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Abstract— This work studies the impact of the in-
creasing penetration of routing apps on road usage. Its
conclusions apply both to manned vehicles in which human
drivers follow app directions, and unmanned vehicles
following shortest path algorithms. To address the problem
caused by the increased usage of routing apps, we model
two distinct classes of users, one having limited knowledge
of low-capacity road links. This approach is in sharp
contrast with some previous studies assuming that each
user has full knowledge of the network and optimizes
his/her own travel time. We show that the increased usage
of GPS routing provides a lot of benefits on the road
network of Los Angeles, such as decrease in average
travel times and total vehicle miles traveled. However, this
global increased efficiency in urban mobility has negative
impacts as well, which are not addressed by the scientific
community: increase in traffic in cities bordering highway
from users taking local routes to avoid congestion.

I. INTRODUCTION

A. Motivation

Navigation applications such as Google Maps, Waze,
INRIX, or Apple Maps, have deeply modified our ap-
proach of driving in the past. Pushed by the increasing
penetration of smart phones and the rapid expansion of
Mobility-as-a-Service systems such as Uber and Lyft,
a significant percentage of drivers now use these tools
daily, as they provide an easy way to optimize one’s
route choices and decrease one’s travel time, specifically
during peak hours. Since public agencies cannot indefi-
nitely extend the capacity of urban road networks, these
tools represent an opportunity to reallocate traffic in a
way that might be more efficient (or not). Nonetheless,
the impact of these applications on road traffic and urban
congestion are not well-studied and understood. Cities
bordering major highways in the United States have
noticed an increase of traffic demand on their networks,
presumably due to application users leaving highways
to avoid congestion [1]. This alleged flow transfer is
a challenge for public policy, as cities infrastructure,
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mostly financed by and for local taxpayers, receive a
higher traffic demand.

The aim of the present work is to propose and
develop a framework to describe heterogeneous traffic in
which a percentage of drivers use these applications. The
main research question is the following: “how does the
percentage of application users impact traffic redistribu-
tion and corresponding optimality of flows assignment?”

Historically, high-capacity roads, e.g. expressways
and highways, have been developed to improve safety,
comfort, and traveling speed. Today, a vast majority of
drivers will consciously choose an expressway over a
smaller road, because of all the previous benefits. The
present work thus assumes that drivers, when traveling
from an origin to a destination, will aim at minimizing
the time spent on low-capacity (or low-speed) roads.

While the present work investigates the question of
the impact of navigation applications on traffic, our
framework encompasses heterogeneous traffic contain-
ing both classical manned vehicles and autonomous
vehicles. Specifically, an autonomous vehicle can be
modeled as a vehicle following real-time routing infor-
mation, the same way a user follows instructions from
routing services.

B. Approach and terminology

In order to address the research questions summa-
rized above, we model the behavior of users on the road
network with the established traffic assignment frame-
work [2], in which each user traveling from their origin
(e.g. their home) to their destination (e.g. their office)
selfishly minimizes their own cost function. However,
the transportation literature generally assumes that, for
each user, the cost of traveling on a given route is the
travel time of this route, see, e.g. [3]. Hence, state of the
art work implicitly assumes that each user has access to
the travel time of each link in the network and rationally
chooses the shortest route to its destination. Contrasting
from previous approaches, we model two types of users:

Routed users: they have access to navigation infor-
mation and thus follow the shortest route from their
origin to their destination based on the network’s current
travel times. These vehicles can be drivers equipped
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with a GPS device (e.g. Garmin, TomTom, embedded
navigation system), or a GPS-enabled mobile phone with
a navigation app (e.g. Google maps, Waze, Apple maps),
or they can be connected autonomous vehicle following
routing directions from navigation services. Hence, for
routed users, the cost of using a route is its travel time.
In addition, users with expert knowledge of the network
are also considered as routed users since they are able to
find shortest routes without the use of navigation apps.

Non-routed users: They do not have access to up-
dated traffic information and thus have a limited knowl-
edge of the travel times in the network. Since highways
traditionally enable to travel with limited information
and provide perceived benefits such as safety and higher
travel speeds, non-routed users are assumed to choose
high-capacity roads over low-capacity ones. The precise
mathematical model of the behavior of these non-routed
users will be introduced below.

The lack of information of users has been addressed
previously in the field of transportation [4], [5], and
in economics [6]. They collectively describe bounded
rational users who make suboptimal choices due to the
lack and/or price of information. Since local roads are
arguably less known while major highways are in the
information set of most of users, we choose an approach
similar to studies modeling users with different objective
functions than just minimizing travel times, e.g. seeking
out less congested or scenic routes [7]. However, instead
of using the nested logit model [8], we model the
preference of non-routed users for larger roads segments
and their limited knowledge of small streets. Hence, we
define two types of road segments:

High-capacity road segments: highways and major
arterial roads and avenues. High-capacity roads mainly
serve users just passing through or nearby the city to
go to their destination, hence they are maintained at a
county or state level. We also assume that non-routed
users favor this type of roads since, with limited knowl-
edge on the local network, they represent a convenient
way to move towards the destination by following signs.

Low-capacity road segments: They include small
residential streets and small arterial streets. The low-
capacity network is maintained by local taxpayers and
is designed to provide mobility to local users, who either
live or work in the area. It was originally not meant by
planners to be used by through traffic, which should be
confined to the high-capacity network.

Multiplicative cognitive cost to encode user
choice: We add a multiplicative factor C > 1 to
low-capacity links’ cost functions to model the prefer-
ence of non-routed users for high-capacity links. The

multiplicative cognitive cost conserves the proportions
between low-capacity links’ travel times and models
users that want to reduce the time spent on low-capacity
links in favor to high-capacity ones. We also show that,
in the Los Angeles network, in free flow, preference for
highways is rational since it enables the users to choose
routes that are close to being optimal without the use of
GPS routing.

Heterogeneous game: To study the increasing pen-
etration of GPS routing, we consider a heterogeneous
routing game with two types of users: routed users for
which the cost of using an edge is the travel time, and
non-routed users for which the cost of using an edge is
the travel time if it is high-capacity, or C times the travel
time if it is low-capacity. Heterogeneous games have
been studied before for the purpose of designing toll
strategies [9], [10], and in a more general setting in [11].
To our knowledge, this is the first use of heterogeneous
games to model the impact of routing via navigation
apps, on flow allocation.

C. Outline and contributions

The main contribution of the article is twofold. In
Section II, we introduce the concept of multiplicative
cognitive cost to model non-routed users’ preference
for high-capacity roads and show that this choice is
in general rational under low traffic demand. However,
during peak hours, we show that this preference results
in a poor allocation of the traffic with higher travel
times, thus encouraging app based routing. In Section
III, we expand on the established heterogeneous traffic
assignment problem to quantify the road usage when
there is a ratio α of routed users and 1 − α of non-
routed users in the urban network. We show that the
use of app-based routing is rational since it decreases
each user’s travel time and allocates the flow efficiently
throughout the network. However, this hidden cost is
high as the low-capacity network sees a significant in-
crease in traffic pressuring local governments to build
additional infrastructure to reduce the nuisance related
to it.

II. A MULTIPLICATIVE COGNITIVE COST MODEL

In this section, we present and motivate the multi-
plicative cognitive cost model using the traffic assign-
ment framework.

A. Mathematical formulation and notations

We consider a given road network modeled as a
directed graph G = (V, A) with vertex set V and
directed arc set A. We noteW ∈ V×V the set of origin-
destination vertex pairs. Each OD pair w = {s, t} ∈ W
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Fig. 1. The map of Los Angeles, CA used for the present
study composed of 28,376 arcs and 14,617 nodes extracted from
OpenStreetMap. Information for each edge includes the free-flow
travel time, length, capacity, and speed limit. Links with capacity
less than 1000 vehicles per hour are considered low-capacity (in
yellow) while links with 1000 vehicles per hour or more are
considered high-capacity (red). The histogram of the different road
capacities are shown in the bottom figure, with more than 40%
of low-capacity links.

models a population of drivers traveling from their origin
s ∈ V to their destination t ∈ V at a rate dw. They
choose between routes p ∈ Pw such that their travel
cost is minimized, where Pw is the set of all paths from
s to t. Hence, the state of the network is described by
the vector of route flows f = [fp]p∈P ∈ RP where
P = ∪w∈WPw is the set of all paths in the network. A
flow vector f ∈ RP is then feasible if for all w ∈ W ,∑

p∈Pw
fp = dw, fp ≥ 0, ∀ p ∈ Pw. In matrix form,

f said to be feasible if it belongs to the following set

X := {f ∈ RP : f � 0, Λf = d} (1)

where Λ is the OD-path incidence matrix. Non-routed
users have travel costs `nr

p (·) along each path p ∈ P
given by `nr

p (f) =
∑

a∈p c
nr
a (xa) where cnr

a (xa) is the
non-routed users’ cost of link a. We assume that the
cost of a road segment a only depends on the flow xa
of vehicles on this segment, where xa is expressed as
xa =

∑
p∈P I(a ∈ p)fp, the sum of the flows of every

route passing through a, where I(B) is the indicator
function of the Boolean B, i.e. equal to 1 if B is true, and
0 otherwise. In matrix form, x = ∆f where the arc-path
incidence matrix is given by ∆ = [I(a ∈ p)]a∈A, p∈P .
Hence, we write that an arc flow vector x = [xa]a∈A is
feasible if it is in the following set

K := {x ∈ RA : ∃ f ∈ X , x = ∆f} (2)

We formalize the behavior of non-routed users by
partitioning the arc set A into a set of low-capacity arcs
Alo := {a ∈ A : ca < clo} and a set of high-
capacity arcs Ahi := {a ∈ A : ca ≥ clo} where each
arc has a capacity ca and clo is an arbitrary threshold.
Throughout our study, we consider road segments with
capacities less than 1000 vehicles per hour as low-
capacity, which amount for 40% of the road segments in
the Los Angeles network, see Figure 1. The non-routed
users’ costs are then

cnr
a (xa) =

{
C · ta(xa) if a ∈ Alo

ta(xa) if a ∈ Ahi (3)

This results in the following non-routed path costs

`nr
p (f) =

∑
a∈phi

ta(xa) + C
∑
a∈plo

ta(xa) (4)

where ta(xa) is the travel time of road segment a
under flow xa, C > 1 is a constant that models how
strongly non-routed users favor high-capacity roads over
low-capacity roads, and phi (resp. plo) are the segments
of roads in path p that are high (resp. low) capacity.
Note that the multiplicative cognitive cost conserves
the proportions between low-capacity links’ travel times
while increasing their costs.

B. Rationale behind preference for high-capacity links

Under low traffic demand, high-capacity roads gen-
erally enable to travel quickly between origins and
destinations far apart. To validate this on the Los An-
geles network, we collected the OD trip data from the
American Community Survey (ACS), composed of a set
W of 96,077 OD pairs and a demand vector d ∈ RW .
In the Los Angeles network in free flow, we extracted
a path pnr

w with lowest non-routed cost minp∈Pw `
nr
p (0)

for each OD pair w ∈W using python-igraph package,
and found that that associated free-flow travel time∑

a∈pnr
w
ta(0) is on average only 10% longer than the

shortest route, as illustrated by Figure 2.a). In addition,
travel times of non-routed users in the free-flow regime
are not sensitive to the cognitive cost when it is above
1000. Hence, for the remainder of this work, we fix the
non-routed costs cnr

a with a cognitive cost C = 3000 and

597



focus on the sensitivity of road usage to variations in the
traffic demand and in the percentage of routed users.
Moreover, Figure 2.b) shows a small shift of the travel
time distribution in positive direction as the cognitive
cost increases from 1 to 1000. Hence, without traffic, the
Los Angeles high-capacity network provides a reliable
and nearly optimal route for traversing cities with no
information on local roads, thus justifying the rationale
behind non-routed users’ preference.

Fig. 2. Travel times in Los Angeles when all edges are in free
flow for non-routed users with perceived costs given by (3), as a
function of the cognitive cost C. Figure a) shows the average travel
time, Figure b) shows the distribution of travel times.

C. Rationale behind routing on low-capacity links

With increasing demand, high-capacity roads such
as highways become congested since non-routed
users choose them over low-capacity routes. We model
flow of vehicles on roads using the traffic assignment
framework [2] in which each non-routed user, rep-
resented as an infinitesimal amount of flow, selfishly
chooses the path with the lowest cost `nr

p (f). This
concept is known in the transportation literature as
Wardrop’s first principle [12]. The resulting flow is an
equilibrium flow f ∈ RP for which the associated
equilibrium edge flow x = [xa]a∈A ∈ RA is unique
when the travel time functions ta are continuously dif-
ferentiable, positive and strictly increasing [13]. Under
these assumptions on the travel functions, Beckmann
et al. [13] show that the equilibrium edge flow of the
routing game can be expressed as the optimal solution

of the following convex program

min
x

φ(x) =
∑
a∈A

∫ xa

0

cnr
a (u)du s.t. x ∈ K (5)

where φ is a potential function, cnr
a is given by (3), and

K is given by (2). We obtain different traffic demands by
multiplying the demand vector d ∈ RW obtained from
the ACS data by a scalar α ∈ [0.1, 1]. We then solve
(5) with a cognitive cost C = 3000 and different traffic
demands to obtain various non-routed equilibrium flows
xnr. The network with 100% of non-routed users settles
in a suboptimal state with imbalances in the flow al-
location where high-capacity links are over-utilized and
low-capacity links are under-utilized. We compare it to
the routed equilibrium arc flow xr, where every user
follows the shortest path, with costs given by

`r
p(f) =

∑
a∈p

ta(xa), ∀ p ∈ P (6)

The equilibrium is obtained by solving (5) with arc costs
cnr
a (·) equal to the travel time functions ta(·). The ratio

of the respective total travel times
∑

a∈A x
nr
a c

nr
a (xnr

a ) and∑
a∈A x

r
ata(xr

a) are shown in turquoise in Figure 3.
Figure 4.b) also shows that 20% of the users experience
a 10-20% delay and 12% experience a 20-30% delay
compared to the routed equilibrium.

Fig. 3. Ratio of the average travel time when the perceived
non-routed costs are given by (3) with C = 3000 over the user
equilibrium (blue) and the social optimum (red), as a function of
the demand in the network.

We also compare the non-routed equilibrium to the
social optimum where the total cost incurred by all users
in the network is minimized

min
∑
a∈A

xata(xa) s.t. x ∈ K (7)

Figures 3 and 4 show that the preference for high-
capacity links steers the equilibrium state further from
the social optimum where 25% of users experience 10-
20% delay and 18% of users experience a 20-30%
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Fig. 4. The distribution of the ratio of the travel times over the
social optimum per OD pair (a), and the user equilibrium (b),
when all users are non-routed, when the perceived costs are given
by (3) with C = 3000.

delay. Hence, rational users are pushed to choose low-
capacity roads to avoid segments of high-capacity roads
that are not along the shortest route due to congestion
under heavy traffic demand.

III. MULTICLASS TRAFFIC ASSIGNMENT PROBLEM

The sharp increase of app-based routing spurred by
the increasing penetration of navigation devices progres-
sively increases the number of routed users on the road.
It is likely that with the full advent of automated driving,
this trend will accelerate in the future. This emerging
behavior is in sharp contrast with non-routed users
who favor high-capacity roads regardless to the level
of congestion. To quantify the impact of routed users
on traffic conditions, we introduce our heterogeneous
traffic assignment problem with both routed users and
non-routed users.

A. Multiclass traffic assignment problem

We consider a flow dr
w ∈ RW

+ of routed users and
a flow dnr

w ∈ RW
+ of non-routed users between each OD

pair w. The state of the network is described by the
routed users’ path flow vector f r = [f r

p]p∈P and the
non-routed users’ path flow vector f nr = [f nr

p ]p∈P . They
are feasible if they are in X r, X nr given by

X r := {f r ∈ RP : f r � 0, Λf r = dr} (8)

X nr := {f nr ∈ RP : f nr � 0, Λf nr = dnr} (9)

where Λ is the OD-path incidence matrix. With ∆ the
arc-path incidence matrix, we denote xr = [xr

a]a∈A =

∆f r and xnr = [xnr
a ]a∈A = ∆f nr the routed and non-

routed arc flow vectors respectively. Hence xr, xnr are
feasible if they belong to the following sets respectively

Kr := {xr ∈ RA : ∃ f r ∈ X r, xr = ∆f r} (10)

Knr := {xnr ∈ RA : ∃ f nr ∈ X nr, xnr = ∆f nr} (11)

The total path flow is f = f r + f nr = [f r
p + f nr

p ]p∈P and
the total arc flow is x = xr + xnr = [xr

a + xnr
a ]a∈A. As

both routed and non-routed users make selfish choices
by minimizing their associated costs, the resulting flow
essentially describes the Nash equilibrium on road net-
works. Mathematically, the equilibrium flow are feasible
flows f r ∈ X r, f nr ∈ X nr such that ∀w ∈ W

∀ p ∈ Pw, f
r
p > 0 =⇒ `r

p(f) = min
q∈Pw

`r
q(f) (12)

∀ p ∈ Pw, f
nr
p > 0 =⇒ `nr

p (f) = min
q∈Pw

`nr
q (f) (13)

where the routed and non-routed path costs `r
p and

`nr
p are given by (6) and (4) respectively. Hence, only

the least-cost paths are used between each origin and
destination with respect to the associated type of users.
The equilibrium f described in (12) and (13) can be
expressed as a feasible solution (f r, f nr) ∈ Kr ×Knr of
the following variational inequality problem

`r(f)T gr + `nr(f)T gnr ≥ (14)

`r(f)T f r + `nr(f)T f nr, ∀ (gr, gnr) ∈ K r ×Knr (15)

Contrary to the homogeneous routing game, the general
heterogeneous game cannot be formulated as a potential
game of the form (5), see [14], [11]. However, by using
the theory of variational inequality [15], it is possible
to solve for the equilibrium described in (14), (15) with
the Frank-Wolfe algorithm [16].

B. Positive impact

We apply the multi-class traffic assignment frame-
work to the network of Los Angeles with a variable
percentage α of routed users, and a cognitive cost
C = 3000 for non-routed users, which means that
their perceived cost on low-capacity links is 3000 times
the real travel-time. We assume a uniform ratio of
routed users for each OD pair, hence dr

w = αd and
dnr
w = (1 − α)d, where α ∈ [0, 1] and the total traffic

demand d is given by the ACS data. As the fraction
α of routed users increases, Figure 5 shows a shift
of the travel time distribution to the left as a result
of users allocating themselves optimally (but selfishly)
between the low-capacity and high-capacity networks.
At an aggregate level, GPS routing can alleviate the
road network with a possible decrease in Vehicle-miles
Traveled (VMT) from 7.94 million miles per hour to
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Fig. 5. Distribution of travel times as a function of the percentage
of routed users, with cognitive cost C = 3000 for non-routed users.

7.15 million, hence a potential decrease of .79 million
miles per hour, see Figure 6.b), thus corroborating the
belief that GPS routing is able to alleviate gridlock in
congested areas.

C. Negative externalities

Even though the increase in usage of app-based
routing enables better navigation and time savings, they
allegedly transfer large amounts of traffic in cities bor-
dering highways, since navigation apps users have been
reported to leave highways to avoid congestion [1]. For
instance, in the Los Angeles network used for the present
study and shown in Figure 1, we find that app-based
routing can potentially increase the VMT on local roads
by .34 million miles per hour, which represents a three-
fold increase in traffic on low-capacity links, while there
is only a 10% decrease in VMT on high-capacity roads,
see Figure 6. Moreover, Figure 7 shows that an increase
in routed users’ ratio α is accompanied with a sharp
increase in the percentage of users spending between
10 and 20 min on low-capacity links (we reiterate that
we apply the framework to the Los Angeles network
presented in Figure 1). Figure 8 shows that, despite a
general decrease in VMT due to more efficient routing,
the relative increase on low-capacity roads is very im-
portant for each 10% increase in routed users, due to
the small traffic flow on the low-capacity network. This
causes residential streets to be congested, encouraging
cities to spend millions in infrastructure to steer the
traffic away.

Fig. 6. General VMT versus VMT on local roads as a function
of the percentage of routed users.

Fig. 7. Distribution of travel times on local roads as a function
of the percentage of routed users.

Fig. 8. a) Variation in VMT for 1% increase in routed users. b)
Relative variation in VMT for 10% increase in routed users.
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IV. CONCLUDING REMARKS AND FUTURE WORK

In practice it is of course difficult to accurately
evaluate the current proportion of routed users in Los
Angeles without accessing data from app-providers,
like Google Maps or Waze. Hence we carry out a
parametric study with a ratio of routed users varying
from 0 to 1, with other parameters constant such as the
traffic demand and the cognitive cost, to focus on the
impact of app-based routing. In reality, traffic demand
also increases in several urban areas such as in Los
Angeles or in the Bay Area (along with the increasing
penetration of app-based routing) hence we do not aim to
predict the variation in VMT on low-capacity and high-
capacity links. Instead, we put the emphasis on the fact
that increasing penetration of app-based routing causes
a sharp increase of traffic on local roads while there
is little to no decrease of congestion on highways, as
illustrated by Figure 8.

Finally, our work opens future avenues of research
to mitigate the impact of app-based routing on cities.
For a given city, a possible solution consists in reducing
the capacity of its low-capacity network. However, this
may push away traffic onto the low-capacity network
of neighbouring cities, encouraging them to mimetically
reduce their road capacity, thus exacerbating the con-
gestion. Hence, this causes a ‘prisoner’s dilemma’ effect
that we would like to study. Another solution consists
in implementing GPS-based (or ‘Pay-as-you-go’) road
charges. However, such a plan may raise privacy issues
that need to be addressed as well.

APPENDIX

Data collection: The road network of Los Angeles, CA is
extracted from OpenStreetMap. The OD data is from the Census Trans-
portation Planning Products database, and based on the 2006-2010
American Community Survey Data: ctpp.transportation.org/Pages/5-
Year-Data.aspx.

Computing the OD costs: Once the equilibrium edge flow has
been computed with the associated edge costs, the shortest paths
between all pairs of nodes in the network can be computed very
efficiently with the python-igraph package. The cost of a shortest path
between each OD pair is then the OD cost.

Solving the homogeneous game: The equilibrium solver for the
homogeneous game is based on Fukushima’s modified Frank-Wolfe
algorithm [17].

Solving the heterogeneous game: Similarly to the Frank-Wolfe
algorithm applied to the homogeneous game, the descent direction for
to the multi-class problem can be computed very efficiently by finding
the shortest paths between all pairs of nodes in the network, which
we implement with the python-igraph package.
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