
Generalized and Transparent AI 
Optimization Solutions with AI Compilers 

from Cloud Service Providers

Feb. 2022
Kai Zhu

tashuang.zk@Alibaba-inc.com



Agenda
l Background

• Challenges as Cloud Service Providers
• Motivations of a Dynamic Shape Compiler

l BladeDISC Features & Overview
l System Design

• Decoupled Architecture
• Dynamic Shape Support
• Shape Constraints
• Fusion Stitching Codegen
• Runtime Abstraction Layer
• Multiple Frontend Support

l Numbers
l Roadmap

2



Background
l Challenges in Large Scale Deployment as Cloud Service Providers

• Diversified Workloads
• Good Performance with Less Human Effort
• Adaptation to Different Hardware
• Ease of Use

- Users with different background
- Less complexity in deployment
- Efficiency in optimization

• Robustness
• Multiple Frontends

- Standard/Customized TF/PyTorch in different versions
• Different Deploy Environments

- Inference & single/multiple nodes training

3

A DL compiler, which:

1, Fully support dynamic shape semantics

2, Completely transparent to users

3, Support multiple frontend and backend

4, Decoupled, compiler as a plugin

5, Compile in a sandbox



Background
l AI Optimization Solutions

• Manually crafted libraries and pattern matching 
based graph optimizers
- TensorRT (ver < 8.0), MIGraph, OpenVINO, MNN

• Deep Learning Compilers
- Fill the gap between flexibility and performance
- XLA, TVM, MLIR, IREE

l Deep Learning Compilers are Promising in
• Good generality and scalability for a wide variety of 

fast evolving models
• Easily adaptive to different backend devices
• Common solution to fast-evolving frontend deep 

learning frameworks

4



Motivations of a Dynamic Shape Compiler

l State of the art compilers are static shape oriented
• Shapes are statically known at compile time
• Static shape information benefits for:

- Performance: graph level optimization, fusion decision, code generation, scheduling …
- Memory optimization

• However…

l A major problem that blocks the deployment and application
• Compilation overhead
• Problems on host / device memory usage
• Complexity in model deployment
• For some workloads, the amount of shapes is unlimited

5



Motivations of a Dynamic Shape Compiler

l Examples of workloads that suffer from static 
shape issues
• CV workloads processing different image sizes, 

eg, object detection
• Seq2seq models with varying input seq_len, 

output seq_len and batch size
• TTS models with random shapes in the decoder 

even for fixed inputs
• Sparse workloads with Unique ops generating 

varying shapes
- tf.feature_column
- Large scale embedding in distributed training

6



Features & Overview
l BladeDISC (Blade DynamIc Shape Compiler)

• Multiple frontend support
- TensorFlow & PyTorch

• Multiple backend device support
- GPGPU (CUDA & ROCM)
- x86

• Inference & training support
• Fully dynamic shape semantics support

- No restrictions on dynamic shape support
- Without awareness of the semantics of dynamic dimensions (batchsize, sequence length etc.)

• Deployment solutions
- Plugin Mode: as a plugin of TensorFlow/PyTorch, with unsupported ops executed by TensorFlow/PyTorch

runtime.
- Standalone Mode: Standalone runtime for AOT application.

7



Features & Overview
l Transparency to Users

• Plugin Mode: Only a few lines of codes on the original scripts are needed to turn on the 
compiler.

8



System Design
l Compiler as a plugin

• Design Goal
- Only maintains one copy of the compiler code
- Adapting to different frontends easily
- Fallback mechanism

• Basic Ideas
- Clustering based compilation

– A graph rewriter pass to find candidate 
subgraphs

– Following community best practice
– Suitable for both training and inference
– Friendly for custom op 

- Separating compilation & execution
– A standalone compiler to do heavy lift things
– A custom op to wrap execution logic
– Avoid some engineering headaches (e.g. 

linking, compatibility)

9



System Design
l Compiler

• Multiple framework support
- MHLO as the centralized graph IR

• Multiple backend hardware support
- LLVM IR

• Runtime Abstraction Layer
- To isolate the compiler and different 

runtime environments
• Kernel library integration

- Cublas, cudnn etc.
- A balance between complexity，

flexibility & performance

10



System Design
l Fully Dynamic Shape Support

• The IRs that can fully represent dynamic shape semantics
- Supplement of MHLO/LMHLO Dialect

• Code generated runtime flow
- Adaptive shape inference
- Dynamic buffer management
- Host-side control

• Graph Optimization & CodeGen in dynamic shape
• Fusion & code generation

- Shape hints & constraints
- Shape adaptive fusion configuration

• Placer
• Buffer Allocation & Scheduling

11
static shape semantics dynamic shape semantics



System Design

12

l Backbone Pass Pipeline
• MLIR infra

- Modular flexible 
infrastructure

- Reusable & extensible

• Major Dialects
- DHLO Dialect
- LDHLO Dialect
- SCF Dialect
- GPU Dialect

• Tutorial of the Pass Pipeline
- https://alibaba.github.io/BladeDISC

/docs/developers/pass_pipeline.ht
ml

https://alibaba.github.io/BladeDISC/docs/developers/pass_pipeline.html


System Design
l Challenges on Performance

• More complicated computation graph
- Mixed data computation & shape computation

• Optimization objective shifting

- From peak performance to average performance, one-shape-one-solution vs transferable solution

• Less effective information/methods for optimization

- Implicit Broadcast

- Fusion strategy

- Vectorization / Tiling strategies

- Amount of index calculation instructions

13

An example for numpy style implicit broadcast



System Design
l Shape Constraints

• BladeDISC optimization pipeline
- Shape constraint centric
- Widely used from graph level to instruction level optimizations
- Crucial to performance in dynamic shape semantics

• Different kinds of shape constraints
- Structured shape constraint

– Dimension size equality

– Number elements equality

– Symbolic equality: [a, b, c, d] to [a*b, c, d]

- Shape distribution constraint
– Dimsize %4 == 0

– Likely values

– Shape ranges

14



System Design
l Where to get shape constraints?

• Semantics of MHLO Ops
• Symbolic shape analysis
• Injected by frontend converter
• Provided by users
• Injected at JIT compilation time

15

An example: infer shape constraint from 
the semantics of op definition 

An example: shape constraints injected by 
frontend converter

%0 = transpose %input {permutation = {1,0}}
%1 = mhlo.add %0, %input 

An example for symbolic shape analysis: input 
shape should be squared

%0 = tensor.dim %input, %c0
%1 = tensor.dim %input, %c1
%2 = tensor.dim %input, %c2
%3 = mul %0, %1
%4 = tensor.from_elements %3, %2
%5 = mhlo.dynamic_reshape(%input, %4)

An example for symbolic shape analysis:
Reshape [a, b, c] -> [a*b, c]



System Design
l FusionStitching CodeGen

• Existing Works
- Basic loop, input/output fusion
- Less aggressive fusion, with guaranteed 

codegen quality

• Major Challenges
- More aggressive fusion granularity, while still 

close to the SOL of the device
- An acceptable trade-off between 

compilation time and performance

• Stitch multiple kernels into a bigger kernel
- GPGPU - shared memory
- CPU - local memory

• Publications
- https://dl.acm.org/doi/10.1145/3503222.350

7723
- https://arxiv.org/abs/2009.10924

16

Kernels TensorFlow XLA BladeDISC

LSTM Cell 18 1 compute intensive
3 memory intensive

1 compute intensive
1 memory intensive

LayerNorm 42 6 memory intensive 1 memory intensive

https://dl.acm.org/doi/10.1145/3503222.3507723
https://arxiv.org/abs/2009.10924


System Design
l Runtime Abstraction Layer

• Compile Once and Run everywhere
- As a TensorFlow Op
- As a LibTorch Op
- Raw independent binary

• An abstraction to isolate compiler and runtime
- Allocator, kernel launch, memcpy, io interface etc.

• Stateless Compilation
- State management are extracted to simplify the compilation
- Constant, tuning cache etc.

17



System Design

18

l Multiple Frontend Support
• MHLO as a ‘Hub’IR interfacing different frontends
• Runtime Abstraction Layer adapts the compilation 

result to different runtimes



Numbers
l Up to 3x speedup compared with TensorFlow/PyTorch
l Comparing with static shape compiler (XLA)

• In worst case, close enough (>80%) to XLA in our benchmarks
• For some of the workloads, the performance even exceed due to large granularity fusion

l Comparing with TensorRT 8.X
• Non-CV standard workloads (BERT etc.), typically 10% ~ 20% performance gap
• Advantage in workload generality, dynamic shape support, and transparency of use
• More detail numbers are under investigating and will be updated in our website

19

Speedup compared with TensorFlow/PyTorch



Roadmap
l Open Sourced at the End of 2021

• Codebase
- https://github.com/alibaba/BladeDISC

• Documents Website
- https://github.com/alibaba/BladeDISC

• Welcome for a trial and technical cooperation
- Mail group: bladedisc-dev@list.alibaba-inc.com

20

DingTalk group for support & discussion

https://github.com/alibaba/BladeDISC
https://github.com/alibaba/BladeDISC


Roadmap
l Planned & Interested Future works

• Continuously improvement on Op coverage, robustness, performance etc.
• More frontend/backend support
• PyTorch training support
• Code generation on compute intensive part in dynamic semantics
• Support for subgraphs with sparse features

21



Q & A

22


