 

Currently few drugs are approved as steroidogenesis inhibitors (Ketoconazole, Metyrapone, 105 

Etomidate, Mitatone) in the European Union or in the United States.  All these drugs inhibit 106 

the CYP17A1, CYP11A1 and CYP11B1 [20]. Several other drugs like Osilodrostat (inhibitor 107 

of CYP11B and other CYP enzymes) are being studied [20-22]. In addition, new drugs such 108 

as orteronel and galeterone which are able to inhibit androgen productions in androgen 109 

depended prostate cancers are being tested [23-28]. 110 

 111 
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Abiraterone was designed as a CYP17A1 inhibitor and its effect on androgen production in 112 

the treatment of androgen depended prostate cancer was confirmed by clinical trials [29]. The 113 

U.S. Food and Drug Administration approved abiraterone acetate (Zytiga Tablets, 114 

http://www.zytiga.com)) for use in combination with prednisone for the treatment of patients 115 

with metastatic castration-resistant prostate cancer (mCRPC) who have received prior 116 

chemotherapy containing docetaxel. Abiraterone was tested in our laboratory to elucidate its 117 

effect on adrenal androgen production. The CYP17A1 inhibitors in use target both the17-118 

hydroxylase and 17,20 lyase activities and require steroid supplementation [26, 30-33]. In our 119 

previous study abiraterone inhibited both the 17α-hydroxylase and the 17,20-lyase activities 120 

of CYP17A1. Surprisingly, abiraterone also completely inhibited the 21-hydroxylase activity 121 

of CYP21A2 at the concentration for the clinical uses (1 µM) [26]. 122 

 123 

Both the CYP17A1 and the CYP21A2 enzymes are localized in the endoplasmic reticulum, 124 

and catalyze important steps in the biosynthesis of steroids [8]. The CYP17A1 is the source of 125 

17α-hydroxylase and 17,20-lyase activities in adrenals and gonads whereas the CYP21A2 is 126 

localized only in the adrenals and catalyzes the 21-hydroxylation of progesterone/17OHP to 127 

DOC /11-deoxycortisol for the biosynthesis of mineralocorticoids and glucocorticoids. Both 128 

of these enzymes have sequence similarities and belong to  the cytochrome P450 family of 129 

proteins [8] and depend on P450 oxidoreductase for redox equivalents [34]. The deficiency of 130 

CYP21A2 leads to variable symptoms depending on the amount of residual activity, ranging 131 

from the severe adrenal crisis with salt wasting symptoms to mild hyperandrogenism [8, 35, 132 

36].  133 

 134 

Here, we are reporting detailed studies on the effect of abiraterone on 21-hydroxylase activity. 135 

The mode of action of abiraterone on CYP21A2 was tested using recombinant purified human 136 

http://www.zytiga.com/
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CYP21A2 protein expressed in bacteria as well as in cell based assays using a human adrenal 137 

cell line. All studies show the inhibition of 21-hydroxylase activity of CYP21A2 at clinically 138 

used concentrations of abiraterone, indicating that treatment with abiraterone should be used 139 

with caution, especially in treatment of non-cancerous hyperandrogenic disorders like PCOS.  140 

 141 

2 Materials and Methods  142 

 143 

2.1 Materials 144 

Abiraterone was purchased from Selleckchem (Houston, TX, USA). Radio-labeled [
3
H]-17α-145 

hydroxyprogesterone (17OH-PROG) was from American Radiolabel Chemicals Inc. (St. 146 

Louis, MO, USA). All other chemicals were purchased from Sigma Chemical company (St. 147 

Louis, MO, USA) 148 

 149 

2.2 Protein expression and purification 150 

Human CYP21A2 was recombinantly produced in E. coli strain C43(DE3) (Lucigen, 151 

Middleton, MI, USA) and purified via metal chelate (IMAC) and ion exchange 152 

chromatography as described previously. Carbon monoxide difference spectroscopy was 153 

performed to determine the enzyme quality and quantity by monitoring the absorption peaks 154 

at 450 nm. An extinction coefficient of 91 mM
−1

*cm
−1

 was used for calculation of 155 

cytochrome P450 content [37]. Human NADPH- cytochrome P450 reductase (POR) was 156 

produced as recombinant protein in E. coli C43(DE3) and purified by IMAC using established 157 

protocols [38]. 158 

 159 

2.3 Study of Abiraterone binding to CYP21A2 by difference absorption spectroscopy 160 
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Difference spectroscopy was performed with tandem cuvettes for determination of the 161 

dissociation constant (Kd) for abiraterone according to earlier protocols. Cuvettes contained 1 162 

µM of purified CYP21A2 in phosphate buffer (50 mM potassium phosphate (pH 7.4), 0.5% 163 

sodium cholate, 0.05% Tween 20 and 20% glycerol). Titration was performed by adding 164 

increasing amounts of abiraterone dissolved in DMSO. Difference spectra were monitored in 165 

the wavelength range of 350 to 500 nm. The binding titrations were carried out in three 166 

different experiments. To determine the Kd, the average of ∆A (absorbance difference of 167 

peak-to-trough) was plotted against the concentration of abiraterone. The plots were fitted for 168 

hyperbolic regression using OriginPro 9 software (OriginLab Corp, MA, USA). 169 

 170 

2.4 CYP21A2 Inhibition studies with purified recombinant protein 171 

The inhibition studies were performed in reconstituted in vitro assays in 50 mM HEPES 172 

buffer (pH 7.4) containing 20% glycerol and 100 µM 1,2-dilauroyl-sn-glycero-3-173 

phosphocholine. Prior to use, the buffer was sonicated in a water bath for 5 minutes for the 174 

reconstitution of 1,2-dilauroyl-sn-glycero-3-phosphocholine vesicles. The concentration of 175 

human CYP21A2 in reactions was 0.1 – 0.3 µM and equal amounts of human POR were 176 

added. Additionally, the reaction contained a NADPH regeneration system consisting of 5 177 

mM glucose-6-phosphate, 1 mM MgCl2 and glucose-6-phosphate dehydrogenase. The 17OH-178 

PROG (substrate) was varied at a concentration of 1, 2.5 and 5 µM and the abiraterone 179 

(inhibitor) was at concentrations of 0.25, 0.5, 1, 2.5 and 5 µM. The substrate concentrations 180 

were kept below saturation, but in excess over Km for CYP21A2. The final DMSO 181 

concentration was kept below 2%. The reaction was initiated by addition of 5 mM NADPH 182 

and incubation was performed in a water bath with shaking for 4 - 7 min at 37°C. After the 183 

incubation, reactions were stopped by addition of chloroform and steroids were extracted with 184 
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chloroform. Extraction process was repeated twice, then steroids were dried by evaporation 185 

and stored at -20°C for quantitative analysis by HPLC. 186 

 187 

2.5 Steroid analysis via RP-HPLC 188 

Steroid analysis was carried out by RP-HPLC using a Jasco reversed phase LC900 HPLC 189 

system (Jasco Inc, Easton, MD, USA) and a 4.6 mm × 125 mm NucleoDur C18 Isis Reversed 190 

Phase column (Macherey-Nagel, Düren, Germany). Samples were measured within 30 min at 191 

240 nm and a flow rate of 0.8 mL/min with the gradient: 80% solvent A (10% acetonitrile in 192 

water) for 13 min, 60% solvent A for 7 min, 80% solvent B (100% acetonitrile) for 2 min and 193 

80% solvent A for 8 min. 194 

 195 

2.6 Inhibition of CYP21A2 activity by abiraterone in human adrenal cells 196 

Human adrenal carcinoma cell line (NCI-H295R) was purchased from American Type 197 

Culture Collection (ATCC, CRL-2128). The NCI-H295R cells were cultured under standard 198 

condition in DMEM/Ham’s F-12 medium containing L-glutamine (GIBCO) supplemented 199 

with 5% NU-I serum (BD biosciences), 0.1% insulin, transferrin, and selenium (100 U/ml; 200 

GIBCO), penicillin (100 U/ml, GIBCO) and streptomycin (100 μg/ml, GIBCO). Abiraterone 201 

was dissolved in dimethyl sulfoxide (DMSO) at stock concentrations of 200 μM; final 202 

concentrations used for treatment were in the range of 0.001 to 1 μM.  203 

 204 

For the experiments cells were grown in twelve-well plates. Twenty-four hours after 205 

plating the cells, medium was replaced and treatment was added in normal growth medium 206 

for 24 h. After 24 hour cells were treated with 1μM trilostane (a specific blocker of HSD3B) 207 

for 90 min before adding [
3
H] 17OH-PROG. 17OH-PROG was added at two concentrations 208 

(1 and 5 µM). Control cells were treated with 0.1% (v/v) DMSO. Radiolabeled [
3
H]- 17OH-209 
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PROG (50 000 cpm) was added to the culture medium for the last 60 min of incubation. 210 

Steroids were extracted from cell supernatants and separated by thin layer chromatography 211 

(TLC) on silicagel (SIL G/UV254) TLC plates (Macherey-Nagel, Oensingen, Switzerland) as 212 

previously described [26, 39-42]. The steroids were visualized on a Fuji FLA-7000 213 

PhosphoImager (Fujifilm, Dielsdorf, Switzerland) and quantified using Multi Gauge software 214 

(Fujifilm, Dielsdorf, Switzerland). The conversion of 17OH-PROG to 11-deoxycorticosterone 215 

(11DOC) showed 21-hydroxylase activity. Steroid conversion was assessed as a percentage of 216 

incorporated radioactivity into a specific steroid product in relation to total radioactivity 217 

measured for the whole sample (internal control). Data were analyzed based on Michaelis-218 

Menten enzyme kinetics [43] using the method of Dixon to determine the Ki values [44]. 219 

 220 

2.7 Steroid profiling from cell culture 221 

Steroid metabolites from cell cultures were measured by gas chromatography-mass 222 

spectrometry (GC/MS) according to established protocols [45, 46] . The cells were grown in 223 

10 cm plates in normal growth medium for 24 h, then medium was replaced, and cells were 224 

treated with 1 µM abiraterone in medium without NU-I serum for 24 h. After 12 h of 225 

treatment, 1 µM pregnenolone was added. At the end of incubations supernatant was collected 226 

and concentrated samples were used for steroid analysis by GC–MS. All measurements were 227 

performed in the steroid laboratory of the Department of Nephrology, Hypertension and 228 

Clinical Pharmacology at the University Hospital of Bern, Switzerland.  229 

 230 

2.8 Protein structure analysis  231 

The published 3D structure of CYP21A2 waw obtained from PDB database (www.rcsb.org). 232 

We performed several sequence alignments with multiple CYP21A2 protein sequences from 233 

different organisms and made in-silico calculations with the programs YASARA [47] and 234 

http://www.rcsb.org/
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WHATIF [48]. For all experiments, a crystal structure (PDB # 4Y8W) of CYP21A2 was 235 

used. Missing hydrogen atoms were added with YASARA [47] that was also used for all 236 

subsequent computations unless stated otherwise. Afterwards system was subjected to 500 ps 237 

explicit solvent MD simulations at 310 K, preceded by 500 steps of steepest decent and 238 

simulated annealing minimization with the AMBER03 force field and the TIP3P water model 239 

[49, 50]. All subsequent MD simulations retained these settings. The resulting minimum 240 

energy structure was used for AutoDock VINA [51] to perform docking experiments with 241 

abiraterone (orthorhombic docking was grid established around the central  heme). The final 242 

poses were selected based on their docking scores and resemblance to the co-crystallized 243 

ligand in the template structure (PDB: 4Y8W). Structure models were depicted with Pymol 244 

(www.pymol.org) and rendered as ray traced images with POVRAY (www.povray.org). 245 

Ligand interactions were analysed and depicted with LIGPLOT+ 246 

(http://www.ebi.ac.uk/thornton-srv/software/LigPlus/) 247 

 248 

2.9  Statistical Analysis 249 

Statistical analysis was performed with Microsoft Excel and GraphPad Prism 6 (Graph Pad 250 

Software, Inc. San Diego, CA, USA). Statistical differences between values were calculated 251 

using the Student’s t test. Quantitative data represent the mean of three independent 252 

experiments, error bars indicate the mean ± SEM. Significance was set at *p < 0.05 and 253 

**p < 0.01, ***p < 0.001. 254 

 255 

3 Results  256 

 257 

3.1 Effect of abiraterone on steroid production by human adrenal cells. We measured the 258 

global changes in steroid production of human adrenal NCI-H295A cells upon abiraterone 259 

http://www.pymol.org/
http://www.povray.org/
http://www.ebi.ac.uk/thornton-srv/software/LigPlus/
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treatment (Table 1). Abiraterone lowered the production of both testosterone, and 260 

dihydrotestosterone. In addition, androsterone, etiocholanolone and their 11β-hydroxy 261 

metabolites were also lowered. Abiraterone caused major changes in cortisol metabolites with 262 

a decrease of tetrahydro deoxycorticosterone and cortisol and increase in tetrahydrocortison, 263 

α-Cortolon, β-Cortolon, tetrahydrocortisol and 5α-tetrahydrocortisol. Overall in addition to 264 

inhibition of CYP17A1 activities, abiraterone seems to affect a wide range of steroid 265 

metabolizing enzymes.   266 

 267 

3.2 Inhibition of CYP21A2 activity by abiraterone in human adrenal cells. 268 

 The 21-hydroxylase activity was monitored in H295R cells treated with control (DMSO) and 269 

1 µM abiraterone for 24 h. CYP21A2 activities were measured by observing the conversion 270 

of [
3
H] 17-OH-PROG (17α-hydroxyprogesterone) to 11-deoxycortisol using two different 271 

substrate concentrations (Figure 2A). Data are presented as mean ± SD of three independent 272 

experiments for each set of substrate concentrations. We observed significantly decreased 21-273 

hydroxalyse activity in cells treated with abiraterone at concentrations from 0.03 µM to 1 µM. 274 

The calculated IC50 for abiraterone inhibition of CYP21A2 activity in our experiments was 25 275 

nM at 1µM substrate concentration and 54 nM at 5 µM substrate concentration. We also 276 

calculated the Ki value for abiraterone inhibition of CYP21A2 activity by Dixon plot analysis 277 

[44]. A plot of 1/v versus increasing abiraterone concentrations at two different substrate 278 

concentrations showed a competitive inhibition / simple mixed inhibition pattern with an 279 

estimated Ki value of 23 nM. The strong inhibition of CYP21A2 activity at the lower end of 280 

clinically used concentrations of abiraterone indicated that abiraterone is a potent inhibitor of 281 

CYP21A2 activity, in addition to its effects of CYP17A1 activities. Comparison of IC50 282 

values obtained at lower substrate concentration and the Ki value derived from Dixon plot 283 
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indicated a pattern of a simple mixed inhibition according to the Cheng-Prusoff equation [52, 284 

53] for the mechanism of abiraterone effect of CYP21A2 activity. 285 

 286 

3.3 Computational docking of abiraterone into the human CYP21A2 crystal structure. 287 

Abiraterone was docked into the crystal structure of human CYP21A2 using Autodock VINA 288 

(Figure 3A). Superimposition of CYP21A2 structures with either its substrate or abiraterone 289 

docked into the active site revealed similar binding poses (Figure 3B). We observed a 290 

nitrogen-iron binding pattern from the docking of abiraterone into the active site of CYP21A2 291 

crystal structure (Figure 3C). Binding pose of abiraterone to CYP21A2 was also similar to its 292 

binding into the CYP17A1. A comparison of the CYP17A1 crystal structure in complex with 293 

abiraterone and docked abiraterone into the crystal structure of CYP21A2 revealed similar 294 

binding conformations and the distance of the imidazole nitrogen of abiraterone to the central 295 

heme iron of both, CYP21A2 and CYP17A1,  was similar (3.2 Å vs 2.7Å) (Figure 3D). 296 

Binding of abiraterone with CYP21A2 shares many similarities with its binding to CYP17A1 297 

with many similar active site residues involved in binding for both proteins (Table 2). 298 

 299 

3.4 Determination of abiraterone-CYP21A2 dissociation constant by difference 300 

spectroscopy 301 

Since our cell culture experiments demonstrate a significant inhibition of CYP21A2 by 302 

abiraterone, which was also supported by docking studies using the crystal structure of 303 

CYP21A2, we were interested to evaluate the mechanism of this effect using in-vitro 304 

investigations with purified enzymes. To confirm the computational docking of abiraterone 305 

into the CYP21A2 structure binding of abiraterone to purified human CYP21A2 was studied. 306 

The dissociation constant for binding of abiraterone to CYP21A2 was determined by 307 

difference absorption spectroscopy (Figure 4). The formation of complex between an inhibitor 308 
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and CYP21A2 could be determined spectroscopically by observing the type II shift in spectral 309 

changes caused by the displacement of a water molecule upon coordination of a nitrogen-310 

containing ligand to the P450 heme iron. Titration of recombinant bacterially expressed 311 

CYP21A2 with increasing concentrations of abiraterone shows a typical type II shift with an 312 

absorption decrease at 410 nm and an increase at 424 nm (Figure 4 inset), confirming the 313 

computational docking experiments which showed nitrogen-iron co-ordination for binding of 314 

abiraterone to CYP21A2 active site. Plotting of the absorbance differences produced a 315 

hyperbolic curve which gave a Kd of 6.3 ± 0.2 µM (Figure 4). The micro molar range of the 316 

dissociation constant indicates a strong binding of abiraterone to human CYP21A2, which is, 317 

however, weaker than that for 17OH-PROG, which has a Kd value of 0.03 µM as reported by 318 

Pallan et al. [54]. 319 

 320 

 321 

3.6 Estimation of the Ki value for abiraterone with purified CYP21A2  322 

For the determination of a Ki value for abiraterone by the Dixon plot [44], reconstituted in 323 

vitro assays using recombinant CYP21A2 were performed with three different 17OH-324 

progesterone concentrations (1, 2.5 and 5 µM) and the addition of increasing amounts of 325 

abiraterone (0.25, 0.5, 1, 2.5 and 5 µM). For each 17OH-PROG concentration, the reciprocal 326 

reaction velocity (v = nmol product/nmol CYP/min) was plotted against the respective 327 

concentration of abiraterone, resulting in three linear fits, whose interface showed a Ki value 328 

of 2.26 µM. The estimated Ki value agrees with the determined dissociation constant of 6.3 329 

µM which was also measured with the recombinant CYP21A2. The Ki value obtained using 330 

recombinant enzyme was higher when compared to results from cell culture experiments. This 331 

could be due to the differences in the two systems and methods used, e.g. purification and 332 

reconstitution steps involved in use of bacterially expressed CYP21A2.  333 
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 334 

4 Discussion 335 

Abiraterone acetate was developed as an inhibitor of CYP17A1 to block androgen production. 336 

The effect of abiraterone has been demonstrated successfully in the treatment of metastatic 337 

castrate resistant prostate cancers (mCRPC) [29].  Abiraterone was approved as a treatment of 338 

mCRPC with co-administration of prednisolone or prednisone by U.S. Food and Drug 339 

Administration (FDA) and also by European Medicines Agency's (EMA) Committee for 340 

Medicinal Products for Human Use. The small doses of prednisone or prednisolone positively 341 

reduced side effects of abiraterone acetate administration which was associated with increased 342 

levels of adrenocorticotropic hormone and steroids upstream of CYP17A1 along with 343 

suppression of serum testosterone, downstream androgenic steroids, and estradiol in all 344 

patients [55]. Abiraterone is known to have strong (CYP1A2, CYP2D6 and CYP2C8) to 345 

moderate (CYP2C9, CYP2C19, CYP3A4, CYP3A5) inhibitory effect on several hepatic drug 346 

metabolizing cytochrome P450 enzymes and is a substrate of CYP3A4 in vitro 347 

(https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202379s004lbl.pdf). Some 348 

studies have indicated reduced activity of HSD3B1 and HSD3B2 [56]. Abiraterone is also 349 

known to bind to the androgen receptor and produces a dose-dependent decrease in AR levels 350 

[57, 58]. However, surprisingly, information about effects of abiraterone on steroid 351 

metabolizing enzymes is lacking. Considering the inhibitory effect of abiraterone on multiple 352 

hepatic cytochrome P450 enzymes, in addition to its inhibitory effect on CYP17A1, effects of 353 

abiraterone on other similar steroid metabolizing cytochrome P450 enzymes should have been 354 

investigated. However, information regarding such studies is not available at either 355 

manufacturer’s web site (www.zytiga.com) or from the FDA drug safety documents 356 

(https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202379s004lbl.pdf) . 357 

 358 

https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202379s004lbl.pdf
http://www.zytiga.com/
https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202379s004lbl.pdf
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We have previously performed a preliminary analysis of the steroid hydroxylation reactions 359 

of the adrenal carcinoma cell line treated by CYP17A1 inhibitors [26]. The analysis indicated 360 

low androgen (DHEAS and testosterone) as well as cortisol production under the abiraterone 361 

treatment. Moreover, the steroid profiling, which provided the CYP21A2 activity as a ratio of 362 

17OHP and 11 DOC conversion, showed complete inhibition of CYP21A2 in case of 1µM 363 

concentration of abiraterone [26]. In our current study, different concentrations of abiraterone 364 

were used to treat the NCI-H295R adrenal carcinoma cell line. Abiraterone caused a dose 365 

dependent reduction of CYP21A2 activity. A significantly lower CYP21A2 activity was 366 

observed at 0.03 µM and higher concentrations of abiraterone with an IC50 value of 25 nM. A 367 

whole cell steroid analysis performed to observe the global changes in steroid patterns upon 368 

abiraterone treatment showed a wide range of altered steroid metabolites (Table 1). In 369 

addition to testosterone and dehydroepiandrosterone reduction as expected, we saw changes 370 

in corticosterone and cortisol metabolites by abiraterone treatment (Figure 6). Based on these 371 

results, we can conclude that abiraterone causes a complex pattern of changes in steroid 372 

metabolites due to its inhibition of CYP21A2 activities in addition to inhibition of 17α-373 

hydroxylase and 17,20 lyase activities of CYP17A1. 374 

 375 

Further studies were performed to elucidate the binding of abiraterone to CYP21A2. The 376 

computational docking of abiraterone into the CYP21A2 crystal structure showed that 377 

abiraterone binds closer to the central heme of CYP21A2, which was similar to the binding of 378 

abiraterone to the CYP17A1, as observed in crystal structures and spectral binding studies 379 

[54, 59]. The predicted model of CYP21A2 and abiraterone binding was confirmed by 380 

spectral binding analysis. A complex formation between abiraterone and CYP21A2 was 381 

observed as a type II spectral shift upon displacement of a water molecule by the coordination 382 

of a nitrogen-containing ligand to the P450 heme iron. Binding of steroid substrates to 383 
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CYP21A2 results in a type I P450 spectra, indicating the effects of substrate binding on the 384 

heme iron spin state equilibrium [54].  In our study, the Kd Value of the complex of bacterially 385 

produced recombinant CYP21A2 with abiraterone was 6.3 ± 0.2 µM indicating a strong 386 

affinity. Further experiments were then performed to detect the pattern of enzymatic 387 

inhibition of CYP21A2 by abiraterone. A Dixon plot of enzymatic analysis using variable 388 

concentrations of substrate as well as inhibitor revealed a competitive / simple mixed 389 

inhibition pattern for inhibition of CYP21A2 by abiraterone.  390 

 391 

Our studies provide the detailed analysis of the inhibitory effects of abiraterone on CYP21A2 392 

activity. These results indicate that the cortisol production in patients with CRPC who are 393 

treated with abiraterone may be affected not only by the inhibition of CYP17A1 but also by 394 

the CYP21A2 inhibition. In addition, use of abiraterone in non-cancerous hyperandrogenic 395 

disorders like polycystic ovary syndrome requires further caution as inhibition of both the 396 

CYP17A1 as well as the CYP21A2, may potentially result in complications associated with 397 

lower cortisol levels. 398 
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Tables 619 
 620 

Table 1: Effect of abiraterone on steroid production by human adrenal cells. 621 

Steroid Metabolite Abbreviation DMSO Abiraterone 

Androsterone ANDRO 0.390881 6.226052 

Etiocholanolone ETIO 0.109623 3.321062 

Androstenediol 5αAD3α17β 0.30697 0.465213 

11-Oxo-Etiocholanolon 11-OXO-ETIO N.A. 0.187621 

11β-Hydroxy-Androsterone 11-OH-ANDRO 0.188208 3.451147 

11β-Hydroxy-Etiocholanolone 11-OH-ETIO N.A. 2.134756 

Dehydroepiandrosterone DHEA 1.436706 0.144953 

5-Androstene-3β,17β-diol 5-AD-17β 0.340096 0.215782 

16α-Hydroxy-DHEA 16α-OH-DHEA 2.154509 1.740921 

5-Androstene-3β,16α,17β-triol 5-AT 0.234827 0.311715 

5-Pregnene-3β, 16α,17β-triol 5-PT 1.371897 0.124343 

Testosterone TESTOSTERONE 1.613952 0.413544 

5α-Dihydrotestosterone 5α-DIHYDROTEST 0.182893 N.A. 

Estriol ESTRIOL 0.07959 0.044161 

17β-Estradiol 17β-ESTRADIOL N.A. 0.027509 

17-Hydroxypregnanolone 17-HP 0.023376 1.030389 

Pregnanediol PD 1.670818 0.715222 

Pregnanetriol PT 0.168326 3.385257 

11-Deoxycortisol-Metabolite 

Tetrahydrosubstance S THS N.A. 0.263843 

Corticosterone-Metabolite 

Tetrahydro DOC THDOC 2.087659 0.067438 

Tetrahydro dehydrocorticosterone THA N.A. 0.371549 

Tetrahydrocorticosterone THB N.A. 0.780605 

5α-Tetrahydrocorticosterone 5α-THB N.A. 1.132725 

18-Hydroxy-tetrahydrocompound A 18-OH-THA N.A. N.A. 

Cortisol-Metabolite 

Cortison CORTISONE N.A. 0.5454 

Tetrahydrocortison THE 0.192633 12.27504 

α-Cortolon α-CORTOLONE 0.006468 2.949182 

β-Cortolon β-CORTOLONE N.A. 1.38639 

20α-Dihydrocortison 20α-DHE N.A. 0.084738 

20β-Dihydrocortison 20β-DHE N.A. 0.195689 

Cortisol CORTISOL 1.86521 0.747982 

Tetrahydrocortisol THF 0.095437 8.012946 

5α-Tetrahydrocortisol 5α-THF 0.274516 7.184058 

α-Cortol α-CORTOL N.A. 1.813959 

β-Cortol β-CORTOL N.A. 1.653822 

20α-Dihydrocortisol 20α-DHF 0.315156 0.507297 

 622 
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 623 

Table 2: Computational binding energy, dissociation contacts and interacting residues for 624 

abiraterone binding with CYP21A2 compared to CYP17A1. 625 

 626 
 Binding Energy 

(kcal/mol) 

Dissociation 

constant (nM) 

Contacting residues 

CYP17A1 with 

PROG 

10.6 14.66 ALA113 PHE114 ASN202 

ILE205 ILE206 LEU209 

ARG239 GLY297 ASP298 

GLY301 ALA302 THR306 

ALA367 ILE371 VAL482 

VAL483 HEME 

CYP21A2 with 

PROG 

12.7 0.49 VAL101 ASP107 SER109 

LEU110 VAL198 LEU199 

TRP202 LEU227 ILE231 

ARG234 MET284 VAL287 

ASP288 ILE291 GLY292 

THR296 VAL360 LEU364 

VAL470 ILE471 HEME 

CYP17A1 with 

Abiraterone 

12.5 0.69 ALA113 PHE114 TYR201 

ASN202 ILE205 ILE206 

LEU209 ARG239 GLY297 

ASP298 GLY301 ALA302 

GLU305 THR306 VAL366 

ALA367 LEU370 ILE371 

VAL482 VAL483 HEME 

CYP21A2 with 

Abiraterone 

13.2 0.20 VAL101 ASP107 SER109 

LEU110 VAL198 LEU199 

TRP202 LEU227 ILE231 

ARG234 MET284 VAL287 

ASP288 ILE291 GLY292 

THR296 VAL359 VAL360 

LEU364 VAL470 ILE471 

HEME 

 627 
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 630 

Figure legends 631 

 632 

Figure 1. Pathway of steroid hormone production in humans with of roles of CYP21A2 and 633 

CYP17A1 in humans. Cholesterol is transported to mitochondrion by steroidogenic acute 634 

regulatory protein (StAR), where CYP11A1 converts it to pregnenolone. The pregnenolone 635 

metabolized in the endoplasmic reticulum to 17OHPreg, DHEA by CYP17A1 and 636 

androstenedione or androstenediol and this process continues to production of testosterone. 637 

The alternate pathway of steroid metabolism proceeds from 17OHPreg to 17OHProg, 17OH-638 

DHP, 17OH-Allo, androsterone, androstanediol (A’diol) and then to DHT in the testis. DHEA 639 

is converted to androstenedione and then to testosterone, which is further metabolized to 640 

estrogens. 641 

  642 

Abbreviations: CYP11A1 (P450scc, cholesterol side-chain cleavage enzyme), StAR 643 

(steroidogenic acute regulatory protein), FDX1, Adrenodoxin; FDXR, NADPH adrenodoxin 644 

oxidoreductase; CYP17A1 (P450c17, 17α-hydroxylase/17,20-lyase), HSD3B2 (3βHSD2, 3β-645 

hydroxysteroid dehydrogenase, type 2), CYB5, cytochrome b5; POR, P450 oxidoreductase; 646 

HSD17B3 (17βHSD3, 17β-hydroxysteroid dehydrogenase, type 3), and SRD5A2 (5α-647 

reductase, type 2). The alternative pathway has four additional enzymes: SRD5A1 (5α-648 

reductase, type 1); AKR1C2 (Aldo-keto reductase 1C2, 3αHSD3) and AKR1C4 Aldo-keto 649 

reductase 1C4, 3αHSD1) for reductive 3αHSD activity; and HSD17B6 (17βHSD6, 17β-650 

hydroxysteroid dehydrogenase, type 6) and/or AKR1C2/4 for oxidative 3αHSD activity. Full 651 

steroid names: 17OHPreg, 17-hydroxypregnenolone; 17OHProg, 17-hydroxyprogesterone; 652 

17OH-DHP, 17-hydroxydihydroprogesterone (5α-pregnan-3α,17α-ol-20-one); 17OH-Allo, 653 

17-hydroxyallopregnanolone (5α-pregnan-3α,17α-diol-20-one; P’diol); DHEA, 654 

dehydroepiandrosterone. 655 

 656 
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Figure 2. Inhibition of CYP21A2 activity by abiraterone in human adrenal cells. The 21-657 

hydroxylase activity was monitored in H295R cells treated with control (DMSO) and 0.001 to 658 

1 µM abiraterone with two different concentrations of the substrate for 24 h. CYP21A2 659 

activities were measured by monitoring the conversion of [
3
H] 17OH-PROG (17α-660 

hydroxyprogesterone) to 11-deoxycortisol. Data are presented as mean ± SD of three 661 

independent experiments. A. A dose response curve showing the effect of increasing 662 

concentrations of abiraterone on CYP21A2 activity. B. A Dixon plot for calculating the Ki 663 

values of abiraterone for inhibition of CYP21A2 activity. A Ki value of 23 nM was obtained 664 

for inhibition of CYP21A2 activity by abiraterone. 17OH-PROG, 17α-hydroxyprogesterone; 665 

11-DOC, 11-deoxycortisol. 666 

 667 

Figure 3. Computational docking of abiraterone into the human CYP21A2 crystal structure. 668 

A. Abiraterone docking into CYP21A2 structure. Abiraterone was docked into the structure of 669 

CYP21A2 and found to bind like its native substrate, progesterone. B. A close up of 670 

abiraterone docked into CYP21A2 compared to its substrate. C. Abiraterone binds to heme 671 

through nitrogen-iron co-ordination. D. A close up of abiraterone bound to CYP17A1. 672 

Binding of abiraterone to CYP21A2 is similar to CYP17A1. These data are in line with our 673 

findings of the inhibitory effects of abiraterone on CYP21A2 in addition to inhibition of 674 

CYP17A1 activities. 675 

 676 

Figure 4. Binding spectra of abiraterone with CYP21A2. To confirm the inhibition in cell 677 

experiments and computational binding, we carried out spectral binding analysis for the 678 

interaction of abiraterone with CYP21A2. Titration of CYP21A2 with increasing 679 

concentrations of abiraterone showed a type II shift indicating nitrogen-iron complex as 680 

indicated by an absorption decrease at 410 nm and an increase at 424 nm (inset). The 681 
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difference of the absorbance maximum and minimum plotted against the respective ligand 682 

concentration of each titrating step results in a hyperbolic regression curve revealing a Kd 683 

value of 6.3 ± 0.2 µM. 684 

 685 

Figure 5. Inhibition of recombinant human CYP21A2 activity by abiraterone. To further 686 

verify the results obtained from cell experiments, we used recombinant bacterially expressed 687 

CYP21A2 for determining the inhibition parameters of abiraterone on CYP21A2. A Dixon 688 

Plot (1/v vs inhibitor concentration) at three different concentrations of substrate is shown. 689 

Abiraterone inhibited the recombinant CYP21A2 activity with an estimated Ki value of 2.26 690 

µM.  691 

 692 

Figure 6. A schematic representation of the effect of abiraterone on steroidogenesis. Steroid 693 

metabolites changes are based on data in Table 1. 694 
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