
NNCP v2: Lossless Data Compression with
Transformer

Fabrice Bellard

Feb 6, 2021

Abstract

NNCP v2 is a lossless data compression program based on the Trans-
former machine learning model. It achieves state-of-the-art results on the
enwik9 compression benchmark.

1 Introduction

This article is a follow-up of [1] where we presented NNCP, a lossless data compres-
sor based on neural network models. The NNCP Transformer model was improved
so that it achieves better compression ratios at the expense of a larger computa-
tional cost. The model parameters were chosen so that it is possible to achieve the
published results on a personal computer with a single GPU in a few days.

The source code is available at https://bellard.org/nncp.

2 Algorithm description

2.1 Transformer Model

The model is based on the Transformer XL model defined in [2]. The following
modifications were made:

• Learned relative positional embeddings are used instead of sinusoid relative
positional embeddings. Sinusoid relative positional embeddings are slower
and only useful if the memory length at evaluation time is different from the
one at training time.

• Untied embeddings give better results.

1



• The bias vi of the learned relative positional embeddings is multiplied by a
scaling factor sqrt(dmodel) to improve the initial convergence speed. The bias
vi are also identical in all the layers.

• The GELU activation [9] is used instead of ReLU in the feed-forward layer.

• All the weights (except the biases and layer norm weights) are initialized to
the same value. But the weights of the second linear transform of the feed-
forward layer are scaled by sqrt(dmodel

dinner
) to increase the convergence speed.

• No dropout is used in normal operation. Dropout is only employed in the
retraining phase.

2.2 Preprocessor

We reused the preprocessor of NNCP v1 [1].

2.3 Training details

Unlike in [3] where only the compression side was considered, we also want to
decompress in a reasonnable amount of time. Hence we employ a model which
has identical computational steps in the encoder and decoder. It is achieved by
encoding or decoding a single symbol (or batch of symbols) per training step. So
there is a large overlap between the training segments. In our examples we use
training segments of 192 successive symbols. A large batch size (64) is employed
in order to exploit more parallelism. The previous NNCP version already used an
overlap between the training segments and the idea was further improved in [6].
It is especially interesting with GPUs where the multiplication of large matrices is
proportionally much faster than the one of small matrices.

Even with our small improvements to the Transformer XL model, the conver-
gence is still slower than our previous LSTM model. So in order to get a better
compression ratio, we retrain the model using the already decompressed data at
regular intervals. It is equivalent to training the model on several epochs when
doing conventional machine learning. This idea was presented in [3]. In order
to avoid overfitting, dropout is used in the retraining phase. Different training
parameters are used in the retraining phase because we want to maximize the
parallelism. Hence we use a smaller batch size but no longer overlap the training
segments. In our example, an equivalent of 20 epochs is employed (the past 10
Msymbols are retrained every 500 ksymbols).

We use the Adam optimizer[4] with β1 = 0, β2 = 0.9999 and ε = 10−9 (hence it
is equivalent to RMSProp with a bias correction). Using a different Adam context

2



Program or model Compr. Size Ratio
(bytes) (bpb)

gzip -9 36 445 248 2.92
xz -9 [7] 24 865 244 1.99
CMIX (v18) [5] 14 838 332 1.19

NNCP v1 16 292 774 1.30
NNCP v2 (base) 15 600 675 1.25
NNCP v2 (large) 15 020 691 1.20

Table 1: Compression results for enwik8.

Program or model Compr. Size Ratio Compr. Speed
(bytes) (bpb) (kB/s)

gzip -9 322 591 995 2.58 17400
xz -9 [7] 197 331 816 1.58 1020
CMIX (v18) [5] 115 714 367 0.926 1.66

NNCP v1 119 167 224 0.953 1.05
NNCP v2 (base) 114 217 584 0.914 3.25
NNCP v2 (large) 112 219 309 0.898 1.94

Table 2: Compression results for enwik9. More complete results can be found in
[8].

for the normal and retraining phase is important to get good results because the
gradient norms are different.

We also employ gradient normalization which is essential to avoid divergence.
No warm up phase is used. The learning rate is linearly decreased during the

training.
The exact parameters are available in the source code.

2.4 Implementation

The algorithm is implemented using PyTorch so that it can easily run on a GPU.
We use the deterministic mode of PyTorch to guaranty that the model is iden-
tical in the encoding and decoding phases. It is guaranted only if the code is
running with the exact same hardware and software versions. 16 bit floating point
operations were used to decrease the running time.

3 Results

The results in bytes and bpb (bits per input byte) are given in table 1 and 2 for
enwik8 (first 100 MB of the English version of Wikipedia) and enwik9 (first GB).

3



The results for two popular compression programs are included. We show the
results of CMIX [5], the best lossless compressor for this benchmark.

Note that these results cannot be directly compared with state of the art lan-
guage modeling results such as [2] because:

• The result is the average bpb over the whole file instead of the test dataset.

• The model parameters would have to be stored in the compressed file.

We did not take into account the size of the preprocessing dictionary in the
compressed results because it is only 60 kB long when compressed with xz [7],
which represents 0.005 bpb for enwik8. The size of the decompression programs
is also small regarding the compressed output, so it is not taken into account in
the results.

For NNCP v2, the compression speed was tested with a RTX 3090 GPU. The
other programs do not require a GPU. The NNCP v2 decompression speed is
similar to its compression speed.

Regarding the compression ratio, we do not reach the performance of CMIX
(1.20 versus 1.19 bpb) on enwik8 but improved the result compared to NNCP v1.

For enwik9, NNCP v2 does better than CMIX with a much simpler model.
The number of operations is higher but it can still be run in a few days on a
personal computer with a GPU. The base model contains 56M parameters. The
large model contains 187M parameters. More exhaustive hyperparameter tuning
is worth investigating.

4 Conclusion

We presented the first practical Transformer implementation able to outperform
the best text compression programs on the enwik9 benchmark [8]. Unlike most
today’s state-of-the-art natural language processing results, it is achieved on a
desktop PC with a single GPU.

References

[1] Fabrice Bellard, Lossless Data Compression with Neural Networks, https:

//bellard.org/nncp/nncp.pdf.

[2] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan
Salakhutdinov, Transformer-XL: Attentive Language Models Beyond a Fixed-
Length Context, arXiv preprint, arXiv:1901.02860, 2019.

4



[3] Gautier Izacard, Armand Joulin, Edouard Grave, Lossless Data Compression
with Transformer, https://openreview.net/forum?id=Hygi7xStvS.

[4] Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimiza-
tion, arXiv preprint, arXiv:1412.6980, 2014.

[5] Byron Knoll, CMIX version 18, http://www.byronknoll.com/cmix.html.

[6] Byron Knoll, tensorflow-compress v3, https://github.com/byronknoll/

tensorflow-compress.

[7] The .xz file format, https://tukaani.org/xz/format.html.

[8] Matt Mahoney, Large Text Compression Benchmark, http://www.

mattmahoney.net/dc/text.html.

[9] Dan Hendrycks, Kevin Gimpel, Gaussian Error Linear Units (GELUs), arXiv
preprint, arXiv:1606.08415, 2016.

History

• Jan 3, 2021: initial version.

• Feb 6, 2021: added large model.

5


