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Abstract—Researchers spend hours, or even days, to under-
stand a target well enough to harness it and get a feedback-
guided fuzzer running. Once this is achieved, they rely on their
fuzzer to find the right paths, maybe sampling the collected
queue entries to see how well it performs. Their knowledge is
of little help to the fuzzer, the fuzzer’s behavior is largely a black
box to the researcher. Enter JMPscare, providing deep insight
into fuzzing queues. By highlighting unreached basic blocks
across all queue items during fuzzing, JMPscare allows security
researchers to understand the shortcomings of their fuzzer, and
helps to overcome them. JMPscare can analyze thousands of
queue entries efficiently, and highlight interesting roadblocks, so-
called frontiers. Using this information, the human-in-the-loop
improves the fuzzer, mutator, and harness. Even complex bugs,
hard to reach for a generalized fuzzer, hidden deep in the control
flow of the target, can be covered in this way. Apart from a purely
analytical view, its convenient built-in binary patching facilitates
forced execution for subsequent fuzz runs. We demonstrate the
benefit of JMPscare on the ARM-based MediaTek Baseband.
With JMPscare we gain an in-depth understanding of larger
parts of the firmware and find new targets in this RTOS.
JMPscare simplifies further mutator, fuzzer, and instrumentation
development.

I. INTRODUCTION

Emulators and dynamic binary instrumentation frameworks
are very flexible tools. As some of these solutions introduce
very little overhead, they can be used for performant feedback-
guided fuzzing of binary-only code [7], [14], [16], [17], [22].
Modern binary-only instrumentation only lacks behind source-
based instrumentation slightly, incorporating most modern
mutation schemes and improvements. State-of-the-art binary
instrumentation for fuzzing splits multi-byte comparisons at
emulation time to be able to report successful hits of single
bytes (cmpcov or LAF-intel [15]). It may even supply the
fuzzer with feedback about compare results (cmplog [5], [9])
or inject address sanitization in an efficient way [7], [10]. Still,
they are far from perfect and still get stuck on trivial check-
sums, complex floating-point calculations, and more complex
formats like XML.

While fuzzers get smarter and smarter, being enriched with
introspection, better instrumentation, and even symbolic exe-
cution [20], [27], it is still common for successful fuzzing cam-
paigns to require lots of manual effort. On top of developing
a functioning harness, the researcher collects common tokens

and seeds, writes custom mutators [11] and grammars [2], [13]
or may even actively guide the fuzzer with waypoints [4].

Especially for binary-only fuzzing, after the initial setup
runs, getting deeper knowledge about the fuzzer’s actual per-
formance, and figure out shortcomings and roadblocks, can
be a daunting task. Often, reverse engineers will look at
the resulting coverage maps, debug hand-picked, interesting-
looking inputs, and load up several collected traces in existing
tools like Lighthouse [12] and Dragondance [1]. However, with
thousands of queue entries for a fuzzer like AFL++, the tools
reach their limits. Even if loading all traces as once succeeds,
it is hard to spot interesting unreached jumps. A fuzzing
queue, or corpus, is commonly used in feedback-based fuzzers,
and collects interesting testcases that led to new coverage or
otherwise new feedback during execution. We deem insights
into this queue important to improve the overall harness and
fuzzer performance. It shows us which parts of the harness
the fuzzer explored and at which branches it got stuck. On
complex targets, like a full-blown RTOS, a complete view of
basic-blocks (not) reached would not provide the researcher
with the same insights. No harness covers all basic blocks in
the target: reaching some of the branches may rely on the target
to be in a different state. Non-covered basic blocks may be
reached with better harnessing and mutations or be completely
unreachable. The human-in-the-loop has no chance to see this
difference immediately just by looking at a coverage map.

To improve this situation, we developed JMPscare, an anal-
ysis toolkit that takes all traces in a fuzzer queue into account.
The goal is to provide reverse engineers with full insight into
their fuzzing campaigns. JMPscare efficiently uncovers never-
taken branches, so-called frontiers. To guide the human-in-
the-loop towards interesting frontiers, it performs a Potential
New Coverage (PNC) analysis, surfacing frontiers that can lead
to large new control flows if traversed., leading to additional
corner cases. JMPscare offers a quick solution to overcome
simple frontiers through a single click binary patching to force
execution in this direction. With this, the fuzzer traverses any
roadblocks, but triggers false-positives if the prior condition
is direclty responsible for a crash. While JMPscare will work
with any target, as long as a program counter trace of the exe-
cutions can be acquired, JMPscare features a stand-alone trace
collection with native unicornafl [11], BaseSAFE [17], and
qiling [21] support. For the course of this paper, we evaluate
JMPscare using the publicly available MediaTek harness and
test case corpus of BaseSAFE. We are able to gather further
knowledge about the harness that the original work could not
collect and use, for the lack of JMPscare.Workshop on Binary Analysis Research (BAR) 2021
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A. Contributions

The contributions of this work are as follows:

• We design, implement, and open-source JMPscare, an
introspection toolkit suited for the analysis of fuzzer
queues with thousands of traces at the same time, with
support for ARM32, MIPS, and X86_64 targets.

• JMPscare helps researchers to guide their fuzzers
better through deep insights, useful analyses, binary
ninja integration, and forced execution through binary
patching.

• We evaluate JMPscare on the publicly available Me-
diaTek Baseband harness, and released corpus of
BaseSAFE [18].

B. Structure

In the following, we will discuss related work around
fuzzing insights and forced execution. In Sect. III we will
outline the design of JMPscare, including its included trace
collector, the analyses, and its binary ninja plugin. Further, we
evaluate it on the BaseSAFE MediaTek harness and corpus.
In Sect. V, we discuss these results and further use cases
for fuzzer development. After highlighting the next steps for
JMPscare, we conclude with Sect. VII.

II. BACKGROUND

The workflow we ultimately target with the binary-only
JMPscare analysis is influenced by Ned Williamson’s talk
on Modern Source Fuzzing [26]. By the example of the
XNU kernel source, he proposes, as an initial step, to patch
out obstacles in source code for quick results, while at the
same time working to improve harnessing for sound results.
Although forcefully skipping over certain conditional jumps,
read checks, can lead to subsequent false-positive bugs, the
additional insights can help guide the researcher’s manual
analysis towards real bugs. To properly evaluate coverage data
on binary-only runs, we may use Lighthouse [12] for IDA
and Binary Ninja and Dragon Dance [1] for Ghidra. Both
tools are not targeted towards fuzzing introspection or designed
for the quick processing of thousands of files. In contrast
to them, JMPscare’s PNC analysis can guide the researcher
towards very interesting frontiers. One of the few actual
fuzzing introspection tools discussed publicly, although yet to
be released, is the unnamed source-code fuzzer introspection
tool by Aschermann and Schumilo [3].

In contrast to this almost unexplored field of fuzzer in-
sights, forced execution has been well-researched. For forced
execution, the target’s control flow is artificially altered to
overcome frontiers, by patching or instrumenting branches.
Wilhelm and Chiueh load and emulate kernel rootkits for
Windows while tracing multiple possible branches through
forced sampled execution [25]. This allows them to explore
the behavior of the rootkit with ease, even code paths, and
functionality deeply hidden in the code. In the past, forced
execution has also been applied to fuzzing, for example by
Wang et al. [24]. Their fuzzer TaintScope uses dynamic taint
analysis and symbolic execution and can bypass checksums
by altering the control flow of the target. As early as 2007,
Will Drewry and Tavis Ormandy proposed the use of control

flow alteration for binary-only fuzzing, with their Valgrind-
based Flayer [8]. While advanced for its time, Flayer does
not work together with modern coverage-guided fuzzers. Its
overall fuzzing performance is further hindered by the slow
speed of Valgrind.

III. DESIGN

In the following, we present the design and functionality of
JMPscare. JMPscare is a collection of tools aiding researchers
to unearth bugs hidden deeply within modern black-box bina-
ries through fuzzing. Our goal with JMPscare was to create an
easy-to-use analysis suite for multi-execution jump coverage
introspection on a large dataset. It allows the reverse engineer
to inspect fuzzing results, and specifically see, which important
jumps were not taken by the fuzzer. As illustrated in Fig. 1,
JMPscare contains tools for every step of the way: from trace
collection to analysis and reasoning to visualization and binary
patching.

A. Stand-Alone Trace Collection

While the JMPscare analysis is geared towards fuzzing, it
does not operate on the fuzzer queue or related tools like afl-
showmap of the original AFL [28] directly. Instead, JMPscare
uses simple instruction-counter traces and is thus suited for the
analysis of execution traces from various sources. The rationale
behind this is simple: most binary-only fuzzers only hash
edges. This hash may collide and hence cannot be reversed. A
perfect 1:1 mapping of taken jumps will be impossible, making
the default AFL coverage map useless. The instruction-counter
traces used by JMPscare are simple to get for targets that
support coverage-guided fuzzing. It is a list of all addresses ex-
ecuted for each input, or at least of all jump sources and targets,
in order of execution. The JMPscare toolkit currently offers
a Python library and a Rust crate to collect program counter
(PC-)traces for unicornafl harnesses, BaseSAFE harnesses, and
qiling harnesses. They all use the Unicorn multi-architecture
CPU emulator framework [19] for binary-only instrumentation
for black-box fuzzing with AFL++ [11]. Traces are generated
for each input in the queue to be analyzed. To keep up with a
large number of queue entries, JMPscare can make use of the
harnesses forkserver to speed up trace collection.

As writing trace files constantly would slow down fuzzing,
the trace collection should only be executed on-demand, in-
dependent of the actual fuzzing run. Whenever the researcher
needs introspection, they will run the PC-trace collection on
the current queue, then continue with the JMPscare analysis,
discussed in the following.

B. Automated JMPscare Analysis

The automated JMPscare analysis is the core component
of our contribution. It takes PC-traces and the binary as input.
It is written in Rust and heavily relies on the widely-used
Capstone [6] disassembler. At the moment, x86_64, MIPS,
and 32 bit ARM (incl. thumb2) architectures are supported.

1) Finding Frontiers: By disassembling instructions at all
traced addresses, the initial analysis pass determines which
jumps were taken and which basic blocks were reached. The
JMPscare analysis works quickly on thousands of traces, taking
into account all basic blocks across multiple runs, taken from
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Fig. 1: The Trace Generator reruns the target for each interesting input the fuzzer found up to this point. The JMPscare Analysis
then merges all found basic blocks, analyzes the taken and non taken branches, and weights blocks that were not reached. The
researcher can display them in Binary Ninja, and choose to auto-patch jumps or adapt the harness for the next fuzz run.

the fuzzer queue. Our goal is to find basic block edges that the
fuzzer was not able to overcome, so-called frontiers, see Fig. 2.
To achieve this goal, all instructions for every collected PC-
trace are first to read from the binary and disassembled using
Capstone. For each conditional jump in a trace, we extract
the jump’s target address and insert the jump’s information
(e.g., condition, target address, instruction size) into a hashmap
before the next instruction is disassembled. It is subsequently
checked, whether the next address in the trace, i.e. the next ex-
ecuted instruction, matches the last jump’s target address. If so,
we register that the jump was taken (the condition was true),
else the opposite. Upon finishing the parsing of all collected
PC-traces, a search is performed to find conditional branches
that were observered to have been executed for only one truth
value. In the last step, noise reduction is performed by only
retaining roadblock jumps in our list where following the non-
observed branch does not immediately lead to a basic block
that already has coverage. Example: We have encountered a
beq #0x2000 (branch if equal) and the condition was never
met during all our fuzz runs, i.e. the jump was never taken. We
only ever encountered the instruction’s immediate successor,
so if the branch was at address 0x1000 the next instruction in
any trace would always be 0x1004. On following the branch,
we find that the basic block starting at address 0x2000 already
has coverage because it was reached in at least one PC-trace on
another control flow path. It, therefore, becomes uninteresting
for further considerations.
Collecting all taken and non-taken jumps, we can reconstruct

Covered BB
Missed BB
Frontier

Hero Branch

Fig. 2: Basic Blocks, as seen by JMPscare. White blocks have
no coverage in the analyzed PC-traces.

all basic blocks the fuzzer reached over time, and uncover
conditional jumps with unsatisfied conditions, so branches that
were always, or never, taken across all PC-traces.

2) Potential New Coverage Analysis: Additionally, for sup-
ported platforms (ARM32 and thumb mode at the time), we
perform the PNC analysis, a deeper analysis runs on the con-
trol flow graph, recreated by following branches, recursively
disassembled with Capstone. In Fig. 2, the hero branch would
get the highest PNC value, as none of the basic blocks behind
the frontier were previously touched by any other input. The
more new blocks we may reach, the more interesting it may be
to the reverse engineer, hence we assign a high PNC that then
gets displayed in the Binary Ninja plugin, see Sect. III-C. The
PNC analysis assigns a value to each non-traversed frontier,
guiding the analyst: a higher score is likely more important to
be taken. Up to N edges for each of the previously found
uni-directional jumps are traversed. The parameter is user-
specified. Basic blocks are reconstructed again, visited blocks
are tainted, and each previously unseen branch target gets
registered and added to the list of edges to traverse next. After
performing N traversals, we are left with information about
potential new coverage hidden behind this roadblock jump,
measured as the number of basic blocks without previous
coverage. Each basic block can either have 0 (in case of a
function return, cf. Listing 1), 1 (in case of an unconditional
jump, cf. Listing 2) or 2 (in case of a conditional branch, cf.
Listing 3) new edges.

Listing 1: Basic Block with no (resolvable) outgoing edge.
0x25ec74 add r3, #0x174
0x25ec76 pop {r4, r5, pc}

Listing 2: Basic Block with one (static) outgoing edge.
0x25d68a mov r0, r4
0x25d68c ldr r1, [pc, #0x1e0]
0x25d68e b #0x6c484c

Listing 3: Basic Block with two (conditional) outgoing edges.
0x1f34ae cmp r0, #0xa
0x1f34b0 beq #0x1f3514

In the last iteration, i.e. after taking N jumps, unseen edges
are still registered but not traversed. This leaves us with an
upper bound of

b = 2N+1 − 1 (1)
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and a lower bound of 1 for the amount of possible new edges
reachable in N jumps per initial roadblock jump. Function
calls are usually treated as conditional jumps: the function, as
well as the code after the call, will be treated as a new edge. For
unresolvable branches, i.e. branches featuring register targets
such as blx r3, the user has the option to guide the analyzer
on how to treat them. Such jumps present no problem during
the first analysis step, as we simply disassemble at a given
address following an input PC-trace. However, resolving them
during PNC analysis is not trivially possible as we would have
to infer register contents during a static pass. The tool features
a weight flag, specifying to what degree the observation of an
unresolvable function call should be counted towards unseen
basic blocks. With the default value of 1, each of these calls
will be counted as one new block, even if the edge cannot be
traversed. Specifying a weight of 0 leads to simply ignoring
such calls. The user can also choose to make them count more.
The reasoning behind this would be that in certain situations
function calls may be of special interest, and huge weights
allow the user to spot them more easily. While the function
might have been seen before or might quickly terminate, it
could also lead to a large previously undiscovered part of the
binary. In the current design, the analysis tool expects and
works on a single binary blob or code segment. This has the
shortcoming that the tool would encounter a problem if it is
presented with the PC-trace of e.g., an ELF, as it may contain
jumps into code segments not being present in the loaded
binary, e.g., into shared libraries.

3) JMPscare Analysis File: After JMPscare completes its
analyses on all trace files in the queue, it outputs a single
file. This file contains details about all uni-directional jumps.
Every line describes one such jump, specifying the address in
the binary, the jump’s condition, whether it is taken always,
or never. For PNC, it also includes the number of previously
unseen basic blocks reachable within a user-specified amount
of edge traversals, as discussed in Sect. III-B1, e.g.:

0x1172 CONDITION_LT NEVER_TAKEN 15

This generated analysis output summary can then be
imported with the provided disassembler plugin for Binary
Ninja [23], as discussed in the following.

C. Binary Ninja Plugin

The JMPscare toolkit comes with a Python plugin for use
with the Binary Ninja reverse engineering software. While
plugins for other popular RE suites, such as Ghidra, are
planned, we chose Binary Ninja for our initial development.
The software offers powerful and user-friendly scripting- and
plugin environment. At the same time, the tool lays the focus
on concise visualizations and was hence well-suited for what
we wanted to achieve.

The plugin, see Fig. 3, provides a tabular overview of
results previously obtained with the JMPscare analysis tool.
Each row presents the user with all the information available
for a certain address in the analysis summary and is colored
green or red, depending on whether the jump was observed to
have been always or never taken, respectively. Lines featuring
found roadblock instructions are also colored respectively in
the disassembly view, providing visual aid in navigating the
graph view while looking into analysis results. The overview

Fig. 3: JMPscare UI in Binary Ninja

can be used for quick navigation and automatic patching.
Using Binary Ninja’s built-in API capabilities, inverting a
branch, e.g., from beq #0x1000 to bne #0x1000, can be
achieved via a single context-menu-click on any list entry, see
the blue (activated) entry in Fig. 3. This alters the control
flow quickly for forced execution. In the course of our work,
we patched Binary Ninja to support this auto-patching feature
for ARM’s thumb mode, as it was formerly missing for this
architecture. We subsequently opened a pull request to get this
patch upstreamed.

IV. EVALUATION

A. Analysis of Baseband Firmware PC-Traces

In the following, we show the application of JMP-
scare by analyzing 5902 traces obtained from executing
the ARM firmware for MediaTek’s Helio X10 (MT6795)
baseband processor. The evaluated corpus was taken from
the published BaseSAFE queue, fuzzing the baseband’s
errc_event_handler_main function, including various
ASN.1 parsers. Fuzzing and emulation of the firmware were
initially performed using unicornafl with AFL++. The following
experiments were conducted with an Intel Core i7-1065G7
CPU @ 1.3 GHz with a maximum frequency of 3.8 GHz on a
512 GB M.2 NVMe SSD. To collect coverage information,
the JMPscare-col Rust crate was plugged into the existing
Rust harness [18]. Subsequently, the emulation was rerun
on all 5902 fuzzing inputs, generating an equal amount of
execution traces with one address per line corresponding to an
executed instruction. The obtained traces feature 5860 executed
instructions on average. As no instructions are added by the
unicornafl instrumentation, this is the total count of target
instructions. File input/output dominates execution time of
JMPscare analysis runs. Averaged over 5 runs each, analyzing
5000 files took 17 seconds, and 2500 files took 8 seconds.
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(a) Over time, the fuzzer takes less and less new
jumps.
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(b) As we limit the exploration depth, the JMPscare
Frontier count increases when the fuzzer finds new
paths. Once the fuzzer explored the target, the unex-
plored branches decrease
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(c) As we only explore parts of the binary, the
possible coverage initially increases as the fuzzer
explores the binary further, but peaks after exploring
most of the program.

Fig. 4: Observed Jumps and Coverage in relation to the amount of analyzed traces.

Analyzing 250 files never surpassed 1.2 seconds. In total, the
5902 execution traces contained 4161373 jumps, making up for
about 12% of all encountered instructions. Of those, 1099 were
unique. 270 were uni-directional, i.e. representing frontiers for
the fuzzer that the harness was not able to overcome. Here,
the branching condition was always true or always false in
all the traces combined. PNC deep analysis was performed in
three modes: with N = 3 jumps (default), 8 and 16 jumps.
We observed 412, 590 and 1080 potentially new basic blocks
reachable in N branches respectively. The top ten roadblock
jumps with the most edges behind them offer between 14 and
340 new basic blocks without coverage in the analyzed traces,
with the median being 120.

B. Fuzzer Exploration, Graphed

Additionally, we conducted an experiment to see how the
numbers of uni-directional jumps and potential new edges
being blocked by them correlate with the number of input
PC-traces in the queue. For this, we picked one trace for each
round, ran the JMPscare analysis on all available traces, and
picked the next random trace, with a depth of N = 8 for
PNC analysis. As we use a logarithmic scale, we continued to
skip 100 traces after we had already collected a larger number
of traces. Please note that execution traces were picked in an
arbitrary order from the BaseSAFE queue, so results are not
necessarily in the same in which the fuzzer discovered them
originally. Figure 4 (a) shows the amount of unique frontier
jumps in correlation to the number of execution traces on a
logarithmic scale. As expected, after an initial increase, the
growth stagnates as it becomes more and more difficult for the
fuzzer to find inputs that lead to new program parts. In Figure 4
(b), the number of uni-directional jumps is illustrated. Addi-
tional execution traces reflect broader coverage, consequently
containing more paths with more jumps. At some point, more
condition-switching inputs than previously unknown jumps
are found. The relation saturates before finally decreasing. In
other words, in the beginning, a lot of totally new jumps are
found and taken into one direction, until the right inputs are
found to switch the condition and follow the second edge.
From here on, the jump is no longer considered to be uni-
directional, resulting in the observed decrease. Lastly, Fig. 4

(c) shows the Coverage Score, i.e. the number of previously
unknown basic blocks behind all frontiers. As long as the
analyzed traces themselves only provide marginal coverage,
every new uni-directional jump may lead to huge increases in
potential new coverage. Increased coverage through provided
input cases leads consequently to earlier termination during
traversal of unseen edges while performing PNC analysis,
as the probability of encountering a block that already has
coverage increases.

V. DISCUSSION

In this section, we interpret our evaluation results. First,
we discuss the direct positive impact JMPscare has on fuzzing
harnesses, and specifically on the MediaTek Baseband harness.
Then, we quickly describe an additional use-case: the improve-
ment of fuzzers and instrumentation.

A. Improving Harnesses Through JMPscare

Naturally to the domain, many of the found frontiers turn
out to be false positives. For example, the largest amount of
new basic blocks was found to be behind a double roadblock.
Following a full 4 byte compare (cmp r3, r2), we first
encounter a branch if equal, which is never taken, followed
by a branch if (unsigned) higher which is always taken.
Upon closer inspection and reverse engineering of the code
surrounding these branches, it turned out that this was the
check for a so-called Message-ID, widely used throughout
the firmware to guide incoming messages through different
stages of baseband processing. As these Message-IDs were
hardcoded within the fuzzing harness, it is clear why the
code behind this check could not be reached. We analyzed
recovered uni-directional jumps and prove that about 92% of
them were either Message-ID checks or error handling, e.g.,
bounds checks, resulting in assertion failures. This shows that
the BaseSAFE corpus is very well-explored, during weeks of
fuzzing with compare coverage enabled. Very few reachable
blocks remain behind complex frontiers. Given the nature of
the target, a low-powered embedded device with a space-saving
message format, this is unsurprising: the original experiment
ran for multiple days, on multiple cores, and had cmpcov
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activated [17]. As the evaluation shows, in Sect. IV-B, at an
earlier point of time, a lot of blocks were not yet uncovered
JMPscare, the original BaseSAFE paper could have taken a
short-cut using JMPscare. By adjusting the aforementioned
Message-ID in the harness, it is possible to reach different
parts of the program. Although it is not surprising that fuzzing
a different part of the program, which was previously pur-
posefully ignored, leads to greatly increased coverage, the
additional insights aid us in finding our next target. The
errc_event_handler_main contains checks for more
than 20 different Message-IDs of which not all may be equally
interesting. The combination of JMPscare analysis and direct
integration with a reverse engineering suite, such as Binary
Ninja, enables us to effectively evaluate which target might be
the most promising to fuzz next, leading to new coverage or
large functions the quickest.

B. Basic Block Classification

Inspired by the insights and by further looking into the
results of our analyses, we arrive at the following conclusion:
After a fixed amount of fuzzing executions, given an arbitrary
but fixed harness and initial state (e.g., a snapshot), every basic
block in the target falls into one of the following categories:
1) Reached: The fuzzer has already produced an input to the
harness which leads to or has a path containing the basic block.
This block is in one of the traces.
2) Reachable: A basic block falls into this category if the
fuzzer has the capabilities to reach this block in a reasonable
time. It simply needs additional cycles to find input satisfying
some conditions, or to find a certain, presumably long, path.
3) Reachable Behind Frontier: While still reachable in theory,
a roadblock may not be solvable by the current fuzzer in any
reasonable time. Manual aid, binary patching, or an improve-
ment of the fuzzer itself, will be needed to overcome this
frontier. This can be the case, when the control flow altering
state becomes too complex, e.g., through deeply nested structs
with multiple pointer indirections, or cryptography. JMPscare
is especially valuable for reachable blocks behind frontiers.
4) Reachable Altering Precondition: Cases in which control
flow to the block exists but are hidden behind state that cannot
be changed by mutating the input. This may be the case if we
start fuzzing from a snapshot, and the socket in question has
not been opened before snapshotting. Another example are the
Message-IDs we had hardcoded in the harness in Sect. V-A. To
overcome this issue, we either have to change the harness, or
start over with a different setup or snapshot. While altering the
Message-ID is well in scope, it may be impractical to manually
set up memory to mimic concepts such as whole file systems
or open socket connections. For simple cases, forced execution
can also help to reach these branches.
5) Unreachable: Of course, a block could be completely
unreachable. In the case of a baseband, most parts of the
baseband will never be reached from a given entry point.
However, the block may become reachable with the first
memory corruption the fuzzer finds.

C. Improving Fuzzers Through JMPscare

Improving the harness over and over throughout a fuzzing
campaign, patching out checksums, adding tokens to the input,
and so on, greatly improves the success chance. It is the norm

to have a human in the loop, and it is still the major use case
for fuzzers. However, we strive to make fuzzing available to
a broader audience. This can only be achieved by keeping the
complexity of the harness low. Instead, the fuzzer needs to be
improved. For individual fuzzer and instrumentation engineer-
ing purposes, JMPscare can also deliver valuable insights. To
give one example, unicornafl supports the splitting of compare
operations for ARM and X86(_64), often called cmpcov, or laf-
intel [11]. When fuzzing with cmpcov enabled, we see that the
fuzzer traverses checks of two bytes more easily, which are
quite common in baseband firmware, for tags and Message-
IDs. On the flip side, the overall speed decreased slightly,
from around 1.65k executions per second to 1.4k exec/s on
the machine used during the evaluation. A deeper analysis of
fuzzing performance goes beyond the scope of this paper. This
anecdotal observation, however, suggests that researchers can
directly measure and evaluate novel fuzzing mechanisms and
their effect using the JMPscare analysis.

VI. FUTURE WORK

In the future, JMPscare can be extended in multiple direc-
tions. Using the JMPscare analysis, binary-only fuzzing can
be improved, and recent advancements can be benchmarked
in-depth, as briefly discussed in Sect. V-C. A straight-forward
addition to our work will be support for additional reverse
engineering platforms, such as IDA and Ghidra, and tracers
to support additional instrumentation methods, for example,
qemu-mode. During analysis, additional heuristics for interest-
ing basic blocks can be implemented, and the GUI representa-
tion can even be enriched with taint and dataflow-data in order
to provide the reverse engineer a better overview. Similarly, the
JMPscare approach can be enriched with symbolic execution,
in a similar fashion to Driller [27] and QSYM [27], how-
ever with additional human guidance. Apart from binary-only
progress, the concept of JMPscare can be adapted to source-
based fuzzing, for example, by analyzing gcov output for each
test case, and then deducting basic block interestingness on a
language level, or on the compiled binary.

VII. CONCLUSION

With the wave of published fuzzing research in recent
years, it is surprising to see close to no existing tools for
further introspection into the actual fuzzing runs. While fuzzers
work on vast amounts of data and an increase of the overall
performance can be statistically proven, deeper insight into the
fuzz runs will immediately show the fine-grained roadblocks.
With tools such as JMPscare, far better results can be achieved,
as they aid researchers during manual reviews. While auto-
mated analyses improve steadily, putting the human in the loop
can still greatly enhance the overall bug-finding performance.
Forced execution allows the reverse engineer to potentially
overcome hard challenges, such as checksums or cryptographic
operations, without going through the trouble of rewriting
the test case. At the same time, information gained through
introspection via JMPscare can be used to aid a researcher
in their decision where to continue fuzzing. In the case of
fuzzing the MediaTek baseband firmware, we were able to
make an informed decision on which message type, specified
by the Message-ID, would be a promising next target without
requiring large changes to our harness. We will use JMPscare
to improve binary-only instrumentation in the future.
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AVAILABILITY

JMPscare and all related source code is available open-
source at https://github.com/fgsect/JMPscare.
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