@t\libaba Group
> EEESH

Generalized and Transparent Al
Optimization Solutions with Al Compilers
from Cloud Service Providers

Feb. 2022
Kai Zhu
tashuang.zk@Alibaba-inc.com

(&Alibaba Group
= R

| Agenda

® Background

Challenges as Cloud Service Providers
Motivations of a Dynamic Shape Compiler

® BladeDISC Features & Overview
® System Design

Decoupled Architecture
Dynamic Shape Support
Shape Consfraints

Fusion Stitching Codegen
Runtime Abstraction Layer
Multiple Frontend Support

® Numbers

® Roaamap

Alibaba Group
- EPREE

- Background

® Chdadllenges Iin Large Scale Deployment as Cloud Service Providers

» Diversitied Workloads
+ Good Performance with Less Human Effort

- Adaptation fo Different Hardware

- Ease of Use
— Users with different background

— Less complexity in deployment
— Efficiency In optimization

- Robustness
* Multiple Frontenas

— Standard/Customized TF/PyTorch in different versions

- Different Deploy Environments
— Inference & single/multiple nodes training

Alibaba Group
- PEREPRED

- Background

® Al Optimization Solutions

- Manuadlly crafted libraries and pattern matching
based graph optimizers

— TensorRT (ver < 8.0), MIGraph, OpenVINO, MNN
- Deep Learning Compillers

— Fill the gap between flexibility and performance
— XLA, TVM, MLIR, IREE DL Computation

Graph or Scripts

® Deep Learning Compilers are Promising In

+ Good generality and scalabillity for a wide variety of
. Executable
fast evolving models Machine Code Programs

- Easily adaptive to different backend devices

- Common solution to fast-evolving frontend deep Conventional Deep Learning
learning frameworks Compilers Compilers

aAlibaba Group
- R A

Motivations of a Dynamic Shape Compiler

® State of the arr compilers are static shape oriented
- Shapes are statically known at compile fime
- Static shape information benefits for:
— Performance: graph level optimization, fusion decision, code generation, scheaduling ---
— Memory optimization
* However---

® A maqjor problem that blocks the deployment and application
- Compilation overheaad
- Problems on host / device memory usage
- Complexity in model deployment
« For some workloads, the amount of shapes is unlimited

Alibaba Group
- PEREPRED

Motivations of a Dynamic Shape Compiler

® Examples of workloads thart suffer from static
Shc pe issues Inputs that has to be regarded as constants

- CV workloads processing different image sizes,
eg, object detection

- Seg2seg models with varying input seqg_len,
oufput seqg_len and bafch size

- TIS models with random shapes in the decoder
even for fixed inputs

» Sparse workloads with Unigue ops generating
varying snapes
— ff.feature_column
— Large scale embedding in distributed fraining

Subgraph that
calculating shapes

cluster

Alibaba Group
- RS

- Features & Overview

® BladeDISC (Blade Dynamlic Shape Compiler)
* Multiple frontend support

— TensorFlow & PyTorch

+ Multiple backend device support

~ GPGPU (CUDA & ROCM)
— x86

» |Inference & training support

» Fully dynamic shape semantics support

— No restrictions on dynamic shape support
— Without awareness of the semantics of dynamic dimensions (batchsize, sequence length efc.)

» Deployment solutions

— Plugin Mode: as a plugin of TensorFlow/PyTorch, with unsupported ops executed by TensorFlow/PyTorch
runtime.

— Standalone Mode: Standalone runtime for AOT application.

Alibaba Group
- PEREPRED

Features & Overview

Transparency 1o Users

- Plugin Mode: Only a few lines of codes on the original scripts are needed o turn on the
compller.

For TensorFlow Users For PyTorch Users

Only two lines of code are needed on native Tensorflow program as the following: PyTorch users only need the following few lines of code to enable BladeDISC:

import numpy as np import torch_blade
import tensorflow as tf # construct PyTorch Module

class MyModule(nn.Module):

enable BladeDISC on TensorFlow program
import tensorflow_blade_disc as disc
disc.enable() module = MyModule()

construct TensorFlow Graph and run it with torch.no_grad():

g = tf.Graph() # blade_module 1s the optimized module by BladeDISC
with g.as_default(): blade_module = torch_blade.optimize(module, allow_tracing=True, model_inputs=(x, y))

with tf.session as sess: # run the optimized module
S€SS. run(...) blade_module(x, vy)

- System Design

® Compiler as a plugin

Design Godal

— Only maintains one copy of the compiler code
— Adapting to different frontends easily
— Fallback mechanism

Basic |ldeas

— Clustering based compilation
— A graph rewriter pass to find candidate
subgraphs
— Following community best practice
— Suitable for both training and inference
— Friendly for custom op

— Separating compilation & execution
— A standalone compiler fo do heavy liff things
— A custom op to wrap execution logic
— Avoid some engineering headaches (e.g.
inking, compatibility)

Maintains a seperate
version for each
frontend framework
version.

TensorFlow 1.12
TensorFlow 1.15
TensorFlow 2.0

Torchl.6.0

General to all
frontends

<

\

TAO Graph Passes
GraphPasses (libtao_ops.so)

Convert the supported
subgraph to TaoOp in the
frontend graph/IR

Runtime Op

Triggers compilation
Correctness/performance check
Execute the CompilationResult

Serialized
CompilationResult

Compiler

SupportedOpsSet

High level IR/Graph
IO information 1'
Compilation Options

Alibaba Group
- RS

- System Design

TensorFlow LibTorch

® Compiler

. DHLO
. Multiple framework support Tensorflow
clustering pass clustering pass

— MHLO as the cenfralized graph IR |
* Multiple backend haraware support TF2DHLO PyTorch2DHLO
— LLVM IR converter converter

- Runtime Abstraction Layer
— To isolate the compiler and different

Shape Calculation Lowering

Compiler Passes

Buffer Management & Optimization

runfime environments (placer, shape infer, control flow lowering
. . . fusion, host/device codegen, buffer
+ Kernel \Ibl’(]ry |n'|'egr0'h0n assignment, stream assignment etc.)

External Library Lowering

— Cublas, cudnn etc.
— A balance between complexity,

o Fusion Decision
ﬂe)(|b|\|fy & performgnce Runtime Abstraction Layer Passes
Ral Driver for TF Ral Driver for Raw Host-side Device Fusion

CodeGen CodeGen

TensorFlow LibTorch
TaoOp TaoOp

Indepéndent |
Runtime Binary Cubin
(Raw binary)

TensorFlow LibTorch
runtime runtime

Alibaba Group
N)l]

10

- System Design

® Fully Dynamic Shape Support OHLO

- The IRs That can fully represent dynamic snape semantics
— Supplement of MHLO/LMHLO Dialect
- Code generated runtime flow
— Adaptive shape inference
— Dynamic buffer maonagement
— Host-side conftrol
« Graph Optimization & CodeGen in dynamic shape
» Fusion & code generation
— Shape hinfs & constraints
— Shape adapftive fusion configuration

- Buffer Allocation & Scheduling

Host-side Device Fusion

CodeGen CodeGen

Binar

IC Sh manti namic Sh manti
static shape semantics dynamic shape semantics o ER DD -

Alibai3%a Group
11 | 7]

- System Design

® Backbone Pass Pipeline

. | Giriginy i ;- DiscLegalizeToLhloPass \
O M Ll R f \ IscLowerliir-ass : : LegalizeTOLhloPass
I n rO \\\ ConVeﬂMlirTOXIaHIOPipe”ne ",/' \\ TF-D'a|GCt TorChSC”pt / DisgcCOnvertShapeToStandardPass ‘\

" LegalizeTensorLoadOpPass

TF executor Dialect

rd

* /" FuncBufferizePass N\

" /) TensorBufferizePass
o M O d U ‘ O r ﬂ eXI b ‘ e o a8 DiscStdBufferizePass |
. g B ™ \ FinalizingBufferizePass
| n frO S -l- r U C-l- U re / DiscRemoveShapeConstraintsPass g \. DiscMemrefCanonicalizerPass

/' DiscShapeSimplifierPass HLO Dialect . DiscAssignMemorySpacePass
DiscConvertTensorToStandardPass 4

o R e U S O b ‘ e & eXT e n Si b ‘ e DiscConvertHloToStandardPass \ 2 HLO graph optimization & /

SplitLargeOpsPass Y placement passes - o
| DI.SCDO tRewri te.rPass | _ . _ /
. o DiscConvRewriterPass - HLO Dialect (with placement attribute) |/ PromoteBuffersToStackPass
@ M O Or D I O ‘ e C'I' S DiscConvPaddinglLegalizationPass e ' DiscFusionPass |
| HloCanonicalizeReductionPass | : . | SpecializeFusionWithSpeculationPass
| | PR f—— 7\ DiscStitchFusionPass |
D H L O D 1 | -|- DiscMarkShapeCalcOpPass P 4 \ BufferDeallocationPass
T IO e C PlacerPass LHLO Dialect (with placement attribute) / N g

: \. DiscElementTypeConverterPass LHLO graph optimization passes *
o I_ D H I_ O D I O ‘ e CT DiscShapeSimplifierPass

= g LHLO Dialect (fused, with placement attribute)

- SCF Dialect |

DiscLhloLegalizeRootsToParallelLoopsPass CodeGen passes

G . StdEXpandOpsPass g\ v
N P U D I O | e C-|- "' DiscunhandledAtomI‘CRMWCOnverterpass \\ '-’l‘,"/,-"""'

| DiscInputinlineFusionPass Loops Dialect (fused)
‘\ FoldSubViewOpsPass
\ DiscFlatternMemrefAccessPass f

« Tutorial of The Pass Pipeline | oicvemrercszeass - Loops to GPU passe

l/‘

| RallnjectExecutionContextPass
. DiscLowerToLibraryCallPass |
DiscConstToRALPass /

‘/’>

External library call conversion passes

DiscConvertShapeToStandardPass DiscCpuMapParallelLoopPass
DiscOutlineCpuKernelPass
LhloFusioninlinerPass

LegalizeTrigonometricToApproximationPass \

GPU Dialect (with
gpu.LaunchOp)

DiscParallelLoopCollapsingPass N\ ‘,. DiscMathApproximationPass "
/ ParallelLoopTilingPass \ /| DiscRemoveDeadBufferPass |
/' MapParallelLoopsPass 3 y, ' \\ LowerToCFGPass /,

ParallelLoopToGpuPass :’ //’ \ LowerToAffinePass
,~ GpuKernelOutliningPass | . StripDebuginfoPass
DiscAssignKernelNamePass Std/GPU_Dialect Std Dialect \. DiscToLLVMPass
LhloFusioninlinerPass (gpu.Module) 4 "
. ReviseGpuKernelOutliningPass " 4
. /’/ /'/
- _~ gpu.Module to cubin passes Host side passes
/ LowerToCFGPass Y
| léowel;A;ﬁnelP fsps \ ¥ v Including implementations of:
tripDebuginfoPass | IO binding
Dl:scLoweerqusToNVVM/ROCDLOpsPass ; cubin Host side binary T Device initialization/management
\ DiscGpuKernelToBlobPass / (including the main func) ' Status management
. — “ e Vendor library calls
i 4 etc.

The compiled executable

12

https://alibaba.github.io/BladeDISC/docs/developers/pass_pipeline.html

- System Design

® Chdallenges on Performance

- More complicated computation graphn
— Mixed data computation & shape computation

- Optimization objective shifting

— From peak performance to average performance, one-snape-one-solution vs trransferable solution

» Less effective Information/methods for optimization

Computation
Graph Level @ EB:' @

— Implicit Broadcast

- Fusionstrategy tensor<?x?xf32> tensor<?x?xf32>
— Vectorization / Tiling strategies I I |
(a) axb == = axb
— Amount of index calculation instructions Valid input shape
at runtime 1xb = |
(b) [|ax1 .:D:. axb
() axb '='|]=' axb — axb |

An example for numpy style implicit broadcast

Alibaba Group
- RS

13

- System Design

® Shape Constraints

- BladeDISC optimization pipeline

— Shape constraint centric
— Widely used from graph level to instruction level optimizations
— Crucial to performance in dynamic shape semantics

- Different kinds of shape constraints

— Structured shape constraint

— Dimension size equality

— Number elements eqUO“Ty Shape constraint analysis
- Symbolic equality: [a, b, ¢, d] to [a*b, ¢, d] R | l
~ Shape distribution constraint | | |
_ Dimsize %4 == Sonera | Graph _| Optimized Fusion | Fused | CODEGEN.| Lowered
optimization| MHLO IR decision MHLO IR IR
— Likely values ’-
- Shape ranges TensorFlow/PyTorch v - - : ~
Graph Data computation + Sexamcan. o oanaton, XLA-style kLoop/kinput fusion + Speculation +

Layout optimization, and

Index calculation optimization
many others

shape constraint Lowering Fusion Stitching

Alibaba Group
- EPREE

14

- System Design

® Where 10 get shape consirainise L e e
- Semantics of MHLO Ops s s e O A
. ' let arguments = (ins TensorType:$operand);
. SymbO“C Shgpe C]ﬂC”YSlS let results = (outs TensorType);
+ |njected by frontend converter An example: infe_r shape constraint from
. ded b the semantics of op definition
° oviae Y USEIS

* Injected ar JIT compilation ime %0 = transpose %input {permutation = {1,0}}
%1 = mhlo.add %0, %input

An example for symbolic shape analysis: input

| input | input shape should be squared

— I_ I, : : %0 = tensor.dim %input, %c0
T) %1 = tensor.dim %input, %c1

%2 = tensor.dim %input, %c2
out1 out2 outN - m %3 = mul %0, %1
%4 = tensor.from elements %3, %2

An example: shape constraints injected by %5 = mhlo.dynamic_reshape(%Iinput, %4)
frontend converter

An example for symbolic shape analysis:
Reshape [a, b, c] -> [a™b, C]

Ahlibaba Group
= RS S

15

- System Design

Stitched” .

together into one'

Subgraph Kerne/ :
S uie

® FUSiOnS-I-i-I-Ching COdeGen /(eme/O ..

« Existing Works
— Basic loop, input/output fusion
— Less aggressive fusion, with guaranteed
codegen quality

* Major Challenges] |
— More aggressive fusion granularity, while sfill Kernell Yoot b Kernel 2.

...

close to the SOL of the device Kernel 4
— An acceptable trade-off between - subgraph

complilation fime and performance ernel 7

- Stitch multiple kernels intfo a bigger kernel

Ol 02
— GPGPU - shared memory
— CPU - local memory
* Publicarions Kernels TensorFlow XLA BladeDISC
- ' STM Cell 18 1 compute llntensllve 1 compute llntensllve
3 memory intensive 1 memory intensive
- LayerNorm 42 6 memory intensive 1 memory intensive

Alibaba Group
- PERRRED

16

https://dl.acm.org/doi/10.1145/3503222.3507723
https://arxiv.org/abs/2009.10924

- System Design

® Runtime Abstraction Layer

TensorFlow &% LibTorch i§=%

» Compile Once and Run everywhere ustering mass clustoring pass

— As aTensorFlow Op

: TF2DHLO PyTorch2DHLO
- Asalibloreh O

— Raw iIndependent binary

- An abstraction to isolate compiler and runtime

— Allocator, kernel launch, memcpy, io inferface etc. fusion, host/device codegen, buffer

assignment, stream assignment etc.)

Compiler Passes
(placer, shape infer, control flow lowering,

» Stareless Compilation

— State mOnGgemeﬂT are extracted to Slmp\lfy The COmp”OﬂOn
al Fasses
— Constant, tuning cache eftc.

TensorFlow LibTorch
TaoOp TaoOp

TensorFlow LibTorch
runtime runtime

Indepéndent
Runtime
(Raw binary)

Alibaba Group
- EPREE

17

- System Design

® Multiple Frontend Support

- MHLO asa ‘Hub’ IR inferfacing different frontends SR —
» Runfime Abstraction Layer adapts the compilation

result to different runtimes
converter convertor

TensorFlow 8 F LibTorch 8%

Compiler Passes
(placer, shape infer, control flow lowering,

fusion, host/device codegen, buffer assignment,
stream assignment etc.)

. . CodeGen
AST TorchScript2MHLO Lowering 4>| Executable | _ _
. Ral Driver for TF Ral Driver Tor Raw
Python TorchScript MHLO BladeDISC :

script/trace Wi g :
i . RAL Runtime ‘ LibTorch
TaoO TaoO
Fallbacks P p

TensorFlow l_iprrch md:l?:t?:\zm
runtime runtime (Raw binary)
Alibaba Group
) - ERRSEE

- Numbers

® Up to 3x speedup compared with TensorFlow/PyTorch

® Comparing with static shape compiler (XLA)

- In worst case, close enough (>80%) to XLA in our benchmarks
» For some of the workloads, The performance even exceed due 10 large granularity fusion

® Comparing with TensorRT 8.X

- Non-CV standard workloads (BERT etc.), typically 10% ~ 20% performance gap
- Advantage in workload generality, dynamic shape support, and transparency of use
* More detaill numbers are under investigating and will be updated in our welbsite

4
Y00 %
070 %
07070
.04

00020
KK
0000

NS N

7
:o
®
%
S

N

A
7S
3»
¢

®

7
3»
X
X
P

NS N

TS
SR
S8
0%

KS

N

@,
9.

X/
A/

NSNS ___ A S — . - . —
ASR(PT) Seq2Seq 175 BERT

Speedup compared with TensorFlow/PyTorch

Alibaba Group
- RS

19

20

Roadmap

Open Sourced at the End of 2021

« Codebase

- Documents Website

- Welcome for a trial and technical cooperation
Malil group: bladedisc-dev@list.alibaba-inc.com

-
e s,

DingTalk group for support & discussion

— README.md

BladeDISC Introduction

Overview
o Features and Roadmap
= Frontend Framework Support Matrix

= Backend Support Matrix
= Deployment Solutions

o Numbers of Typical Workloads
= Advantage in Dynamic Shape Workloads

APl QuickView
o For TensorFlow Users
o For Pylorch Users
Setup and Examples
Publications
Tutorials and Documents for Developers
How to Contribute

FAQ
o Roadmap with mlir-hlo Project

Contact Us

Overview

BladeDISC is an end-to-end Dynamlic Shape Compiler project for machine learning workloads, which is one of the
key components of Alibaba's PAl-Blade. BladeDISC provides general, transparent, and ease of use performance
optimization for TensorFlow/PyTorch workloads on GPGPU and CPU backends. The architecture natively supports
dynamic shape workloads, with many considerations in the performance of both static and dynamic shape
scenarios. It also supports multiple and flexible deployment solutions, including both Plugin Mode inside
TensorFlow/PyTorch runtime, and Standalone Mode for AOT standalone execution. The project is based on MLIR
and highly related with mlir-hlo project.

Refer to our website for more information, including the setup tutorial, developer guide, demo examples and
documents for developers.

Features and Roadmap

Frontend Framework Support Matrix

TensorFlow [1] PyTorch [2]

https://github.com/alibaba/BladeDISC
https://github.com/alibaba/BladeDISC

- Roadmap

® Planned & Interested Future works

» Confinuously improvement on Op coverage, robustness, performance efc.
* More frontend/backend support

- PyTorch training support

- Code generation on compute intensive part in dynamic semantics

« Support for subgraphs with sparse features

Alibaba Group
- EPREE

21

Alibaba Group

22 SRS (1

