
Design and Implementation of 
the Plug-in Framework for an 

Advanced Game Engine 
Architecture

Author: Vicente Eduardo Ferrer García

Tutor: Jose Ismael Ripoll Ripoll

Experimental Director: Hector Marco-Gisbert

Academic course 2014 / 2015



Table of Contents

 Overview

 Motivation

 Design of the Framework

 Implementation

 Conclusions



Introduction

• 5 years ago I started developing an Advanced

Game Engine. Now it is close to be a

commercial product.

• In this project I describe one of the fundamental

components of the game engine which is the

Plug-in Framework.

• Once the core functionalities of the game

engine have been implemented, the next step

was to implement the Plug-in Framework.

1



Expected Benefits

• Easily decouple external libraries, game logic,

artificial intelligence of the entities, ...

• Versioning control over existing modules of

the game engine architecture.

• Isolate bugs and problems, avoiding its

propagation over the existing architecture.

• Externalize the development, independent

developers will be able to contribute without

knowing the internals of the game engine.

2



Main ideas

Extend the game engine architecture to make it 

plug-in oriented.

The game engine is technologically agnostic 

about in plug-in implementation.

3



Requirements & Features

• Independent from architecture, platform and compiler.

• Strong decoupling of specific functionalities.

• Low dependency between components, the development is

outsourced.

• Allow developers to code without interfering between

themselves.

• Provides the ability to insert “on the fly” functionalities to the

game engine upon request.

• Errors become encapsulated inside the plug-ins, improving the

identification of the conflicting components.

• High interoperability, plug-ins can be written in other

programming languages.
4



Existing Plug-in Technologies

• Compiled plug-ins:

• Minimum overhead.

• Problems derived from platform and compiler (C++ ABI 
compatibility).

• Implementable with C and C++ static / dynamic libraries.

• Interpreted plug-ins:

• Maximum flexibility and simplicity, plug-ins can be modified 
during run-time and reloaded.

• High overhead.

• Implementable with scripts as Python or Lua.

• Intermediate code plug-ins:

• Intermediate solution between compiled and interpreted.

• Usually depending on a Virtual Machine.

• Implementable with Java or JavaScript VMs.

5



Design Elements

• Plug-in Loader: independent from the type of technology or

language which it is implemented, providing transparent code

injection.

• Registration Mechanism: generic entry point to populate the

contents of a plug-in.

• Stub Generation: simplification of connection between

components, which can be provided by meta-programming

techniques.

• Communication Protocol: to invoke methods, to obtain and

modify data, to proxy and to extend services.

• Asynchronous loading and execution (thread-safety).

• Production automation and deployment of plug-ins.

6



Implementation

• Plug-in Framework is divided into three main modules.

1) Plug-in module: Provides the plug-in management, 
loading & unloading and exception handling.

2) Metadata module: Provides a protocol to discover 
and reflect the anonymous code injected by the 
plug-in module, and to communicate between the 
tiers.

3) Preprocessor module: Provides meta-programming 
techniques in order to simplify the protocol, the 
stub generation and the signatures for the 
metadata system.

7



Plug-in Management

• Plug-in Framework provides a top module which is a factory

pattern, able to manage plug-ins like generic handles, and it also

encapsulates the Plug-in Loader.

• Each plug-in can be implemented in different technologies, but

externally all of them are treated as equivalent objects with

handles of the same type, so implementation is hidden in the

front-end.

• Plug-ins can be loaded on demand or statically when the

application is launch, and they can be unloaded explicitly, or

automatically by the system when they are not referenced any

more.

• The dynamic management of plug-ins provide an optimal

performance and low consumption, without loosing flexibility.

8



Plug-in Loader

• The Plug-in Loader provides an

interface which can be derived

in order to provide loaders for

multiple technologies.

• The implementation of the

loader is hidden, when a plug-in

is being loaded, each loader

implementation guess if the

plug-in is loadable.

• When the plug-in is loaded, the

control is returned to the top

module, providing a generic

handle associated to the

internal handle of the plug-in.

9



Plug-in Loader

10



Metadata: Run-time Registration & 

Discovering

• Metadata module offers a upper

layer for encapsulating engine

architecture and plug-in

functionalities as components or

services.

• Using Metadata is possible to

extend functionalities at run-time,

and provide mechanism to

populate internal structure of a

code implementation.

• By this module is possible to

interconnect different

technologies with a generic

protocol.

11



Metadata: Reflection

• Metadata system can reflect the code structure by means of:

• Values: Which represent data.

• References: Which can represent any metadata entity.

• Functions: Which represent functions or methods of classes.

• Objects: Which represent classes.

• With that entities is possible to model the structure of the code, to hide

the implementation, and to interconnect different technologies with the

same representation.

• When a plug-in is inserted into the system, it has an entry point which is

called when it is loaded, and there is provided the top module of the

Metadata, which is called MetaManager, in order to populate the

anonymous code of the plug-in to the application.

• When the plug-in has registered the internal structure, the control is

returned to the application, and then it can be used with the MetaManager.

12



Metadata: Reflection

• Values:

• They can be bound to existing data.

• They can instantiate data with a specified signature. 

• References:

• They can be bound to existing metadata entities.

• Used as a generic Value, when Value signature is not know a 
priori or it is variable. 

• Functions:

• They implement foreign function interfaces.

• They can be bound to an existing functions or not, but in the 
second case the product is just a function signature that cannot 
be called.

• Objects:

• They encapsulate Functions (Methods) and Values (Attributes).

13



Metadata: Serialization & Marshalling

• The Metadata entities live in the Storage, and it holds the signatures and

the instances.

• Storage is a memory pool encapsulated into an object pool pattern,

which provides fast creating, deleting and accessing the Metadata

entities.

• The Storage also provides memory defragmentation, in order to

optimize the memory usage.

• The Storage can be completely serialized into a binary format,

independent from the platform and architecture.

• The binary format is efficient and can be easily bypassed by different

mediums.

• The signatures and instances can be reconstructed in other tiers, and

then used in the Metadata system.

14



Metadata: Serialization & Marshaling

• The Metadata entities belong to a Scope, and it provides a naming

service in order to identify them.

• Each Scope can contain others in a hierarchical distribution.

• By the use of the Scope it is possible to provide remote procedure calls,

pass and use Metadata entities by reference.

15



Meta-programming: Preprocessor

• Meta-programming is need in order to simplify the stub generation

for the foreign function interfaces and the data or function

signatures. The available options are:

1. Preprocessor Meta-programming: Implementable 
with C macros; portable and does not need external 
tools or scripts.

2. Template Meta-programming: Implementable with 
C++, Turing Complete.

3. Interface Definition Language (IDL): It needs of 
external tools or pre-build steps.

• In the Plug-in Framework the Preprocessor Meta-programming

technique has been used.

• Simplifies the errors when using the Metadata system, and hides

the implementation.
16



Project in Numbers

19

• The Game Engine is about ~300.000 lines of code.

• The Game Engine has been developed completely by

me, but the MMORPG game (Argentum Online C:

http://aoc.dev.parrastudios.com/) is being developed in

parallel using the game engine is a collaborative project

of 30 people, including musicians, game designers, UI

designers, writers, modelers, animators…

• The Plug-in Framework is about ~15.000 lines of code.

http://aoc.dev.parrastudios.com/
http://aoc.dev.parrastudios.com/
http://aoc.dev.parrastudios.com/
http://aoc.dev.parrastudios.com/
http://aoc.dev.parrastudios.com/
http://aoc.dev.parrastudios.com/
http://aoc.dev.parrastudios.com/
http://aoc.dev.parrastudios.com/
http://aoc.dev.parrastudios.com/


Hello World Example

17

Plug-in Framework creation.

Obtain Plug-in Loader instance.

Load “HelloWorldPlugin” 

implemented as a dynamic 

library.

Execute the void function without 

arguments tagged as 

“fnHelloWorld” which does a 

simple printf(“Hello World\n”);.

Unload the HelloWorld plug-in.

Plug-in Framework destruction.



Conclusions

• Plug-in Framework has been implemented and

integrated successfully into the game engine

architecture.

• The benefits of he Plug-in Framework have

been demonstrated in the proof of concept.

• The future is to enter into the game industry

with the same successful model as Minecraft.

18


