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Among the frameworks of bidirectional transformations proposed for addressing various synchronisation
(consistency maintenance) problems, Foster et al.’s [2007] asymmetric lenses have influenced the design of
a generation of bidirectional programming languages. Most of these languages are based on a declarative
programming model, and only allow the programmer to describe a consistency specification with ad hoc
and/or awkward control over the consistency restoration behaviour. However, synchronisation problems
are diverse and require vastly different consistency restoration strategies, and to cope with the diversity, the
bidirectional programmer must have the ability to fully control and reason about the consistency restoration
behaviour. The putback-based approach to bidirectional programming aims to provide exactly this ability, and
this paper strengthens the putback-based position by proposing the first fully fledged reasoning framework for
a bidirectional language — a Hoare-style logic for Ko et al.’s [2016] putback-based language BiGUL. The Hoare-
style logic lets the BiGUL programmer precisely characterise the bidirectional behaviour of their programs by
reasoning solely in the putback direction, thereby offering a unidirectional programming abstraction that is
reasonably straightforward to work with and yet provides full control not achieved by previous approaches.
The theory has been formalised and checked in Agda, but this paper presents the Hoare-style logic in a
semi-formal way to make it easily understood and usable by the working BiGUL programmer.
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1 INTRODUCTION

The need for synchronisation — or consistency maintenance — is pervasive in computing. A simple
but typical example is synchronisation among documents of different formats, in which case con-
sistency means that the documents have the same content; whenever the content of one document
is modified, the other documents should also be updated to restore the consistency. Over the past
decade, frameworks of bidirectional transformations have been proposed to address a diverse range
of synchronisation problems [Czarnecki et al. 2009]. One such framework is Foster et al.’s [2007]
asymmetric lenses, which are highly influential such that the term bidirectional programming has
become largely synonymous with lens-based approaches (including lens combinators and bidi-
rectionalisation; see, e.g., Foster et al. [2012]). Asymmetric lenses are designed for synchronising
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two pieces of data where one side, which is called the source, has more information than the other,
which is called the view. Typically, a lens program describes a forward get transformation that
computes a consistent view from a source; whenever the source is modified, get is rerun to produce
a new consistent view. Conversely, from the same lens program we can derive a backward put

transformation that takes a source and a (possibly modified) view, and produces an updated source
that is consistent with the view and can retain some information of the original source.

By definition, the two transformations derived from any lens program should satisfy two inverse-
likewell-behavedness laws called PutGet andGetPut (whichwill be formally stated in Theorem 2.2).
Stevens [2010, Section 4.4] provided a revealing perspective to understand these well-behavedness
laws: the get transformation denoted by a lens can be regarded as defining a (functional and
executable) consistency relation on the source and view; PutGet then says that the put transfor-
mation will correctly restore the consistency, i.e., the updated source and the view will satisfy
the consistency relation, and GetPut says that put will perform no update if the input source
and view are already consistent. From this perspective, at the root of Foster et al.’s lenses and all
subsequent get-based approaches is a declarative programming model, in which the programmer
specifies a consistency relation (in terms of a get transformation) and obtains a consistency restorer
(a put transformation) that is guaranteed (by well-behavedness) to respect the consistency relation.
Mechanisms are provided for customising the restoration behaviour, but they are usually ad hoc
and/or awkward to use. This is unsatisfactory in practice, since we care not only about consistency
but even more about how consistency restoration is performed; with get-based approaches it is
inherently difficult to understand or control the latter aspect. (See Section 8 for further discussion.)
To be concrete, let us consider a simple synchronisation problem where the source is a pair of

numbers representing the width and height of a rectangle, and the view is a single number, which
is consistent with a rectangle exactly when it is equal to the width of the rectangle. With respect
to this definition of consistency, there are a variety of consistency restoration strategies: given
a rectangle and a view, in addition to replacing the width with the view, which is necessary for
restoring the consistency,

1. we can always keep the height unchanged — this is a typical “least-change” strategy;
2. we can update the height to keep the height-to-width ratio of the rectangle — in general this can

be maintaining some kind of internal consistency on the source side;
3. we can reset the height to zero if the view is different from the width — although rather drastic,

this would be useful when the view side does not know how the source side maintains its internal
consistency, and thus simply chooses to invalidate associated data and leave them for the source
side to update later;

4. we can decide to keep or reset the height depending on whether the difference between the
width and the view is small enough — this is a flexible mixture of strategies 1 and 3;

5. we can use the height as a counter that is incremented every time an inconsistency is repaired —
though somewhat strange, in general this can be some form of logging of source changes.

As we can see, even for a simple problem like rectangle width updating, there are already many
possible update strategies; this is even more the case in complex, real-world scenarios. All the
above update strategies restore the same consistency but have different retentive behaviour — the
way in which the information of the original source is retained — to meet different requirements.
The programmer must be empowered to fully control and reason about the retentive behaviour of
their programs to be sure that it is suitable for the intended applications.

Given that there are a myriad possibilities of update strategies, what can be better than having
languages for programming such strategies, capturing the myriad possibilities once and for all? Fol-
lowing some previous work which took exactly this putback-based programming approach [Pacheco
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et al. 2014a,b; Hu et al. 2014], Ko et al. [2016] proposed a language BiGUL (short for “Bidirectional
Generic Update Language”). Like the original lenses, every BiGUL program denotes a well-behaved
pair of put and get transformations; in contrast to the original lenses, BiGUL is designed to ex-
press put transformations, and lets the programmer freely specify their intended update strategies.
Moreover, since put uniquely determines get by well-behavedness (Lemma 2.3), the putback-based
programmer is guaranteed that the get behaviour of their put program is unambiguously specified.
The putback-based approach thus offers a powerful alternative to bidirectional programming when
full control is needed and the more declarative get-based approaches are not enough.

This paper strengthens the putback-based position by proposing the first fully fledged reasoning
framework for a bidirectional language: building on a revised version of BiGUL, we propose a
Hoare-style logic [Hoare 1969] that empowers the programmer to precisely characterise both the
put and get behaviour of BiGUL programs by reasoning exclusively in the putback direction, thereby
offering a unidirectional programming abstraction that is reasonably straightforward to work with
and yet provides full control not achieved by get-based approaches. For example, the programmer
can express strategies 1 and 3 as two BiGUL programs keepHeight and resetHeight, and with our
Hoare-style logic, the programmer can prove two Hoare-style triples to make sure that the two
programs correctly restore the consistency and have the intended retentive behaviour:

{ True } keepHeight { (w ′, h′) ( , h) v | w ′ = v ∧ h
′ = h }

{ True } resetHeight { (w ′, h′) (w , h) v | w ′ = v ∧ (w = v ⇒ h
′ = h) ∧ (w , v ⇒ h

′ = 0) }

These two putback triples state that both keepHeight and resetHeight work on any input pairs of
source and view (due to their always-true precondition) and will update the width with the view
(w ′ = v), that keepHeight will retain the original height (h′ = h), and that resetHeight will retain
the height if the original width is equal to the view (w = v ⇒ h

′ = h) or reset the height otherwise
(w , v ⇒ h

′ = 0). With a bit more reasoning about output range, the programmer can also prove
that the get transformations denoted by these two programs work on any input rectangle and
extract its width, conforming to the consistency relation (w ′ = v) stated in the above triples. (The
other three rectangle width updating strategies can also be dealt with in the same way.)
Here are our contributions in a nutshell: We define Hoare-style putback triples for reasoning

about the put behaviour of BiGUL programs, prove that they are sound and complete, and show
how they can also characterise the get behaviour to some extent (Section 3). The putback proof
rules provide an axiomatic encapsulation of BiGUL’s semantics, and are designed for convenient
domain-specific reasoning (Section 4). Uniquely, to adequately characterise get behaviour, our
Hoare-style logic also includes range triples — which are also sound and complete — for estimating
the output ranges of BiGUL programs (Section 5). We further propose rules for reasoning about
recursive programs (Section 6), and verify a BiGUL implementation of key-based list alignment
as a showcase example (Section 7). The presentation will be preceded by a recap of asymmetric
lenses (Section 2), and end with some discussion (Section 8) and conclusion (Section 9).

Everything in this paper from theorems to derivation examples has been formalised and checked
in Agda version 2.5.2 with standard library version 0.13, but the Agda formalisation is only
provided as supplementary material. This paper will focus on explaining the intuition, and present
the Hoare-style logic in a semi-formal way to make it suitable for human reasoning. BiGUL is
originally developed in Agda and ported to Haskell as an embedded language, and this influences
the choices of the syntax and host language used in this paper: our BiGUL syntax is a hypothetical
one abstracted from the Haskell port of BiGUL; the host functional language is total and may be
thought of as Agda imperfectly disguised as Haskell — we will use some standard Haskell types
and functions, and allow some general recursion and partiality justifiable in a total setting.
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2 A RECAP OF ASYMMETRIC LENSES

We start from a brief recap of some general facts about asymmetric lenses, but state these facts
directly in terms of BiGUL — think of this section and the next as an introduction to the overall
framework, rather than a detailed introduction to BiGUL (which will be offered in Section 4).

Every BiGUL program denotes an asymmetric lens, which is a well-behaved pair of put and get

transformations. This is made precise by Definition 2.1 and Theorem 2.2.

Definition 2.1. A BiGUL program b (whose possible forms are summarised in Figure 1) operating
on source type S and view type V is assigned the type S ←↩ V , and has two semantics:
put b : S → V → Maybe S

get b : S → Maybe V

The put — or putback — semantics is also called the backward semantics, and the get semantics is
also called the forward semantics.1

As noted by Ko et al. [2016], the two transformations in Definition 2.1 are potentially partial
computations modelled explicitly as total Maybe-computations. That is, put b and get b may fail to
compute a result, in which case they produce Nothing; otherwise they return their result wrapped
within the Just constructor.

Theorem 2.2 (well-behavedness). Any BiGUL program b satisfies the following two well-
behavedness laws:
∀s , v , s′. put b s v = Just s

′ ⇒ get b s
′ = Just v (PutGet)

∀s , v. get b s = Just v ⇒ put b s v = Just s (GetPut)

As noted by Ko et al., Theorem 2.2 gives a stronger well-behavedness guarantee [Macedo et al.
2013; Pacheco et al. 2014a] than the original definition of Foster et al. [2007] — in the original
PutGet, for example, a successful put computation does not guarantee the success of the subsequent
get computation. Even so, this theorem is not as practically useful as it seems because non-well-
behavedness is merely swept under the partiality carpet: both put b and get b perform various
checks at runtime to detect possible violations of well-behavedness, and if the programmer does
not pay enough attention to well-behavedness requirements, the execution of put b or get b can
unexpectedly fail one of these runtime checks (thereby satisfying PutGet or GetPut vacuously).
On the other hand, the theorem is still somewhat helpful since the BiGUL programmer no longer
needs to worry about well-behavedness and can concentrate on totality, i.e., making sure that
BiGUL programs can compute successfully on the inputs that the programmer cares about.

Well-behavedness implies that a putback transformation uniquely determines the corresponding
forward transformation.

Lemma 2.3 (Foster [2009, Lemma 2.2.5]). Let l, r : S ←↩ V . If put l = put r then get l = get r.

This lemma distinguishes asymmetric lenses from other models of bidirectional transformations
(e.g., Hofmann et al.’s [2011] symmetric lenses), and is the motivation behind BiGUL’s putback-
based design, as it shows that it is theoretically feasible that the BiGUL programmer can think and
program solely in the putback direction and still unambiguously specify the forward behaviour.
This lemma does not help to explain what putback-based thinking is, though — how does the
programmer actually write a putback program while understanding its forward behaviour? The
key idea of this paper is that a Hoare-style logic can help to explain how that is achieved.
1In this paper we will provide an axiomatic semantics as the only formal definition of BiGUL’s semantics, and omit the
definitions of put and get (except for a few simple cases in Section 4.1) and proofs that rely essentially on them (like the
proof of Theorem 2.2). All the definitions and proofs are included in the supplementary Agda formalisation for reference.
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3 THEORY OF PUTBACK TRIPLES

Programming a putback transformation in BiGUL is comparable to programming with states to
some extent: the BiGUL programmer is given a source state and a view state, and manipulates
the two states with the aim of transferring all information in the view to the source; in the end,
the updated source state is returned as the result. Reasoning about BiGUL programs thus consists
of tracking the properties satisfied by the states at each step, and it follows that a Hoare-style
logic is well suited for performing this kind of reasoning about states. We will introduce a set of
Hoare-style triples for saying when BiGUL programs (as putback transformations) can compute
successfully and return results satisfying some specified properties. Before doing so, we first need
to fix our notation of relations (for specifying preconditions and postconditions).

Notation 3.1. Relations on types A1 , A2 , . . . , An are assigned the type P (A1 × A2 × · · · × An).
When a relation R of this type relates a1 : A1 , a2 : A2 , . . . , an : An , we write R a1 a2 . . . an .

Definition 3.2. A putback triple is a BiGUL program b : S ←↩ V surrounded by two putback

assertions:
{ R } b { R′ }

where R : P (S × V ) is the precondition (on the original source and the view) and R′ : P (S × S × V )
is the postcondition (on the updated source, the original source, and the view).2 Valid putback triples
are inductively defined by the proof rules in Figure 2 (which will be explained in Section 4).

The intended meaning of a putback triple { R } b { R′ } is more or less standard: if the original
source and the view satisfy the precondition R, then put b will successfully produce an updated
source satisfying the postcondition R

′, which can relate the updated source to the original source
and the view. We have proved that putback triples are sound and complete with respect to BiGUL’s
put semantics.

Theorem 3.3 (soundness and completeness of putback triples). Let b : S ←↩ V , R : P (S × V ),
and R

′ : P (S × S × V ).

{ R } b { R′ } if and only if ∀s , v. R s v ⇒ ∃s′. put b s v = Just s
′ ∧ R

′
s
′
s v .

Given that putback behaviour completely determines forward behaviour (Lemma 2.3), and that
putback triples are about putback behaviour, shouldn’t putback triples tell us something about
forward behaviour as well? This is indeed the case, as will be shown by Theorem 3.8. Its statement
will make use of some important definitions and notational conventions that will also be used
throughout this paper.

Definition 3.4. A comprehension relation of type P (A1 × A2 × · · · × An) has the form
⟨ pat1 pat2 . . . patn | prop ⟩

where each pat
i
is a pattern for elements of type Ai and prop is a proposition that can refer to the

variables in the patterns. The patterns we use in the paper include variables, constructors, and
the wildcard pattern ‘ ’. The relation holds for a1 : A1, a2 : A2, . . . , an : An exactly when each
ai matches pat

i
and prop holds after substituting the matched components for the corresponding

pattern variables.

Notation 3.5. We usually omit the proposition part of a comprehension relation when the propo-
sition is trivially true, keeping only the pattern part. For example, ⟨ ( :: ) ⟩ holds exactly for
non-empty lists, and ⟨ ⟩ is the always-true binary relation.
2We do not require preconditions and postconditions to be syntactic entities drawn from a particular logic, but instead treat
them semantically and will freely use whatever relations that are mathematically expressible.
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fail : S ←↩ V replace : S ←↩ S
f : S → V

skip f : S ←↩ V
l : S ←↩ V r : T ←↩W

l ∗ r : (S × T ) ←↩ (V × W )

vpat : Pat V wpat : Pat W b : S ←↩W
rearrV vpat → wpat

↰

b : S ←↩ V
spat : Pat S tpat : Pat T b : T ←↩ V

rearrS spat → tpat

↰

b : S ←↩ V

bs : (Branch S V )∗

case ↰

bs : S ←↩ V
M : P (S × V ) E : PS b : S ←↩ V
normal M exit E ↰

b : Branch S V

M : P (S × V ) f : S → V → S

adaptive M ↰

f : Branch S V

Fig. 1. BiGUL constructs and their typing (simplified). Pat and (−)∗ are hypothetical type constructors

for patterns and sequences respectively. The symbol ‘

↰

’ indicates that its right-hand side is syntactically a

sub-node of its left-hand side; in displayed code, the right-hand side is typeset in an indented block.

Notation 3.6. The angle brackets delimiting a comprehension relation may be omitted where
delimitation is unnecessary, like in an assertion containing only a comprehension relation. For
example, { ⟨ s v | s = v ⟩ } is abbreviated to { s v | s = v }.

Definition 3.7. The graph of a function f : A → Maybe B is a relation Gf : P (A × B) which
relates a : A and b : B exactly when f a = Just b.

Theorem 3.8 (partial forward consistency). Let b : S ←↩ V , R : P (S × V ), and C : P (S × V ).

If { R } b { s′ v | C s
′
v } then G (get b) ∩ R ⊆ C .

Proof. Suppose get b s = Just v and R s v. The latter assumption triggers Theorem 3.3, so we
know that put b s v = Just s

′ for some s′ and that C s
′
v holds. On the other hand, by GetPut,

we can turn the first assumption get b s = Just v into put b s v = Just s. Seeing that put b s v

computes to both s
′ and s, we can deduce s′ = s, and thus having C s

′
v is the same as having

C s v. □

That is, if we can prove that a putback transformation establishes consistency C between the
updated source and the view, then, roughly speaking, a part of the behaviour of the corresponding
forward transformation will be constrained by C. We call Theorem 3.8 partial forward consistency
for two reasons. The first reason is that Theorem 3.8 does not guarantee that the entire graph of the
forward transformation will be contained in C — the containment is guaranteed only for the part of
the graph that falls within R. In practice, this makes Theorem 3.8 not very helpful unless R is always
true, in which case the entire graph will indeed be contained in C. Even in this case, though, there is
still the second reason: Theorem 3.8 says nothing about the totality of the forward transformation,
i.e., on which subset of sources the forward transformation can successfully produce results. We
will augment Theorem 3.8 to get a practically useful version (Theorem 5.4). But before that, let us
look at the concrete putback proof rules and some examples of putback reasoning.

4 BIGUL AND THE PUTBACK PROOF RULES

In this section we introduce BiGUL’s constructs (Figure 1) and their putback proof rules (Figure 2).
For each construct, we will give its type — which is essential for inferring the types of entities in
assertions — and explain the corresponding proof rule with the help of an operational intuition
about the construct.
Note that assertions are intended to be semantic rather than syntactic — for example, if the

precondition stated in a rule is ⟨ ⟩, we will regard the rule as directly applicable when the actual
precondition is, say, ⟨ s v | s = s ∧ v = v ⟩, which differs from ⟨ ⟩ syntactically but still denotes
the always-true binary relation semantically.
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{ ∅ } fail { ∅ } { } replace { s′ v | s′ = v } { s v | f s = v } skip f { s′ s | s′ = s }

{ L } l { L′ } { R } r { R′ }

{ L ∗ R } l ∗ r { L′ ∗ R′ }

T ⊆ R { R } b { R′ } R
′ ∩ ⟨ s v | T s v ⟩ ⊆ T

′

{T } b {T ′ }

{ s wpat | R s wpat } b { s′ s wpat | R′ s′ s wpat }

{ s vpat | R s vpat } rearrV vpat → wpat

↰

b { s′ s vpat | R′ s′ s vpat }

{ tpat v | R tpat v } b { tpat ′ tpat v | R′ tpat ′ tpat v }

{ spat v | R spat v } rearrS spat → tpat

↰

b { spat ′ spat v | R′ spat ′ spat v }

∀(normal M exit E ↰

b) ∈ bs.

{ R ∩ M̂ } b { R′ ∩ ⟨ s′ v | M̂ s
′
v ∧ Ê s

′ ⟩ }

∀(adaptive M ↰

f ) ∈ bs.

∀s , v. (R ∩ M̂ ) s v ⇒
(R ∩ N ) (f s v) v where

∧ ∀s′. R′ s′ (f s v) v ⇒ R
′
s
′
s v N =

⋃
[ M̂ | (normal M . . .) ∈ bs ]

{ R ∩ D } case ↰

bs { R′ } D =
⋃

[ M | (normal/adaptive M . . .) ∈ bs ]

Fig. 2. Putback proof rules. M̂ denotes the “actual main condition” of a branch: the main condition M of

the branch intersected with the negations of the main conditions of all the previous branches. “Actual exit

conditions” Ê are analogous.

4.1 Atomic Constructs

BiGUL has three atomic constructs, whose corresponding rules are in the first row of Figure 2.
The fail construct has type S ←↩ V for any types S and V . The precondition of the fail rule

is the empty relation ∅, saying that no input can make fail compute successfully. This directly
corresponds to the implementation: put fail s v = Nothing.
The replace construct has type S ←↩ S for any type S, and replaces the source with the view

regardless of what they are, i.e., put replace s v = Just v. Correspondingly, the precondition of the
replace rule is the always-true relation, and the postcondition states that the updated source s′ will
be equal to the view v.

The skip construct takes a function f : S → V in the host language as an argument and has type
S ←↩ V . It ignores the view and leaves the source as it is; correspondingly, the postcondition says
that the updated source s′ will be equal to the original source s. Unlike replace, we cannot skip
under all circumstances — before throwing the view away, we must ensure that it can be recovered
from the source, or otherwise there is no hope to establish PutGet. The precondition thus requires
that the view can be computed from the source by f . In the implementation, this precondition is
checked dynamically: put (skip f ) s v = if f s == v then Just s else Nothing.

4.2 Product

Given two BiGUL programs l : S ←↩ V and r : T ←↩ W , we can form the product of the two
programs l ∗ r : (S × T ) ←↩ (V × W ), with l operating on the first components and r on the
second components. If two putback triples with preconditions L and R have been established for
l and r , the precondition of the product program will be

L ∗ R = ⟨ (s , t) (v , w) | L s v ∧ R t w ⟩
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The relation-level ‘∗’ operator can be seen as a simple variant of separating conjunction [Reynolds
2002], and can be defined arity-generically to construct a relation on n pairs from an n-ary relation
on all the first components and the other on all the second components. The postcondition can
then be stated also in terms of this ‘∗’ operator.

Example 4.1 (parallel replacement). We can now construct simple derivations like the following
one for replace ∗ replace, which we use as an example to explain our derivation format:

{ }

{ }

replace
{ s′ v | s′ = v }

∗ { }

replace
{ t ′ w | t ′ = w }

{ (s′, t ′) (v , w) | s′ = v ∧ t
′ = w }

First note that the syntax tree structure of replace ∗ replace is reflected in indentation: the top-level
node is ‘∗’, whose two sub-nodes — both being replace — are indented to the next level. Then,
following the indentation structure, the assertions are added: the assertions about a node are put
on the same indentation level as the node, with the precondition and postcondition appearing
respectively before and after the node. This format is compact and yet retains the tree structure of
the derivation, making it easier to check the correctness of the derivation.

4.3 The Consequence Rule

The consequence rule we present in Figure 2 (the right one in the second row) may seem unusual,
but first observe that it is a stronger version of the usual one (so at least there is nothing to lose):

T ⊆ R { R } b { R′ } R
′ ⊆ T

′

{T } b {T ′ }
(1)

To see why we need a stronger consequence rule, consider deriving this triple:

{ (v , w) | v = w } replace ∗ replace { (s′, t ′) | s′ = t
′ }

where there is some entanglement between the first and second components in the precondition and
postcondition, so the product rule is not directly applicable. We could try to extend the derivation
in Example 4.1 using the usual consequence rule (1):

{ (v , w) | v = w }

{ }

replace ∗ replace
{ (s′, t ′) (v , w) | s′ = v ∧ t

′ = w }
...
{ (s′, t ′) | s′ = t

′ }

Adjacent assertions on the same indentation level indicate an invocation of the consequence rule,
with the one above implying the one below. In the first two lines of this derivation, there is one
such invocation, which turns ⟨ (v , w) | v = w ⟩ into ⟨ ⟩ so that the product rule can apply. On
the other hand, the postcondition that we can establish, i.e., ⟨ (s′, t ′) (v , w) | s′ = v ∧ t

′ = w ⟩,
does not imply the postcondition we want to establish, i.e., ⟨ (s′, t ′) | s′ = t

′ ⟩. The usual
consequence rule (1) can help us to get rid of the entanglement v = w, but that entanglement
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is needed to establish the final implication (by s
′ = v = w = t

′). We thus need the stronger
consequence rule to be able to carry over whatever we know about the original source and the
view from the precondition to the postcondition. When working in our derivation format, the
stronger consequence rule allows us to prove an implication between adjacent postconditions using
whichever preconditions for the same node (on the same indentation level) as additional premises
about the original source and the view.3

4.4 Rearrangement

A guiding intuition for BiGUL programming is to manipulate the source and view to make their
shapes match, which is achieved mainly with the rearrangement operations. To provide a more con-
crete motivation: We have seen that the product combinator (Section 4.2) allows us to synchronise
source and view tuples of arbitrary size, provided that their structures are the same. When this is
not the case, in BiGUL we can use a simple class of pattern-matching λ-expressions to rearrange
the source and/or the view to make them match structurally and ready for further synchronisation.
For example, the height-keeping strategy 1 we proposed for the rectangle width updating problem
(Section 1) can be expressed in BiGUL as:

keepHeight : (N × N) ←↩ N
keepHeight = rearrV v → (v , ())

replace -- const is the K combinator (const x y = x), and
∗ skip const () -- ‘()’ is the sole inhabitant of the unit type

Initially, the view is a single number, whereas the source is a pair. To make their structures match, we
use the view rearrangement operation rearrV v → (v , ()) to apply the λ-expression λ v → (v , ())
to the view and make the result the new view. Inside the rearrV, the source and view are both pairs,
so we can use replace ∗ skip const () to update the width and keep the height as it is. Below we
will mainly discuss view rearrangement; source rearrangement is largely analogous, and will be
discussed towards the end of this subsection.

View rearrangement. The general form of a view rearrangement is rearrV vpat → wpat

↰

b :
S ←↩ V , where vpat is a pattern for the original view type V , wpat is a “pattern” for a new view
type W , and the inner program b has type S ←↩ W . (The symbol ‘ ↰’ indicates that b is syntactically
a sub-node of ‘rearrV vpat → wpat’; in displayed code, b is typeset in an indented block below
‘rearrV vpat → wpat’.) The intention is to represent a closed λ-expression λ vpat → wpat to
be applied to the view. Strictly speaking, wpat is not a pattern but an expression, which can be
built using variables in vpat and constructors. (Apart from the fact that wpat looks similar to a
pattern, we will explain why it is beneficial to think of wpat as a pattern shortly.) Wildcards are
not allowed in vpat, and all variables in vpat must appear in wpat and can appear multiple times —
these synctactic restrictions ensure that the λ-expression is invertible, or, more intuitively speaking,
does not lose information.

The view rearrangement rule. Intuitively, a rearrangement only massages the state into an
alternate shape suitable for further processing, rather than applying an arbitrary and distorting
transformation. This intuition significantly influences the design of the rearrangement rules, which
reflect that rearrangement is essentially just a “change of perspective”. If we are rearranging the view
3Alternatively and equivalently, as suggested by an anonymous reviewer of an earlier version of this paper, we
can keep the usual consequence rule (1) and introduce a separation logic–style frame rule: { R } b { R′ } ⇒

{ R ∩ T } b { R′ ∩ ⟨ s v | T s v ⟩ }, which is somewhat more elegant. However, we feel that being able to use pre-
conditions to establish implications between postconditions is more convenient in practice, and the stronger consequence
rule captures this ability more directly.
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from vpat to wpat, it must mean that the view matches vpat right before the rearrangement, and
we should be able to state properties satisfied by the view at that point in terms of its components.
The precondition for rearrV is thus a comprehension relation:
⟨ s vpat | R s vpat ⟩

which requires that the view matches vpat and that any properties about the view are stated in
terms of the variables in vpat, which we denote by vpat. After the rearrangement, due to the
invertibility restrictions, the new view will retain all the components of the original view; the
components may be shuffled around and duplicated, but whatever we knew about the components
will remain true. The precondition for the inner program b is thus:
⟨ s wpat | R s wpat ⟩

This inner precondition asserts that the new view matches wpat and that whatever holds for
vpat in the outer precondition also holds here for wpat, which is the same as vpat because of the
invertibility restrictions. Being able to state this inner precondition is the reason that we think of
wpat also as a pattern, even though that means in general we have to allow non-linear patterns,
where multiple occurrences of the same variable indicate implicitly that values at those positions
should be equal. When using the rule in actual derivations, the two preconditions will differ only
in their view patterns and have the same proposition part. Therefore, the view rearrangement rule
only changes the shape we expect the view to take, not the properties we know about the content
of the view. This change-of-perspective interpretation works for the postconditions as well.

Example 4.2 (rectangle width updating — keeping the height). We can now verify keepHeight as
follows, where the precondition (assertion 1) is always true and the postcondition (assertion 2) says
that the consistency will be established (w ′ = v) and the height will be retained (h′ = h):
{ }1

rearrV v → (v , ())

{ ( , ()) }3
{ }

replace
{w ′ v | w ′ = v }

∗ { () }

{ h v | const () h = v }

skip const ()

{ h′ h | h′ = h }

{ h′ h () | h′ = h }

{ (w ′, h′) ( , h) (v , ()) | w ′ = v ∧ h
′ = h }4

{ (w ′, h′) ( , h) v | w ′ = v ∧ h
′ = h }2

Note that when constructing the derivation inwards from the initial precondition and postcondition,
it is effortless to push them inside the rearrV and turn them into assertions 3 and 4 just by changing
the view pattern to a pair pattern, as instructed by the rearrV.

Source rearrangement and the corresponding rule. Analogous to view rearrangement, the general
form of a source rearrangement is rearrS spat → tpat

↰

b : S ←↩ V , where spat is a pattern for the
original source type S, tpat is a pattern for the new source type T , and the inner program b has
type T ←↩ V . The same syntactic restrictions for invertibility apply to spat and tpat. Operationally,
the source is transformed using λ spat → tpat, and b is executed on the new source and the
view; after that, the updated source must match tpat, and will be transformed back to the shape of

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 41. Publication date: January 2018.



An Axiomatic Basis for Bidirectional Programming 41:11

spat (as if evaluating λ spat → tpat backwards). Dual to the view rearrangement rule, the source
rearrangement rule also reflects a change of perspective by varying the source patterns. Notably,
the postcondition for b

⟨ tpat ′ tpat v | R′ tpat ′ tpat v ⟩

says explicitly that the updated source produced by b should match tpat
′ (which is just tpat with

its variables freshly renamed, to avoid name clashes with those variables in the other occurrence of
tpat), which is a requirement often overlooked by novice BiGUL programmers.

Example 4.3 (view equality checking). The following small program implements the equality
checking operator in reversible programming (see, e.g., Thomsen and Axelsen [2015]):

eqCheck : Eq A⇒ A←↩ (A × A)

eqCheck = rearrS x → (x , x)

replace

where the ‘Eq A’ constraint in the type indicates that we need decidable equality on A for the
program to be executable. This example shows that rearrS can impose restrictions on the result
produced by the inner program: Operationally, the source is rearranged with the λ-expression
λ x → (x , x), and then the inner program replace is executed, after which the rearranging λ-
expression is evaluated backwards by matching the replaced source with the non-linear pattern
(x , x) — in effect checking whether the components are equal — and then returning one of the
components. For this computation to succeed, the replaced source — i.e., the input view — must be a
pair of duplicate values. In the derivation for eqCheck below, this restriction appears in assertion 1
(as the non-linear pattern (s′, s′) for the updated source), arising from the use of the rearrS rule.

{ (v , w) | v = w }

rearrS x → (x , x)

{ (s , s) (v , w) | v = w }

{ }

replace
{ (s′, t ′) (v , w) | s′ = v ∧ t

′ = w }

{ (s′, s′) (s , s) (v , w) | s′ = v ∧ s
′ = w }1

{ s′ (v , w) | s′ = v ∧ s
′ = w }

4.5 Case Analysis

More sophisticated programs require case analysis, for which BiGUL provides a powerful and
intricate case construct. For a simple example, the height-resetting strategy 3 for the rectangle
width updating problem (Section 1) can be expressed as:

resetHeight : (N × N) ←↩ N
resetHeight = case

normal (w , ) v | w = v exit
skip fst

adaptive
λ v → (v , 0)

Roughly speaking, this program checks whether the width of the source is equal to the view, and
skips if that is the case; otherwise, it creates a new rectangle whose width is the view and whose
height is zero.
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Syntax of case. In general, a case analysis in BiGUL has the form case ↰

bs : S ←↩ V
where bs is a sequence of normal or adaptive branches. For normal branches, the general form
is normal M exit E ↰

b where M : P (S × V ) is called the main condition, E : PS is called the
exit condition, and b : S ←↩ V is the branch body. For adaptive branches, the general form is
adaptive M ↰

f where M : P (S × V ) is again the main condition, and f : S → V → S is a function
in the host language. The syntactic conventions described by Notation 3.5 and Notation 3.6 are also
adopted for comprehension relations used as main or exit conditions.4

The case rule. Operationally, the execution of a case finds the first branch whose main condition
is satisfied by the source and view, and enters that branch. Suppose that the precondition and
postcondition we want to verify for the entire case are R and R

′ respectively. The case rule in
Figure 2 says that the precondition should be restricted to R ∩ D where D is the union of all the
main conditions, so that the precondition is strong enough to guarantee that some branch will be
entered. The rest of the job is to verify each branch.

Normal branches. If a normal branch normal M exit E ↰

b is entered, its body b is executed;
the case rule thus requires us to verify the behaviour of b by deriving the following triple:

{ R ∩ M̂ } b { R′ ∩ ⟨ s′ v | M̂ s
′
v ∧ Ê s

′ ⟩ }

The precondition is strengthened with the main condition since we know that the source and view
must satisfy the main condition if the branch is entered. However, the precise condition satisfied is
notM — since the branches are tried in order and a branch is entered only when the main conditions
of all the previous branches are not satisfied, we should regard the actual main condition of a
branch as M intersected with the negations of the main conditions of all the previous branches. We
denote this actual main condition by M̂ , and the precondition for b is strengthened to R ∩ M̂ . As for
the postcondition, in addition to R′, we also require (i) that the updated source and the view satisfy
the actual main condition M̂ and (ii) that the updated source satisfy the actual exit condition Ê,
which is E intersected with the negations of the exit conditions of all the previous normal branches.
These requirements are essential for guaranteeing well-behavedness; for a detailed development of
these requirements, see Hu and Ko [2017, Section 5.5].

Adaptive branches. Requirement (i) above for normal branches turns out to be very restrictive,
making normal branches only capable of dealing with “almost consistent” cases in practice. However,
we often need branches whose main condition describes a particular kind of inconsistency and
whose purpose is to repair that inconsistency — that is, their main conditions are supposed to be
broken after updating, and this is against the nature of normal branches. Instead, for repairing
inconsistency, we use adaptive branches, which are comparable with Foster et al.’s [2007] “fixup
functions”. When entered, an adaptive branch adaptive M ↰

f applies f to the source and view to
produce an adapted source; this adapted source then takes the place of the original source, and the
whole case is rerun. Naturally, requirements have to be imposed on f , as stated in the case rule:

∀s , v. (R ∩ M̂ ) s v ⇒ (R ∩ N ) (f s v) v

∧ ∀s′. R′ s′ (f s v) v ⇒ R
′
s
′
s v

Like normal branches, we know that R and M̂ hold for the original source s and the view v, and
that has to be strong enough to make s and v satisfy two requirements:

4We make M and E comprehension relations to simplify the presentation — in real, executable programs, M and E should be
“comprehension expressions” that compute to boolean values instead of propositions, but that would mess up the assertions
where we would have to write propositions like M s v = true instead of just M s v.
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• First, the adapted source f s v and the view v can make the whole case rerun successfully. That is,
they should satisfy R, the precondition for the entire case, and also N , which denotes the union
of the actual main conditions of the normal branches — this ensures that the rerunning will go
into a normal branch and terminate there, instead of revisiting adaptive branches indefinitely.
• Second, the rerunning of the case establishes the postcondition for the updated source, the
adapted source, and the view, but ultimately we want the postcondition established not for the
adapted source but the original source. Therefore, whichever updated source s′ is produced by
the rerunning, the postcondition R

′
s
′ (f s v) v established by the rerunning has to be sufficient

for the ultimate postcondition R
′
s
′
s v.

In practice, the first requirement leads us to write adaptive behaviour that performs enough
inconsistency-repairing so as to be able to go back into normal branches, while the second require-
ment discourages us from radically changing the source during adaptation so that it is possible to
derive properties about the original source from properties about the adapted source. (We will see
how these two guidelines are applied in a more illustrative scenario in Section 7.)

Representing the case rule in our derivation format. Before we see some derivation examples, we
need to think about how the case rule — in particular, the two requirements for adaptive branches
— are to be incorporated into our derivation format. Observe that the two requirements can be
rewritten as relational inclusions:

∀s , v. (R ∩ M̂ ) s v ⇒ (R ∩ N ) (f s v) v

≡ R ∩ M̂ ⊆ ⟨ s v | (R ∩ N ) (f s v) v ⟩

∀s , v. (R ∩ M̂ ) s v ⇒ ∀s′. R′ s′ (f s v) v ⇒ R
′
s
′
s v

≡ ⟨ s′ s v | R′ s′ (f s v) v ⟩ ∩ ⟨ s v | (R ∩ M̂ ) s v ⟩ ⊆ R
′

which match the forms of the two inclusions in the consequence rule. Indeed, if f were a BiGUL
operation (symbolising the rerunning of the case) such that { F } f { F ′ }, where the precondition

F = ⟨ s v | (R ∩ N ) (f s v) v ⟩

states that (before the rerunning) the adapted source f s v and the view v should be guaranteed to
satisfy R ∩ N , and the postcondition

F ′ = ⟨ s′ s v | R′ s′ (f s v) v ⟩

states that (after the rerunning) R′ is established for the updated source s′, the adapted source f s v,
and the view v, then we could invoke the consequence rule:

R ∩ M̂ ⊆ F { F } f { F ′ } F ′ ∩ ⟨ s v | (R ∩ M̂ ) s v ⟩ ⊆ R
′

{ R ∩ M̂ } f { R′ }
(2)

We therefore use the following derivation format for adaptive branches:

adaptive M
{ R ∩ M̂ }
...
{ F }

f

{ F ′ }
...
{ R′ }
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The way to think about this format is that eventually we want to establish { R ∩ M̂ } f { R′ }, but the
actual precondition and postcondition of f are respectively F and F ′ instead, and hence we should
invoke the consequence rule (2) and prove the two inclusions. Let us emphasise that assertions
in adaptive branches do not really constitute triples, but are merely an organisation of the proof
obligations for adaptive branches such that we can work with the proof obligations in the same
way as we work with real triples.

Example 4.4 (rectangle width updating — resetting the height). Now we can verify the resetHeight
program as follows, where the precondition is always true and the postcondition says that the
consistency will be established and the height will be retained or reset depending on whether the
view is consistent or not:

{ }

{ ⟨ ⟩ ∩ (⟨ (w , ) v | w = v ⟩ ∪ ⟨ ⟩) }1
case

normal (w , ) v | w = v exit
{ ⟨ ⟩ ∩ ⟨ (w , ) v | w = v ⟩ }

{ (w , h) v | w = v }

{ (w , h) v | fst (w , h) = v }

skip fst

{ (w ′, h′) (w , h) | (w ′, h′) = (w , h) }

{ (w ′, h′) (w , h) v | w ′ = v ∧ (w = v ⇒ h
′ = h) ∧ (w , v ⇒ h

′ = 0) }3
{ (w ′, h′) (w , h) v |

w
′ = v ∧ (w = v ⇒ h

′ = h) ∧ (w , v ⇒ h
′ = 0) ∧ w

′ = v ∧ ⟨ ⟩ (w ′, h′) }2
adaptive
{ ⟨ ⟩ ∩ (⟨ ⟩ ∩ ¬ ⟨ (w , ) v | w = v ⟩) }

{ (w , ) v | w , v }8

{ v | ⟨ ⟩ (v , 0) v ∧ ⟨ (w , ) v | w = v ⟩ (v , 0) v }
λ v → (v , 0)
{ s′ v |

⟨ (w ′, h′) (w , h) v | w ′ = v ∧ (w = v ⇒ h
′ = h) ∧ (w , v ⇒ h

′ = 0) ⟩ s′ (v , 0) v }4
{ (w ′, h′) v | w ′ = v ∧ h

′ = 0 }6
{ (w ′, h′) (w , h) v | w ′ = v ∧ (w = v ⇒ h

′ = h) ∧ (w , v ⇒ h
′ = 0) }7

{ (w ′, h′) (w , h) v | w ′ = v ∧ (w = v ⇒ h
′ = h) ∧ (w , v ⇒ h

′ = 0) }5
In this derivation, some assertions (like assertion 1) are given so that it is easier to compare the

derivation with the generic case rule, but in practice we can often skip these assertions and see
that the case rule is indeed applicable. For example, we tend to omit assertion 1 in practice since
we can see that the adaptive branch is a catch-all branch; we even tend to omit assertion 2 since we
can just check whether assertion 3 covers the extra conditions about the updated source, namely
w
′ = v ∧ ⟨ ⟩ (w ′, h′).
What happens in the adaptive branch is worth tracing. After the rerunning of the case produces

an updated source s′, assertion 4 states that the postcondition (assertion 5) holds for s′, the adapted
source (v , 0), and the view v. We can then deduce that the updated widthw ′ is v and, by substituting
(v , 0) for (w , h) in the “retentive conjunct” w = v ⇒ h

′ = h in assertion 4, that the updated
height h′ is zero, arriving at assertion 6. Having h

′ = 0 is sufficient for establishing the “resetting
conjunct” w , v ⇒ h

′ = 0 in assertion 7, whose “retentive conjunct” w = v ⇒ h
′ = h is vacuous

due to assertion 8.
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Example 4.5 (embedding pairs of transformations into BiGUL). The resetHeight program in fact
exhibits a general programming pattern: a case with a normal branch accepting consistent states
and leaving the source as it is, and an adaptive branch recovering from inconsistency. We can
abstract this pattern to the following emb program, which takes a pair of (total) forward and
backward transformations and embeds them into BiGUL:

emb : Eq V ⇒ (S → V ) → (S → V → S) → (S ←↩ V )

emb g p = case
normal s v | g s = v exit

skip g

adaptive
p

It is easy to see that resetHeight = emb fst (λ v → (v , 0)). What we proved for resetHeight
in Example 4.4 can be generalised to the following triple for emb g p, where g is used to define
consistency:

{ } emb g p { s′ s v | g s
′ = v ∧ (g s = v ⇒ s

′ = s) ∧ (g s , v ⇒ s
′ = p s v) }

Interestingly, to prove this triple, we only require g and p to satisfy PutGet (∀s , v. g (p s v) = v,
which is Theorem 2.2’s PutGet specialised for total functions); GetPut of emb g p arises from the
logic of emb itself and does not depend on g and p. Indeed, in the case of resetHeight, the pair of
transformations being embedded satisfies only PutGet.

On the other hand, if we have both PutGet and GetPut (∀s. p s (g s) = s), then we can derive a
stronger triple saying that the putback behaviour of emb g p completely coincides with p:

{ }

case
normal s v | g s = v exit
{ s v | g s = v }

skip g

{ s′ s | s′ = s }

{ s′ s | s′ = p s v ∧ g s
′ = v }1

adaptive
{ s v | g s , v }

{ s v | g (p s v) = v }2

p

{ s′ s v | s′ = p (p s v) v }

{ s′ s v | s′ = p s v }3

{ s′ s v | s′ = p s v }

GetPut is used for assertion 1, and PutGet is used for assertion 2. Assertion 3 requires the
PutTwice property ∀s , v. p (p s v) v = p s v, which is known to follow from PutGet and GetPut
(see, e.g., Fischer et al. [2015a, Section 3]).

5 RANGE TRIPLES AND TOTAL FORWARD CONSISTENCY

We have seen in Example 4.5 that any pair of transformations satisfying only PutGet can be
embedded into BiGUL. For example, resetHeight in Example 4.4 can be seen as emb fst reset where
reset = λ v → (v , 0). An alternative way to embed reset is to express it directly in terms of
BiGUL’s constructs:
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alwaysResetHeight : (N × N) ←↩ N
alwaysResetHeight = rearrV v → (v , 0)

replace
∗ replace

The two programs emb fst reset and alwaysResetHeight have roughly the same putback behaviour,
which we can establish using putback triples. On the other hand, in the get direction, Theo-
rem 3.8 can tell us that both G (get (emb fst reset)) and G (get alwaysResetHeight) are contained
in G (Just ◦ fst). But in fact, get (emb fst reset) can compute successfully on all inputs, whereas
get alwaysResetHeight can only compute successfully on inputs whose second component is zero
(and is usually not what one wants in practice). This reveals that we still lack the machinery
for fully understanding forward behaviour. What we are missing is the ability to estimate the
domain of a forward transformation, i.e., the subset of sources on which the forward transformation
can compute successfully. To make such estimates for BiGUL programs, which describe putback
transformations, the key insight is that, for a well-behaved pair of put and get, the domain of get
coincides with the range of put, i.e., the subset of sources that can be produced by put.5 The problem
with alwaysResetHeight is now clear: it can only produce the sources whose second component
is zero, so get alwaysResetHeight can compute successfully only on those sources. By contrast,
emb fst reset is capable of producing all possible pairs. Our way ahead is to develop machinery for
making such range estimates reliably, and that machinery is a second set of Hoare-style triples.

5.1 Theory of Range Triples

Definition 5.1. A range triple is a BiGUL program b : S ←↩ V surrounded by two range assertions:

{{ R }} b {{ P ′ }}

where R : P (S × V ) is the precondition or input range (on the original source and the view)
and P

′ : PS is the postcondition or output range (on the updated source). Valid range triples are
inductively defined by the proof rules in Figure 3 (which will be explained in Section 5.2).

While the intended interpretation of a range triple for b is about the range of put b, we actually
need a slightly stronger interpretation about get b (to make Theorem 5.4 work), as stated by the
following soundness and completeness theorem (which is, in a sense, dual to Theorem 3.3).

Theorem 5.2 (soundness and completeness of range triples). Let b : S ←↩ V , R : P (S × V ),
and P

′ : PS.

{{ R }} b {{ P ′ }} if and only if ∀s. P ′ s ⇒ ∃v. get b s = Just v ∧ R s v .

We can recover the intended interpretation of range triples by showing that the right-hand side
of Theorem 5.2 is equivalent to a statement primarily about put, as stated in the following lemma.

Lemma 5.3. The right-hand side of Theorem 5.2 is equivalent to:

(∀s′. P ′ s′ ⇒ ∃s , v. R s v ∧ put b s v = Just s
′) ∧ G (get b) ∩ ⟨ s | P ′ s ⟩ ⊆ R

The left conjunct in Lemma 5.3 is the primary way in which we think about the range triples:
if {{ R }} b {{ P ′ }} can be derived, then the range of updated sources produced by applying put b

to those inputs satisfying R will be at least P ′. The right conjunct in Lemma 5.3 says that there is
an unintended “side effect” when we think about these triples in the putback direction: the input
5To see the coincidence, observe that PutGet (as stated in Theorem 2.2) can be read roughly as “if s′ is produced by put b,
i.e., s′ is in the range of put b, then get b will compute successfully on s

′, i.e., s′ will be in the domain of get b”, and GetPut
says the converse.
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{{ ∅ }} fail {{ ∅ }} {{ s v | s = v }} replace {{ }} {{ s v | f s = v }} skip f {{ }}

{{ L }} l {{ P ′ }} {{ R }} r {{Q′ }}

{{ L ∗ R }} l ∗ r {{ P ′ ∗ Q′ }}

R ∩ ⟨ s | Q′ s ⟩ ⊆ T {{ R }} b {{ P ′ }} Q
′ ⊆ P

′

{{T }} b {{Q ′ }}

{{ s wpat | R s wpat }} b {{ P ′ }}

{{ s vpat | R s vpat }} rearrV vpat → wpat

↰

b {{ P ′ }}

{{ tpat v | R tpat v }} b {{ tpat | P ′ tpat }}

{{ spat v | R spat v }} rearrS spat → tpat

↰

b {{ spat | P ′ spat }}

∀n = (normal M exit E ↰

b) ∈ bs.

{{ R ∩ M̂ }} b {{ P ′
n
}} where

{{ R }} case ↰

bs {{ P ′ }} P ′ =
⋃

[ P ′
n
∩ Ê | n = (normal M exit E ↰

b) ∈ bs ]

Fig. 3. Range proof rules

range considered will be forced to include those related by get with its domain restricted to P
′. So,

for example, we will not be able to deduce {{m n | m = n + 1 }} replace {{ }} even though the left
conjunct in Lemma 5.3 is true for this pair of R and P ′. This “side effect” normally does not prevent
us from deriving range triples, though, since preconditions are normally larger than consistency
relations, which in turn contain the graphs of get transformations.

Back in Section 3, where we only had putback triples, Theorem 3.8 only enabled us to understand
the forward behaviour of BiGUL programs to a limited extent. Now supplemented with range
triples, we can prove a stronger and satisfactory result.

Theorem 5.4 (total forward consistency). Let b : S ←↩ V , R : P (S × V ), C : P (S × V ), and
P
′ : PS.

If { R } b { s′ v | C s
′
v } and {{ R }} b {{ P ′ }}

then ∀s. P ′ s ⇒ ∃v. get b s = Just v ∧ C s v .

Proof. Suppose that P ′ holds for a source s. By the range triple and Theorem 5.2, get b s will
compute successfully to some view v such that R s v holds, making s and v fall into G (get b) ∩ R.
The putback triple and Theorem 3.8 can then take over and establish C s v as required. □

Theorem 5.4 tells us that, by supplementing a putback triple for b with a range triple with the
same precondition, we can know on which subset of sources get b will compute successfully and
that the behaviour of get b will conform to the consistency relation stated in the putback triple.

In summary, nowwe have enoughmachinery to tell us all wewant to know about the bidirectional
behaviour of a BiGUL program: By deriving a putback triple { R } b { s′ s v | C s

′
v ∧ R

′
s
′
s v }

to reason about the behaviour of b, we know that put b will compute successfully on R, establish
consistency C, and have retentive behaviour R′. Then, by additionally deriving a range triple
{{ R }} b {{ P ′ }} to estimate the range of b, we know that get b will compute successfully on P

′ and
conform to the same consistency relation C established by put b. Notably, as we will see next,
derivations of range triples are usually significantly easier than derivations of putback triples, so in
practice there is usually not much more work to do than deriving putback triples.
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5.2 The Range Proof Rules

The range proof rules are shown in Figure 3. The most interesting rule is probably the consequence
rule (the right one in the second row), whose direction is just the opposite of the putback conse-
quence rule given in Figure 2. An explanation is that the ultimate interpretation of range triples, as
stated by Theorem 5.2, is about forward behaviour, and the output/input range in a range triple in
fact serves the role of precondition/postcondition for the forward transformation. But, interestingly,
the consequence rule can also be understood in the putback direction: If {{ R }} b {{ P ′ }} has been
established, meaning that the inputs in R can induce everything in P

′ through the execution of b,
then a larger input range T can still induce everything in P

′, or indeed everything in any output
range Q′ smaller than P

′. In fact, T is not necessarily larger than R: if what we eventually target
is a smaller output range, then we will be allowed to also shrink the input range — as stated in
the consequence rule, we are allowed to use Q′ to constrain the sources in the input range. Since
the direction of the range consequence rule is the opposite of the putback one, when deriving a
range triple using the consequence rule in our derivation format, logical implications go upwards,
and we can use the postconditions for a node as additional premises when proving implications
between preconditions for the same node, opposite to what we do in putback derivations.

Other rules should be largely intuitive. The fail rule has the empty predicate as its output range
since fail can never produce anything (and its input range can be any relation because of the
consequence rule). The replace rule says that replace can produce everything as long as the input
range is large enough — because of the “side effect” explained below Lemma 5.3, the input range
has to be large enough to include the graph of replace’s forward semantics, which is the identity
transformation. The skip rule has the same precondition as its putback counterpart and says that
skip can produce everything. The product and rearrangement rules are analogous to their putback
counterparts. For case, only normal branches matter since execution of case always ends in a
normal branch. We estimate an output range P ′

n
for the body of every normal branch n, and the

estimated output range for that branch is P ′
n
intersected with the actual exit condition, since only

outputs satisfying the actual exit condition can be produced. The estimated output range for the
entire case is then the union of the estimated output ranges for all the normal branches.

Example 5.5 (embedding pairs of transformations in BiGUL). As we mentioned, derivations of
range triples can be very straightforward in simple cases. In the case of emb, for example, we can
effortlessly prove that it produces everything:
{{ }}

case
normal s v | g s = v exit
{{ s v | g s = v }}

skip g

{{ }}

adaptive
p

{{ }}

Example 5.6 (rectangle width updating — always resetting the height). Verifying the range of
alwaysResetHeight is a more interesting example, where we will see how a non-trivial output range
can be derived with the help of the consequence rule:
{{ }}

rearrV v → (v , 0)
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{{ ( , 0) }}
{{ }}

{{w v | w = v }}

replace
{{ }}

∗ {{ 0 }}3
{{ h v | h = v }}1

replace
{{ }}2

{{ 0 }}4
{{ ( , 0) }}

{{ ( , 0) }}

The interesting part is the second replace, for which we first establish the input and output ranges
as assertions 1 and 2 according to the replace rule. However, because of the outer rearrV, the views
in the actual input range for the second replace are restricted to zero, as stated by assertion 3,
which does not contain assertion 1. We therefore need to shrink our estimate of the output range
of replace to just zero (assertion 4) to allow us to also restrict the views in the input range to zero.
Logically, assertions 1 and 4 together indeed imply assertion 3, adhering to the consequence rule.

6 RECURSION

BiGUL is designed datatype-generically [Gibbons 2007] to work with inductive data structures.
A lot of recursive programs processing inductive data have been written using the Haskell port
of BiGUL, and our Hoare-style logic would not be useful at all if we could not reason about such
recursive BiGUL programs. For example, let us take a peek at the key-based list alignment program
keyAlign in Figure 4, which we will verify in Section 7. All we need to care about in regard to
keyAlign now is its recursive structure. Both the source and view are lists, and in the second branch
of the case, they are both non-empty. Inside the branch, each of them is rearranged into a pair of
its head and tail, and we recursively invoke the program to process the tails. Intuitively, we know
that this program terminates for any input because the size of the initial source and view is strictly
larger than the size of the source and view at the point of the recursive invocation. We will need to
incorporate this size-based termination argument into our proof rules for recursive programs, and
show that the rules are sound.
There is difficulty dealing with recursive programs in the Agda formalisation underlying this

paper, though. Observe that the program structure of keyAlign is infinite, which is fine in Haskell;
in the Agda formalisation, however, BiGUL programs are modelled inductively and are necessarily
finite. One possible solution is to redefine BiGUL programs coinductively and bring in the partiality
monad [Capretta 2005] to model non-termination in Haskell, but this means abandoning most
(if not all) of the previous formalisation effort. Another possible solution is to stay with inductive
BiGUL programs and introduce a “terminating fixed-point” which can decide, for every input, how
many times the body of a fixed-point should be expanded, thereby circumventing the modelling
of infinite program structures. This approach will be relevant in a constructive setting, but we
anticipate that there will be extra constructivity requirements that are not relevant for the Haskell
port of BiGUL, in which most (recursive) BiGUL programs are written. Since what we aim at in
this paper is not thorough formalisation but a semi-formal reasoning framework for the working
BiGUL programmer, we will develop just enough theory to justify our rules for reasoning about
recursive programs, and refrain from delving into coinductiveness or constructive termination.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 41. Publication date: January 2018.



41:20 Hsiang-Shang Ko and Zhenjiang Hu

Let b : S ←↩ V be a recursive program of the form b = f b where f : (S ←↩ V ) → (S ←↩ V ) is the
usual non-recursive function defining the body of b, and suppose that we want to verify that b can
successfully turn any input satisfying a precondition R into an output satisfying a postcondition R

′.
We cannot hope to establish { R } b { R′ } (although we will abuse this notation in Section 7) since
putback triples are defined for finite programs, whereas b is infinite. Instead, when we say in
this paper that we are verifying b, what we precisely mean is verifying the behaviour of all finite
expansions of its body f , where finite expansions are defined by:

expand : N→ ((S ←↩ V ) → (S ←↩ V )) → (S ←↩ V )

expand zero f = fail
expand (suc n) f = f (expand n f )

The basic idea is to prove something about f like:

∀rec : S ←↩ V . { R } rec { R′ } ⇒ { R } f rec { R′ } (3)

which can then be iterated to produce { R } expand n f { R′ } for any n — the base case is
{ R } fail { R′ }, which implies { R } f fail { R′ }, and then { R } f (f fail) { R′ }, etc. This idea
cannot be directly valid, however, since in general only a subset of R can be successfully processed
by a finite expansion of f (whose execution can be thought of as executing b but allowing recursive
invocations only to a certain depth). We thus introduce a function of type S → V → N for measur-
ing the size of the source and view in assertions, and include size restrictions in the preconditions
for the finite expansions, leading to the following theorem.

Theorem 6.1 (finite expansion of putback triples). Let f : (S ←↩ V ) → (S ←↩ V ),
R : P (S × V ), R′ : P (S × S × V ), and measure : S → V → N. If

∀n , rec. (∀m. { R ∩ ⟨ s v | measure s v = m ∧ m < n ⟩ } rec { R′ })

⇒ { R ∩ ⟨ s v | measure s v = n ⟩ } f rec { R′ } (PutbackRecursion)

then:

∀l , n. n ⩽ l ⇒ { R ∩ ⟨ s v | measure s v = n ⟩ } expand (suc l) f { R′ }

PutbackRecursion will be the proof rule we use for reasoning about the putback behaviour of
recursive programs. It combines the basic proof idea (3) with the size-based termination argument
given in the beginning of this section: in the precondition for f rec, the size of the input source and
view is bound to a logic variable n, and we can make recursive invocations wherever the size m of
the current source and view is strictly less than n. The soundness of PutbackRecursion is justified
by Theorem 6.1, whose conclusion implies that any input in R can be successfully turned into an
output in R

′ as long as f is expanded enough times.
Analogously, we have a RangeRecursion rule for estimating the output ranges of recursive

programs.

Theorem 6.2 (finite expansion of range triples). Let f : (S ←↩ V ) → (S ←↩ V ), R : P (S × V ),
P
′ : N→ PS, and measure : S → V → N. If

∀n , rec. (∀m. {{ R ∩ ⟨ s v | measure s v = m ⟩ }} rec {{ P ′ m ∩ ⟨ | m < n ⟩ }})

⇒ {{ R ∩ ⟨ s v | measure s v = n ⟩ }} f rec {{ P ′ n }} (RangeRecursion)

then:

∀l , n. n ⩽ l ⇒ {{ R ∩ ⟨ s v | measure s v = n ⟩ }} expand (suc l) f {{ P ′ n }}
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keyAlign : Eq K ⇒ (S → K ) → (V → K ) → (S ←↩ V ) → (V → S) → ([S]←↩ [V ])
keyAlign ks kv b c =

case
normal [] [] exit []

rearrV []→ ()

skip const ()

normal (s :: ) (v :: ) | ks s = kv v exit ( :: )

rearrS (s :: ss) → (s , ss)

rearrV (v :: vs) → (v , vs)

b

∗ keyAlign ks kv b c

adaptive ( :: ) []
λ → []

adaptive ss (v :: ) | kv v ∈ map ks ss

λ ss (v :: ) → extract ks kv v ss

adaptive ( :: )

λ ss (v :: ) → c v :: ss
where
extract : Eq K ⇒ (S → K ) → (V → K ) → V → [S]→ [S]
extract ks kv v (s :: ss) = if ks s == kv v then s :: ss

else let (s′ :: ss′) = extract ks kv v ss

in s
′ :: s :: ss′

Fig. 4. Key-based list alignment in BiGUL

The RangeRecursion rule instructs us to derive an output range P ′ n that can depend on the logic
variable n bound to the size of the input source and view in the precondition. (For example, the range
triple we will derive for keyAlign is {{ vs | length vs = n }} keyAlign . . . {{ ss | length ss = n }}.)
Recursive invocations can be made in the derivation, and the estimated output range for a recursive
invocation is P ′ m where m is the size of the current source and view, provided that m is strictly
less than n — otherwise, the estimated output range will be empty. The conclusion of Theorem 6.2
justifies the soundness of RangeRecursion, as it implies that every output in

⋃
n : N P

′
n can be

produced from some input of the right size in R as long as f is expanded enough times.
Having the two recursion rules, we are now ready to verify keyAlign.

7 VERIFYING KEY-BASED LIST ALIGNMENT

Alignment is a representative problem for bidirectional transformations [Bohannon et al. 2008;
Barbosa et al. 2010; Diskin et al. 2011; Pacheco et al. 2012; Voigtländer et al. 2013; McKinna 2016].
In this paper, we focus on the specialised (and asymmetric) setting where both the source and
view are lists, which are consistent exactly when they have the same length and an element-level
consistency relation is satisfied by each pair of the source and view elements at the same position.
View elements may be inserted, deleted, modified, or reordered. To put the updated view list back
into the source list, we need to align the two lists, i.e., decide for each view element to which source
element it corresponds (if any), before we can invoke an element-level consistency restorer on the
right pairs of source and view elements.
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Several variants of list alignment have been implemented in BiGUL [Zan et al. 2016; Mendes et al.
2016]. In this paper we choose to verify a variant that is non-trivial and yet not overly complicated:
key-based alignment, of which an implementation was presented and explained with a concrete
scenario by Hu and Ko [2017, Section 6.2]. Their program keyAlign is shown in Figure 4. The types
of source and view elements are S and V respectively. The program takes two functions ks : S → K

and kv : V → K as arguments, which are used to extract a key value of type K from every source
or view element, and the type K should support decidable equality. Two more arguments b and c

are needed to deal with two of the three possible situations that can result from an alignment:
• A view element v is deemed to correspond to a source element s only if their keys match, i.e.,
ks s = kv v; an element-level synchroniser b : S ←↩ V will then be invoked on this pair of source
and view elements.
• If no source element has the same key as a view element, a function c : V → S will be used to
create a temporary corresponding source; this temporary source will then be fully synchronised
with the view using b.
• A source element will be deleted if there is no corresponding view element.
Here is a quick overview of the program: The first branch is the base case. The second branch

deals with “happy coincidences”: the head elements in the source and view lists match, so we can
simply synchronise the heads and recursively process the tails. The third branch deletes everything
in the source when the view is empty. The fourth branch is the most interesting: the head view
element v has a corresponding source element (which is not at the head position), so we extract the
first source element with the same key as v and put it at the head (intending to re-enter the second
branch afterwards). When there is no source element corresponding to the head view element,
the fifth and last branch uses c to create a temporary corresponding source element. Note that
the program uses some partial functions, which are fine in Haskell but not in Agda: extract, for
example, misses two cases for empty source lists, and these cases have to be added for verification
in Agda. These missing cases are irrelevant, however, since keyAlign does not invoke extract on
empty source lists.

To verify keyAlign, we need to make some assumptions about its arguments. For simplicity, we
assume that b can compute successfully for any pair of source and view elements with the same
key; also, b should guarantee that the updated source and the view will have the same key, apart
from any other postcondition R

′ : P (S × S × V ) it can establish. As a putback triple:

{ s v | ks s = kv v } b { R′ ∩ ⟨ s′ v | ks s′ = kv v ⟩ }

We will abbreviate R′ ∩ ⟨ s′ v | ks s′ = kv v ⟩ as T ′. For the source-creating function c, since a
created source will be further processed by b, we require the key of the created source to be the
same as that of the view:

∀v. ks (c v) = kv v

We can then derive, for all n:

{ vs | length vs = n } keyAlign ks kv b c { ss′ ss vs | ∃ s̃s . T ′⋆ ss
′ s̃s vs ∧ Retentive ss vs s̃s }

In the precondition, we use the length of the view list as the termination measure, but oth-
erwise impose no restrictions on the source and view lists. In the postcondition, the relation
T
′⋆ : P ([S] × [S] × [V ]) is defined inductively by the following two rules:

T
′⋆ [] [] []

T
′⋆ (s′ :: ss′) (s̃ :: s̃s ) (v :: vs) ⇐ T

′
s
′ s̃ v ∧ T

′⋆
ss
′ s̃s vs
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The postcondition thus guarantees that the updated source list ss′ will have the same length as vs,
and for each pair of source element s′ in ss

′ and view element v in vs at the same position, T ′ will
be established for s′, some source element s̃ , and v. The elements s̃ are collected into a list s̃s , and
Retentive ss vs s̃s says that s̃s contains those source elements in ss that correspond to some view
element in vs. This Retentive relation turns out to be slightly tricky to define, especially when we
do not require that keys in a list are all unique; our definition says that if a key appears n times in
the view list, then the first n elements with that key in the original source list will be retained.
Due to space restrictions, we only sketch the verification of the second normal branch and the

second adaptive branch. The assertions for the second normal branch are as follows, where we omit
the invocations of the rearrS, rearrV, and product rules since they are straightforward in this case:

normal (s :: ) (v :: ) | ks s = kv v exit ( :: )

{ (s :: ) (v :: vs) | 1 + length vs = n ∧ ks s = kv v }6

rearrS (s :: ss) → (s , ss)

rearrV (v :: vs) → (v , vs)

{ s v | ks s = kv v }

b

{ T ′ }

∗ { vs | 1 + length vs = n }1

{ vs | length vs = pred n ∧ pred n < n }2

keyAlign ks kv b c

{ ss′ ss vs | ∃ s̃s . T ′⋆ ss
′ s̃s vs ∧ Retentive ss vs s̃s }3

{ (s′ :: ss′) (s :: ss) (v :: vs) | T ′ s′ s v ∧ ∃ s̃s . T ′⋆ ss
′ s̃s vs ∧ Retentive ss vs s̃s }4

{ (s′ :: ss′) ss (v :: vs) |
∃ s̃s . T ′⋆ (s′ :: ss′) s̃s (v :: vs) ∧ Retentive ss (v :: vs) s̃s ∧ ks s

′ = kv v }5

We first look at how the PutbackRecursion rule is applied. Assertion 1 is the actual precondition
for the recursive invocation, and we rewrite it into assertion 2, saying that the length of the view
list at this point is pred n, which is strictly less than n since assertion 1 says that n is a successor.
(The predecessor function is defined by pred zero = zero and pred (suc n) = n, so pred n is not
necessarily less than n.) The recursive invocation will thus succeed and establish assertion 3. For
the postconditions, the rearrS, rearrV, and product rules give us assertion 4, while we need to
prove assertion 5. The last conjunct ks s′ = kv v in assertion 5 is part of T ′ s′ s v in assertion 4
by definition. From T

′
s
′
s v and ∃ s̃s . T ′⋆ ss

′ s̃s vs in assertion 4, we see that we should use
s :: s̃s as the new s̃s in assertion 5. We are left to prove Retentive (s :: ss) (v :: vs) (s :: s̃s ) (since
ss in assertion 5 is s :: ss in assertion 4), which is implied by Retentive ss vs s̃s in assertion 4 and
ks s = kv v in assertion 6.

Now we turn to the second adaptive branch:
adaptive ss (v :: ) | kv v ∈ map ks ss

{ ss (v :: ) | kv v ∈ map ks ss }1

{ ss (v :: vs) | ⟨ (s :: ) (v :: ) | ks s = kv v ⟩ (extract ks kv v ss) (v :: vs) }2
λ ss (v :: ) → extract ks kv v ss

{ ss′ ss (v :: vs) |
⟨ ss′ ss vs | ∃ s̃s . T ′⋆ ss

′ s̃s vs ∧ Retentive ss vs s̃s ⟩ ss′ (extract ks kv v ss) (v :: vs) }3
{ ss′ ss vs | ∃ s̃s . T ′⋆ ss

′ s̃s vs ∧ Retentive ss vs s̃s }4

Assertion 1 (where we omit the negations of the previous main conditions) implies assertion 2, which
is the condition for re-entering the second normal branch: the source list ss must be non-empty
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so that extract ks kv v ss will successfully produce a non-empty list, whose head will then have
the same key as the head view element v. After adaptation, the rerunning of the case establishes
assertion 3, which should be shown to imply assertion 4, the final postcondition. Assertion 3 says
that T ′⋆ holds for the updated source list ss′, some list s̃s of source elements, and the view list, and
we can directly use s̃s as the witness and establish the first conjunct in assertion 4. Assertion 3 also
says that s̃s retains certain elements from the adapted source list, which is just the original source
list with its first source element having key kv v moved to the head position, so we know that s̃s
retains the same elements in the original source list as well. This is an illustrative example showing
that adaptation should be done cautiously to maintain sufficient similarity between the adapted
source and the original source, or otherwise it can be immensely difficult to prove the implication
from the adapted postcondition to the final postcondition.

We should not forget to derive a range triple for keyAlign. For simplicity, let us derive:

∀n. {{ vs | length vs = n }} keyAlign ks kv b c {{ ss | length ss = n }}

assuming:

{{ s v | ks s = kv v }} b {{ }}

That is, if b is capable of producing everything, then keyAlign ks kv b c can also produce everything.
If T ′ ⊆ ⟨ s′ v | C s

′
v ⟩ for some element-level consistency relation C : P (S × V ), then by

Theorem 5.4 we know that for any source list, get (keyAlign ks kv b c) will successfully produce a
view list of the same length, and each pair of source and view elements at the same position will
satisfy C. For the derivation, again due to space restrictions we can only give a quick sketch: We
only need to derive ranges for the two normal branches. The output range of the first branch can
be derived as ⟨ [] | 0 = n ⟩ — that is, the branch can produce empty lists when 0 = n; as for the
output range of the second branch, we can derive ⟨ ( :: ss) | 1 + length ss = n ⟩. Their union is the
output range of the entire case, and is indeed ⟨ ss | length ss = n ⟩.

8 DISCUSSION

How expressive is BiGUL (especially compared with existing languages)? The expressive power
of the version of BiGUL used in this paper mainly stems from its case construct, which has gone
beyond Foster et al.’s [2007] “general conditional” and allows, in particular, key-based list alignment
to be implemented using only simple and general-purpose primitives for the first time. (In the
original BiGUL [Ko et al. 2016], the case analysis constructs were essentially the same as Foster
et al.’s conditionals, and key-based list alignment had to be provided as an extra and complex
primitive.)

Regarding alignment, Barbosa et al.’s [2010] “matching lenses” offer several sophisticated match-
ing strategies, some of which can be hard to implement “nicely” in BiGUL so far. However, matching
lenses are special-purpose and require the invention of dedicated laws, and the essential compo-
nents are built from scratch, whereas BiGUL is designed with the ultimate aim of expressing all
lenses using just a fixed set of simple primitives, like what we can do in general-purpose languages.
In particular, we can program alignment in BiGUL without having to bake special-purpose concepts
like Barbosa et al.’s “chunks”, “rigid complements”, “resources” etc into the language.
While seemingly simple, BiGUL has been successfully employed in several practical scenarios,

including web server configuration adaptation [Colson et al. 2016], parsing and reflective print-
ing [Zhu et al. 2016], synchronisation of feature configurations and use cases [Zhao et al. 2016],
and synchronisation of executable programs and proof scripts [Kinoshita and Nakano 2017].

BiGUL claims to be “putback-based” but is still a lens language. Is there really a fundamental

difference between BiGUL and previous “get-based” lens languages? Regarding language definition,
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BiGUL programs denote lenses and have to be defined in both directions, exactly the same as
other lens languages. It is when it comes to using the lenses that the distinction between the get-
and put-based approaches becomes meaningful. The majority of lens languages are get-based, as
explained by Foster [2009] below his Lemma 2.2.6: ‘Lens programmers often feel like they are
writing the forward transformation (because the names of primitives typically connote the forward
transformation) and getting the backward transformation “for free” ’. Matsuda and Wang [2015],
for example, explicitly state that their language adopts this design. Foster et al. [2007] also clearly
show in their Figure 8 that their lens programs are supposed to be constructed like writing get,
and Bohannon et al.’s [2006] relational lenses are written like database queries, which are get

transformations. Their programs can be (and are usually) enriched with putback information to
allow more control, but that makes constructing and understanding the programs more awkward
(see the next paragraph). By contrast, BiGUL’s putback-based design lets the programmer construct
programs purely in the put direction. The Hoare-style logic helps to clearly distinguish the two
approaches for the first time: it is possible to precisely reason about bidirectional behaviour purely
in the put direction, whereas it is unthinkable that the same can be achieved in the get direction. This
might explain that there is only one comparable (but still much less powerful) reasoning framework:
the totality lemmas of Foster et al. [2007], which can only establish properties equivalent to triples
of the form {{ }} b {{ P }} and { s v | P s ∧ Q v } b { } where P : PS and Q : PV .

Didn’t some get-based approaches also offer the ability to control putback behaviour? Why switch to

the putback-based approach? To name a few, the “fixup functions” in Foster et al.’s [2007] “general
conditionals” (for branch switching), the parameters of Bohannon et al.’s [2005] join_template
(for resolving ambiguous deletions), and the alignment keywords like “key” and “best” in the
Boomerang language [Bohannon et al. 2008; Barbosa et al. 2010] (for specifying keys and matching
strategies during alignment) are all constructs which appear in programs designed to look like
forward transformations but are meaningful only in the putback direction. Constructs with similar
purposes can also be found in bidirectionalisation approaches, such as Voigtländer et al.’s [2013]
“shape bidirectionaliser plug-ins” (for programming shape changes). Apart from offering only limited
and/or special-purpose customisation of putback behaviour, the fundamental problem with these
languages is that their programs contain an ad hoc mixture of forward and backward information,
and to properly understand such programs, the only way is to reason in both directions and in
terms of the complex underlying semantics. In other words, it is hard to come up with easy-to-use
reasoning principles for these languages, and since reasoning principles reflect and even guide
how we program, this indicates that these languages fail to deliver an easy-to-use abstraction.
BiGUL is unique since it offers a successful abstraction in which bidirectional programs become
unidirectional and can still be precisely reasoned about, as clearly reflected in the Hoare-style logic.

The semantics of range triples (Theorem 5.2) is about the get direction; consequently, doesn’t Theo-

rem 5.4 say that we need to reason in both directions anyway, undermining the claim that putback-based

reasoning is sufficient? Range triples are used only for establishing the domain of get — even with-
out a range triple, a strong enough putback triple alone (i.e., one whose precondition is always true)
can already imply that the get behaviour is constrained by the consistency relation (Theorem 3.8).
And, starting from Lemma 5.3, we have explained how range triples can be understood and derived
by thinking in the putback direction, without having to introduce the get semantics (except for
the precondition of replace, which is only a minor exception though); this is particularly evident
in the case range rule, which is much more awkward to interpret in the get direction. Even if a
sceptical reader insisted on thinking about range triples in the get direction, it would still be much
easier to prove that get is contained in the precondition for put (as required by Theorem 5.4) than
to prove that it is contained in the consistency relation, which is usually much smaller than the
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precondition for put. The indisputable fact is that the major work is done in derivations of putback
triples, making the reasoning putback-based.

Where is lens composition? In terms of consistency, the behaviour of lens composition is just
relational composition; on the other hand, the retentive behaviour of lens composition is rather
chaotic and hard to reason about, because its put direction is defined in terms of both the put and
get directions of the lenses being composed. We can formulate a rule like:

{ a b
′ | ∃b , c. R a c ∧ R

′
a b ∧ U

′
b
′
b c } l { ⟨ a′ b | R′ a′ b ⟩ ∩ T

′ }

{{ a b
′ | ∃b , c. R a c ∧ R

′
a b ∧ U

′
b
′
b c }} l {{ P ′ }}

{ b c | ∃a. R′ a b ∧ R a c } r { U ′ }

{ R ∩ ⟨ a | P ′ a ⟩ } l ◦ r { a′ a c | ∃b , b′. T ′ a′ a b
′ ∧ U

′
b
′
b c }

and we have actually proved that the rule is sound, but the form of the rule is too complex to be
easily usable. We will need to find a sweet spot and design a composition rule that is perhaps not as
general as the above one but can still say enough about the retentive behaviour; most importantly,
this rule should give guidance on how composition can be used and reasoned about in practice. It
should be noted that while composition is included in other languages like Foster et al.’s [2007]
original lenses (and in fact the Haskell port of BiGUL), the problem with controlling the retentive
behaviour of composition has always existed, as discussed by, e.g., Diskin et al. [2011, Section 2.2].

Are there more examples of verified BiGUL programs? In the supplementary Agda code, there is
one more program replaceAll which replaces all the elements in a source list with a view:

replaceAll : Eq A⇒ [A]←↩ A
replaceAll = case

adaptive []
λ x → x :: []

normal ( :: []) exit ( :: [])
rearrS (s :: []) → s

replace
normal exit ( :: :: )

rearrS (s :: ss) → (s , ss)

rearrV v → (v , v)

replace
∗ replaceAll

for which the following triples are verified:

∀n. { ss | length ss = n } replaceAll

{ ss′ ss v | (∀t. t ∈ ss′ ⇒ t = v) ∧ (ss , []⇒ length ss
′ = length ss) }

∀n. {{ ss | length ss = n }} replaceAll {{ (s′ :: ss′) | 1 + length ss
′ = n ∧ ∀t. t ∈ ss′ ⇒ s

′ = t }}

This example helps to clarify the misconception that, when programming put, the programmer still
needs to have a get in mind — rather, what the programmer needs to have in mind is a consistency
relation (⟨ ss′ v | ∀t. t ∈ ss′ ⇒ t = v ⟩ in this case), which may be functional but does not need to
be executable. The range triple is also interesting as it has a non-trivial output range.
Rather than developing more examples at this stage, we plan to move forward and aim for the

verification of practical bidirectional applications. This will require better mechanised support than
the current Agda formalisation, which is exceedingly tedious to work with. We plan to adapt the
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Hoare-style logic for automated theorem proving (perhaps in the style of LiqidHaskell [Vazou
et al. 2014]), so as to verify larger-scale bidirectional programs with reasonable effort.

9 CONCLUSION

Based on Lemma 2.3, it has been argued that “putback” is the essence of bidirectional program-
ming [Fischer et al. 2015b]. We would like to amend this statement: putback-based reasoning is the
essence of bidirectional programming. With the Hoare-style logic for BiGUL, we have demonstrated
how we can understand a BiGUL program’s bidirectional behaviour by reasoning exclusively about
its putback behaviour, reducing bidirectional programming to unidirectional programming.
Bidirectional programming has been based on a declarative model, in which the programmer

writes a consistency specification and relies on the system to produce a well-behaved implementa-
tion, whose consistency restoration behaviour can be customised to varying extents but usually
in ad hoc and/or awkward ways. However, it has long been realised that declarative approaches
are hardly enough for practical bidirectional applications (see, e.g., Stevens [2010, Section 4.1]).
The bidirectional transformations community currently concentrates on the exploration of more
forms of well-behavedness laws (see, e.g., Cheney et al. [2017]), but we should not be satisfied with
only well-behavedness guarantees. Instead, we should also start aiming to precisely characterise
the behaviour of bidirectional programs like what the BiGUL programmer can now do with the
Hoare-style logic, and only then can we think about more complex bidirectional applications and
the verification of their consistency restoration behaviour.
More broadly, we believe that programming languages should be shipped with reasoning prin-

ciples — even domain-specific languages deserve domain-specific reasoning principles, to justify
that the languages offer adequate abstractions, and to help the programmer to work effectively
and reliably with those abstractions. In the case of BiGUL, the Hoare-style logic reflects the some-
what stateful nature of BiGUL programming, and is designed domain-specifically such that the
programmer can work out the precise behaviour of BiGUL programs with reasonable effort (rather
than breaking the abstraction and working with the messier underlying semantics). Moreover, the
evolution of BiGUL is partly prompted by the development of the Hoare-style logic, whose even-
tual simplicity justifies BiGUL’s current design. If, as Dijkstra [1974] argued, programs and their
correctness proofs should grow hand in hand, then programming languages and their reasoning
principles ought to be developed together as well. BiGUL and its Hoare-style logic make a nice
example of this statement.
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