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This Tema Nord report presents a study based on open information and 
custom market research to review the most common perfluorinated 
substances (PFC) with less focus on PFOS and PFOA.

The study includes three major parts:
1. Identification of relevant per-and polyfluorinated substances and 

their use in various industrial sectors in the Nordic market by 
interviews with major players and database information

2. Emissions to and occurence in the Nordic environment of the sub-
stances described in 1)

3. A summary of knowledge of the toxic effects on humans and the 
environment of substances prioritized in 2)

There is a lack of physical chemical data, analystical reference substan-
ces, human and environmental occurrence and toxicology data, as well 
as market information regarding PFCs other than PFOA and PFOS and 
the current legislation cannot enforce disclosure of specific PFC sub-
stance information.
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Summary 

The Nordic Chemicals Group (NKG), which is subordinate to the Nordic 

Council of Ministers, has commissioned the authors, through the Climate 

and Pollution Agency (KLIF), to undertake a Nordic study based on open 

information sources and custom market research to describe the use 

and occurrence of the most common perfluorinated substances (PFC), 

with less focus on PFOS and PFOA. 

The study includes three stages: 

 

1. Identification of relevant per-and polyfluorinated substances and 

their use in various industrial sectors in the Nordic market. 

2. Occurrence in industrial and consumer products and potential 

emissions to and in the Nordic environment and humans of the 

substances described in stage 1. 

3. A summary of knowledge of the toxic effects on humans and the 

environment of substances prioritized in stage 2. 

 

Interviews were conducted with more than 50 players in the Nordic 

market with the aim of obtaining information on use and type of PFC 

substances. This study, however, gave poor results. In parallel with this 

survey a net list was therefore produced of PFC substances based on 

three lists (each separately and together incomplete) from the OECD, 

REACH pre-registration database, and the Nordic SPIN database. Most 

production of PFC containing articles is outside the EU and today’s legal 

framework does not provide adequate means to obtain sufficient infor-

mation about specific PFC substances in imported articles. This net list is 

therefore not complete so there may be significantly more PFC sub-

stances used in the Nordic market. 

There are relatively few studies on PFC substances in the environ-

ment in the Nordic countries other than PFOA and PFOS which include 

both biotic (air, land and water) and abiotic (animal and human) data. 

Most human data regarding PFCA and PFSA from the years 1992 to 

2010 are from Norway and Sweden, with fewer from Denmark and no 

data from Iceland and Finland. Regarding PFCAs, most studies show the 

occurrence of PFOA, PFNA and PFHxA. However other PFCA substances 

(C10–C13) have also been detected in a number of studies. Regarding 
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PFSA, PFOS and PFHxS are the most studied substances. Human data are 

missing for PFAL, FTS, PAP/di-PAP and FTMAPs. 

In comparison with long-chain PFC substances (≥ C8) the short-chain 

substances are considered to be less toxic but a number of studies indi-

cate both ecotoxicity and human toxicity. In this area there is a major 

lack of studies. 

In general, since 2002 decreasing levels of PFOA and PFOS are ob-

served in the environment. However, increasing levels of short chained 

sulfonates have been observed in the environment. In comparison with 

other countries, the background concentrations of PFOA and PFOS in the 

environment are lower in the Scandinavian countries especially compared 

with Central European countries, which is to be expected as populations 

are smaller and there is less industry in the Nordic countries. However 

these substances have also been found in the Arctic, far from any sources, 

which shows that these substances are global contaminants.  

One result of this review of the presence of fluorinated substances in 

the environment is that there are considerable information and 

knowledge gaps regarding PFCs other than PFOA and PFOS. In addition, 

there is generally a shortage of human and environmental data about 

these PFCs. The few data available indicate specific toxic effects on hu-

mans and the environment. It takes more and deeper studies to get a 

clearer picture of these PFC substances before far-reaching conclusions 

can be drawn about their toxic properties. 

Lack of physical-chemical data for PFC substances other than PFOA 

and PFOS is an obstacle to environmental fate modelling calculations. 

The lack of analytical reference substances is currently also a barrier 

to extended studies of these substances in the environment and humans. 

 

 

 

 



1. Background 

Polyfluorinated substances have been used for a long time, but there 

was no focus on this group until widespread environmental occurrence 

(e.g., in polar bears) and high reproductive toxicity were found for per-

fluorooctane sulfonate (PFOS). Because of these properties of the ex-

tremely persistent PFOS and by the fact that PFCs do not occur naturally 

in nature, the substance is restricted under the Stockholm Convention 

(nominated by Sweden), with only a few allowed remaining uses. Per-

fluorooctanoic acid (PFOA) was the second substance from this group to 

attract interest, with hazard and risk assessments being performed, and 

classification and labelling under discussion in the EU (proposal from 

Norway). PFOA is a candidate for restriction under Reach. The OECD 

(Organization for Economic Cooperation and Development) lists a total 

of 853 different fluorine compounds. Among these some are currently 

being phased out due to regulations mentioned above.  

However, there is a huge number of polyfluorinated substances (in-

cluding perfluorinated) being used, in many cases leading to substitution 

of one polyfluorinated substance with others, e.g., perfluorobu-

tansulfonate (PFBS) substituting PFOS. Little is known about the sources 

of these substances. Many other perfluorinated substances are known to 

be used, but it is unclear to what extent they are included in monitor-

ing/screening exercises.  

Some widely used polyfluorinated substances such as fluorotelomer 

alcohol-derivatives are precursors to perfluorinated substances. Exam-

ples from these groups are polyfluorinated phosphates (diPAPs and 

PAPs), and fluorotelomer mercaptoalkyl phosphate diesters (FTMAPs), 

found in food contact materials by Danish scientists (Trier 2011). The 

polyfluorinated substances are rather persistent but may be degraded to 

perfluorinated substances, such as PFOA, which in itself is virtually non-

degradable and may be problematic as such. In addition, sufficient tox-

icity data is only available for very few of them.  

The overall publicly available knowledge on the use of per- and poly-

fluorinated substances is very limited, even though we know that there 

are many such substances on the market. This review aims to increase 

our knowledge of the uses of these fluorinated substitutes of 

PFOS/PFOA. This includes emissions and exposures in the Nordic envi-
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ronment, and if available, more information on the toxicity and monitor-

ing results of these substances. Of special concern is whether some of 

the perfluorinated substances already have contaminated the Arctic 

environment, with PFOS now being recognized as a global POP. Because 

of the potent surfactant properties of these substances, they are general-

ly used at low concentrations in products and the use of them may there-

fore not always be clearly known. However, a better knowledge on how 

these substances are used will increase the possibilities to decrease the 

environmental emissions directly at the sources. 

In conclusion, the aim of this study is to find more information on 

how per- and polyfluorinated substances are used in the Nordic society 

and to what extent they may be emitted to the Nordic and Arctic envi-

ronment. These data will be useful in the process of regulating these 

substances within REACH or by other international forums like the 

Stockholm Convention. 



2. Introduction 

The Nordic Chemical Group (NKG), which is subordinate to the Nordic 

Council of Ministers, has commissioned the authors, through the Climate 

and Pollution Agency (KLIF), to undertake a survey that aims to present 

an overview of the most used PFCs in the Nordic countries besides 

PFOS/PFOA.  

This survey contains three stages namely 1) Identification of relevant 

per- and polyfluorinated substances and their use in different applica-

tions on the Nordic market, 2) Potential emissions and exposure of sub-

stances in applications identified in stage 1 and, 3) A summary of 

knowledge on toxicity of the most important and prioritized substances 

in this survey. 

Table 1. Focus categories of per- and polyfluorinated substances (PFC) 

PFCA (Perfluoroalkyl carboxylates)  

PFSA (Perfluoroalkyl sulfonates) 

PFAL (Perfluoroalkyl aldehydes) 

FTOH (Fluorotelomer alcohols) 

FTS (Fluorotelomer sulfonates) 

PAP/di-PAP (Polyfluoroalkyl phosphates) 

PFPE (Perfluoropolyethers) 

Other fluorotelomers 

 

The substances in Table 1 were reviewed concerning their use, occur-

rence, environmental fate and impact along their life cycle in the Nordic 

countries (Finland, Sweden, Denmark, Iceland and Norway) including 

use, exposure and unintentional occurrence in industrial manufacturing 

and applications and other possible public and industrial sources such 

as long range transport by air.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



3. Introduction to fluoro-
chemistry 

Polyfluoroalkylated substances (PFCs) belong to a large and complex 

group of organic substances that are extremely versatile and used in a 

variety of industrial and household applications.  

The main characteristics of the polyfluorinated compounds are the 

replacement of most hydrogen by fluorine in the aliphatic chain struc-

ture. Some of these organic fluorine compounds are known as perfluori-

nated, which means that all hydrogens have been replaced with fluorine. 

PFCs are synthetically produced compounds which do not occur natural-

ly, and have been manufactured for 50 years (Kissa, 2001). 

An understanding of the chemistry of fluorinated surfactants must 

consider three distinct structural aspects, namely the hydropho-

bic/oleophobic “tail” that contains a high proportion of fluorine, the hy-

drophilic group, and the “spacer” organic group linking these two portions 

of the surfactant together. As with hydrocarbon surfactants, the important 

fluorinated surfactants include a diverse range of hydrophilic groups: 

 

 Anionic (e.g. sulfonates, sulfates, carboxylates, and phosphates). 

 Cationic (e.g. quaternary ammonium). 

 Nonionic (e.g. polyethylene glycols, acrylamide oligomers). 

 Amphoteric (e.g. betaines and sulfobetaines). 

 

The practical and commercial range of the hydrophobic/oleophobic “tail” of 

the fluorinated surfactant is limited. Perfluoroalkyl (F(CF2)n– or RF-), or 

perfluoropolyether ((RFO)n(RFO)m-) groups are the hydrophobic/ 

oleophobic portion of most commercially available fluorinated surfactants. 

Perfluoroalkyl-containing fluorinated surfactants generally originate from 

either electrochemical fluorination (ECF) with hydrogen fluoride (HF) or 

telomerisation of tetrafluoroethylene (TFE). Perfluoropolyether-based 

fluorinated surfactants typically originate from either oligomerisation of 

hexafluoropropene oxide (HFPO), photooxidation of TFE or hexafluoropro-

pene (HFP), or oligomerisation of fluorinated oxetanes. 
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3.1 Production of fluoro-chemicals 

There are two main production processes for PFCs; electrochemical 

fluorination (ECF) and telomerisation. In the electrochemical fluorina-

tion process, a technical mixture of hydrocarbons (different carbon 

chain lengths including branched isomers) with a functional group is 

subjected to fluorination, leading to a mixture of perfluorinated products 

with the same homologue and isomer pattern. Telomerisation involves 

coupling tetrafluoroethene, which leads to straight-chained products 

with an even number of carbon atoms. Fluorotelomer products often 

possess two carbon atoms adjacent to the functional group which are 

not fluorinated that yields linear, even carbon number substances. Te-

lomers are produced and used commercially as mixtures, in which the 

typical length of the chains is between four and eighteen carbon atoms. 

Fluoro-compounds can be further reacted and will then occur in other 

chemical compounds, e.g. acrylate polymers. This means that perfluori-

nated compounds and fluorinated telomers may occur in a large number 

of different chemical compounds either added as final treatments, impu-

rities and unreacted monomers of the production process or chemically 

bound to the polymeric structure (Knepper et al., 2011). 

3.1.1 Electrochemical fluorination 

The ECF of organic compounds using anhydrous HF was the first signifi-

cant commercial process for manufacturing ECF-based fluorinated sur-

factants. Typically, a hydrocarbon sulfonyl fluoride (R-SO2F, for example, 

C4H9SO2F or C8H17SO2F) is transformed into the corresponding per-

fluoroalkyl sulfonyl fluoride (Rf-SO2F, for example, C4F9SO2F or 

C8F17SO2F).  

The perfluoroalkylsulfonyl fluoride is the fundamental raw material 

which is further processed to yield fluorinated surfactants. Commercial-

ly relevant perfluoroalkylsulfonyl fluorides are derived from 4, 6, 8, and 

10 carbon starting materials yielding perfluorobutanesulfonyl fluoride 

(PBSF), perfluorohexane sulfonyl fluoride (PHxSF), perfluorooctane 

sulfonyl fluoride (POSF), and perfluorodecane sulfonyl fluoride (PDSF), 

respectively.  

In the ECF process, fragmentation and rearrangement of the carbon 

skeleton occurs and significant amounts of cleaved, branched, and cyclic 

structures are formed resulting in a complex mixture of fluorinated ma-

terials of varying perfluoroalkyl carbon chain length and branching as 

well as trace levels of perfluorocarboxylic acid impurities. The most 
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basic surfactant derived from the perfluoroalkyl sulfonyl fluoride raw 

material is the corresponding sulfonate, RFSO3. 

Perfluorooctane sulfonate (PFOS) has historically been made in the 

largest amounts. Perfluorohexane sulfonate (PFHxS) and perfluorodec-

ane sulfonate (PFDS) are also commercially relevant. Recently, the major 

historic manufacturer of long-chain perfluoroalkyl sulfonyl chemistry, 

including PHxSF, POSF, and PDSF, ceased their production and moved to 

the manufacture of PBSF-based fluorinated surfactants (e.g., C4F9SO2-R) 

which are growing in commercial use (Knepper et al., 2011). 

Figure 1. Synthesis of ECF-based fluorinated surfactants (Knepper et al., 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: n = 8 is PFOS and related substances. 

 

By using the perfluoroalkyl sulfonyl fluoride, for example PBSF, as a 

basic building block, different products are created through the sulfonyl 

moiety using conventional hydrocarbon reactions. Perhaps the most 

versatile intermediates from the ECF process are those containing the 

perfluoroalkyl sulfonamido functionality, RFSO2N(R)-. For example, 

C4F9SO2N(CH3)CH2CH2OH, n-methyl perfluorobutylsulfonamido ethanol 

(MeFBSE).  

These primary alcohols can readily be functionalized into fluorinated 

ethoxylates, phosphates, sulfates, and (meth)acrylate monomers. Fluori-

nated (meth)acrylates undergo free-radical polymerizations to give oli-

gomeric fluorinated surfactants. In addition, perfluoroalkyl carboxylic 

acids (PFCAs) and their derivatives have also been synthesized using the 
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ECF process. Typically, an alkyl carbonyl fluoride (for example 

C7H15COF) is transformed into the corresponding perfluoroalkylcarbon-

yl fluoride (for example C7F15COF). The carbonyl fluoride is then reacted 

to yield esters, amides, or carboxylic acid salts which have all been 

commercially produced and used as surfactants. The most widely known 

is the ammonium salt of perfluorooctanoic acid (C7F15COOH·NH3), 

whose major historical use has been as a processing aid in the manufac-

ture of fluoropolymers. 

3.1.2 Telomerisation 

The free-radical addition of tetrafluoroethylene (TFE) to pentafluoro-

ethyl iodide yields a mixture of perfluoroalkyl iodides with even-

numbered fluorinated carbon chains. This is the process used to com-

mercially manufacture the initial raw material for the “fluorotelomer”-

based family of fluorinated substances. Telomerisation may also be used 

to make terminal “iso-” or methyl branched and/or odd number fluori-

nated carbon perfluoroalkyl iodides as well. 

The process of TFE- telomerisation can be manipulated by control-

ling the process variables, reactant ratios, catalysts, etc. to obtain the 

desired mixture of perfluoroalkyl iodides, which can be further purified 

by distillation. While perfluoroalkyl iodides can be directly hydrolysed 

to perfluoroalkyl carboxylate salts the addition of ethylene, gives a more 

versatile synthesis intermediate, fluorotelomer iodides. These primary 

alkyl iodides can be transformed to alcohols, sulfonyl chlorides, olefins, 

thiols, (meth) acrylates, and from these into many types of fluorinated 

surfactants. The fluorotelomer-based fluorinated surfactants range in-

cludes nonionics, anionics, cationics, amphoterics, and polymeric am-

phophiles (Knepper et al., 2011). 
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Figure 2. Synthesis of fluorotelomer-based fluorinated surfactants,  
(Knepper et al., 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: n = 8 is PFOA and related substances 

 

3.1.3 “Per- and Poly- Fluorinated Ethers” 

Per- and polyfluorinated ether-based fluorinated surfactants typically 

have 1, 2, or 3 perfluorinated carbon atoms separated by an ether oxy-

gen, depending on the route to the perfluoropolyether intermediate. The 

photooxidation of TFE or HFP gives oligomers or polymers with mono- 

or di-acid end groups. These perfluoropolyethers have random sequenc-

es of –CF2O– and either –CF2CF2O– or –CF(CF3) CF2O- units, from TFE or 

HFP, respectively (Knepper et al., 2011). 

In general, the photooxidation of TFE yields mostly difunctional per-

fluoropolyether acid fluorides, while the photooxidation of HFP yields 

mostly the monofunctional perfluoropolyether acid fluoride.  

The fluoride catalyzed oligomerisation of HFPO, an epoxide, yields a 

mixture of perfluoropolyether acid fluorides, which can be converted to 

many types of surfactants, analogous to the fluorinated surfactants from 

the ECF syntheses. Per- and poly-fluorinated ether surfactants are the 

newest commercially available substances in this rapidly expanding 

group of fluorinated surfactants. For example, the phosphate is used as a 

grease repellent for food contact paper. Per- and polyfluorinated poly-
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ether carboxylates are also used as processing aids in the synthesis of 

fluoropolymers. Per- and polyfluorinated polyether silanes are used as 

surface treatments (Knepper et al., 2011), e.g. for stones or as anti-

biofouling agents for ships. 

3.1.4 Fluorinated oxetanes 

An alternative route to fluorinated surfactants originates from the reac-

tion of polyfluorinated alcohols with oxetanes bearing a –CH2Br group in 

their side-chains to create fluorinated oxetane monomers that undergo 

ring-opening polymerisation to give side-chain polyfluorinated polyeth-

ers. Oxetane-based fluorinated surfactants are offered in many forms and 

functionalities, such as phosphates and ethoxylates (Knepper et al., 2011). 



4. Methodology and limitations 

This chapter gives an overview of how the investigation is carried out as 

a whole and how the three stages 1) Identification of relevant per- and 

polyfluorinated substances and their use in different applications on the 

Nordic market, 2) Potential emissions to and occurence in the Nordic 

environment of the substances described in stage 1, and 3) A summary 

of knowledge on toxicity of the most important and prioritized sub-

stances in this survey, are linked to each other. 

4.1 Methodology 

This project is aiming to seek information about uses of less discussed 

per- and polyfluorocompounds beside PFOA and PFOS. In order to eval-

uate uses, occurrence and finally toxicity of some prioritised substances 

the project was structured and performed in three stages, namely: 

 

 Stage 1 – Identification of relevant per- and polyfluorinated substances 

and their use in different applications on the Nordic market 

In stage 1 the following were carried out: a) establishing a database 

of poly- and perfluorinated substances that may be used on the 

Nordic market by extraction of a net list which is based on three 

other lists: A list from OECD, the REACH preregistration database and 

the Nordic SPIN database and b) a mapping of Nordic market 

information through a questionnaire to more than 50 market actors 

in the Nordic market within the following sectors:  

o Aviation hydraulic fluids . 

o Fire fighting foams . 

o Pesticides. 

o Metal plating (hard metal plating and decorative plating). 

o Electronic equipment and components. 

o Chemically driven oil and mining production. 

o Carpets, leather and apparel, textiles and upholstery. 

o Paper and packaging. 
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o Coating and coating additives. 

o Construction products. 

o Medical and healthcare products. 

 Stage 2 – Occurence of per- and polyfluorinated substances 

Identified poly- and perfluorinated substances from stage 1, both 

from the net list practice and/or answers from Nordic market were 

meant to be further studied concerning their occurrence in industrial 

and consumer products, in environment and humans. However, the 

results from stage 1 did not really give a basis to perform stage 2. 

Stage 2 was therefore carried out by compiling the occurrence data 

for per- and polyfluorinated substances that could be found in 

literature. Findings from this stage resulted in a priority list of the 

most frequently occurring groups of PFCs in the Nordic environment 

and in humans which summarises our current knowledge. This 

priority list – for the stage 3 work – was prepared in consultation 

with KLIF/NORAP.  

 Stage 3 – Toxic effects of per- and polyfluorinated substances on 

humans and the environment 

The priority list from stage 2 was elaborated in ranking order to 

describe known toxicity data from publicly available literature 

sources to support future possible regulatory measures from the 

Nordic authorities.  

4.2 Limitations 

One major and primary limitation in the intial mapping study is the lack 

of reliable specific substance data from the market due to the lack of 

both substance identification and trade secrets. Therefore only publicly 

available information sources are applied.  

There is a major focus of PFCs in the Nordic environment in this sur-

vey, consequently literature sources used relate to environmental com-

partments in the Nordic environment, including in the Arctic. 

However, there are limitations in the monitoring data as well, since 

only PFCs with commercially available analytical reference substances 

can be analysed and identified in the various studies.  

Since there is a strong progress in research in this field especially 

over the last few years there may be a few very recent publications (also 

currently unpublished) that have by necessity been left out due to the 

timing of this survey. 



5. Mapping of use of per- and 
polyfluorinated substances 
on the Nordic market 

The mapping of the use of per- and polyfluorinated substances on the 

Nordic market was carried out by use of the following instruments: 

 

 Producing a “net list” of PFCs in use on the Nordic market by use of 

public available lists of PFCs in use. 

 Contacting a selection of producers, suppliers and users of PFCs on 

the European and Nordic market. 

 Using information in literature and knowledge from the institutions 

and persons performing this study.  

 

The first two steps are described in more detail below. 

5.1 “Net list” of PFCs in use on the Nordic market 

An extraction of a “net list” of PFCs in use in the Nordic countries was 

performed by use of databases available on the Nordic/European mar-

ket. There are mainly three lists of PFCs publicly available: 

 

 OECD list from 2007.1This list covers substances and polymers that 

were used on the global market at that time. It is not considered to be 

up-to-date. 

 REACH Pre-registration database.2 This list covers phase-in 
3substances and polymers intended to be registered under REACH 

────────────────────────── 
1 Lists of PFOS, PFAS, PFOA, PFCA, Related Compounds and Chemicals that may degrade to PFCA (as revised 

in 2007). Organisation for Economic Co-operation and Development, 21 August 2007. 

ENV/JM/MONO(2006)15. 
2 http://echa.europa.eu/information-on-chemicals/pre-registered-substances 
3 Definition according to REACH Article 3. 20) 

http://echa.europa.eu/information-on-chemicals/pre-registered-substances
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(i.e. substances manufactured or imported (and/or used) in the EU 

that are covered by Article 23 concerning transitional provisions).  

 SPIN database4 that covers per- and polyfluorinated substances and 

polymers contained in dangerous chemical mixtures used in the Nordic 

countries. The data has its origin in the national product registries. 

 

Initially, PFOS and PFOA and their related substances (C8-chemistry) 

have been excluded in the mapping practice of these lists. Other non-

PFOS/PFOA substances and additionally polymers have been matched 

between the lists in order to get a net list of common per- and polyfluor-

inated substances and polymers, that may be used on the Nordic market. 

It is important to emphasise that neither of these lists are complete, of-

ten due to company trade secrets, but they may provide a selection of 

categories of per- and polyfluorinated substances and polymers that 

may be used in the Nordic market. 

The next step in the practice of these three lists mentioned above was 

to extract the common per- and polyfluorinated substances and poly-

mers on each list to receive a “net list” of substances and polymers that 

are used in EU and the Nordic countries respectively. 

A combination of the OECD list and the REACH pre-registration data-

base (and excluding PFOS and PFOA and related substances) resulted in 

the so-called “European net list” of substances that were on the OECD 

list and were pre-registered in the REACH system. The “European net 

list” consisted of 518 substances, i.e. 518 PFCs may be in use on the Eu-

ropean market. Of these 79 were polymers or not-precisely defined mix-

tures which are listed at the end.  

A combination of this “European net list” and the Nordic SPIN data-

base resulted in a so-called “Nordic net list” of 118 substances, i.e. 118 

PFCs may be in use on the Nordic market. Of these 27 were polymers or 

not-precisely defined mixtures, which are excluded from the schemes 

but listed at the end. 91 CAS numbers were therefore included in the 

sorting as the final “Nordic net list (excluding polymers or not precisely 

defined mixtures)”. We conclude that these PFCs for which there is pub-

licly available information may be used on the Nordic market.  

Since neither of these databases contains complete information on 

the market use of PFCs, the net list is necessarily incomplete and there 

────────────────────────── 
4 http://www.spin2000.net/ 

http://www.spin2000.net/
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may be other PFCs used on the Nordic market in addition to those found 

in the net list.  

A more detailed categorization of the pre-registered 518 non-

PFOS/PFOA PFCs in REACH (the “European net list”) is found in Appen-

dix B. This includes the polyfluorinated substances that potentially can 

be used on the Nordic market.  

Table 2. The 35 categories of PFCs that were identified in the “net list” exercise 

Identified PFC categories Possible fluoro process 

Perfluoroalkane sulfonic acids (PFASs)  ECF 

Perfluoroalkane sulfonates (salts) ECF 

Perfluoroalkane sulfinic acid/sulfinates  ECF 

Perfluorocycloalkane sulfonic acid and derivatives ECF 

Perfluoroalkane sulfonamides  (FASAs) ECF 

Perfluoroalkane sulfonamide, quaternary ammonium salts ECF 

Perfluoroalkanesulfonamide acrylates (MeFASACs) ECF 

Perfluoroalkane sulfonamide methacrylates ECF 

Perfluoroalkane sulfonamide phosphates ECF 

Perfluoroalkane sulfonyl halides EFC 

Other polyfluoroalkyl sulfur compounds ECF 

Perfluoroalkyl carboxylic acids (PFCA) Telomerisation  

Perfluoroalkyl carboxylic salts Telomerisation  

Perfluoroalkyl alcohols/ketones Telomerisation  

Perfluoroalkyl carboxylic acid halides Telomerisation  

Perfluoroalkyl halides Telomerisation  

Perfluoroalkyl alkyl ethers Telomerisation  

Perfluoroalkyl amines Telomerisation  

Perfluoroalkyl amino acids/salts/esters Telomerisation  

Perfluoroalkyl phosphates Telomerisation  

Perfluoroalkyl acrylates Telomerisation  

Perfluoroalkyl methacrylates Telomerisation  

Other perfluoroalkyl carboxylic esters Telomerisation  

Perfluoroalkyl heterocyclic compounds Telomerisation  

Perfluoroalkyl silanes Telomerisation  

Fluorotelomer alcohols Telomerisation  

Fluorotelomer halogenides Telomerisation  

Fluorotelomer sulfonates, sulfonyl chlorides and sulfonamides Telomerisation  

Fluorotelomer acrylates Telomerisation  

Fluorotelomer methacrylates Telomerisation  

Other acrylates Telomerisation  

Fluorotelomer phosphates Telomerisation  

Other fluorotelomers Telomerisation  

Polymers No information 

Undefined mixtures No information 

 

Additionally structure formulas, synonyms, acronyms, trade names, 

physical-chemical data and use data have been collected. Only a few of 

these data, however, are included in the tables that were further devel-

oped in project phase 2. 

The applied names are as simple as possible and we have chosen 

to use the most easy to understand. Those are not necessarily the 

most correct ones, but we have made this choice to make it easier to 

get an overview and see homologue rows and relationships. That is 
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also why the “perfluor” prefix and fluorotelomer names have been 

used where possible.  

5.1.1 Discussion about the “correctness” of the “net list” 

It must be emphasised that this “Nordic net list” that has been presented 

in Appendix B only represents some of the “truth”. The real picture may 

very well be very different.  

First of all, there is no guarantee that the pre-registered substances 

are going to be registered in the REACH system. This means that this list 

may contain substances that may not be used in Europe. On the other 

hand, new substances were not covered by the transitional provisions 

and were normally not pre-registered. Therefore the list of the pre-

registered substances is probably not complete. Finally the substances 

used for treatment of articles with per- or polyfluorinated substances 

outside EU are normally not to be registered within the REACH system. 

Such per- and polyfluorinated substances are therefore not included in 

the pre-registration list.  

Secondly, the SPIN database is only a database of substances used in 

chemical products (i.e. substances and mixtures) that are classified as 

dangerous and used (imported or produced) in the Nordic countries. 

This means that only chemical products that are classified as dangerous 

are included – thereby excluding chemicals only containing PFCs that 

are not classified as dangerous. Moreover, the SPIN database does not 

contain information about articles treated with e.g. per- or polyfluori-

nated substances such as impregnated textiles.  

Finally, the OECD list is from 2007 and may very well not include all 

per- and polyfluorinated substances in use today.  

5.2 Contacts to producers, suppliers, users and other 
players on the PFC market 

Based on a search and on the knowledge within the project group, a 

number of producers, suppliers, users and trade organizations in the 

different Nordic countries were contacted. Global producers and trade 

organizations were contacted as well. The main contact was carried out 

by email. But some of the main players on the market were contacted by 

phone/interviews.  
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Appendix C contains a list of the about 50 companies and organiza-

tions that have been contacted in this project. The questionnaire used 

for the phone/web interviews are also presented in Appendix C. 

5.3 Conclusions 

Parallel with the mapping of the Nordic market extracted net lists (Ap-

pendix B) based on a list from OECD, the REACH preregistration data-

base and the Nordic SPIN database, identified 518 per and polyfluori-

nated substances (“European net list”) and 118 per and polyfluorinated 

substances (“Nordic net list”) that might be used on the Nordic market 

(in blue font in Appendix B). Since neither of these databases contain 

comprehensive information of per- and polyfluorinated substances, 

there may be several more per- and polyfluorinated substances that may 

be used on the Nordic market. These per- and polyfluorinated substanc-

es were divided into 35 chemical categories. For these 35 per- and 

polyfluorinated categories their process origin and possible fate into 

principal degradation products were estimated for a better understand-

ing of the findings concerning occurrence and impact of per- and 

polyfluorinated substances in the Nordic environment and to humans.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



6. Mapping of uses and 
applications of PFCs on the 
Nordic market 

The mapping carried out in this project has covered the following uses 

on the markets of the Nordic countries: 

 

 Aviation hydraulic fluids. 

 Fire fighting foams. 

 Pesticides (insect baits for control of leaf-cutting ants from Atta spp. 

and Acromyrmex spp. and insecticides for control of red imported fire 

ants and termites). 

 Metal plating (hard metal plating and decorative plating). 

 Electronic equipment and components. 

 Chemically driven oil and mining production. 

 Carpets, leather and apparel, textiles and upholstery. 

 Paper and packaging. 

 Coating and coating additives. 

 Construction products. 

 Medical and healthcare products. 

6.1 Aviation hydraulic fluids 

Alternative hydraulic fluid additives must undergo extensive testing to 

qualify for use in the aviation industry to sustain severe conditions dur-

ing use. 

In the manufacturing process for aviation hydraulic fluids, a PFOS-

related substance or precursor, such as potassium perfluorooctane sul-

phonate, was used as an additive to the aviation hydraulic fluids with a 
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content of about or less than 0.1%.5 According to the manufacturers, this 

formulation helps prevent evaporation, fires, and corrosion.  

Aviation hydraulic fluids without fluorinated chemicals but based on, 

for example, phosphate esters are used. These substances can absorb 

water and the subsequent formation of phosphoric acid can damage 

metallic parts of the hydraulic system. For this reason, phosphate ester-

based hydraulic fluids are routinely examined for acidity as this deter-

mines its useful lifetime. Additionally fluorinated chemicals other than 

PFOS can be used. The potassium salt of perfluoroethylcyclohexyl sul-

phonate (CAS number. 67584-42-3)6 is not a PFOS precursor, and it has 

been used in hydraulic oils instead of PFOS in the past. However, like 

other C6 compounds it is likely to be persistent and 3M which formerly 

produced this chemical has ceased to do so. A search for other alterna-

tives is said to have been going on for 30 years, starting before PFOS was 

considered a problematic substance. However it is not possible to get 

any specific chemical composition of alternatives due to trade secrets. 

Consequently there is no way to describe their potential feasibility and 

impact to health and environment in a comprehensive way.7  

6.1.1 Identity and properties 

Information gaps 

6.1.2 Type of uses, quantities, producers, downstream 
users and traders 

There are several trade names and traders on the market. Some are as 

follows: Arnica, Tellus, Durad, Fyrquel, Houghto-Safe, Hydraunycoil, 

Lubritherm Enviro-Safe, Pydraul, Quintolubric, Reofos, Reolube, Val-

voline Ultramax, Exxon HyJet, and Skydrol.8 

The fire-resistant aviation hydraulic fluids principally contain tri-

alkyl phosphates, tri-aryl phosphates, and mixtures of alkyl-aryl-

phosphates. However, the products only provide rough descriptions of 

────────────────────────── 
5 The potassium salt of PFOS was used in such a small quantity that it was not listed on the MSDS at Boeing 

(Boeing 2001). http://www.boeingsuppliers.com/environmental/TechNotes/TechNotes2001-02.pdf 
6 In the U.S. this chemical is considered a C8 PFOS equivalente and its use in hydraulic fluids is regulated 

under a Significant New Use Rule: https://www.federalregister.gov/articles/2002/12/09/ 

02-31011/perfluoroalkyl-sulfonates-significant-new-use-rule 
7 UNEP/POPS/POPRC.8/INF/17 
8 http://www.atsdr.cdc.gov/toxprofiles/tp99-c3.pdf 

http://www.boeingsuppliers.com/environmental/TechNotes/TechNotes2001-02.pdf
https://www.federalregister.gov/articles/2002/12/09/
http://www.atsdr.cdc.gov/toxprofiles/tp99-c3.pdf
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their chemical composition such as “contain phosphate esters”. Conse-

quently there are several information gaps concerning the specific 

chemical composition of each aviation hydraulic fluid but similarly the 

traders need to know in detail of these oil characteristics since these 

characteristics are important to aviation security.  

Since very little is published concerning the chemical composition of 

these aviation hydraulic oils there is currently no possibility to assess 

their environmental and health impact. 

There is currently no, scarce or uncertain data available concerning 

quantities used on the market.9 

6.1.3 Efficacy and availability 

There is no available information on cost-effectiveness, efficacy, availa-

bility, accessibility and socio-economic considerations.  

6.2 Fire fighting foams 

Fluorinated surfactants are used in fire fighting foams as they are very 

effective for extinguishing liquid fuel fires at airports, oil refineries etc. 

Fire fighting foams are divided into: 

 

 Fluoro-protein foams used for hydrocarbon storage tank protection 

and marine applications. 

 Aqueous film-forming foams (AFFF) developed in the 1960s and used 

for aviation, marine and shallow spill fires. 

 Film-forming fluoroprotein foams (FFFP) used for aviation and 

shallow spill fires. 

 Alcohol-resistant aqueous film-forming foams (AR-AFFF), which are 

multi-purpose foams. 

 Alcohol-resistant film-forming fluoroprotein foams (AR-FFFP), which 

also are multipurpose foams; developed in the 1970s. 

 

 

────────────────────────── 
9 As aviation hydraulic fluids are essential to the military in Convention member countries they may be a 

source of information regarding the alternative substances and their quantities used. 
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PFOS-containing fire fighting foams has a long shelf life (10–20 years or 

longer) which is why PFOS-containg fire-fighting foams may still be used 

around the world in accidental oil fires. However, in recent years fire-

fighting foams are not manufactured with PFOS, but with fluorotelomers 

based on a perfluorohexane (C6) chain. However, in China PFOS-

containing fire fighting foams are still produced.10 

6.2.1 Types of uses, quantities, producers, downstream 
users and traders 

Information received from the industry during this project confirms that 

fluorinated surfactants are still used in fire fighting foams. The use of 

PFOS in fire fighting foams has been discontinued – in new products. 

However, as PFOS-containing fire fighting foams have a very long shelf 

life, PFOS-containing fire fighting foams may still be in use globally. EU 

Regulation from 2008 has, however, ensured that most PFOS stocks 

have been destroyed.11  

According to the fire fighting foam industry that has been contacted 

during this project, the perfluorotelomer used in fire-fighting foams 

(AFFF, AR-AFFF, FFFP and AR-FFFP) are named C8-C20--ω-perfluoro 

telomer thiols with acrylamide (CAS number 70969-47-0) and is used in 

the most common fluorosurfactants in use in fire-fighting foams since 

the discontinuation of the PFOS based surfactants. According to the in-

dustry most of the manufacturers are committed to continuing use of 

this chemistry until 2016.12 

Furthermore, the following summarized information and statements 

have been received from the fire fighting foam industry about the so-

called pure C6 (6:2) fluorotelomers (betaines and aminoxides). 

 

 Production of C6 fluorotelomer in line with the PFOA Stewardship 

Programme (95% C6 by 2010, 99.9% C6 by 2015) has proved 

challenging with the end product significantly more expensive than 

the standard C6/C8 mixture. 

 It has proved extremely difficult to achieve acceptable operational 

efficiency for AFFF fire fighting foams – especially as regards burn-

back resistance – using pure C6 fluorotelomer surfactants. 

────────────────────────── 
10 UNEP/POPS/POPRC.6/13/Add.3/Rev.1. 
11 UNEP/POPS/POPRC.6/13/Add.3/Rev.1.  
12 Personal communication with the fire fighting foam industry/producers in summer 2012. 
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 Approximately 20% more “pure” C6 fluorosurfactant than the older 

C6/C8 mix is required in order to achieve acceptable performance. 

 To date it has proved extremely challenging to formulate an 

operationally effective fluoroprotein (FP) foam meeting international 

standards using “pure” C6 fluorotelomer products. 

 There are currently very few AFFF manufacturers (one in the 

Americas, a couple in Europe) whose products are fully C6 compliant 

and EPA 2015 compliant. 

 The majority of manufacturers including a number of major players 

have taken a conscious decision to stay with the C6/C8 fluorotelomer 

mixture on grounds of cost and formulation difficulties. 

 In particular fluorotelomer surfactants such as CAS number 70969-

47-0 (C8-C20--ω-perfluoro telomer thiols with acrylamide) continue 

to be used in AFFF formulations with significant potential 

environmental impact because of the presence of fluorotelomer N:2 

chains with N = 8 to N = 20; thus degradation products may include 

PFOA and its even chain long-chain homologues up to C20 – toxicities 

are claimed to increase with chain length. 

 A major feedstock manufacturer will continue therefore to produce 

the fluorotelomer betaines 1157N (the C6/C8 homologue mix) as 

well as 1157D containing the purified C6 fluorotelomer (aminoxide 

containing pure C6 is also available).  

 Of the putative fluorine-free foams on the market relatively few are 

known to be completely fluorine-free (no organic fluorine present) 

whereas others are suspected to contain low levels of 

fluoropolymers. 

 

Within the petroleum industry PFSA (perfluoroalkyl sulfonates) and FTS 

(fluorotelomer sulfonates) are used (according to the petroleum indus-

try). However, no information about quantity or the specific fluorinated 

compounds used have been received.13 

6.2.2 Efficacy 

Fluorinated surfactants are used within fire fighting because of very 

good fire fighting properties and because they can be stored for many 

years under harsh conditions. Furthermore, the fluorinated surfactants 

────────────────────────── 
13 Personal communication with the petroleum industry in summer 2012. 
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are not too expensive and they are available.14 Generally, the fluorinated 

C6-chemistry used is considered to be effective, however, not as effective 

as the C8-chemistry, and higher concentrations or amounts may there-

fore be needed.  

6.2.3 Availability 

The described fluorinated C6-technology are commercially available 

worldwide and therefore also on the Nordic market. 

6.3 Pesticides 

Pesticides exist as formulations containing active ingredients (the pesti-

cide) and additives (adjuvants) that can help in the application of the 

pesticide or to enhance the efficiency of the pesticide. 

PFCs are used both as active pesticides and as adjuvants in the pesti-

cide formulation. 

6.3.1 Identity and properties 

N-Ethyl perfluorooctane sulfonamide (known as sulfluramid or sulfura-

mid), a PFOS related substance, has been used as an active ingredient in 

ant baits to control leaf-cutting ants, as well as for control of red import-

ed fire ants, and termites. PFOS and other fluorinated substances have 

also been used as inert ingredients in pesticides. 

There are a number of chemical alternatives to N-Ethyl perfluorooc-

tane sulfonamide (known as sulfluramid or sulfuramid), with a multi-

tude of uses: Chlorpyrifos, Cypermethrin, mixture of Chlorpyrifos and 

Cypermethrin, Fipronil, Imidacloprid, Abamectin, Deltamethrin, Fenitro-

thion, mixture of Fenitrothion and Deltamethrin but none of these are 

fluorochemicals. 

In addition there are a number of other pesticides which contain one 

or several fluorine atoms, typically as –CF3 groups. 

PFCs adjutants are marketed and patents exist on them, but so far no 

studies have been conducted on their identity, levels of use or exposure 

to the environment. 

────────────────────────── 
14 Personal information received during this project from a user of fluorinated AFFF’s.  
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6.3.2 Types of uses, quantities, producers, downstream 
users and traders 

PFC adjuvants can have various functions such as being dispersion 

agents for the pesticide, as a means to better spread the pesticide on 

leafs/the insect or to increase the uptake through the leafs/insects. PFC 

adjuvants are typically used in smaller amounts (0.1%) than other adju-

vant surfactants because they are more effective surfactants. So far there 

is no overview of producers of these compounds, and it is not known if 

or to which extent the PFC adjuvants are used in the Nordic countries. 

6.4 Metal plating (hard metal plating and 
decorative plating) 

Fluorinated surfactants are able to lower the surface tension in chrome 

acid baths used for chrome plating by forming a thin foamy layer on the 

surface of the chrome bath. This mist suppressant layer dramatically 

reduces the formation of chromium-(VI) aerosols (Cr6+), which are well-

known as carcinogenic, sensitizing and dangerous for the environment 

(Poulsen et al., 2011). The challenges to this application are to have a 

surfactant that are stable in the presence of hot chromic acid and can 

resist decomposition during the electrolysis as well. Under these de-

manding conditions perfluorinated surfactants such as PFOS is stable 

and maintains its activity under a long period.  

Previously, PFOS was used for both decorative chrome plating and 

hard chrome plating processes but new technology applying chromium-

(III) instead of chromium-(VI) has made PFOS use in decorative chrome 

plating outdated and unnecessary. For hard chrome plating, however, 

the process with chromium-(III) does not function. Instead larger closed 

tanks, or increased ventilation combined with an extraction of chromi-

um-(VI), are suggested as alternative solutions for the applications 

where a use of chromium-(III) is not possible yet (Poulsen et al., 2011). 

 

 



34 Per- and polyfluorinated substances in the Nordic Countries 

6.4.1 Identity and properties 

The most common fluorinated surfactant used for hard metal chromium 

plating has been tetraethyl ammonium heptadecafluorooctane sulfonate 

(CAS number 56773-42-3; Fluortensid-248), a PFOS-related substance 

are used in Europe and the Nordic countries15 within the metal plating 

industry. However, in recent years some substitution of PFOS seems to 

have taken place worldwide with polyfluorinated surfactants instead 

such as (Poulsen et al., 2011): 

 

 Potassium 1,1,2,2-tetrafluoro-2-(perfluorohexyloxy)ethane sulfonate 

(CAS number not known) – commercial name F-53 Chromic Fog 

Inhibitor (Hangzhou Dayangchem Co. Ltd., China). 

 Potassium 2-(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyloxy)-

1,1,2,2-tetrafluoroethane sulfonate (CAS number not known)). 

Commercial name F-53B Chromic Fog Inhibitor (Hangzhou 

Dayangchem Co. Ltd., China). 

 1H,1H, 2H,2H-Perfluorooctane sulfonic acid/6:2 Fluorotelomer 

sulfonic acid (CAS number 27619-97-2). Commercial names: 

Fumetrol® 21 (Atotech Skandinavian AB, Sweden) or MiniMist Liquid 

(MacDermid, USA). 

6.4.2 Types of uses, quantitites, producers, downstream 
users and traders 

The chromic acid bath that is used for hard chrome plating is extremely 

reactive and oxidizing, and PFOS is used because it is very resistant to 

that harsh environment and has an extremely low surface tension. It is 

very difficult to find another chemical with such useful properties. How-

ever, there are PFOS-free fluorinated alternatives on the market based 

on e.g. fluorotelomers and also fluorine free alternatives as described 

above, which do not seem to have large market shares today [Poulsen et 

al., 2011]. In a substitution project for the Danish EPA carried out in 

2010 [Poulsen et al., 2011] it was proven that PFOS-free fluorinated 

alternatives could be used for hard chrome plating instead of PFOS.  

Producers and suppliers of mist suppressants for the metal industry 

have been mapped in (Poulsen et al., 2011). 

────────────────────────── 
15 Information received in this project from the contacted suppliers of mist suppressants for the metal plating 

industry in Europe (Nordic countries).  
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 Atotech Skandinavien AB (Sweden). 

 EngTech Scandinavia A/S (Denmark). 

 Surtec Scandinavia ApS (Denmark). 

 Galvano Kemi (Denmark). 

 Enthone (Cookson Electronics) (Sweden). 

 Kiesow Dr. Brinkmann GmbH (Germany). 

 GalvaNord (Elplatek) (Denmark). 

 Dr. Günter Dobberschütz (Germany). 

 CL Technology GmbH (Germany). 

 Schlötter Galvanotechnik (Germany). 

 Chembright (China). 

 MacDermid Scandinavian (Sweden) Plating Resources, Inc. (USA). 

 

A selection of these companies that in 2009/2010 replied that they de-

livered to the Nordic market has been contacted to get newer infor-

mation for this Nordic project. However, replies have not been received 

from all the companies that participated in the 2009/2010 survey.  

In the above mentioned Danish EPA project [Poulsen et al., 2011] it 

was estimated that the global use of PFOS (calculated as 100% pure 

PFOS) was between 32 and 40 tons for the entire metal plating industry 

based (but with emphasis on non-decorative hard chrome plating) on 

different information from 2004–2010. The use of pure PFOS in the 

Nordic countries was estimated to be at least 90 kg (calculated amounts 

from contacted suppliers). 

Information received by contact to the suppliers of mist suppressants 

to the Nordic countries in this project shows an actual confirmed use of 

3 kg of pure PFSA (perfluoroalkyl sulfonates) – i.e. tetraethyl ammonium 

heptadecafluorooctane sulfonate (CAS number 56773-42-3) being sold 

to the Nordic countries in 2011 as wetting agent for chromium baths 

(this is only based on information from limited number of suppliers for 

the Nordic market). Further contact to one hard chromium plater in 

Denmark confirms that the use of PFOS-based (PFSA) has not changed 

since the survey carried out in 2009/2010 [Poulsen et al., 2011]. The use 

of PFSA in Denmark can therefore still be estimated to be around 10 kg 

annually. Based on the limited replies from suppliers of mist suppres-

sants to the Nordic countries in this project it is estimated that the total 

use of PFSA in the Nordic countries is 90 kg or less as estimated in the 

2009/2010 survey. Further concerning brands see Appendix D. 
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6.4.3 Efficacy 

The performance of the non-PFOS fume suppressant is considered as not 

equal to that of the PFOS based fume suppressants. To achieve the same 

reduction in surface tension, more products may be necessary and it 

may have to be replenished more frequently. The project funded by the 

Danish EPA about substitution of PFOS in non-decorative hard chrome 

plating (Poulsen et al., 2011) showed that non-PFOS fume suppressant 

can be used. However, more fume suppressants may be necessary thus 

enhancing the costs.  

6.4.4 Availability 

Alternatives to PFOS-based mist suppressants are available and to some 

extent in use in the Nordic countries. The primary alternative identified 

in the Nordic countries is: 

CAS number 27619-97-2: 1H,1H, 2H,2H perfluorooctane sulfonic acid – 

commercial name Fumetrol® 21 (Atotech Skandinavian AB, Sweden) 

Other commercial alternatives are available as well, but there is not in-

formation about the exact identification of the fluorinated surfactant used. 

Similarly some non-fluorinated alternatives have been introduced as well, 

but no information of the chemical identification is available (these alter-

natives are not discussed any further here) (Poulsen et al., 2011). 

6.5 Electronic equipment and components 

Electrical and electronic equipment often requires several parts and 

processes. PFOS and related chemicals are used in the manufacturing of 

printers, scanners and similar products. The PFOS-related substances 

are process chemicals, and the final products are mostly PFOS-free. PFOS 

have many different uses in the electronic industry and is involved in a 

large part of the production processes needed for electric and electronic 

parts that include both open and closed loop processes. Open processes 

are applied for solder, adhesives and paints. Closed loop processes most-

ly include etching, dispersions, desmear, surface treatments, photoli-

thography and photomicrolithography.  

PFOS can be used as a surfactant in etching processes in the manufac-

ture of compound in semiconductors and ceramic filters. PFOS are then 

added as part of an etching agent, and rinsed out during the subsequent 

washing treatment. Desmear process smoothes the surface of a through-
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hole in printed circuit boards. PFOS can be used as a surfactant in 

desmear agent, i.e. etching agent. PFOS is added in a desmear agent, and 

rinsed out during washing treatment.  

According to information from OECD survey (2006) less than 1 tonne 

of N-ethyl-N-[3-(trimethoxysilyl)propyl] perfluorooctane sulfonamide 

(CAS number 61660-12-6), a PFOS related substance, had been used as 

an additive in toner and printing inks. Low volumes of PFOS-related 

substances were also used in sealants and adhesive products.16  

6.5.1 Identity, properties, types of uses, producers, 
downstream users and traders 

Information gaps. 

6.6 Chemically driven oil and mining production 

It is reported that PFOS is used in some parts of the world as surfactants 

in oil well stimulation to recover oil trapped in small pores between rock 

particles. Oil well stimulation is in general a variety of operations per-

formed on a well to improve the wells productivity. The main two types 

of operations are acidization matrix and hydraulic fracturing.  

Alternatives to PFOS are PFBS, fluorotelomer-based fluorosurfac-

tants, perfluoroalkyl-substituted amines, acids, amino acids, and thi-

oether acids. In most parts of the world where oil exploration and pro-

duction is taking place, oil service companies engaged in provision of 

well stimulation services predominantly use a formulation of alcohols, 

alkyl phenols, ethers, aromatic hydrocarbons, inorganic salts, methylat-

ed alcohols, alipathic fluorocarbons for oil well stimulation. Oil well 

stimulation services also involve corrosion control, water 

blocks/blockage control, iron control, clay control, paraffin wax and 

asphaltene removal and prevention of fluid loss and diverting. 

6.6.1 Identity, properties, types of uses, producers, 
downstream users and traders 

Information gaps. 

────────────────────────── 
16 UNEP/POPS/POPRC.8/INF/17. 
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6.7 Carpets, leather and apparel, textiles and 
upholstery 

Fluorinated finishes are a technology known to deliver durable and ef-

fective oil and water repellence and stain and oil release properties. 

Historically, fluorinated polymers based on perfluorooctane sulfonyl 

(PFOS) electrochemical fluorination chemistry have been used. PFOS 

was not directly used to treat textiles but used to be present at up to 

2 wt% in products. In addition, fluorotelomer-based polymers have also 

been used. 

A restriction of use of PFOS in textiles was introduced within EU leg-

islation in 2008. As in other areas there is no longer a use of C8-

chemistry, but has been replaced by C6-chemistry.17 

Fluorotelomer alcohols, when used for waterproof and dirt-repellent 

finishes, are supposed to ensure that PFC degradation products such as 

PFOS are formed. FTOHs were found in eight of the 14 samples. The 

highest concentration of fluorotelomer alcohols was 464 μg/m2. Test 

results showed that some manufacturers are already using C6 telomer 

alcohols (i.e. 352 μg/m2 of 6:2 FTOH). Long-chain C10 telomers were 

also used in the products (10:2 around 200 μg/m2). Next to the fluorote-

lomer alcohols, fluorotelomer acrylates (FTAs), also known as polyfluor-

inated acrylates, were also detected in some samples (8:2 and 6:2). 

These acrylates are intermediates in the production of fluorinated poly-

mers. Like the C8 telomers, they can be converted into PFOA through 

oxidation. No perfluorooctane sulfonate (PFOS) was found in the inves-

tigation (Schultze et al., 2006). 

6.7.1 Identity and properties 

Major manufacturers in conjunction with global regulators have agreed 

to discontinue the manufacture of “long-chain” fluorinated products and 

move to “short-chain” fluorinated products. Novel short-chain fluorinat-

ed products, both short-chain fluorotelomer-based and perfluorobutane 

sulfonyl-based, have been applied for manufacture, sale and use in car-

pets, textiles, leather, upholstery, apparel, and paper applications.18 

────────────────────────── 
17 Personal information from the Finnish Textiles and Clothing Industry. 
18 UNEP/POPS/POPRC.8/INF/17. 
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6.7.2 Types of uses, quantitites, producers, downstream 
users and traders 

There is currently no publicly available data concerning quantities used 

on the market. For a selection of trade names, traders and manufacturers, 

see Appendix D. A Danish survey funded by the Danish EPA estimated that 

the use of fluorinated substances in impregnated products and impregna-

tion agents (i.e. covering impregnating agents for footwear, carpets, tex-

tiles, leather, furniture etc. and impregnated products such as footwear, 

carpets, clothing, furniture, etc. and other products such as paints, printing 

inks, ski waxes, floor polish etc.) was between 14 and more than 38 tons 

of pure fluorinated substances in Denmark. When assumed that the same 

products and use patterns are applicable to the other Nordic countries, 

the total amount used within the Nordic countries may be between about 

50 tons or more than 100 tons in the Nordic countries.  

This former Danish survey as well as contact to the textile industry in 

the Nordic countries in this survey illustrates that treatment of textiles 

with fluorinated compounds is not performed in the Nordic countries of 

any kind of textiles, except maybe in the carpet industry. For brands see 

Appendix D. 

6.8 Paper and packaging 

Fluorinated surfactants have been evaluated for paper uses since the 

early 1960s. Perfluorooctyl sulfonamido ethanol-based phosphates were 

the first substances used to provide grease repellence to food contact 

papers. Fluorotelomer thiol-based phosphates and polymers followed. 

Currently polyfluoroalkyl phosphonic acids (PAPs/diPAPs) are used in 

food-contact paper products and as levelling and wetting agents. Since 

paper fibers and phosphate-based fluorinated surfactants are both ani-

onic, cationic bridge molecules need to be used in order to ensure the 

electrostatic adsorption of the surfactant onto the paper fiber. These 

surfactants are added to paper through the wet end press where cellulo-

sic fibers are mixed with paper additives before entering the paper 

forming table of a paper machine. This treatment provides excellent 

coverage of the fiber with the surfactant and results in good folding re-

sistance. An alternative treatment method involves application of a 

grease repellent at the size press and film press stage which consists of 

impregnating the formed paper sheet with a surface treatment. Fluori-

nated phosphate surfactants are not preferred for this mode of paper 

treatment. In this latter case, fluorinated polymers are used instead of 
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surfactants. In terms of oil and water repellency, it is well recognized in 

the paper industry that phosphate-based fluorinated surfactants provide 

good oil repellency but have limited water repellency. Acrylate polymers 

with fluorinated side chains derived from sulfonamido alcohols and 

fluorotelomer alcohols are the most widely used polymers because they 

deliver oil, grease, and water repellence. Most recently, perfluoropoly-

ether-based phosphates and polymers have become widely used treat-

ments for food contact paper and paper packaging.19 

At least one manufacturer has developed a non-chemical alternative 

for this use. The Norwegian paper producer Nordic Paper is using me-

chanical processes to produce, without using any persistent chemical, 

extra-dense paper that inhibits leakage of grease through the paper.  

6.8.1 Types of uses, quantities, producers, downstream 
users and traders 

See Appendix D 

6.9 Coating and coating additives 

Fluorinated surfactants provide exceptional wetting, leveling and flow 

control for water-based, solvent-based and high-solids organic polymer 

coating systems when added in amounts of just 100–500 ppm.  

Coating and coating additives include the following uses: 

 

 Cleaning products and polishes. 

 Impregnating products. 

 Ski waxes. 

 Paint and lacquers. 

 Dental floss. 

 

Fluorinated surfactants impart various properties to paints and coatings 

including anti-crater and improved surface appearance, better flow and 

levelling, reduced foaming, oil repellency, and dirt pickup resistance. 

They have also been widely used in inks. 

────────────────────────── 
19 UNEP/POPS/POPRC.8/INF/17. 
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The inclusion of fluorinated surfactants in ink jet compositions has 

led to better processing through modern printers and excellent image 

quality on porous or non-porous media. Fluorinated surfactants im-

proved surface wetting during the screen printing of carbon black inks 

onto Polymer Electrolyte Membrane (PEM) fuel cell electrodes. In addi-

tion, fluorinated surfactants improved the cold-water swelling and in-

ternal bond strength of wood particleboard bonded with urea–

formaldehyde (UF) adhesive resins due to reduced interfacial tension of 

the resins and improved substrate wetting.20 

6.9.1 Type of uses, quantities, producers, downstream 
users and traders 

The uses of fluorochemicals are quite varied. Specifically, floor polish, 

where anionic fluorosurfactants are used and at the 100–200 ppm level 

based on weight of polish. 

Performance of most manufacturers of floor polish considers the addi-

tion of fluorosurfactants necessary to wet, flow and level properly on a floor. 

Paint and lacquers 

According to the Confederation of Danish Industry – Paints & Lacquers 

section – there is no use of per- or polyfluorinated substances in the 

Danish paint industry.21 Similarly no use of per- or polyfluorinated sub-

stances have been reported in the Finnish Printing Ink industry.  

Ski waxes 

The Norwegian National Institute of Occupational Health has in 2009 

investigated the exposure of professional users of ski waxes in Norway. 

This investigation shows that the professional users of ski waxes are 

exposed to fluorinated chemicals – also airborne. This investigation does 

not mention the concentration of the fluorinated substances used in ski 

waxes nor the total amounts used. It is, however, mentioned that ski 

waxes may contain either a mixture of several perfluoro-n-alkanes (C12-

C24) or perfluoro-n-alkanes (C7 or C8) (Daae et al., 2009). 

────────────────────────── 
20 UNEP/POPS/POPRC.8/INF/17. 
21 Personal communication in the summer of 2012with the Confederation of Danish Industry. 
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6.10 Others 

6.10.1 Construction products 

According to information received from the industry, the same fluor-

chemistry that is used in fire-fighting foams (Thiols C8-C20 -gamma-

omega-perfluoro tellers with acrylomide (CAS 70969-47-0)) is also used 

in a variety of building and construction products relating to light weight 

concrete, concrete sandwich panels, and light weight concrete blocks – 

at least in Australia. It is not known whether this use is widespread and 

in use in the Nordic countries as well. Construction products as the 

above mentioned are often recycled and crushed and placed in a landfill 

site. Non-fluorinated alternatives for use in light weight concrete and 

related concrete products do exist.22 

6.10.2 Medical and healthcare products 

According to information received from the Nordic chemical industry 

within this survey, the following fluorinated compounds have been used 

and sold in Finland, Denmark and Sweden within processing medical or 

other healthcare products.  

 

 Tetraethyl ammonium heptadecafluorooctane sulphonate (CAS 

number 56773-42-3), a PFOS-related substance. 

 Tetraethylammonium perfluorobutane sulphonate (CAS number 

25628-08-4). 

 

The exact use is not known. Searches on the internet shows that the 

chemical product can be used for metal chromium plating as well as 

wetting and flow control agent for coating photographic paper and film. 

The use was about 150 kg of pure fluorinated substances in the three 

above mentioned Nordic countries in 2011. 

────────────────────────── 
22 Personal communication with the fire fighting foam industry/producers in summer 2012. 
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6.11 Other important market information for the 
Nordic market 

3M comments that shorter chain fluorochemical could potentially be 

used in all application fields as described in the tender document for this 

project (e.g. metal plating, oil production, carpets, leather, apparel tex-

tiles and upholstery, coatings). 3M is at this moment no longer active in 

the field of paper & packaging applications, fire-fighting foams and pes-

ticides. For more details about other alternatives, including shorter 

chain fluorotelomers (4:2 and 6:2 FTOH) 3M refers to the manufacturers 

of this chemistry. 

According to information received from the Finnish Plastic Industry, 

none of their more than 100 member companies are producing fluori-

nated substances nor importing any. No fluorinated substances are 

listed in the local buyer’s guide of the plastics and rubber industry.  

6.12 Conclusions 

There are considerable information gaps of most per- and polyfluorinat-

ed chemicals concerning the exact chemicals composition in commercial 

products, their quantities produced and uses on the Nordic market. 

Based on interviews with more than 50 stakeholders with industrial 

relevance to the Nordic market, this survey has identified two major 

reasons for these information gaps. Findings show considerable 

knowledge gaps and/or trade secrets among manufacturers and import-

ers on the Nordic market, whether they trade with articles or chemical 

products. However it is hard to distinguish to what extent lack of 

knowledge is predominant compared to trade secrets but both phenom-

ena exist on the Nordic market. 

The survey of the use of per- and polyfluorinated substances on the 

Nordic market has however, revealed the use of a few specific com-

pounds (listed in the table below): 
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Table 3. Specific PFCs and their uses in relation to the Nordic market survey and net list practice  

CAS number Specific compound used  Use area Comment 

70969-47-0 Acrylamide, Thiols, C8-20, Gamma, 

Omega, Perfluoro, Telomers 

Fire fighting foams 

Construction products 

Not on the  

“Nordic net list” 

 

161278-39-3 C6-fluorotelomers such as perfluoro-

hexane ethyl sulfonyl betaine, often 

used in combination with hydrocar-

bons such as FORAFAC
TM

 products 

(DuPont) 

 

Fire fighting foams Not on the  

“Nordic net list” 

No information Dodecafluoro-2-methylpentan-3-one 

(3M) 

 

Fire fighting dispenser No information 

56773-42-3 Tetraethyl ammonium heptade-

cafluorooctane sulfonate (Fluorten-

sid-248), a PFOS -related substance 

(perfluoroalkyl sulfonate) 

 

Fire fighting foams Not on the  

“Nordic net list” 

27619-97-2 1H,1H, 2H,2H-Perfluorooctane 

sulfonic acid/6:2 Fluorotelomer 

sulfonic acid (Fumetrol
®
 21 or Mini-

Mist Liquid) 

 

Metal plating Fluorotelomer sul-

fonates – on the 

“Nordic net list” 

 

61660-12-6 N-ethyl-N-[3-(trimethoxysilyl)propyl] 

perfluorooctane sulfonamide 

Electronic equipment 

and components 

Not on the  

“Nordic net list” 

 

No information Fluorotelomer alcohols – e.g. 6:2 and 

10:2 FTOH 

Textiles Fluorotelomer alcohols 

– on the “Nordic net 

list” 

 

No information Polyfluorinated acrylates (FTA 8:2 

and 6:2), methacrylates and fluoro-

acrylate polymers 

Textiles and food 

contact paper 

Perfluoroacrylates – on 

the “Nordic net list” 

 

No information Polyflouroalkyl phosphonic acids 

(PAPs/diPAPs) 

Food contact paper Fluorotelomer phos-

phates – on the  

“net list” 

 

No information Perfluoro-n-alkanes (C12-C24) or 

perfluoro-n-alkanes (C7 or C8) 

Ski waxes No information 

 

It is seen from the table above that the identified chemical compounds 

with a specific CAS number in general are not available on the “Nordic 

net list” which implies that these compounds have neither been identi-

fied through the REACH pre-registration list and through the SPIN data-

base. This does, however, not mean that they are not used. The chemical 

groups of compounds for which the survey has identified a use category 

are in most cases on the “Nordic net list”. To conclude: some overlap can 

be found between the chemical groups of per- and polyfluorinated found 

in the “Nordic net list” and in this survey of the use in the Nordic coun-

tries. Some of the chemical groups that have been identified through 

chemical analysis for use in specific products are also available on the 

“Nordic net list” (Appendix B). However, the results of Stage 1 were not 
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a good starting point for Stage 2 as the entire area is characterized by a 

lack of information.  

6.13 Future work 

There is a need to improve access to specific PFC substance information 

from industrial actors on the market. The current legal tools according to 

CLP and REACH, such as safety data sheets, provisions regarding registra-

tion etc. are not sufficient to provide that information, in particular not for 

PFCs in articles where almost all production occurs outside the EU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



7. Occurrence of per- and 
polyfluorinated substances 

There are to date considerable data gaps concerning potential emissions 

into the environment and exposure to humans of the suggested PFCs 

studied in this survey. 

The fate of currently used per- and polyfluorinated substances is in 

many cases not known. Detection of various final breakdown products in 

the environment is an indication of ongoing reactions/mechanisms/ 

activities in areas where non-persistent per- and polyfluorinated sub-

stances are used.  

In the following chapters the environmental occurrence and the 

health and environmental effects of the different per- and polyfluorinat-

ed substances and their degradation products are described to the ex-

tent possible based on the currently available information. 

7.1 Emissions to and occurrence of PFCs into the 
environment 

PFCs in the Nordic countries have been reported in a number of publica-

tions and reports. The current literature covers both biotic and abiotic sam-

ples like air, indoor dust, water, wastewater, sludge, sediment and soil.  

In the following paragraphs, the existing literature on PFCs is pre-

sented, together with the emission estimates for PFOA and PFOS and 

additional reports of emissions and surface water concentrations of 

PFOA and PFOS for the whole European territory. 

7.1.1 PFCAs (Perfluoro carboxylates) 

Abiotic and biotic samples 

PFCAs in Nordic countries have been reported in a number of papers 

and reports. Starting with seawater, PFCAs have been analysed in Green-

land, Iceland, Faroe Islands and in Tromsø (Norway). Among PFCAs 

PFOA has been the most abundant, at concentrations that reached 

40 pg/L. PFHxA, PFHpA and PFNA were typically detected at levels of a 
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few pg/L (Butt et al., 2010). In a study in Greenland, PFCAs were detect-

ed in snow with PFOA being again the dominant compound with concen-

trations up to 520 pg/L (Theobald et al., 2007). In Denmark, PFCAs have 

been analysed and reported for a number of wastewater treatment 

plants (WWTPs), in the order of a few ng/L. In a few cases, it was re-

ported that concentrations in the effluent wastewaters were slightly 

higher than the respective in influents (for example, for PFDA). It is in-

teresting to note that there are big variations in the concentrations of 

PFCAs between WWTPs, but also within the same WWTPs. In particular, 

in two samples analysed from one WWTP, the concentration of PFOA 

was below 2 ng/L in the first sample and 23.5 ng/L in the second, while 

the concentration at the effluents was 10.1 and 16.4 ng/L, respectively. 

In another WWTP samples taken on the same day, contained 4.5 and 6.4 

ng/L of PFOS in the influent WWTP and 8.7 and 21.0 ng/L in the effluent 

(Bossi et al., 2008). The same study reported also sludge concentrations 

of PFCAs. Only PFOA, PFNA and PFDA were detected, with the latter 

showing the highest value of 32 ng/g (dry weight, dw). In sewage sludge 

from Norway, PFUnA, PFTA and PFTrA were detected (Report 

2367/2008). Other reports also show findings of PFOA (Report 

TA3005/2012 and TA 2636/2010). In Iceland and Faroe Islands, PFCAs 

were regularly below the limit of quantification, and when quantified, 

their concentrations were normally at <1 ng/g (wet weight, ww). 

PFCAs were close to the detection limits in marine sediments in Ice-

land and Faroe Islands (max concentration of 0.09 ng/g (dry weight) 

was for PFHxA, Butt et al., 2010), and similarly not detected in back-

ground sediments in Norway (Report 2367/2008). However in sedi-

ments close to a company that manufactures fire fighting foams the con-

centrations of PFCAs were particularly high, reaching 326.7 ng/g for 

PFuNA. Similarly, PFHxA and PFOA exhibited high concentrations as 

well, namely 112.9 and 101 ng/g, respectively. The important impact of 

local sources such as the fire fighting foam used in airports has been 

proven to contaminate adjacent soils, groundwater and other environ-

mental compartments. In particular, this can be seen in the comparison 

between background soils close to the major Oslo airports and soils from 

the airport areas. For background soils, in Rygge and Gardemoen, PFCAs 

were not detected, whereas soils from the airports exhibited higher con-

centrations, particularly those from Gardemoen. In the latter, concentra-

tion of PFUnDA was 43.6 ng/g, while for PFOA and PFHpA were around 

4 ng/g (Klif Report TA-2444/2008). 
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In air samples, PFCAs are typically not detected and only PFOA was 

detected in concentrations that ranged between 0.15–1.51 pg/m-3 in the 

Norwegian Arctic (Butt et al., 2010).  

The occurrence of PFCAs in biotic samples is quite extensively re-

ported. Concentrations in algae, fresh and marine water fish samples, 

seabirds, pinnipeds, whales, marine mammals, in eggs, plasma and liver 

have been reported. A lot of these species have been collected from the 

Arctic. In algae and fish in most cases, PFCAs are below the limit of de-

tection, or when detected, the concentrations are very low. In ice amphi-

pod samples from the Barents sea only PFOA was detected (3.15 ng/g 

ww) (Haukas et al., 2007) and in marine and fresh water fish, PFCAs 

when detected, was always below 2 ng/g (Haukas et al., 2007, Kallen-

born et al., 2004, Bossi et al., 2005). A number of studies have been per-

formed on sea birds. Bossi et al. (2005) did not detect PFCAs in black 

guillemot and in northern fulmar samples that were collected before 

2000. However, Kallenborn et al., 2004 found 0.4 ng/g PFHpA and 1.0–

1.3 ng/g of PFNA in the same sea bird species studied in 2004. Very high 

concentrations for PFDA and PFDoDA were detected in guillemots by 

Løfstrand et al. (2008), while PFOA and PFNA were not detected. Con-

centrations of these PFCs in herring gulls ranging from not detected to 

<1 ng/g were reported by Verreault et al., 2007, however, no temporal 

trends, meaning no trends over time, could be seen between samples 

collected in 1993 or 2003. Similarly, no clear temporal trend could be 

observed for PFNA and PFDA in ringed seals over the last 30 years (Fig-

ure 3, Bossi et al., 2005). 

Figure 3. Temporal trends of PFCAs in ringed seal samples from two areas in 
Greenland (Bossi et al., 2005) 

 

 

 

 

 

 

 

 

 

In more recent samples (from 2000 and 2005), Galatius et al., 2011 re-

ported concentrations for harbor porpoises for PFDA and PFUnDA and 

noticed a small increase between 2000 and 2005. PFDA was the only 

PFCA that was detected in blue mussels (nd-6.38 ng/g, Klif Report TA-
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2367/2008), whereas PFNA was the dominant PFCA in liver and blood 

from marine mammals (Smithwick et al., 2005). In a study by Rotander 

et al., 2012, temporal variations in concentrations of different PFCs were 

examined in livers of pilot whale, ringed seal, minke whale, harbor por-

poise, hooded seal, Atlantic white-sided dolphin and in muscle tissue of 

fin whales. The sampling spanned over 20 years (1984–2009) and cov-

ered a large geographical area of the North Atlantic and West Greenland. 

In general, the levels of the long-chained PFCAs (C9–C12) increased over 

the studied period (Rotander, 2012). 

7.1.2 PFSA (Perfluoroalkyl sulfonates)  

Occurence in the environment 

PFSAs have been studied in most of the afore-mentioned studies that 

reported PFCAs. PFOS is the most important and best studied compound 

from this class. It is also the one that in almost all cases exhibited the 

highest concentration levels. In abiotic environmental samples, PFOS 

was the only PFSA detected in marine sediments in Faroe islands in con-

centrations just higher than the quantification limit (ND-0.11 ng/g ww, 

Butt et al., 2010), while PFDS was reported from sediments in Norway in 

two studies, between which though, there was an important difference 

in the maximum concentrations (0.93 and 0.094 ng/g, by Fjeld et al., 

2005 and Bakke et al., 2007, respectively). In sea water and other aquat-

ic samples, PFOS has ranged between ND and 1.18 pg/L, in the Faroe 

Islands (Butt et al., 2010). The substance was not detected in Iceland, but 

was found at levels as high as 90 pg/L in Tromsø, Norway. In the same 

sample, PFHxS was also detected at the concentration of 16.4 pg/L, be-

ing many times higher than in other sea water samples, where it was 

barely detected. These differences underline the importance of the ur-

ban discharges. As a matter of fact, in effluent wastewaters in Denmark, 

PFOS was detected at concentrations up to 1,115 ng/L and PFHxS at 

concentrations up to 19.8 ng/L. Sewage sludge samples have also been 

analysed for PFSAs and again the prevalence of PFOS and PFHxS was 

seen. In a Danish WWTP, PFOS concentrations varied between 4.8 and 

74.1 ng/g (dw, Bossi et al., 2008), while in Norway, the range was be-

tween 1.2 and 5.16 ng/g (Report TA 2367/2008). PFDS was also report-

ed in sludge from Norway, at a range of 0.35 and 6.84 ng/g (dw).  

Similarly to what was reported for PFCAs, the importance of local 

emission sources was assessed by analyzing soils adjacent to airports 

and remotely from the airports, yet in the same region. The differences 

in concentrations were 5–10 times for PFOS (40.2 and 226.9 ng/g in 
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soils in Rygge, and from 109.9 to 959 ng/g dw in soils close to 

Gardermoen) and even higher for the other PFSAs that were not detect-

ed in background soils (Report 2444/2008). Close to the training station 

of the company manufacturing fire-fighting foams, the concentrations in 

stream water was 68,886 ng/L for PFOS, 37,312 ng/L for PFHxS, which 

is many orders of magnitude higher than any influent or effluent 

wastewater sample.  

PFOS was the only PFSA detected in the Norwegian Arctic ambient 

air, however in very low concentrations, close to the limit of quantifica-

tion (0.02 – 0.97 pg/m3, Butt et al., 2010). In other air samples from 

Norway, concentrations of PFDS ranged between nd and 5.13 pg/m3, 

PFOS ranged between 0.03–3.32 pg/m3 and PFHxS between nd and 

0.71 pg/m3.  

In biotic samples, again PFOS and PFHxS are the most commonly re-

ported chemicals. PFDS and PFBS are only occasionally detected. Re-

garding fish samples, PFHxS was only detected in Arctic cod (0.04 ng/g 

ww, Haukas et al., 2007), whereas PFOS was detected in Arctic cod, in 

dab and shorthorp sculpin, in concentrations that ranged between nd 

and 28 ng/g, ww (highest concentration in long-rough dab, Kallenborn 

et al., 2004). PFDS was also detected in fish samples, with its highest 

concentration (11.6 ng/g ww) observed in long-rough dab as well (Kal-

lenborn et al., 2004). In sea birds, PFOS exhibited its highest concentra-

tions of 134 ng/g (ww) in glaucous gull samples from the Norwegian 

Arctic (Verreault et al., 2005), 3–4 times higher than in Herring gull from 

Hornøya or from Røst.Whereas for PFHxS, the levels were similar in all 

kinds of sea birds, without any visible trend. PFBS was not detected and 

PFDS was detected in Herring Gull, but always in very low concentra-

tions (average between 0.04 and 0.21 ng/g, ww). The concentrations of 

PFOS in ringed seal and whales are broadly in the same range as in sea 

birds, however, there seems to be important spatial differences. As can 

be seen in Figure 3, in 1999 and 2003, the differences in PFOS concen-

trations in ringed seals between West and East Greenland are notable, 

both in terms of concentration levels, but also as temporal trends. 

 

 

 

 

 

 

 



52 Per- and polyfluorinated substances in the Nordic Countries 

0

20

40

60

80

100

120

1982 1994 1999 2003

n
g/

g

PFOS
Qeqertarsuaq, West 
Greenland

Ittoqqortoormiit, East 
Greenland

Figure 4. Temporal and spatial differences in the concentration of PFOS in 
ringed seals in West and East Greenland (Bossi et al., 2005) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, it should be noted that the highest concentrations for PFOS and 

PFHxS were reported in polar bears’ blood from Svalbard (Smithwick et 

al., 2005). In particular, PFHxS exhibited an average value of 2,940 ng/g 

(ww) and PFOS had an average of 1,290 ng/g (ww). PFOS was particu-

larly high also in the liver samples (1,170–1,285 ng/g), whereas PFHxS 

was relatively low (36 ng/g ww). 

7.1.3 PFAL (Perfluoro aldehydes) 

The literature research has shown that there are no published studies 

dealing with the environmental concentrations of perfluoro aldehydes in 

the Nordic countries.  

7.1.4 FTOH (fluorotelomer alcohols) 

Fluorotelomer alcohols are fluorotelomers that have one alcohol group. 

They are characterised by high volatility and in the environment act as 

precursors to PFCAs. FTOHs were broadly produced and it was estimat-

ed that between 2000 and 2002, more than 4,000 tonnes were produced 

annually. Since 2002 their production decreased sharply, after 3M 

ceased their production and use in their products.  
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Occurrence in the environment 

As FTOHs are volatile compounds, their environmental occurrence is 

predominantly in the gas phase in the atmosphere. Only very few studies 

exist that have studied FTOHs in the Nordic countries, and in particular, 

just for Norway. Concentrations are summarized in Table 4. 

Table 4. Occurrence of fluorotelomer alcohols in the Nordic countries 

Sample 4:2 

FTOH 

6:2 

FTOH 

8:2 

FTOH 

10:2 

FTOH 

12:2 

FTOH 

Unit Country 

Alnabru (Air)
1
 nd nd-1,720 nd-9,470 nd-3,460 nd pg/m3 Norway 

Birkenes (Air)1 nd Nd nd nd nd pg/m3 Norway 

Kjeller (Air) 
4
 nd 11.7 34.4 17.2  Pg/m3 Norway 

Indoor air
2
 4.8 1,492 6,438 4,088  pg/m3 Norway 

Indoor air, homes
3
 21 42 10,005 3,405  pg/m3 Norway 

Indoor air, Office
3
 165 266 3,151 1,970  pg/m3 Norway 

Indoor air, homes
4
 114 2,990 3,424 3,559  pg/m3 Norway 

Indoor air, Office
5
 nd 212 637 1,279  pg/m3 Norway 

WWTP, influent
1
 nd Nd nd nd nd ng/L Norway 

WWTP, effluent
1
 nd Nd nd nd nd ng/L Norway 

WWTP, sludge
1
 nd nd-0.01 nd-0.01 nd-0.02 nd-0.03 ng/g dw Norway 

Sediments (various sites 

in Norway)
1
 

nd Nd nd-0.09 nd-0.1 nd-0.6 ng/g dw Norway 

Mussels nd Nd nd nd-0.09 nd ng/g dw Norway 

1
Report 2367/2008; 

2
Haug et al., 2011; 

3
Huber et al., 2011; 

4
Barber et al., 2007; 

5
Jahnke et al., 2007. 

 

It can be seen that fluorotelomer alcohols are in very low concentrations 

in effluents, sludge or sediments, however in air, and particularly in the 

indoor environment, they can occur at very high levels. 8:2 FTOH is the 

most abundant FTOH with its levels that reach 10,000 pg/m3, followed 

by 10:2 FTOH. In one case 10:2 FTOH exhibited higher concentrations 

than 8:2 FTOH. The study of Barber et al. (2007) compared FTOH con-

centrations between Kjeller and various sites in the United Kingdom and 

it was shown that the concentrations in Norway were always lower than 

in the UK, and in particular ΣFTOHs in Kjeller (63.3 pg/m-3) were 7–8 

times lower than in Manchester. 

7.1.5 FTS (fluorotelomer sulfonates) 

Occurrence in the environment 

Table 5 presents results from the occurrence of fluorotelomer sulfonates 

in the Nordic environment. 6:2 FTS is the most studied member and has 

been detected in soil, sediment, groundwater, indoor dust and in some 

few cases also in biota. Its’ concentrations are relatively low and the high 

concentrations presented in Table 5 for soil, sediment and groundwater, 

are from an area that was located close to contaminated sites. In the 
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various biota analysed, 6:2 FTS was detected only in ice amphipod, sea 

snails and in ivory gull eggs.  

In the indoor air, 6:2 FTS has been detected in two cases in dusts, in con-

centrations that ranged between nd and 38.7 ng/g. 8:2 FTS was detected 

only in indoor air dust in concentrations ranging from nd to 50.2 ng/g. 

Table 5. Occurrence of FTSs in the Nordic environment 

 
6:2 FTS 8:2 FTS Unit Country 

Groundwater
1
 3,220 

 
ng/L Norway 

Soil
1
 1,020,688 

 
ng/kg Norway 

Sediment
1
 1,090 

 
ng/g dw Norway 

Contaminated stream water
1
 9,388 

 
ng/L Norway 

Indoor dust, homes
2
 nd-38.7 nd-50.2 pg/g Norway 

Indoor air, homes
7
 nd 

 
pg/m

3
 Norway 

Background soil
1
 nd 

 
ng/g dw Norway 

Sea snail
1
 2.4-129 

 
ng/g dw Norway 

Indoor Air dust
3
 9 15 ng/g Norway 

Ivory gull egg
4
 0.25 

 
ng/g Russia 

Ivory gull egg
4
 0.28 

 
ng/g Russia 

Ivory gull egg
4
 0.37 

 
ng/g Russia 

Ice amphipod
5
 0.48 

 
ng/g ww Barents Sea 

Polar cod
5
 nd 

 
ng/g ww Barents Sea 

Black guillemot
5
 nd 

 
ng/g ww Barents Sea 

Glaucus gull
5
 nd 

 
ng/g ww Barents Sea 

Influent
6
 Nd nd ng/L Norway 

Effluent
6
 Nd nd ng/L Norway 

Sludge
6
 Nd nd ng/g ww Norway 

Sediment
6
 nd-2.37 nd ng/g ww Norway 

Air
6
 nd-0.11 nd pg/m

3
 Norway 

Sediment
6
 Nd nd ng/g ww Norway 

Mussel
6
 Nd nd ng/g ww Norway 

Cod liver
6
 Nd nd ng/g ww Norway 

1
Report 2444/2008; 

2
Huber et al., 2011; 

3
Haug et al., 2011; 

4
Miljeteig et al., 2009; 

5
Haukas et al., 

2007; 
6
Report 2367/2008; 

7
Barber et al., 2007. 

7.1.6 Other fluorinated telomers  

In 2002, polymer production consumed 80% of the fluorotelomers pro-

duced worldwide, according to the Telomer Research Programme (2002). A 

study of carpets treated with various polymeric and surfactant fluorocoat-

ings found residual FTOHs ranging from 0.04–3.8% of the dry mass of the 

commercial fluorochemicals. 6:2, 8:2, 10:2 and 12:2 FTOH and NMeFOSE 

were measured, and the contribution of the FTOHs varied greatly between 

the products; however 8:2 FTOH was the most predominant compound in 

the study (Dinglasan-Panlilio and Mabury, 2006). It is common that the 

FTOHs are linked via esterbonds to a polymer backbone, as in the case of 

fluoroacrylates. FTOHs can be released to its surroundings if the ester bond 

is hydrolysed, upon exposure to water, heat and a catalyst, such as acids. 
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The literature research has shown only few data about compounds like 

FTCA, FTUCAS and mainly in air and water samples.  

7.1.7 PAP/di-PAP (polyfluoroalkyl phosphate esters) 

The literature research has shown that there are no published studies 

dealing with the environmental concentrations of polyfluoroalkyl phos-

phate esters in the Nordic countries. No studies have so far investigated 

point pollution sources of PAPs in Nordic countries, and at present it is 

not known if PAPs are produced in the Nordic countries. PAPs might 

however be applied as coating agents on paper and board, and can be 

released to the environment from e.g. paper manufacturing plants or 

paper conversion industries. 

Canadian studies have thus shown that PAPs are present in waste 

water treatment plant sludge and in paper fibres (D’eon 2009). PAPs 

have also been found in Danish and Swedish paper and board food pack-

aging (Trier 2011), where 57% of the samples taken in 2009 from Dan-

ish, Swedish and Canadian retailers (Trier 2011, thesis) contained di-

PAPs in the material (Trier 2011, thesis). It is therefore likely, that also 

wastewater sludge in Nordic countries contain PAPs, which upon hy-

drolysis (e.g. catalysed by heat and acidic conditions) release fluorote-

lomer alcohols. Sludge which are used as fertilizers on fields, and con-

taining PAPs, are thus likely to release FTOHs and PFCAs. Other possible 

exposure routes of PAPs to the environment are via household waste 

sites and during storage of recycled paper.  

7.1.8 Other fluorinated compounds of interest 

The data on other fluorinated compounds of interest in the Nordic coun-

tries are scarse, almost non existent. This lack of data supports one of 

the conclusions of this report that screening projects should be further 

encouraged. 

7.1.9 Emission calculations for fluorinated compounds in 
the Nordic countries 

The compilation of emission inventories for the various chemicals that 

occur in the environment is a challenging task that requires detailed 

information.,Even when much information is available, the final esti-

mates are highly uncertain values. An emission inventory needs to con-

tain accurate information on the emissions directly from materi-
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als/products, or from industrial discharges during manufacturing etc. 

but also needs to provide information regarding spatial and temporal 

distribution (Breivik et al., 2007). In other cases, the use of environmen-

tal monitoring data is used together with climatologic conditions and 

other relevant input parameters in order to estimate emissions (Pistoc-

chi and Loos, 2009). As seen from the results presented in the relevant 

chapters, there are only few data on the occurrence of fluorinated chem-

icals in the Nordic countries, something that makes the estimate of emis-

sions based on the Pistocchi and Loos  method quite difficult (Pistocchi 

and Loos, 2009).  

In the literature, one can find information about the emissions of 

PFOS and PFOA. Based on the report TA-2354/2007 prepared for the 

Norwegian Pollution Control Authority (2007), the PFOA estimated 

emissions (primary and secondary and due to long range transport) for 

Norway were 130–380 Kg per year. Important primary sources were 

considered to be carpets (12Kg/y), coated and impregnated paper (1.3 

Kg/y) and textiles (0.5 Kg/y). Pistocchi and Loos (2009) also estimated 

PFOA concentrations and emissions for almost the whole European ter-

ritory, thus Nordic countries were included.  

Figure 5. PFOA emission estimates for Europe (Figure taken from Pistocchi and 
Loos, 2009) 
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It can be seen that for the sites for which it was possible to estimate the 

emissions and concentrations, the Nordic countries were amongst the 

lowest found in all of Europe. This is also supported by the literature 

review of Eschauzier et al. (2008) who stated that “The low population 

density and fewer industrial activities in Scandinavian countries com-

pared to central Europe could explain the lower concentrations found in 

the North of Europe.” 

Although it is difficult for someone to extrapolate and estimate exact 

annual emissions for entire countries, the data shows that the emission 

both in Norway and Sweden is much less than 100 Kg/y (Table 6). 

The latter value is calculated by using the average European emission 

factor value Pistocchi and Loos (2009) estimated for PFOA (and also 

PFOS). The estimated emissions are given in Table 6; it should be noted 

that these emissions represent a relatively negative scenario and are 

overestimated. The reason for this overestimation is the fact that the 

average European emission factors are used, although, as it can be seen 

from figures 5 and 6, the emissions in Sweden and Norway are far lower 

than the average European emissions. For this purpose, it is safe to say 

that the emissions are below 100 Kg/y in each country, showing a de-

clining trend for the Nordic emissions. 

Table 6. Average emission factors and annual emission estimates for Norway (assuming popula-
tion of 5 milions) and Sweden (assuming population of 9.5 milions) 

 Emission Factors 

(μg/d*capita) Annual emissions (Kg/y) 

Norway PFOA 27 49.28 

 PFOS 19 34.68 

Sweden PFOA 27 93.62 

 PFOS 19 65.88 

 

Finally, the study of Pistocchi and Loos (2009) presented estimates for 

the surface water concentrations all over Europe, both for PFOA and 

PFOS (Figures 7 and 8).  

It is interesting to note that the levels of PFOS and PFOA concentra-

tions that were estimated (predicted) by Pistocchi and Loos (2009) are 

in very good agreement with the measured concentrations (few tens to 

few hundred pg/L). 
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Figure 6. PFOS emission estimates for Europe (Figure taken from Pistocchi and 
Loos, 2009) 
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Figure 7. Surface water PFOA concentrations for Europe (Figure taken from 
Pistocchi and Loos, 2009) 
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Figure 8. Surface water PFOS concentrations for Europe (Figure taken from Pis-
tocchi and Loos, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.10 Estimation of long range atmospheric 
transportation potential and fugacity modelling 

It is well known that the potential of individual organic contaminants to 

be transported over large distances (LRAT, long range atmospheric 

transport) will differ widely, reflecting differences in physico-chemical 

properties and reactivity in the atmosphere (Wania, 2006; Wania and 

Mackay, 1996). The LA (characteristic travel distance or long range at-

mospheric transport potential – LRATP) of any chemical at any point in 

time will be limited by atmospheric reaction and (net) atmospheric depo-

sition. LA is an easy measure of the chemicals’ mobility in the environment 

and is defined as the distance over which the initial air concentration of a 

chemical is reduced to 1/e (~37%) (Bennett et al., 1998; Beyer et al., 

2000; Breivik et al., 2006). The LA can be estimated by the formula: 

 

LA = u . MA / [NRA + NAS] 

 

(Eq. 1), where u is the wind speed, and NRA and NAS are the rates or reac-

tion and air to surface deposition, respectively.The calculation of LAs for 
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any substance allows us to estimate the concentrations at any distance 

from the source, by using the equation: 

 

C(x) = C0 . e-x/LA 

 

(Eq. 2) where, C(x) is the concentration of the chemical in a distance “x” 

from the emission point, C0 is the initial concentration of the chemical at 

the point of the emission (distance is 0 km) and LΑ is the characteristic 

travel distance of the chemical. 

This approach could be used to estimate LRATP for fluorinated com-

pounds that are volatile and can be found in the gas phase. It would im-

prove our understanding about the secondary emissions and about the 

contributions from non-Nordic countries. However, in order to do so, we 

need a rich set of monitoring data and sound and internally consistent 

physico-chemical properties (reaction rates, deposition rates) and in 

addition, values that are representative for the climatologic conditions in 

the Nordic countries. Both are important data gaps that should be better 

positioned/addressed within the future research priorities for the Nor-

dic countries. Estimation of LRATP for all fluorinated chemicals is also 

beyond the scope of this report. 

Another interesting tool for the estimation of the distribution of our 

target compounds between the various environmental compartments 

and thus, again, for the estimation of fluxes of fluorinated compounds 

that partition between air, water, soil, sediment etc, is the fugacity model 

(e.g. the LEVEL III model). This model requires as input the important 

environmental concentrations (air, water, soil etc.), emission rates and 

physico-chemical properties, in particular, the half-lives of the com-

pounds of interest in the various environmental compartments. The 

LEVEL III model can then estimate directly loads, fluxes and concentra-

tions, and can provide in a graphical form all the information about the 

“circle” of the pollutants between the various environmental compart-

ments (Figure 9).  

Application of the LEVEL III fugacity model is not possible for most 

fluorinated compounds of interest because of the lack of consistent and 

reliable data for the aforementioned parameters. Before such modelling 

approaches can be applied for the less studied fluorinated substances 

(e.g the long carbon chain ones, >C8), we would need to have internally 

consistent physico-chemical parameters representative for the climato-

logic conditions of the Nordic countries. In addition, we would require 

emission factors and environmental concentrations in order to estimate 
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accurately their environmental fate. At this point, for the less studied 

fluorinated compounds, this appears to be premature.  

Figure 9. Graphical output of the LEVEL III model (the case of HBCDD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.11 Conclusion on emissions and occurrence  

PFCs in the environment in Nordic countries have been reported in publi-

cations and reports covering both biotic and abiotic samples, like air, in-

door dust, water, wastewater, sludge, sediment and soil. Regarding PFCAs, 

most studies report finding PFOA, PFHxA and PFNA. Similarly, for PFSAs, 

PFOS and PFHxS are the most studied compounds. Compared to other 

countries, the concentrations in the Nordic countries are lower, especially 

when compared with central European countries with high GDPs. Howev-

er these substances have also been found in the Arctic, far from any 

sources, which shows that these substances are global contaminants. 

The outcome of this review of the environmental occurrence of fluor-

inated substances is that there is urgent need for new data, on more 

PFCs in order for decision makers to have a complete picture about the 

PFC levels in all environmental compartments and an in-depth 

knowledge of spatial and temporal distribution, and clear temporal 

trends. The detailed environmental fate study of PFCs is hindered in 

many cases by the lack of reliable (or in some cases total lack of) physi-

cal-chemical properties for many fluorinated compounds.  
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Existing data on the emissions and surface water concentrations of 

PFOA and PFOS show that the Nordic countries are among the least con-

taminated regions in Europe from PFCs, as is to be expected due to low-

er population density and less industry.  

7.2 Sources of exposure of PFCs to humans 

In general there are two important sources of exposures of PFCs to humans 

namely via food and drink intake and through exposure to house dust. 

Food intake is assumed to be a main source of exposure of the gen-

eral population to PFCs. However most of the data are given on PFOS 

and PFOA whereas only limited data are available on other PFCs in food. 

In a recent study by Haug et al., 2010a, 12 different PFCs were detected 

in 21 samples of different food and beverages on the Norwegian marked 

(data in Appendix F). Calculation of intake was done by use of consump-

tion data given by Norkost 1997 (Haug et al., 2010a). The study found 

that in general the highest dietary intake of PFCs in Norway was from 

PFOA (31 ng/day) followed by PFOS (18 ng/day), PFDA (13 ng/day) and 

PFNA (9.5 ng/day). For all the given substances 85% of the measured 

data was >LOD. (A value of ½ x LOD was used for data below LOD). The 

estimated total intake of the 12 PFCs for the Norwegian adult population 

was 103 ng/day. Consumption of fish, meat, seafood products and cereals 

represented 75–92% of the total estimated intake of the PFCs.  

In the UK the highest levels of 11 PFCs (PFHxA, PFHpA, PFOA, PFNA, 

PFDeA, PFUnA, PFDoA, PFBS, PFHxS, PFOS and PFOSA) were in fish and 

offal food (Clarke et al., 2010). Other kinds of food, including shellfish, 

meat, milk, butter, cheese, cereals and vegetables were found to be al-

most free of PFCs in the UK foodstuffs. 

The intake from cereals is higher in the Nordic study (Haug et al., 

2010a) than in a Spanish study (Ericson et al., 2008). This may be due to 

different consumption patterns in Norway and Spain or the Nowegian 

data on cereals may be overestimated due to analytical uncertainties, 

according to Haug et al. 2010a. 

The estimated human intake of PFCs decreases with increasing age 

and the intake was found to be higher in males than in females according 

to Haug et al., 2010a. 
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7.2.1 PFCA (Perfluoro carboxylates) 

Food and drinking water 

The median human intake of PFOA in several regions studied world 

wide is estimated to 2.9 ng/kg bw/day (Fromme et al., 2007) and 2.5 

ng/kg bw/day (range 0.3–140 ng/kg bw/day) (Vestergren et al., 2008). 

Precursor compounds (as FTOH) used in the production of fluorinated 

polymers may add to the exposure of PFOA; this is especially the case in 

high-exposure scenarioes (sum of 95th percentile values for each indi-

vidual input values) (Vestergren et al., 2008) where precursor-based 

exposure to PFOA account for 48–55% of the total daily doses for adults. 

The estimated intake of PFOA in the Norwegian population was found to 

be lower than what has been reported from Spain, Germany, UK, Canada 

and Japan (Haug et al., 2010b). Estimated dietary intakes of different PFCAs 

in the Norwegian population are given in the table below (table 7). The 

major PFC intake is from PFOA (31 ng/day) according to Haug et al., 2010a. 

The estimated intake of PFOA from the duplicate diet study given by 

Fromme et al., 2007 is 5–6 times higher than the intake of 31 ng PFOA /day 

estimated by Haug et al, 2010a and 42 ng/day (Haug et al., 2010b) (see 

table 7 on dietary intake below). This can be due to several parameters 

related to e.g. the differences in consumption pattern and the different lev-

els of PFCs in food from the different countries as well as uncertainties in 

estimating the consumption of different foods. According to the Norwegian 

data, cereals give a major contribution to the intake of PFOA (see table 6) 

and in the total intake of PFCs cereals may also contribute significantly 

(Haug et al., 2009a and 2009b). In Norway PFOA in bread was estimated to 

be a major source of the total intake of PFCs (Haug et al. 2010b). 

Fish is assumed to be a major source of fluorinated substances. This was 

also found in a Baltic study (n = 45, age 19–62) where individuals (n = 15) 

who declared to have a high fish consumption (mainly Baltic fish) on aver-

age showed the highest load (in blood samples) of the fluorinated substanc-

es of: PFHxA, PFHpA, PFNA, PFDA, PFUnDA, PFDoDA and to a lesser extent 

PFOA (Falandysz et al., 2006). In a Norwegian study fish and shellfish were 

estimated to give the largest contribution of PFOA and PFUnDA for human 

intake (38% versus 93 %), calculated from correlation between serum PFC 

concentration and food consumption data. As can be seen from Table 1 in 

Appendix F, the levels of PFOA in fish found in the Norwegian study (Haug 

et al., 2010a) were significantly lower than the data from the UK (Clarke et 

al., 2009) and also lower compared to some other studies according to Haug 

et al., 2009. According to the author (Haug et al, 2009) this could be ex-

plained by the Nordic fish being caught in open sea rather than costal areas 

and due to different fish species 



Reference Food type Country

Number of 

samples* Year PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA

Haug et al., 2010a Cereals Norway 3 4.3 3.2 15.0 2.8 5.2 2.2 2.2

Milk and dairy products 3 1.3 2.0 4.4 4.4 2.7 1.4 2.2

Fish and seafood 3 0.55 0.91 2.4 0.44 1.2 1.0 0.36

meat and meat product 3 0.35 1.0 2.7 0.94 1.7 0.68 0.40

Eggs 3 0.22 0.13 0.49 0.06 0.21 0.17 0.07

Sugar and sugar products 3 0.06 0.04 0.25 0.07 0.16 0.12 0.12

Fats 3 0.08 0.09 0.40 0.22 0.14 0.27 0.27

Vegetables 3 0.11 0.06 0.25 0.10 0.10 0.13 0.17

Starchy roots and potatoes 3 0.39 0.14 0.66 0.26 0.38 0.28 0.30

Fruits and juices 3 0.12 0.09 0.36 0.08 0.14 0.11 0.14

Coffee, tea and cocao 3 0.18 0.25 2.1 0.07 0.29 0.12 0.22

Alcoholic beverages 3 0.04 0.04 0.15 0.01 0.06 0.02 0.02

Tap water 3 0.14 0.14 0.54 0.04 0.21 0.08 0.08

Soft drinks 3 0.12 0.12 0.45 0.03 0.18 0.06 0.07

Total intake 8.0 8.2 31 9.5 13 6.7 6.7

Number of samples*: 3 different brands/types of each food were pooled

Note: Food consumption based on Norkost 1997 survey on 2672 adults

Haug et al., 2010b Mean dietary intake of a 70 kg person 42 24

Note: Food consumption based on recent data from frequency questionnares  

Table 7. Dietary intake of perfluorocarboylates, PFCA, (ng/day) for the general Norwegian population 
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The largest intake of PFOA may occur from contaminated food included 

drinking water (Trudel et al., 2008). According to Trudel et al., 2008 this 

is followed by the ingestion of dust and inhalation of air. The uptake of 

PFOA in children on a body weight basis is higher compared to adults 

because of a higher relative uptake from food and hand- mouth transfer 

from treated carpets and ingestion of dust (Trudel et al., 2008). In the 

high product scenarios the dominating pathways are found to be prod-

uct- and age dependent: E.g. uptake from food contact materials is an 

important pathway for teenagers and adults (Trudel et al., 2008). 

Drinking water may be a significant source of PFC, and in particular 

PFOA, exposure to human. In drinking water, produced from surface 

water in contaminated areas, PFOA was the main compound found in a 

German study with the level of 500–640 ng/L (Hölzer et al., 2008). This 

is in accordance with another German study reporting high levels of 

PFOA (519 ng/L) followed by PFHpA (23 ng/L) and PFHxA (22 ng/l) 

(Table 2 in Appendix F) in public water supplies produced from river 

water with bank filtration or artificial recharge (Skutlarek et al., 2006). 

When activated-charcoal filters were installed in the water supply, this 

efficiently decreased the PFC concentration in drinking water (Skutlarek 

et al., 2006). In other areas the level of PFCs in drinking water was much 

lower, with the sum of PFCs varying between non-detected and 27 ng/L 

(Skutlarek et al., 2006). In the Netherlands the level of PFCs in drinking 

water resources was found to be in the range of non-detectable to 

43 ng/l (Mons et al., 2007). In a recent study by Haug et al., 2010a, three 

samples of tap water from different Norwegian water works in the Oslo 

area were analysed. The level of PFOA was 0.65–2.5 ng/L whereas the 

other PFCAs were below 1 ng/L as given in Table 2 in Appendix F. A 

review on the presence of PFCAs and PFSAs in European surface waters, 

ground water and drinking water was recently published as a book 

chapter (Eschauzier et al. 2012). It compared the relative importance of 

different sources of intake of PFCs, and showed that where raw water 

was affected by point contamination, e.g. by contaminated sludge, then 

the corresponding drinking water was the major source of human expo-

sure. This is also shown for the intake of PFOA in the figure below (pie c) 

compared to different other exposure scenarios (pie a, b and d) (Vester-

gren et al., 2009). 
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Figure 10. Pie charts displaying a compilation of the estimated daily intakes of 
PFOA for male adults (D) and relative importance of exposure pathways from 
separate studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each pie chart represents an exposure scenario representative of (a) background concentrations in 

drinking water (1.3 ng/L); (b) elevated concentrations in drinking water (40 ng/L); (c) point sources 

of drinking water contamination (519 ng/L); (d) occupationally exposed individuals (indoor air 

concentrations 1 μg/m3). References of the individual studies are given in square brackets in the 

legends of each chart. (Vestergren et al., 2009) 

 

In a recent study, tap water from six European cities were analysed for 

PFCAs. The higest level of PFCA was found for PFOA (8.6 ng/l) in water 

samples from Amsterdam (Ullah et al., 2011). 

Food packaging materials 

In a recent Danish study 84 different samples of food pakaging materials 

of paper and board were tested for contents of per-and polyfluorinate 

compounds by exposure to 50% ethanol. In 35 of the samples the level 

of PFCs were above the the limit of detection. High levels of PFCA were 

found in the extracts of popcorn bags (Trier et al., 2012). 

Consumer products and cosmetics 

PFCs are primarily used as processing aids in the manufacture of fluoro-

polymers and can be detected either as additives or residual impurities 

(with a content from C4 to C14) in a large variety of commercial prod-

ucts, including leather, carpets, paper, paint, AFFF, waterproofing 

agents, coated fabrics, non-stick cook ware, floor wax (dominant contri-

butions from PFHpA, PFOA, and PFNA), ski wax and textiles and clothes 

(Begley et al., 2005; Freberg et al., 2010; Gewurtz et al., 2009; 
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Prevedouros et al., 2006; Sinclair et al., 2007; Trudel et al., 2008; 

Washburn et al., 2005). Herzke et al. (2012) found that none of the wa-

terproofing agents/lubricants they analysed were free from PFCs, most 

abundant being PFBS, PFBA, PFNA, PFDoA, PFHxA and PFHpA (see Table 

1 Appendix E). They also detected PFCAs in table cloths, presumably due 

to Teflon treatment, but they could not establish if the minimal levels 

found in paint were actually added or only result of contamination. PTFE 

or Teflon® is probably the most publicly well-known and most widely 

used fluoropolymer as a source of PFCAs (Walters and Santillo, 2006). 

Applications of PTFE include: electrical wire insulation, tape, waterproof 

membranes for garments (such as Gore-Tex), surgical implants, dental 

floss, engine protector additives, non-stick coatings, moulded parts and 

coatings for use in a wide range of chemically hostile environments 

(DuPont, 2012). 

Consumer products like sprays and treated carpets may contribute to 

the consumer exposure of PFOA (Trudel et al., 2008) but are probably a 

less important source for most consumers/the general population ac-

cording to Trudel et al., 2006. However, these sources may contribute 

significantly to the exposure for those consumers frequently using e.g. 

PFC containing sprays and who have treated carpets in their home (Tru-

del et al., 2008). Table 1 in Appendix E gives an overview of the presence 

of PFCs in consumer products.  

Indoor air exposure  

All PFCAs have been detected in indoor house dust in Norwegian houses 

and offices (Huber et al., 2011). In the latter study, PFUnA was the most 

abundant PFCA in houses with a median concentration in dust of 120 

ng/g, followed by PFOA (38.8 ng/g) and PFHxA (10.1 ng/g). In one office 

reported in the same study, the pattern was different, with PFOA being the 

most abundant chemical (694 ng/g), followed by PFHxA (29.3 ng/g), 

while PFUnDA was among the least abundant, exhibiting the concentra-

tion 1.4 ng/g. Haug et al. (2011) also reported concentrations of PFCAs in 

indoor dust from Norwegian homes. In this particular study, PFHxA was 

the most abundant chemical in dust (33 ng/g), followed by PFNA (29 

ng/g) and PFOA (20 ng/g). This was the only study that reported also 

detectable concentrations of PFTrDA and PFTeDA in indoor dust, suggest-

ing that indoor air dust can be a sink for many compounds that occur in 

low levels in the indoor air. Finally, in a study from Sweden (Bjorklund et 

al., 2009), PFOA was studied in houses, offices and apartments and the 

average concentrations were 54, 93 and 70 ng/g, respectively, thus, in the 

same order of magnitude as in Norwegian indoor environments.  
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PFHxA (17.1 pg/m3), PFOA (4.4 pg/m3) and PFNA (2.7 pg/m3) were 

detected also in indoor air particles in Tromsø (Barber et al., 2007). 

To the best of our knowledge, the only study that has quantified ex-

posure of humans to PFOA in indoor air in the Nordic countries is the 

study of Haug et al. (2011b). In the latter study, it was shown that 

through indoor air dust, the uptake of PFOA through dust will range 

between 0.19 and 0.78 ng/kg bw/day and through air the same uptake 

will be between 0.002 and 0.16 ng/kg bw/day. It was shown that uptake 

through dust and air was particularly low compared to other exposure 

pathways. 

7.2.2 PFSA (Perfluoroalkyl sulfonates)  

Food and drinking water 

Human intake of PFOS has been estimated to a wide range of 3.9–

530 ng/kg bw/day (Vestergren et al., 2007). Precursor compounds (as 

PFOSA and PFOSE) used in the production of fluorinated polymers may 

add to the exposure due to their degradation into PFOS. The median in-

take of PFOS was found to be 1.4 ng/kg bw/day based on analysis of du-

plicate diet samples from various regions world wide (n = 214) of 31 

healthy individuals (age 16–45) (Fromme et al., 2007). PFHxS and PFHxA 

could only be detected in some samples (above the LOD) with a median 

intake of 2.0 ng/kg bw/day and 4.3 ng/kg bw/day. The estimated intake 

of PFOS from the duplicate diet study given by Fromme et al., 2007 is 

about 5 times higher than the intake estimated by Haug et al, 2010. This 

can be due to several parameters related e.g. to differences in consump-

tion pattern and the level of the PFCs in food from the different countries, 

to uncertainties in estimating the consumption of different foods and to 

uncertainties regarding the analytical test methods and analysis. 

As for PFOA, the largest intake of PFOS seems to occur from contami-

nated food included drinking water (Trudel et al., 2008). This is followed 

by the ingestion of dust and inhalation of air. Consumer products like 

sprays, treated carpets and food contact materials may also lead to con-

sumer exposure of PFOS (Trudel et al., 2008) but as for PFOA the spray 

sources are probably less important for most consumers/the general 

population according to Trudel et al., 2008. However, spray sources may 

contribute significantly to the exposure for those consumers frequently 

using e.g. PFC containing sprays and who have treated carpets in their 

home (Trudel et al., 2008). 

A recent Norwegian study found that in general the major dietary in-

take of PFCs in Norway was PFOS (18 ng/day) (and from PFOA 
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Reference Food type Country

Number of 

samples* PFBS PFHxS PFOS

Haug et al., 2010a Cereals Norway 3 0.22 0.52 5.1

Milk and dairy products 3 0.22 0.10 4.7

Fish and seafood 3 0.19 0.19 3.4

meat and meat product 3 0.14 0.09 3.3

Eggs 3 0.03 0.06 0.66

Sugar and sugar products 3 0.01 0.005 0.05

Fats 3 0.03 0.04 0.08

Vegetables 3 0.01 0.006 0.06

Starchy roots and potatoes 3 0.03 0.01 0.13

Fruits and juices 3 0.01 0.02 0.06

Coffee, tea and cocao 3 0.01 0.05 0.10

Alcoholic beverages 3 0.002 0.01 0.02

Tap water 3 0.008 0.04 0.08

Soft drinks 3 0.007 0.03 0.06

Total intake 0.93 1.2 18

Number of samples*: 3 different brands/types of each food were pooled

Note: Food consumption based on Norkost 1997 survey on 2672 adults

Haug et al., 2010b Mean dietary intake of a 70 kg person 105

Note: Food consumption based on frequency questionnares  

(31 ng/day as given above)) (Haug et al., 2010a). The estimated intake of 

PFOS in this Norwegian study was found to be lower than what has been 

reported from Spain, Germany, UK, Canada and Japan (Haug et al., 2010b) 

and also lower than reported in another recent study of the same author 

(Haug et al., 2010b) as given in the table below. Different data on food 

consumption were used in the two Norwegian studies and may be one 

reason for the observed differences in the Norwegian PFOS intake. 

In relation to age, the highest potential intakes of PFOS are estimated 

for infants and toddlers (Vestergren et al., 2007). The uptake of PFOS in 

children on a body weight basis tend to be higher because of a higher 

relative uptake from food and hand- mouth transfer from treated car-

pets and ingestion of dust (Trudel et al., 2008). In the high product sce-

narios the dominating pathways are found to be product- and age de-

pendent: E.g. uptake from food contact materials is an important path-

way for teenagers and adults (Trudel et al., 2008). 

Table 8. Dietary intake of perfluoroalkyl sulfonates, PFSA (ng/day) for the gen-
eral Norwegian population  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fish and shellfish were estimated to contribute with 81% of the total PFOS 

intake (Haug et al., 2010b). In general the level of PFOS in fish is found to 

be higher than the level of PFOA (Fromme et al., 2009). This is in accord-

ance with a recent minor Danish study on PFOS and PFOA in fish from 

Danish waters where the average level of PFOS was found to be 1,8 ng/kg 

(n = 9) (Granby, 2012, unpublished data) whereas the level of PFOA was < 

0.5 (LOD). In a German study PFOS was detected in 33 wild fish (n = 112) 

at a concentration up to 225 ug/kg PFOS (Schuetze et al., 2010). 
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PFOS was the PFC (of 11 PFCs analysed) most often detected in espe-

cially fish, shellfish, liver and kidney and most often at the highest con-

centrations in a UK study of 252 food samples (Clarke et al., 2009). In 

70% of the samples none of the 11 analytes were present above LOD. 

The highest levels were 59 ug/kg PFOS and 63 ug/kg total PFCs in an eel 

sample followed by 40 ug/kg PFOS and 62 ug/kg total PFCs in a white-

bait sample (Clarke et al, 2009). 

Intake of fruit and vegetables seems to affect the level of PFOS and 

PFHpS. In a population of northern Norway the intake of PFOS and 

PFHpS was found to decrease significantly with the increased intake of 

fruit and vegetables (Rylander et al., 2009). The conclusion was based on 

food frequency questionnaire information from 60 adults (44 women 

and 16 men) in correlation to PFC levels in blood samples. Similary a 

study of a Danish birth cohort (n = 1,076) found a decrease in PFOS and 

PFOA concentrations with increased intake of fruit and vegetable (Hall-

dorsson et al., 2008). In the latter study the correlation could be partly 

explained by a lower intake of red meat, animal fat and snacks. The au-

thors discuss the possibility that the observed correlation between 

fruit/vegetables and blood PFC levels may be explained by a large num-

ber of confounding variables that characterize a healthy lifestyle (Hall-

dorsson et al., 2008). It is recommended to include lifestyle factors and 

dietary patterns instead of single food groups in future studies 

(Rylander et al., 2009). 

In tap water samples (n = 3) from the Oslo area the level of PFOS was 

0.071–0.23 ng/L and the concentrations of PFBS and PFHS were below 

this (Haug et al. 2010a) as can be seen from Table 3 in Appendix F. In 

another recent study of PFCs in tap water from six European cities the 

higest levels of PFSAs were found for PFBS (18.8 ng/L) in tap water from 

Amsterdam and PFOS (8.8 ng/L) in tap water samples from Stockholm 

(Ullah et al., 2011). 

Food packaging materials 

Food contact materials may add to the human exposure of PFCs. In a 

recent Danish study 84 different samples of food pakaging materials of 

paper and board were tested for per- and polyfluorinate compunds, in-

cluding PFOS and PFHxS. PFOS was not detected in any of the samples 

and PFHxS was only found in one sample of popcorn bag at a low level 

(Trier et al., 2012). 
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Consumer products 

Since PFOS was banned in most industrialised countries, the appearance 

of alternative perfluoroalkyl sulfonates has become more obvious. Accord-

ing to available data these compounds appear to have a main application 

in fire fighting foams and carpet protection products (Huber et al., 2011). 

However, Herzke et al. (2012) reported the detection of PFSAs (analysed 

were PFOSA, PFBS, PFPS, PFHxS, PFHpS and PFDcS) in several consumer 

products of different brands. These included, black shoe leather, office 

furniture leather carpet, paint, non-stick ware, waterproofing agents and 

coated fabrics. Novec™ from 3M is a fluorosurfactant containing PFBS and 

is an ingredient in different paints and coatings (3M 2012).  

Indoor air exposure  

Exposure to PFSAs in the indoor environment occurs mainly through dust. 

In the Nordic countries, PFSAs have been reported for Norwegian homes 

and in an office and similarly for Sweden, again for residences and offices. 

PFOS is the dominant PFSA with concentrations in dust that have reached 

147.7 ng/g in a Norwegian office (Huber et al., 2011). Very high concentra-

tions of PFOS have been detected also in the Swedish offices analysed by 

Bjorklund et al. (2009). In homes/residences, PFOS ranged between 9.1 and 

11 ng/g in Norway and between 39 and 85 in Sweden. The lower levels in 

residences demonstrate the higher relative importance of occupational 

exposure compared to exposure in private homes. Among other PFSAs, 

PFHxS exhibited a concentration of 27.8 ng/g in the Norwegian office (Hu-

ber et al., 2011), being much higher than in homes (1.4–8.4 ng/g). In indoor 

air particles from Tromsø, only PFDS was detected (2.6 pg/m3). 

The uptake rate has been calculated for PFOS (Haug et al., 2011b) and 

based on three different scenarios, this ranged for Norwegians between 

0.11 and 0.46 ng/kg bw/day, through dust, and between 0.004 and 

0.36 ng/kg bw/day, through air.  

7.2.3 PFAL (Perfluoro aldehydes) 

Food and drinking water 

No exposure data were found for exposure to humans. 

Food packaging materials 

No exposure data were found for exposure to humans. 

Consumer products 

No information on PFAL in consumer products. 
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7.2.4 FTOH (fluorotelomer alcohols)  

Food and drinking water 

Data missing. 

Food packaging materials  

In a recent Danish study 84 different samples of food pakaging materials 

of paper and board were tested for per- and polyfluorinate compounds 

by exposure into 50% ethanol. PFCs were found in 35 of the samples. 

Fluorotelomer alcohols were found in high levels in different types of 

packaging materials as coffee bags, popcorn bags, and paper and board 

for take away food and cakes (Trier et al., 2012). 

Consumer products 

A variety of fluorotelomers, including FTOHs, are used in a wide range of 

commercial products and in some applications, such as fire fighting 

foams, as well as soil, stain, and grease-resistant coatings on carpets, 

textiles, paper, and leather, the FTOHs are directly released into the en-

vironment (Lehmler, 2005). The manufacture of FTOHs usually results 

in a mixture containing six to twelve fluorinated carbon congeners and 

are found in materials such as (see Table 1, Appendix E) Polyfox®, Tef-

lon® Advance carpet protector, Zonyl®, Motomaster® windshield 

washer and 8:2 Methacrylate (Dinglasan-Panlilio and Mabury, 2006; 

Herzke et al., 2012). Fluorotelomers are also found in Teflon® frying 

pans, microwave popcorn packing paper, waterproofing agents and 

Forafac® 1,157 fire fighting foam (Herzke et al., 2012; Moe et al., 2012; 

Sinclair et al., 2007). In addition, FTOHs are manufactured as a raw ma-

terial for use in the synthesis of fluorotelomer-based surfactants and 

polymeric products (Dinglasan-Panlilio and Mabury, 2006). 

Indoor air exposure 

Exposure to FTOHs can be an important exposure path, because of the 

volatile nature of FTOHs. It has been shown in indoor exposure studies 

(1Report 2367/2008; 2Haug et al., 2011; 3Huber et al., 2011; 4Barber et 

al., 2007; 5Jahnke et al., 2007.), that FTOHs in indoor air can reach very 

high levels and be tens or hundreds of times higher than in the outdoor 

air (Table 4). Due to the fact that FTOHs have been used in many house-

hold products, the primary emissions are expected to take place directly 

from the indoor environment. To the best of our knowledge, there is no 

study estimating the uptake of FTOHs due to indoor air occupancies. 
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7.2.5 FTS (fluorotelomer sulfonates) 

Food and drinking water 

Data missing. 

Food packaging materials 

Data missing. 

Consumer products 

The FTSs are used among other fluorotelomers in fire fighting foam for 

their film forming properties and the ability to decrease fuel absorption. 

The quantities of FTSs in the foam are low, but the foam is released di-

rectly into the environment (Hagenaars et al., 2011a; Moe et al., 2012). 

Although most analysis for FTSs in soil samples are taken in close prox-

imity to airports and airport fire training facilities (Hagenaars et al., 

2011a; Moe et al., 2012), Huber et al. (2011) reported for the first time 

detection of FTSs in in-house dust samples. 

7.2.6 PAP/di-PAP (polyfluoroalkyl phosphate esters) 

Food and drinking water 

Data missing. 

Food packaging materials 

Paper and board (n = 14) intended for food contact at high temperature 

were sampled from Danish retailers in 2008. Di-PAPs, tri-PAPs and S-

diPAPs were detected in five of 14 samples (Xenia Trier et al., 2011).  

In a recent Danish study 84 different samples of food pakaging mate-

rials of paper and board were analyzed for per- and polyfluorinate com-

pounds, including mono- and di-PAPs (Trier et al., 2012). Mono-PAPs 

were only detected in a few samples and at low levels. Di-PAPs were 

found in several of the food contact materials tested. The highest level 

was found in a paper bag for flour containing several different di-PAPs 

(Trier et al., 2012). 

 

 

 

 



  Per- and polyfluorinated substances in the Nordic Countries 75 

7.2.7 Other fluorinated telomers  

Food and drinking water 

Data missing. 

Food packaging materials 

Data missing. 

Consumer products (Cosmetic, Textiles) 

No data were found  

7.2.8 Other fluorinated compounds of interest  

Food and drinking water 

Perfluoroctane sulfonamides were tested in Canadian food (Tittlemier et 

al., 2006). The most frequently detected substance was N-EtPFOSA that 

was found in 78 of the 151 samples followed by N-MePFOSA in 25 of 51 

samples. The highest levels and frequency of detection of analytes were 

found in fast food composites as particularly in french fries (9.7 ng/g), 

egg breakfast sandwiches and pizza (27.3 ng/g) (Tittlemier et al., 2006).  

Food packaging materials 

In recent years there has been a shift away from fluorotelomer surfac-

tants towards per- and polyfluorinated polymers, such as per- and 

polyfluorinated polyethers (PFPEs). On the European market there is 

currently a shift away from telomeric PFCs to PFPEs as coatings for pop-

corn bags and on fastfood packaging (e.g. McDonalds) (personal com-

munication with a czech popcorn producer and supplier for 25% or the 

Nordic market for microwave popcorn bags, 2012). Solvay Solexis is a 

major producer of PFPEs. In samples taken from Denmark, Sweden and 

Canada in 2009, PFPEs were found in 7 (18%) of 50 samples by meas-

urement by 19F NMR (Trier, 2011, thesis). 

Consumer products 

PFPE (Perfluoropolyether, also called PFAE or PFPAE) is a clear, colour-

less fluorinated synthetic oil that is non-reactive, non-flammable, and 

long lasting. PFPE is used in greases, oils and lubricants and can be 

found with the trade names Fomblin® (Solvay plastics) in cosmetics, 

Molykote® (Dow Corning) in industrial grease, Krytox® (DuPont) in 

lubricants, Fluorolink® and Galden® (Solvay plastics) for miscellaneous 

use. Perfluorocarbon emulsions are used as artificial blood or blood sub-

stitutes (Goorha et al., 2003; Riess, 2002; Riess and Krafft, 1998). The 
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first commercially available PFC blood substitute was Fluosol® and Ox-

ypherol® from Castro IC and comprised two PFCs, perfluorodecalin 

(PFD) and perfluorotrypropylamine (PFTPA). PFD is oxygenated using a 

bubble-through technique with 100% oxygen and infused as a red blood 

cell substitute (Hoang et al., 2009). Chosen for the second generation 

PFC blood substitutes were PFD, perfluorooctylbromide (PFOB) and 

bis(perfluorobutyl)ethylene. PFOB is known in its emulsion as Oxygent 

(Alliance Pharmaceutical Corp.) and is found in the products Columbian 

emulsion® and French emulsion® from Castor IC. 

7.2.9 Conclusion on food and drinking water and 
consumer products 

Food and drinking water 

In the last years several papers have been published on PFCAs and 

PFSAs in food. Based on these data fish is assumed to be a major source 

of human exposure of PFCs from food. The levels of of PFOS and PFOA in 

fish from Norway were found to be significantly lower than the levels 

found in several other studies. According to Norwegian data, cereals 

(including bread) seem to be another major source to the intake of PFOA 

and to the total intake of PFCs. 

When estimating the human intake of PFCs the intake of e.g. PFOA 

was found to be significantly lower in the Norwegian population than 

what has been reported from Spain, Germany, UK, Canada and Japan. 

This can be due to several parameters related to e.g. differences in con-

sumption pattern and different levels of PFCs in food from different 

countries as well as uncertainties in estimating the consumption of dif-

ferent foods. Of course analytical uncertainties concerning PFCs have to 

be considered as well.  

The level of PFCs in drinking water can vary a lot, and it may be a sig-

nificant source of PFCs if the drinking water is produced from surface 

water in contaminated areas and where drinking water is affected by 

point contamination, as e.g. by contaminated sludge. In tap water from 

Stockholm and Oslo PFOS and PFOA were found at lower levels and for 

several other PFCs the levels are below the LODs. Drinking water seems 

not to be a major source of PFCs in these countries. 

Only very few data are published on non-PFCA and non-PFSA in food. 

One reason for this is the analytical challenge in analysing these substanc-

es and therefore adequate and good performance analytical methods are a 

great need in this field. Several different PFCs have been found in food 

contact materials, including PFCA, PFSA, FTOH and PAPs. Food contact 

http://www.allp.com/
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materials may be a significant source of PFC contamination of food. At the 

time being more data on migration from food contact materials into food 

of PFCs and especially of non PFCA and non PFSA are needed, to estimate 

the human exposure of PFCs from food contact materials. 

Consumer products 

The presence of PFCs in a broad range of consumer products can give 

rise to a constant diffuse human exposure in the developed parts of the 

world. Consumer products may therefore be a significant source of PFC 

exposure to humans, although, estimating exposure via consumer prod-

ucts includes large uncertainties, e.g. brand, volume and number of us-

age frequency differs between individuals. In addition, the overall hu-

man exposure due to PFC treated products might be low in general, but 

particular sub-groups in the population may receive considerably higher 

doses than the rest. Direct skin exposure from a skin care product, inha-

lation of aerosols from an impregnation spray or the use of a blood sub-

stitute product may occasionally be important routes of exposure, but 

are difficult to quantify. Further, information on chemical content of 

different consumer products is often severely limited, especially on non-

PFOS/PFOA PFCs, since the composition of technical applications and 

mixtures of active ingredients are mostly confidential. Consequently, 

there is scant knowledge of PFAS content in consumer products and as a 

consequence we know little about possible emissions of PFAS from con-

sumer products (Dinglasan-Panlilio and Mabury, 2006; Fiedler et al., 

2010; Herzke et al., 2012; Sinclair et al., 2007). Literature search gives a 

certain overview of consumer products both for industrial and personal 

use available on the market as shown in Tables 1 and 2 in Appendix D. 

Literature searched included analytical publications where consumer 

products were analysed and certain PFCs were screened for, as well as 

the available producer information accessible online. Patents were not 

included in this overview as they do not necessarily indicate a usage, 

rather than the compound merely existing. The main products include 

non-stick cooking ware, coated textiles, footwear, food packaging mate-

rial, cosmetics, repellent and impregnation products, etc. Final assess-

ment of content of non-PFOS/PFOA PFCs in consumer products indi-

cates a large gap of knowledge. 
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7.3 Occurrence of PFCs in humans 

PFCs are ambiphilic and bind to serum proteins and proteins in cell 

membranes, and accumulate in blood and internal organ such as liver, 

kidneys, testes and brain (Jones et al., 2003).  

Generally the elimination half-life23 of PFCs in humans is enhanced 

with decreasing carbon-chain length: PFHxS (8.5 years), PFOS (5.4 

years), PFOA (2.3–3.8 years), PFBS (1 month) and PFBA (3 days) (re-

viewed by (Lau, 2012)). 

Most peer-reviewed literature contains reports on perfluorinated al-

kyl substances (PFAAs)24 detected in blood (whole blood, plasma and 

serum) across the world. Blood levels of perfluorinated chemicals have 

been monitored in many countries and usually PFOS, PFOA, and PFHxS 

are detected most frequently, and PFOS is detected at the highest con-

centrations, followed by PFOA and PFHxS. Other PFCs detected in hu-

man tissue include PFOSA, Me-PFOSA-AcOH, Et-PFOSA-AcOH or 

PFOSAA, PFNA, PFDA, PFUA, PFDoA, PFPeA, PFHxA, and PFBS. The 

short-chain perfluorinated acids are typically not monitored in human 

sera analysis, but in the case of detection, the concentrations are usually 

below or close to the limit of quantification (LOQ). 

In the following we present the monitoring data found for the Nordic 

countries (see Tables 9, 10 11 and 12). 

Levels in blood 

In most studies blood serum is the material analyzed but some stud-

ies analyze whole blood or blood plasma. PFC levels in serum and plas-

ma are comparable (1:1) regarding PFOS, PFOA and PFHxS, but levels in 

whole blood are 2–3 times lower than serum (Ehresman et al., 2007). 

 

 

 

 

 

────────────────────────── 
23 Half-life is a characteristic parameter of a substance’s persistence. If a substance has a half-life greater 

than two months in water or six month in soil or sediment it is considered as persistent (Annex D , Stoc k-

holm Convention). 
24 See appendix A. 
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7.3.1 PFCA (Perfluorocarboxylic acids) in humans 

In the following the monitoring data for PFCA are described for each 

Nordic country (see Table 9). No biomonitoring data were found for 

Iceland and Finland. 

Norway (NO) 

The concentration and time trends of 19 different PFCs for the general 

Norwegian population were investigated in a cross sectional study by 

Haug and coworkers (Haug et al., 2009). Archived sera from men of age 

40–50 years sampled from different county hospitals in Norway during 

1976–2007 were pooled (n20) and analyzed.  

The concentration of PFOA was 2.7 ng/ml in 2006. In most samples, 

PFNA, PFDA, PFUnDA and PFTrDA (median range: PFNA 0.55 to PFTrDA 

0.06 ng /ml) were detected, while PFPeA, PFHpA and PFDoDA were 

found less frequently. PFBA, PFHxA, PFTeDA were not observed above 

LOQ in any of the samples. 

Trends: The pooled serum samples showed an increase of PFOA (9-

fold), PFNA, PFDA, and PFUnDA from 1976 to the mid-1990s where the 

concentrations stabilized. During 2000 to 2006, the PFOA level de-

creased approximately by 50%. For PFPeA, PFHpA, PFDoDA and PFTr-

DA, the concentrations in the serum pools showed no obvious tenden-

cies for change over time; however, the concentrations of these PFCs 

were close to the LOQ. The authors conclude that the observed increase 

in PFOA serum concentrations until the mid-1990s are in accordance 

with the increasing use of products containing PFCs, while the decreas-

ing concentrations observed the past few years are consistent with the 

phase-out of these compounds (Haug et al., 2009). 

The median concentration of PFOA among 900 Norwegian pregnant 

women who were part of the Norwegian Mother and Child Cohort Study 

(enrolled 2003–2004) was 2.2 ng/mL (Whitworth et al., 2012). 

In a study of 60 participants in northern Norway (Andøya Island) 

during 2005, the relationship between dietary intake and PFC concen-

trations were investigated (Rylander et al., 2009). Higher concentrations 

of PFOA (female: 3.4 ng/ml; male: 5.1 ng/ml) and PFNA (female: 0.77 

ng/ml; male: 0.94 ng/ml) were detected in this population which could 

be attributable to geographical differences (coastal areas) or dietary 

habits (Rylander et al., 2009). PFHpA had more than 95% of the obser-

vations below LOD. Higher concentrations of PFOA were found in men. 

PFNA correlated highly to PFOS. 

Rylander and co-workers (Rylander et al., 2010), found a range of 

PFCAs in 315 middle-aged Norwegian women (48−62 years of age); 
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PFOA (4.4 ng/mL) and PFNA (0.81 ng/mL) were detected in more than 

90% of the plasma samples. The concentrations of PFCAs in this study 

were slightly lower than levels reported from northern Norway 

(Rylander et al., 2009). 

The most recent Norwegian study investigated 19 PFCs in serum 

from 123 pregnant women collected at the Oslo University hospital dur-

ing 2007 to 2008 from a sub-cohort of the Norwegian Mother and Child 

Cohort Study (Gutzkow et al., 2012). Five PFCAs were detected: PFOA 

(median = 1.12 ng /ml); PFNA (0.34 ng /ml); PFDA (0.07 ng /ml); PFUn-

DA (0.16 ng /ml); PFTrDA (0.04 ng /ml). Highly significant correlations 

(r > 0.60, p < 0.001) between most of the PFCs were found with the ex-

ception of PFUnDA. The levels of PFCAs in this study were very similar 

to those reported for 41 female volunteers from the Oslo area in Norway 

in 2008 (Haug et al., 2011) (Table 9).  

The PFC concentrations from 2007–2008 are the lowest reported in 

Norwegians and lower than those reported in men in 2006 (Haug et al., 

2009), probably due to temporal decline in serum levels for many PFCs 

observed after around year 2000 (Haug et al., 2009) or gender differ-

ences, or probably different exposure patterns.  

Sweden (SE) 

Several studies have reported the PFAAs level in the general population in 

Sweden (Glynn et al., 2012; Karrman et al., 2007a; Karrman et al., 2007b; 

Karrman et al., 2006). The details and PFCA levels are presented in Table 9. 

A recent study investigated the temporal trends of blood serum levels 

of PFCs in primiparous women in the period 1996–2010 living in Uppsa-

la County (Glynn et al., 2012). Among the PFCAs, PFOA, PFNA, PFDA, 

PFUnDA and PFHpA were detected in the pooled samples, whereas 

PFHxA, PFDoDA, PFTrDA and PFTeDA were below detection limits 

(Glynn et al., 2012). During the period 1996–2010 increasing levels were 

observed for PFNA (4.3%/year), and PFDA (3.8%/year), whereas level 

for PFOA decreased (3.1%/year). The study suggested that one or sev-

eral sources of exposure to PFOA have been reduced or eliminated, 

whereas exposure to the former compounds has recently increased. The 

serum levels reported in this study are similar to levels found previously 

in Swedish blood samples by Karrman et al. and other European coun-

tries but somewhat lower than reported in the US (Fromme et al., 2009).  

Similar to Sweden, increasing levels of PFNA and PFDA were observed 

in plasma/serum among adults in the US (NHANES) during 1999–2008 

(Kato et al., 2011) whereas, among Norwegian men no significant tem-

poral trends of PFNA or PFDA were observed between 1997 and 2007 

(Haug et al., 2009). Based on these studies it is not possible to conclude if 
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the observed upward trend in Sweden is due to increased exposure to 

directly emitted PFNA and PFDA, or due to increased emissions of precur-

sor compounds such as fluorotelomer alcohols (Glynn et al., 2012). 

Denmark (DK)  

Few biomonitoring studies have been conducted in Denmark measuring 

the levels of a broad range of PFCs. 

A recent study reported the levels of eight different PFCs in serum 

from young women planning their first pregnancy (collected during 

1992–1995) (Vestergaard et al., 2012). Among the women who got 

pregnant (n = 129), the concentrations of PFOA, PFNA and PFDA were 

5.61, 0.51 and 0.11 ng/ml, respectively. 

Another study reported the levels of PFOA (and PFOS) in 1,399 maternal 

blood plasma samples collected during 1996–2002 in Denmark (part of the 

Danish National Birth Cohort). For the first trimester the mean plasma 

PFOA levels was 5.6 ng/ml (Fei et al., 2007; Halldorsson et al., 2008).  

Joensen et al. reported the PFC levels in serum samples from young 

adult males in Denmark (n = 105) collected in 2003 (Joensen et al., 

2009). The level of PFOA was 4.9 ng/ml and the remaining PFCAs (PFDA, 

PFNA, PFHpA, PFUnA and PFDoA) were found in much lower concentra-

tions with medians ranging from 0.9–0.08 ng/ml. The PFCA levels de-

tected in this study were comparable to those found in Sweden. 

The current concentrations of PFCs in Denmark are unknown since 

the latest biomonitoring data found is from 2003 (Joensen et al., 2009). 

Faroe Islands (FO)  

Serum concentrations of 4 PFCAs (PFOA, PFNA, PFDA and PFDoA) were 

measured in two population groups of whale meat consumers on the 

Faroe Islands (Weihe et al., 2008). 

The first group included 12 mothers sampled in 2000 and their 5-

year old children sampled in 2005. The second group consisted of 

103 serum samples collected during 1993–1994 of 7-year old chil-

dren and 79 serum samples of these children at age 14 (collected 

during 2000–2001) (Weihe et al., 2008).The 5-year old children had 

higher concentrations of PFOA levels compared to their mothers 5 

years previously (4.5 ng/mL vs. 2.4 ng/ml) and PFNA (1.3 ng/ml vs. 

0.6 ng/ml). The concentration of PFDeA was 0.3 ng/ml for both 

mothers and children. A decrease was found for PFOA between the 7- 

and 14-year old children (5 ng/ml vs. 4.4 ng/ml), but same PFNA (0.8 

ng/ml) and PFDeA (0.3 ng/ml) concentrations were found. This sug-

gested a decrease in PFOA during this time period (1993–2001) on 
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the Faroe Islands. PFNA concentrations correlated with the frequency 

of pilot whale consumptions. 

On the Faroe Islands, where exposures to marine contaminants via 

food intake is high, the blood concentrations of PFOA in women were 

slightly below the average concentrations reported in Danish pregnant 

women during 1996 to 2002 (Fei et al. 2007), but comparable with those 

for Swedish women (Glynn et al., 2012).  

Greenland (GRL) 

A recent study investigated the level of 10 different PFCs in serum from 

284 Inuit belonging to 10 different Greenlandic districts and the tem-

poral trend of blood serum levels of PFCs in Nuuk during 1998–2005 

(Long et al., 2012). 

The detected PFCAs for Inuit women in this study were PFOA (2.57 

ng/ml), PFNA (1.33 ng/ml), PFUnDA (1.23 ng/ml), PFDA (0.65 ng/ml), 

PFTrDA (0.26 ng/ml), PFDoDA (0.15 ng/ml) and pFHpA (0.05 ng/ml). 

Long et al. reported increasing trends for PFNA (28%), PFDA (28%), 

PFDoA (10%), PFTrDA (13%) during 1998–2005; however these trends 

disappeared upon age adjustment (Long et al., 2012). In this study some 

correlations between PFCs and legacy POPs (PCBs and organochlorine 

pesticides) were reported for different non-Nuuk districts. However, for 

Nuuk Inuit, no significant association was observed between PFCs and 

legacy POPs, suggesting different sources of exposure other than seafood 

intake. For non-Nuuk Inuit, significant correlations between serum PFCs 

and legacy POPs were observed suggesting that there might be common 

sources for the body burden of PFCs and legacy POPs in non-Nuuk Inuit 

e.g. marine food intake. 

Bonefeld-Jørgensen et al. reported the PFC levels in 115 female Inuit 

controls from Greenland during 2000–2003, in a study investigating the 

association of PFCs to breast cancer (Bonefeld-Jorgensen et al., 2011). 

PFOA (1.63 ng/ml), PFUnA (1.06 ng/ml), PFNA (0.93 ng/ml), PFDA (0.56 

ng/ml), PFDoA (0.15 ng/ml) and PFTrDA (0.15 ng/ml) and PFHpA 

(0.11ng/ml) were detected in the healthy control samples. 

Another study reported the PFC levels in Greenlandic Inuit men (n = 

196) from Greenlandic districts, during 2002–2004 (Lindh et al., 2012). 

The male median concentrations for PFOA (4.54 ng/ml), PFNA (1.74 

ng/ml), PFUnDA (1.28 ng/ml), PFDA (0.87 ng/ml) and PFDoDA (0.14 

ng/ml), were comparable to the levels reported for the Inuit women 

during 2000–2003 (Long et al., 2012) and (Bonefeld-Jorgensen et al., 

2011) although the PFOA level was lower for women. 

These studies show that the Greenlandic Inuit population is highly 

exposed to several other, more recently industrially introduced PFCs, 
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such as PFNA, PFDA, PFUnA and PFDoA. This indicates a fast distribution 

of these compounds to the Arctic area. The levels of PFOA found in Inuit 

men were similar to the levels found in Denmark and other European 

countries. In contrast, the PFOA level in Inuit women was only approxi-

mately 50% compared to Danish women.  

Levels in cord blood 

Four studies were found for the Nordic countries where PFCs were 

measured in cord blood (Table 10). 

In the Norwegian study 19 PFCs were investigated in 123 samples of 

human maternal and cord blood (2007–2008) and up to 5 different 

PFCAs (PFOA, PFNA, PFDA, PFUnDA and PFTrDA) were detected 

(Gutzkow et al., 2012). The median levels in cord blood had the follow-

ing % compared to the maternal concentration: for PFOA 79%; for PFNA 

35%; for PFDA 57% and for PFUnDA 25%, suggesting that PFOA is 

transferred to the fetus twice as efficiently as the longer-chained PFNA 

and PFUnDA. Strong correlations between maternal and cord levels of all 

the tested compounds were found. 

A Swedish study compared the maternal levels of PFOA, and PFNA 

with the levels in cord blood in 19 samples (1996–1999) (Glynn et al., 

2012). In cord blood, mean levels of PFOA (1.4 ng/g) and PFNA (esti-

mated to 0.13 ng/g) were considerably lower than those in blood serum 

from the mothers. Significant positive correlations between maternal 

serum and cord blood levels were found. The strongest correlations 

between PFC levels in cord and maternal blood were found for maternal 

serum samples taken during the third trimester, followed by samples 

taken 3 weeks after delivery.  

Another study from the Faroe Islands measured in year 2000 the 

PFCs in maternal blood, cord blood and breast milk (Needham et al., 

2011). Like the other studies they found lower PFC concentrations in 

cord serum than in maternal serum. PFOA, PFNA, and PFDA revealed 

good correlation between maternal and cord serum concentrations, with 

ratios (cord/maternal) of 0.72, 0.50, and 0.29, respectively. The 

cord/maternal ratio suggested that the length of PFC chain as well as the 

active group affected the ability to pass the placenta. PFCs with a short 

chain length showed higher relative cord serum concentrations than 

PFCs with a longer chain length. PFCs with sulfonic acid as the active 

group seemed to pass more easily into the fetal circulation than PFCs 

with carboxylic acid as the active group (Needham et al., 2010).  

In a Danish study PFOA was analyzed in 50 cord blood plasma sam-

ples from women in Danish National Birth Cohort (1996–2002) and the 

results showed mean concentrations of 3.7 ng/ml for PFOA, which cor-
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responded to 66% of the level in maternal serum (Fei et al., 2007). Con-

centrations in cord blood and mother’s blood were highly correlated. 

The consistent finding of the studies is that cord blood has lower 

total PFOA than maternal blood; but several PFCs are able to cross 

the placenta barrier to fetal blood and PFOA seems to cross the pla-

centa most easily. The concentrations of PFOA were highest in Danish 

and Faroes cord blood probably because the studies are older.  

Levels in breast milk 

PFCs have also been found in human milk (see Table 11), but in much 

lower levels than in blood. 

In a Norwegian study of matched samples of serum and breast milk 

(sampled 2007–2008) up to 11 and 2 PFCs were found in the samples of 

serum (n = 41) and breast milk (n = 19), respectively (Haug et al., 2011). 

Average median breast milk concentration was 0.025 ng/ml for PFOA, 

which corresponded to 3.8% of the serum concentrations in the mothers. 

Thomsen et al. studied the elimination rates of PFOA in breast-milk 

samples from nine Norwegian mothers living in the Oslo area (Thomsen et 

al., 2010). The median concentrations of PFOA in breast milk was 0.05 

ng/ml and the PFOA breast milk concentration correlated highly (correla-

tion coefficients: 0.99) with the mothers serum concentrations. During 

lactation PFOA concentration in breast milk was reduced by 7.8% per 

month, suggesting lactation as an important route of excretion in mothers. 

Kärrman et al. (2007) analyzed matched breast milk and serum sam-

ples (n = 12) for 7 PFCs during 2004 in Sweden. PFNA and PFOA were 

detected above detection limits in only one and two milk samples, re-

spectively (Karrman et al., 2007a) . 

Sundström et al. measured the concentration of PFOA in pooled hu-

man milk samples obtained in Sweden between 1972 and 2008 

(Sundstrom et al., 2011). PFOA levels significantly increased from 1972 

to 2000 and significantly decreased during 2001–2008. In 2008 the 

PFOA concentration in the pooled human milk was 0.074 ng/mL. The 

study showed that the temporal trend in PFOA concentration in pooled 

human milk samples is similar to the trend in serum concentrations. 

A study from the Faroe Islands detected PFOA in breast milk at median 

concentration 0.1 ng/ml (collected in 2000) which correlated with the the 

maternal serum PFOA concentrations (r = 0.80) (Needham et al., 2011).  

For comparison, a study from China (n = 19) reported the presence of 

PFHpA, PFDA and PFUnDA in human milk from 2004 (Tiido et al., 2006). 

The concentration of PFOA ranged from 47 to 210 ng/L. The maximum 

concentrations were 62 ng/L for PFNA, 15 ng/L for PFDA, and 56 ng/L 

for PFUnDA. 



  Per- and polyfluorinated substances in the Nordic Countries 85 

Although the levels of PFCs in human milk are relatively low com-

pared to the mothers blood level the exposure of these chemicals to the 

breast fed infant may be significant because of the relatively high expo-

sure per body weight. It is evident that lactation is an exposure pathway 

as well as a way for maternal excretion. 

Levels in Amniotic Fluids 

Only two studies were found measuring PFCAs in human amniotic fluid 

(Stein et al, 2012) (Bonefeld-Jørgensen, Unpublished data) (Table 12). 

In an unpublished Danish study (Bonefeld-Jorgensen et al.) the con-

centrations of 8 PFCAs were measured in 54 amniotic fluid samples 

(1995–1999). PFOA, PFHpA and PFDoA were detected in 81.8%, 1.1% 

and 1.1% of the samples, respectively. The average PFOA level was 0.37–

0.29 ng/ml (Bonefeld-Jorgensen et al. manuscript in preparation). 

Using paired samples from 28 women from the US collected in 2005–

2008, the concentrations of 3 PFCAs (PFOA, PFNA, and PFDeA) were 

measured in serum and amniotic fluid (second trimester) (Stein, 2012). 

The detected carboxylates were PFOA (0.3 ng/ml detected in 24 sam-

ples) and PFNA (0.2 ng/ml detected in 10 samples). PFOA showed 

weaker correlations between serum and amniotic fluid (ρ = 0.64). Amni-

otic fluid concentrations are lower than maternal blood (10–20 fold) and 

considerably lower than cord blood concentrations. The PFCs detected 

in the US were lower than those reported from Denmark, probably due 

to the older Danish samples (1980–1990). PFOA appeared to be more 

soluble than PFOS because it was detected in amniotic fluid at lower 

maternal serum levels than PFOS. 

7.3.2 Conclusions on human biomonitoring of PFCAs  

In the general population the level of PFOA has been increasing until 

mid-1990s and has then decreased in human serum since 2002. Howev-

er, for PFPeA, PFHpA, PFDoDA, and PFTrDA no obvious tendencies have 

been observed (in Norway). In most studies PFOA, PFNA, PFDA, PFUnDA 

and PFHpA have been detected in human blood whereas PFHxA, 

PFDoDA, PFTrDA, PFTeDA have been below detection limits. In general, 

the blood levels are higher in males. 

Intake of fish, shellfish, and whale were in some studies identified as 

determinants of serum concentrations. However, other factors, such as 

consumer products and indoor air (e.g., house dust in carpeted houses) 

were also identified to contribute to PFC exposure. 

In the Faroe Islands data for 7 and 14-years children indicate a de-

creasing trend for PFOA during 1993–2003. 
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In general, comparable levels were observed for the Nordic countries 

although the newest and lowest levels were found for Sweden and Norway.  

Of PFCAs mainly PFOA, and to some extent PFNA and PFDA, were de-

tected in cord blood, but the concentrations are usually lower than concen-

trations observed in maternal serum or plasma, although the maternal and 

cord blood data are highly correlated. PFCAs with longer chains are trans-

ferred less efficiently to the fetus than those with shorter chain. Detection of 

PFCAs in cord blood means that some of the compounds can cross the pla-

cental barrier and the fetus is prenatally exposed to these compounds. 

Of PFCAs only PFOA was detected in breast milk from women in Nor-

dic countries and the concentrations in milk are 3–4% of what is found 

in the corresponding serum concentrations (Haug et al., 2011). For com-

parison, in China PFNA, PFDA and PFUnDA in addition to PFOA, were 

also detected in some samples. 

Monitoring studies of PFCAs in amniotic fluids are scarce, but a Dan-

ish study detected PFOA and PFNA in amniotic fluids at concentrations 

10–20 fold lower than in maternal blood.  

FTOHs are identified to be metabolized to PFOA and are thus a source 

of PFCAs, and an indirect exposure via fluorotelomer-based commercial 

products or residuals can explain continued exposure to PFOA, together 

with exposure to PFNA and PFDA, without similar exposure to PFOS. 

Further research is therefore needed to determine whether the con-

stant or slowly increasing concentrations of long-chain PFCAs in human 

serum are primarily a consequence of ongoing exposure to telomer-

based precursors. 

 



Table 9. Median concentrations (in ng/mL) of PFCAs and PFSAs in blood (serum /plasma) from Nordic countries  

Reference Coun-

try 

Samp. 

Year 

n Sex Age Matrix 

P
FB

S 
 

P
FH

xS
 

P
FH

p
S

 

P
FO

S 

P
FD

S
 

P
FH

xA
 

P
FH

p
A

 

P
FO

A
 

P
FN

A
 

P
FD

A
 

P
FU

n
D

A
 

P
FD

o
D

A
 

P
FT

rD
A

 

P
FT

e
D

A
 

P
FO

SA
 

M
e

FO
SA

A
 

Et
FO

SA
A

 

Vestergaard 

(2012) 

DK 1992–

1995 

 

129 F 27 S  1.22  36.3    5.61 0.51 0.11     0.11 0.39 1.79 

Eriksen 

(2011) 

DK 1993–

1997 

 

652 M 55  P    34.9    6.80          

Fei * 

(2007) 

DK 1996–

2002 

 

1,399 F ?  S    35.3    5.60          

Joensen 

(2009) 

 

DK 2003 105 M 18–19  S  6.60  24.5   0.20 4.90 0.80 0.90 0.10 0.08 0–0.2  0.06   

Haug 

(2009) 

 

NO 2001
#
  pool M 40–50  S <0.05 1.60 0.10 27.00   0.08 4.90 1.20 0.25 0.24 0.05 0.16  0.15   

Haug 

(2010) 

 

NO 2003 175 M+F 57+55  P  1.70 0.42 25.0   < 0.035 3.60 0.90 0.35 0.47 0.06 0.09  0.22   

Rylander 

(2010) 

 

NO 2004 326 F 56   P  1.00 0.32 20.0   nd 4.40 0.81      0.02   

Haug 

(2009) 

 

NO 2004
#
  pool M 40–50  S <0.05 1.40 0.12 18.0 <0.05  0.14 3.40 0.78 0.31 0.18 0.06 0.11  0.05   

Rylander 

(2009) 

 

 

NO # 2005 15 M 44  P  1.80 0.70 43.0   nd 5.10 0.94      0.11   



Reference Coun-

try 

Samp. 

Year 

n Sex Age Matrix 

P
FB

S 
 

P
FH

xS
 

P
FH

p
S

 

P
FO

S 

P
FD

S
 

P
FH

xA
 

P
FH

p
A

 

P
FO

A
 

P
FN

A
 

P
FD

A
 

P
FU

n
D

A
 

P
FD

o
D

A
 

P
FT

rD
A

 

P
FT

e
D

A
 

P
FO

SA
 

M
e

FO
SA

A
 

Et
FO

SA
A

 

Rylander  

(2009) 

 

NO # 2005 41 F 44  P  0.80 0.35 24.0   nd 3.40 0.77      0.08   

Haug 

(2009) 

 

NO 2006
#
  pool M 40–51  S <0.05 1.40 0.06 12.0 <0.05  0.08 2.70 0.55 0.22 0.14 0.05 0.07  0.05   

Haug  

(2011) 

NO 2007–

2008 

 

41 F 37  S  0.39 0.08 6.7   < 0.035 1.40 0.63 0.23 0.42 < 0.035 < 0.035  < 0.035   

Gützkow 

(2012) 

NO 2007–

2008 

 

123 F   P  0.28  5.0    1.12 0.34 0.07 0.16  0.04     

Glynn A 

(2012)  

 

SE 1996  pool F 30  S  0.02 2.24  23.3 0.26 nd 0.08 2.69 0.50 0.21 0.16 nd nd nd 0.51   

Kärrman 

(2006) 

 

SE 1997–

1999 

40 M   WB  1.70  17.7 Nd   2.70 0.30 0.10 0.20    2.70   

Kärrman 

(2006) 

 

SE 1997–

2000 

26 F   WB  1.20  16.9    2.10 0.30 0.20 0.10    2.70   

Kärrman  

(2004) 

 

SE 1997–

2000 

 

66 F 19–75 S   3.00  34.2    5.00          

Glynn A  

(2012)  

 

SE 2000  Pool F 30  S <0.01 3.03  22.0 0.05 nd 0.09 2.50 0.38 0.17 0.20 nd nd nd 0.44   

Kärrman 

(2007) 

 

SE 2004 12 F    S - 4.00 - 18.7 1 

sample 

nd nd 3.80 0.63 0.43 0.28 nd  - 0.19   



Reference Coun-

try 

Samp. 

Year 

n Sex Age Matrix 

P
FB

S 
 

P
FH

xS
 

P
FH

p
S

 

P
FO

S 

P
FD

S
 

P
FH

xA
 

P
FH

p
A

 

P
FO

A
 

P
FN

A
 

P
FD

A
 

P
FU

n
D

A
 

P
FD

o
D

A
 

P
FT

rD
A

 

P
FT

e
D

A
 

P
FO

SA
 

M
e

FO
SA

A
 

Et
FO

SA
A

 

Jönsson 

2010 

 

SE 2009 50 M    S  0.78  6.9    1.9 0.96 0.41 <LOD       

Glynn A 

(2012) 

 

SE 2010 Pool F 30  S 0.10 7.95  7.6 0.01 nd 0.08 1.39 0.59 0.28 0.19 nd nd nd <0.040   

Nilsson H 

(2010) 

 

SE (ski-

wax) 

2007–

2008 

8 M 36 WB Nd 1.64  12.2  nd 2.80 112 14.7 7.90 0.1−2.8       

Weihe P  

(2008) 

 

FO 

(Faro-

es) 

1993–

1994 

103 Child 7  S  0.40  26.3    5.00 0.80 0.30     1.30 0.40 1.40 

Needham  

(2010) 

 

FO 2000 12 F    S  12.30  19.7    4.20 0.76 0.34        

Weihe P 

(2008) 

 

FO 2000 12 F   S  0.6 

<LOD 

 23.7    2.40 0.60 0.30     0.60 0.90 0.2 

<LOD 

Weihe P  

(2008) 

 

FO 2000–

2001 

79 Child 14  S  2.90  31.2    4.20 0.80 0.30     0.30 0.40 1.00 

Weihe P  

(2008) 

 

FO 2005 12 Child 5  S  0.60  16.3    4.50 1.30 0.30     <LOD 0.30 0.2 

(<LOD) 

Long M  

(2012) 
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1998–

2005 

5 M 65  S  8.50  

 

74.5   0.52 7.19 5.59 3.13 7.32 0.80 1.39  0.50   

Long M  

(2012) 

 

 

GRL 

(All) 

1998–

2005 

209 F 53  S  2.50  28.5   0.05 2.57 1.33 0.65 1.23 0.15 0.26  0.20   
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Jørgensen 

(2011) 

 

GRL 2000–

2003 

98 F 54  S  1.66  21.9   0.11 1.63 0.93 0.56 1.06 0.15 0.15  0.13   

Lindh  

(2012) 

GRL 2002–

2004 

196 M 31  S  2.18  44.7    4.54 1.74 0.87 1.28 0.14      

* Mean concentrations; 
#
 Pooled serum samples; F: female; M: male; S: serum; P: plasma; WB: whole blood; LOD: limit of detection; nd: not detecte.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 10. Median concentrations (in ng/mL) of PFCAs and PFSAs in cord blood  
     

PFSAs (ng/ml) PFCAs (ng/ml) 

Reference Country Sample year N Matrix 
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Fei C (2007)* Denmark 1996–2002 50 Serum    11    3.7       

Needham (2010) Faroe Island 2000 12 Serum  9.1  6.6    3.1 0.37 0.1     

Glynn A (2012) * Sweden 1996–2010 19 WB (ng/g)    5.3    1.4 0.13      

Gützkow (2012) Norway 2007–2008 123 Serum ND 0.2 ND 1.52 ND ND ND 0.88 0.12 0.04 0.04 ND 0.04 ND 

Fromme (2010) Germany 2008–2009 33 Serum ND 0.2  1    1.4 <0.4 <0.4  ND   

* Mean; WB: Whole blood; ND: not detected. 

Table 11. Median concentrations (in ng/ml) of PFCAs and PFSAs in breast milk 
    

PFSAs (ng/ml) PFCAs (ng/ml) 

Reference Country Sample year n 
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Kärrman (2007) Sweden 2004 12  0.07  0.166    nd 2 sampl nd nd    

Haug (2011) Norway 2007–2008 19 nd nd nd 0.087 nd nd nd 0.025 nd nd nd nd nd  

Thomsen (2010) Norway 2001–2009 68  nd nd 0.11    0.05 nd nd     

Needham (2010) Faroes 2000 12        0.1       

Sundström (2011) Sweden 2008 1 pool  0.014  0.075    0.074       

Liu J (2011) China (Jinhu) 2009 50  nd  0.042    0.121 0.019 0.017 0.024 nd   

 



Table 12. Median concentrations (in ng/ml) of PFCAs and PFSAs in amniotic fluids 
    

PFSAs (ng/ml) PFCAs (ng/ml) 

Reference Country Year n 
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Jensen (2012) DK 1980–1996 300    1.1 

 

          

Bonefeld-Jørgensen (unpublished) 
1
 DK 1995–1999 51  0.065 

(4.5%) 

 1.44 

(47%) 

   0.32 

(82%) 

   0.205 

(1%) 

 

  

Stein (2012)
2
 US (NY) 2005–2008 28  0.4  0.4    0.3 0.2 ND     

1
Bonefeld-Jørgensen: PFOS, PFOSA, PFOA, PFHxS, PFHpA and PFDoA could be detected in 46.6%. 35.2%.81.8%. 4.5%. 1.1% and 1.1% of the AF samples. The rest were 

below detection limit. 

2
Stein: PFOA was detected in 24/28.; PFOS in 9/28 and PFDA only in 1 sample. 
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7.3.3 PFSAs (perfluoroalkyl sulfonates) in humans 

Levels in blood 

Blood levels of PFSAs have been monitored in some Nordic countries 

and usually PFOS and PFHxS are detected most frequently, with PFOS 

having the highest concentrations. Since in many studies both PFCAs and 

PFSAs were measured the study design of many of the studies are al-

ready mentioned under the section for PFCAs.  

In the following the monitoring data for PFSAs are described for each 

Nordic country and data presented in Table 9.  

Norway 

Time trends of 19 different PFCs for the general Norwegian population 

were investigated in a cross sectional study by Haug and coworkers (Haug 

et al., 2009). PFOS was found in highest concentrations in all samples, 

followed by PFHxS. The concentrations in 2006 for PFOS and PFHxS were 

found to be 12 and 1.4 ng/mL serum, respectively. PFHpS were detected 

in most samples, while PFBS were found less frequently. PFDS were not 

observed above the LOQ in any of the samples (Haug et al., 2009).  

The pooled serum samples showed an up to 9-fold increase of PFOS 

and PFHpS from 1976 to the mid-1990s. Between 2000 and 2006, PFOS 

levels decreased by approximately 50%, while PFHxS level decreased by 

90%. In this study, PFOS and PFOA were significantly correlated to each 

other as well as to PFHxS, PFHpS, PFNA, PFDA, and PFTrDA. Correlations 

between the PFCAs, e.g. PFOA, and PFSAs, e.g. PFOS, indicate common 

sources for human exposure to these two PFC classes, as they cannot 

convert directly into each other (Haug et al., 2009). 

In a study in northern Norway (Andøya Island) during 2005 slightly 

higher concentrations of plasma PFOS (female: 24 ng/ml; male: 43 

ng/ml), PFHxS (female: 0.8 ng/ml; male: 1.8 ng/ml) and PFHpS (female: 

0.35 ng/ml; male: 0.7 ng/ml) were found among coastal population 

compared to the general Norwegian population (Rylander et al., 2009). 

Men had higher concentrations of the PFSAs (including PFOS) but lower 

proportions of linear PFOS compared to women. The linear isomer of 

PFOS is most common in technical mixtures and also in human samples 

and difference in proportions could indicate different exposure sources 

(Karrman et al., 2007b; Rylander et al., 2009). High correlation was 

found between PFOS and PFHpS (r = 0.93). The PFOS and PFHpS concen-

trations decreased with intake of fruits and vegetables, whereas an in-

crease was observed with intake of fatty fish (Rylander et al., 2009). 



94 Per- and polyfluorinated substances in the Nordic Countries 

Intake of fatty fish and intake of fruits and vegetables were not correlat-

ed in this study, and therefore the effect of extra intake of fruit could not 

be fully explained by the authors (Rylander et al., 2009). 

In the most recent Norwegian study measuring the PFCs in serum 

from 123 pregnant women from Oslo during 2007–2008 (Gutzkow et al., 

2012), the PFOS and PFHxS were detected at 5 and 0.28 ng/ml, respec-

tively, and was the lowest reported in Norwegians and other Nordic 

countries. This could indicate a decline in serum levels or different pat-

tern of exposure for this sub-cohort of the Norwegian Mother and Child 

Cohort Study. 

Sweden 

Several studies have reported the PFSAs level in the general population 

in Sweden (Glynn et al., 2012; Karrman et al., 2007a; Karrman et al., 

2007b; Karrman et al., 2006). 

A study investigated the temporal trends of blood serum levels of 

PFCs in pregnant women during 1996–2010 living in the Uppsala Coun-

ty (Glynn et al., 2012). Increasing levels were observed for PFBS and 

PFHxS, whereas levels for PFOS and PFDS were decreased. The serum 

concentrations of the PFOS, PFHxS, PFBS and PFDS in the pooled sam-

ples from 2010 were 7.6, 7.95, 0.1 and 0.01 ng/ml respectively. In 2010, 

PFHxS levels did reach those of PFOS that indicates that the Swedish 

women have recently been exposed to increasing levels of PFHxS-related 

compounds from sources that are independent from PFOS exposure 

(Glynn et al., 2012).  

In overall the Swedish studies show that the phase-out of PFOS-

related chemicals has resulted in decreasing serum concentrations of 

PFOS in the blood serum of young Swedish women during the past dec-

ade. However, exposure to sulfonates with shorter carbon chains than 

PFOS (or their respective precursors) is currently increasing. 

Denmark 

For young Danish women planning their first pregnancy (serum collect-

ed during 1992–1995), the concentrations of PFOS and PFHxS were 36.3 

ng/ml and 1.22 ng/ml, respectively (Vestergaard et al., 2012). The medi-

an serum levels were similar to most levels reported for U.S. populations 

during this period.  

Comparable PFOS plasma concentrations of 35.1 ng/ml were reported 

for 1,399 pregnant women during 1996–2002 in Denmark (part of the 

Danish National Birth Cohort) (Fei et al., 2007; Halldorsson et al., 2008).  

For young adult Danish men in 2003, the median PFOS and PFHxS 

concentrations were 24.5 and 6.6 ng/mL, respectively (Joensen et al., 
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2009), and PFOSA was detected in only 56 men (median 0.06 ng/ml). 

The PFSA levels detected in this study were comparable with those 

found in other countries such as Sweden (Karrman et al., 2007a), but 

lower than results from the women in Denmark (Fei et al., 2007). 

Faroe Islands 

In paired mother (sampled in 2000) and 5-year old child (sampled in 

2005) samples from the whale consuming Faroe Island population, 

the median concentration of PFOS was 23.7 and 16.3 ng/mL in the 

mothers and children, respectively (Weihe et al., 2008). The PFHxS 

was detected in only 25% of the maternal samples but in all the chil-

dren (median 0.6 ng/ml).  

In samples from children at age 7 (1993–1994) and again at age 14 

(2000–2001), the median concentration increased for PFOS from 26.3 

ng/ml to 31.2 ng/ml, and for PFHxS a 3-fold increase was seen in the 

PFHxS (p < 0.001) concentrations (Weihe et al., 2008).  

Overall, the concentrations of PFOS for the Faroe Island women 

are slightly below average concentrations reported in Danish preg-

nant women (Fei et al., 2007). Traditional whale meat consumption 

was suggested to be a major contributor to PFOS and PFNS expo-

sures, while fish intake was associated to PFHxS concentrations 

(Weihe et al., 2008). 

Greenland 

Long et al. investigated the levels of 10 different PFCs in serum from 284 

Greenlandic Inuit during 1998–2005 (Long et al., 2012). The median 

concentrations of PFOS and PFHxS in Inuit females were 28.5 and 2.5 

ng/ml respectively. No time trends were found for PFSAs, but men had 

higher PFSA concentrations. The observed serum PFSA concentrations 

in Inuits corresponded to the range observed in European biomonitor-

ing studies of the general population (Fromme et al., 2009).  

In another study of female Greenlandic Inuit from 2000–2003, the 

mean concentrations of PFOS and PFHxS were measured to be 21.9 and 

1.66 ng/ml respectively (Bonefeld-Jorgensen et al., 2011), and lower 

than those reported by Long and co-workers (Long et al., 2012). This 

could be due to geographical differences as district differences was ob-

served and also that non-Nuuk Inuit women had significantly lower PFC 

levels than Inuit women from Nuuk. 

For Greenlandic men, the median concentrations of PFOS and PFHxS 

in 2002–2004 were reported to be 44.7 and 2.18 ng/ml (Lindh et al., 

2012). Seafood was one of the determinants of PFOS. The level of PFOS 

reported in this study was higher than those reported by Long et al (14.9 



96 Per- and polyfluorinated substances in the Nordic Countries 

ng/ml). However, again geographical differences between the different 

districts in Greenland was observed e.g. Long et al found for men in 

Nuuk (median, 74.5 ng/ml ) and non-Nuuk (median, 13.0 ng/ml).  

Levels in cord blood 

The studies are also described under the PFCA section above and sum-

marized in Table 10. 

In the Norwegian study of 123 samples of human maternal and cord 

blood PFHxS and PFOS were detected in cord blood at 0.23 and 1.52 

ng/ml, respectively (Gutzkow et al., 2012). The median levels in cord 

blood had the following % compared to the maternal concentration: 

PFHxS 70%; for PFOS 30% suggesting that PFHxS is transferred to the 

fetus much more efficiently than PFOS.  

The Swedish study of 19 samples collected in 1996–1999 detected 

PFOS (5.3 ng/g whole blood) in the cord blood, which was considerably 

lower than those found in blood serum from the mothers. Significantly 

positive correlations between maternal serum and cord blood levels 

were found (Glynn et al., 2012).  

The mean concentration of PFOS in 50 cord blood plasma samples 

from the Danish National Birth Cohort (1996–2002) was 11 ng/ml, cor-

responding to 30% of the level in maternal serum (Fei et al., 2007). 

The study from the Faroe Islands in 2000 (Needham et al., 2010) 

found PFOS and PFHxS at 6.60 and 9.10 ng/ml, respectively in the cord 

blood, which correlated well with the concentrations in maternal blood, 

with ratios (cord/maternal) of 0.34 and 0.74. The cord/maternal ratio 

suggested that the length of PFC chain as well as the active group affect-

ed the ability to pass the placenta. PFCs with a short chain length 

showed higher relative cord serum concentrations than PFCs with a 

longer chain length. PFCs with sulfonic acid as the active group seemed 

to pass more easily into the fetal circulation than PFCs with carboxylic 

acid as the active group (Needham et al., 2010).  

Overall, the studies found correlations between PFSAs in maternal 

and cord serum, with lower PFSA concentrations in cord serum than in 

maternal serum. The passage to fetal blood is easier for PFHxS.  

Levels in breast milk 

The results are summarized in Table 11. 

Kärrman et al. (2007) analyzed matched breast milk and serum sam-

ples (n = 12) during 2004 in Sweden. Of the eight PFASs found in the 

serum samples, five were detected in the matched milk samples. PFOS 

and PFHxS were detected in all milk samples at median concentrations 

of 0.166 ng/mL and 0.07 ng/mL, respectively. Similar PFC occurrence 
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and levels were found in the milk composite samples collected between 

1996 and 2004. The mean ratios between milk and serum (M:S) concen-

trations were 0.01:1 for PFOS and 0.02:1 for PFHxS. The serum and milk 

pattern suggested that PFHxS is excreted to milk in a higher degree than 

PFOS. In 2008, measured concentrations of PFOS and PFHxS in pooled 

human milk were 0.075 ng/mL and 0.014 ng/mL, respectively showing a 

decline in the PFSA concentrations from 2004 to 2008. 

In the Norwegian study of matched samples of serum and breast milk 

(sampled 2007–2008) the average median breast milk concentrations 

were 0.087 ng/ml for PFOS which corresponded to 1.4% of the corre-

sponding serum concentrations for PFOS (Haug et al., 2011) i.e. transfer 

of PFOS to breast milk is lower than for PFCAs. 

Elimination rates of PFOS in breast milk from nine Norwegian mothers 

in the Oslo area was studied by Thomsen and co-workers. The median 

concentration of PFOS was 0.11 ng/ml. During lactation, PFOS cocentra-

tion in breast milk was reduced by 3.8% per month, and by 37% by year.  

Sundström et al. measured the concentration of PFOS and PFHxS in 

pooled human milk samples obtained in Sweden between 1972 and 

2008 (Sundstrom et al., 2011). PFOS and PFHxS demonstrated statisti-

cally significant increasing trends in pooled human milk samples from 

Stockholm over the period 1972–2000. PFOS and PFHxS showed a de-

cline between 2001 and 2008 of approximately 13% and 6 % per year, 

respectively. In 2008, the measured concentrations of PFOS and PFHxS 

were 0.075 ng/mL and 0.014 ng/mL, respectively. The study showed 

that the temporal trend in PFOS and PFHxS concentration in pooled hu-

man milk samples is similar to the trend in serum concentrations 

(Sundstrom et al., 2011). 

For comparison, in the study of 19 breast milk samples from China 

(sampled 2004), PFHxS, PFOS were detected in all samples (So et al., 

2006). Concentrations of PFOS ranged from 45 to 360 ng/L and up to 62 

ng/L for PFHxS.  

The PFC concentrations in breast milk are far less than those report-

ed in human blood or serum, however there might be a potential risk to 

infants because of the relatively high exposure per body weight com-

pared to adults. 

Levels in amniotic fluids 

Only one unpublished and two published studies were found measuring 

PFSAs in human amniotic fluid (Jensen et al., 2012; Stein et al., 2012) 

(Bonefeld-Jørgensen, Unpublished data) (Table 12). Jensen et al. studied 

300 randomly selected second-trimester amniotic fluid samples from a 

Danish pregnancy-screening biobank covering 1980 through 1996 (Jen-
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sen et al., 2012). Only PFOS was measured and the median concentration 

was 1,1 ng/ml (interquartile range (IQR): 0.66–1.60 ng/mL). For each 

later gestational week of amniocentesis the PFOS was 9.4% higher (95CI: 

3.3%, 15.9%). No associations with maternal age or parity were found. 

In the unpublished Danish study (Bonefeld-Jorgensen et al.) the con-

centrations of six PFSAs were measured in 54 amniotic fluid samples 

(1995–1999). The results showed that PFOS, PFOSA and PFHxS could be 

detected in 46.6%, 35.2% and 4.5% of the samples. The average PFOS 

level was 1.35+0.83 ng/ml. 

In the US study (sampled in 2005–2008), the concentrations of 2 

PFSAs (PFHxS, PFOS) were measured in serum and amniotic fluid (sec-

ond trimester) (Stein CR 2012). PFSAs in amniotic fluid was detected at 

concentrations approximately 10–20-fold lower than in maternal serum. 

PFOS was detected in 24 and PFHxS in 4 of the amniotic samples at me-

dian concentrations 0.4 ng/ml. For the detected sulfonates strong corre-

lations were seen between serum and amniotic fluid (ρ = 0.76–0.80). 

PFOA appeared to be commonly detected in amniotic fluid if the se-

rum concentration exceeded approximately 1.5 ng/mL whereas PFOS 

was rarely detected in amniotic fluid until the serum concentration was 

about 5.5 ng/mL.  

Amniotic fluid PFC concentrations are lower than in maternal blood 

(10–20 fold) and considerably lower than cord blood concentrations. The 

PFOS levels detected in the US study were lower than those reported from 

Denmark, probably due to the older Danish samples (1980–1990).  

7.3.4 Conclusions on human biomonitoring of PFSAs 

Blood levels of perfluorinated chemicals have been monitored in several 

Nordic countries including in the Arctic, and among PFSAs, usually PFOS 

and PFHxS are detected most frequently. PFHpS and PFBS have also 

been measured in the human blood, although not in all samples. PFDS 

were only observed above the LOQ in the Swedish study. Time trend 

analyses indicate decreasing tendency of PFOS and PFHxS since 2000, 

however, in Sweden an increasing tendency was observed for PFHxS 

from 1996 to 2010. Overall the Swedish studies show that the phase-out 

of PFOS-related chemicals has resulted in decreasing serum concentra-

tions of PFOS in the blood serum of young Swedish women during the 

past decade. However, exposure to sulfonates with shorter carbon 

chains than PFOS (or their respective precursors), such as PFBS, is cur-

rently increasing. 
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Correlations have been seen between PFOS and PFOA25 which indicate 

common sources for human exposures. In general, the blood level is 

higher for males than females. 

High intake of fruit suggests lower blood level of PFOS and PFHpS, 

but seem to be caused by lower intake of fish and meat. 

In summary, the studies found a correlation between the maternal 

and cord blood levels; and lower PFSA concentrations in cord serum 

than in maternal serum. PFOS and PFHxS were detected in cord blood 

and the studies showed that PFHxS was passed more easily through the 

placenta. PFCs with a short chain length seemed to pass the placenta 

more efficiently than PFCs with a longer chain length. PFCs with sulfonic 

acid as the active group seemed to pass more easily into the fetal circula-

tion than PFCs with carboxylic acid as the active group.  

Among PFSAs, only PFOS has been detected in breast milk in concen-

trations approximately 1–2% of the corresponding concentrations in 

serum. Only in the Swedish studies PFHxS was detected. 

Few data on PFSAs (PFOS) in amniotic fluid is reported until now. 

Amniotic fluid PFC concentrations are considerably lower than maternal 

blood (10–20 fold) and also lower than cord blood concentrations. PFOS 

was more rarely detected in amniotic fluid until the serum concentration 

was about 5.5 ng/mL; probably because PFOS appeared to be less solu-

ble in amniotic fluid. For the detected sulfonates strong correlations 

were seen between serum and amniotic fluid. 

7.3.5 PFAL (Perfluoro aldehydes) in humans 

No biomonitoring data were found for exposure in humans. 

7.3.6 FTOH (fluorotelomer alcohols) in humans 

FTOHs are precursor compounds that are known to degrade to PFCAs. 

The measurement and human exposure to FTOHs has not yet been estab-

lished but it has been shown that FTOHs (8:2-FTOH and 10:2-FTOH) are 

metabolized to PFCAs in vivo and in vitro studies (Dinglasan et al., 2004).  

Therefore, PFCA can give som indication of the FTOH exposure. Be-

low are some studies on PFCAs and FTOHs in air and associations to 

PFCA in serum are given. 

────────────────────────── 
25 The correlations were not limited to only PFOS and PFOA. 
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Studies from Norway and Sweden showed elevated levels of some 

PFCAs indicators of the FTOH exposure, with carbon chain lengths from 

C4 to C11 in whole blood from ski technicians using fluorinated ski wax 

(Freberg et al., 2010; Nilsson et al., 2010a; Nilsson et al., 2010b). The me-

dian blood level of PFOA was 112 ng/mL in the Swedish study and 50 

ng/ml in the Norwegian study, which is 25–50 times the concentration in 

the general population in these two countries. For the first time the PFTe-

DA was found in human serum (Freberg et al., 2010). PFNA was the sec-

ond most abundant carboxylate in blood from wax technicians (Nilsson et 

al., 2001). The levels of the other PFCAs were also much higher than gen-

eral population except for PFUnDA and PFTrDA (Nilsson et al., 2010a). 

The PFC measurements of the ski wax working place in Sweden 

showed that the most dominating compound in the air samples was the 

8:2 FTOH (range = 830−250,000 ng/m3), followed by PFHxA (range = 

57−14,000 ng/m3) and PFOA (range = 80−4,900 ng/m3) (Nilsson et al., 

2010a). The levels of the PFCAs found in the serum correlated well with 

those detected in air samples collected during ski waxing, supporting 

that inhalation is a major route of occupational exposure. The levels of 

PFSAs in ski waxes were comparable with those in the Norwegian gen-

eral population. The authors of the Swedish study suggest that the inter-

nal exposure to PFOA was more likely indirect through biotransfor-

mation of 8:2 FTOH to PFOA and PFNA in humans (Nilsson et al., 2010a). 

Another study aimed to investigate the role of indoor office air on ex-

posure to PFCs among office workers (n = 31; 5 men) (Fraser et al., 

2012). In the newly constructed building the air samples contained 

mainly FTOHs (8:2 FTOH (9,920 pg/m3); 10:2 FTOH (2,850 pg/m3); 6:2 

FTOH (1,320 pg/m3)) and MeFOSE (289 pg/m3) and to a lesser extent 

FOSAs. In the serum samples they detected PFOS (11 ng/mL), PFOA (3.7 

ng/mL), PFNA (1.6 ng/mL), PFHxS (1.5 ng/mL), and PFDeA (0.36 

ng/mL). PFUA, NMeFOSAA, N-EtFOSAA, and PFDoA were not detected in 

all samples and the concentrations were low. They reported a strong 

positive association between FTOH concentrations in office air and se-

rum PFOA concentrations and weakly between FTOHs in office air and 

PFNA in serum. Evaluation: the authors suggested that inhalation of 

FTOH is an important exposure pathway to PFCAs.  
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7.3.7 FTS (fluorotelomer sulfonates) in humans 

No studies concerning biomonitoring for fluorotelomer sulfonates was 

found for the Nordic countries. 

Exposure to legacy and current commercial fluorinated chemicals 

was investigated by analyzing fifty human sera samples collected in 

2009 from the United States (Lee and Mabury, 2011).  

The 8:2 FTS was the dominant congener observed in human sera 

(<LOD (0.005 μg/L)−0.231 μg/L; >95% of the samples), followed by 6:2 

FTS (<LOD (0.005 μg/L)−0.047 μg/L; >54%) and 4:2 FTS (<LOD 

(0.005 μg/L)−0.018 μg/L; <20%). The observation of different perfluoro-

alkyl chain lengths of FTS in human sera here is consistent with exposure 

to fluorotelomer-based products. The sources of this contamination may 

include exposure to commercial products containing the FTS themselves, 

or to other fluorotelomerthiol-based products, such as FTMAPs. 

7.3.8 PAP/di-PAP (polyfluoroalkyl phosphate esters) in 
humans 

No studies concerning biomonitoring for polyfluoroalkyl phosphate es-

ters (PAP/di-PAP) was found for the Nordic countries. 

D’eon, JC et al. examined pooled human serum samples collected in 

2004–2005 (n = 10) and 2008 (n = 10) from the Midwestern US for the 

4:2 through 10:2 PAP diesters (diPAPs) (D’Eon et al., 2009). The serum 

samples from 2004 and 2005 contained 4.5 μg/L total diPAPs, with the 

6:2 diPAP dominating the congener profile at 1.9±0.4 μg/L. As diPAPs 

have been shown to degrade to PFCAs in vivo, our observation of diPAPs 

in human sera may be a direct connection between the legacy of human 

PFCA contamination and PAPs applications. 

In serum samples from 2009 lower diPAP concentrations 

(0.035−0.136 μg/L) for the more dominant congeners (6:2, 6:2/8:2, 8:2) 

were detected (Lee and Mabury, 2011).  

7.3.9 Other fluorinated telomers in humans 

No biomonitoring data were found for exposure in humans. 
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7.3.10 Other fluorinated compounds of interest in humans 

Lee H et al. investigated the exposure to current commercial fluorinated 

chemicals by analyzing 50 human sera samples collected in 2009 from 

the United States for forty fluorinated analytes that included the one 

fluorotelomer mercaptoalkyl phosphate diester congener (FTMAP), per-

fluorophosphonates (PFPAs), and perfluorophosphinates (PFPiAs) (Lee 

and Mabury, 2011). The 6:2 FTMAP were not detected. PFPiAs were 

detected for the first time in human sera, with C6/C6 and C6/C8 PFPiAs 

as the dominant congeners, observed in >50% of the samples. Unlike the 

PFCAs and PFSAs, there are no known PFPiA precursors in production. 

Therefore, the observation of PFPiAs in human sera gives evidence of 

human exposure to these chemicals.  

No data for fluorotelomer mercaptoalkyl phosphate diester congener 

(FTMAP) was found for the Nordic countries. 

7.3.11 Conclusion on PFAL, FTOH, FTS, PAP/di-PAP and 
other PFC telomers in humans 

No data for PFAL (perfluoroaldehyde) in humans was found. 

Data on FTOH in humans is not found since the measurement and 

human exposure and thus monitoring to FTOHs has not been estab-

lished. However, it has been shown that FTOHs (8:2-FTOH and 10:2-

FTOH) are metabolized to PFCAs in in vivo and in vitro studies. Strong 

correlation between PFOA and FTOH are observed, and therefore PFOA 

serum levels can give an estimation of FTOH exposure and serum levels. 

Studies in Norway and Sweden showed elevated PFCAs with carbon 

chain length of C4–C11 in whole blood of occupational ski wax techni-

cians with a level being up to 25–50 times that of the general population.  

For office workers in a new building a strong correlation between air 

FTOH and PFOA serum concentration (more weakly for PFNA) was found. 

No data on FTS (fluorotelomer sulfonates) for the Nordic countries 

was found. Whereas a US study reported that the 8:2 FTS was dominant 

in human sera, and that the sources may include exposure to commercial 

products containing FTS or FTMAPs (fluorotelomer mercaptoalkyl 

phosphate diester). 

No data on PAP/di-PAP in humans has been reported for the Nordic 

countries. Whereas a US study (2004–2008) found 6:2 diPAP to be the 

dominating compound with decreasing levels observed in samples from 

2009. Since diPAPs degrade to PFCA in vivo the diPAP serum level can 

also be indicative of PFCA exposure. 
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A US study reported in 2009 data on human serum concentration of 

PFTMAP congeners. The C6/C6 and C6/C8 PFPiAs were the dominating 

congeners found in more than >50% of the samples. Since there are no 

PFPiA precursors in production the data give evidence of human expo-

sure to the chemicals. 

7.4 Suggested priority list of substances  

As a result of the findings concerning occurrence in the Nordic environ-

ment and in humans the following priority list of PFCs was agreed upon 

with KLIF/NORAP: 

 

1. PFCAs, C4 and higher homologues with very low focus on C8. 

2. FTOH, C4 and higher. 

3. PFSA, C4 and higher with very low focus on C8. 

4. FTS, 6.2 and 8:2 (mayby 10:2). 

5. diPAP/monoPAP. 

6. PFPE. 

7.5 Overall conclusion for the human biomonitoring 
data on PFCA, PFSA and other PFC telomers 

For both PFCAs and PFSAs human biomonitoring data for the Nordic 

countries during the period from 1992 to 2010 are found with most and 

newest data from Norway and Sweden, and fewest from Denmark. No 

human data were found for Iceland and Finland. 

Overall, a decreasing tendency has been observed for PFOA and PFOS 

since 2002, whereas, in Sweden it was found that sulfonates with short-

er carbon chains than e.g. PFOS or respective precursors is currently 

increasing.  

Some Nordic studies (n = 4) also show that PFAAs can be transferred 

to the fetus (cord blood) and most efficiently for shorter chain length. 

Although the longer carbon chains are known to be more biologically 

persistent than the shorter carbon chain compounds the daily exposure 

(including mixture) from several sources must be taken into considera-

tion in risk assessment. 

Only one Nordic study from Denmark on PFSAs and PFCAs in amniot-

ic fluids has been published and another DK study has not yet been pub-
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lished. PFOS, PFHxS and PFOA were determined in a level being 10–20 

folds below the serum level. 

Five Nordic studies also show that the PFSAs and PFCAs can be trans-

ferred to human breast milk being in the concentration range of 1–2% 

and 3–4% of the corresponding serum concentration.  

7.6 Future work 

Thus Nordic studies are needed to follow up on the increase of sul-

fonates with shorter carbon chains and respective precursors in as well 

human/maternal blood and cord blood. 

Further Nordic studies on different PFSA and PFCA congeners in am-

niotic fluids and breast milk are needed to explore the real pre-term and 

post term exposure of the fetus and newborn child. 

Studies on the correlation between exposure to FTOH and PFCA at 

the serum level are needed to explore the general as well as occupation-

al exposure to FTOHs. 

Studies are needed for the Nordic countries on PFAL (perflouroalde-

hyde), FTS (fluorotelomer sulfonates), PAP/di-PAP and FTMAPs (fluorote-

lomer mercaptoalkyl phosphate diester) since no data are found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8. Human health effects and 
related animal toxicity of per- 
and polyfluorinated 
substances  

Most data found on human and animal toxicology and effects of PFCs are 

on PFOS and PFOA, probably because existing laboratory procedures in 

the past did not allow analyses of other PFCs that in general exist in lower 

concentrations and below detection limits; but also because PFOS and 

PFOA are the most abundant PFCs in the human matrix. Main epidemio-

logical and medical surveillance studies have been conducted primarily in 

the United States on workers occupationally exposed to PFOS-based fluo-

rochemicals (e.g. 3M) or populations exposed to PFOA-contaminated 

drinking water. These studies specifically examined PFOS or PFOA expo-

sures and possible adverse outcomes such as mortality and cancer inci-

dence studies. Further studies have been reported on potential endocrine 

effects, associations between primarily PFOS and/or PFOA serum concen-

trations and hematology, hormonal and clinical chemistry parameters. 

The results of the human studies are summarized in Table 13 and 14. 

8.1 PFCA (Perfluoroalkyl carboxylates)  

8.1.1 PFBA (C4)  

Animal experimental studies 

Several studies have been published on the potential biological respons-

es of exposure to PFBA in experimental animals (Chang et al., 2008; Das 

et al., 2008; Permadi et al., 1992; Takagi et al., 1991) and in studies con-

ducted in primary rat hepatocytes (Intrasuksri and Feller, 1991; In-

trasuksri et al., 1998; Vanden Heuvel et al., 1991). In general, PFBA was 

effective in inducing peroxisome proliferation in these rodent studies 

but the in vivo potency was lower than for PFOA at same doses. In vitro, 
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at the molecular level, PFBA were shown to activate both the human and 

mouse isoforms of peroxisome proliferator-activated receptor  

(PPAR) in a transfection assay system in COS-1 cells (Wolf et al., 2008), 

but again with lower response compared to PFOA. Treatment of mice 

with PFBA during gestation did not result in any developmental effects 

as seen for PFOA (Das et al., 2008). This difference may be due to lower 

potency of PFBA to activate PPAR, or due to rapid elimination of PFBA 

(Chang et al., 2008). 

A very recent study evaluated the toxicity of PFBA in male and female 

rats (28-day and 90-day) (Butenhoff et al., 2012). Effects in males in-

cluded: increased liver weight, slight to minimal hepatocellular hyper-

trophy; decreased serum total cholesterol; and reduced serum thyroxin 

with no change in serum thyrotropin; no effects were seen in females. 

No effect on the endocrine system was found. 

In summary, rodent exposures to PFBA induce peroxisome prolifera-

tion but at a lower level than PFOA. Studies suggested liver toxicity and 

some effect on the thyroid system. The reported studies suggest minimal 

developmental and endocrine effects from PFBA exposures. 

Human studies 

No data found. 

8.1.2 PFHxA (C6) 

Animal experimental studies 

A 90-day repeated dose oral study in rats investigated the possible toxic 

effects of PFHxA at levels up to 200 mg/kg/day (functional observational 

battery and motor activity) (Chengelis et al., 2009). The observed changes 

included: lower body weight gains in the 10, 50 and 200 mg/kg/day group 

males; lower red blood cell parameters; higher reticulocyte counts and 

lower globulin in the 200 mg/kg/day group of both males and females, 

higher liver enzymes in males at 50 and 200 mg/kg/day and lower choles-

terol, calcium in males at 200 mg/kg/day. Based on liver histopathology 

and liver weight changes, the NOAEL for oral administration was 50 

mg/kg/day for males and 200 mg/kg/day for females. PFHxA was a poor 

peroxisomal inducer. No reproductive and developmental toxicity was 

reported for PFHxA (Loveless et al., 2009). 

In summary, studies suggest that PFHxA exposures of rats affect body 

and liver weight, changes in liver and hematologic parameters, and that 

PFHxA is a poor peroxisomal inducer. 
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Human studies 

No data found 

8.1.3 PFNA (C9) 

Animal experimental studies 

A 90-day rat PFNA feeding study with a 60-day recovery period suggest-

ed that the liver was the main target organ, with effects on serum clinical 

chemistry, higher liver weights, and evidence of induced peroxisome 

proliferation in both males and females. At the end of the recovery peri-

od most of the affected parameters had partially or completely returned 

to normal (Mertens et al., 2010).  

PFNA has been shown to induce developmental toxicity and liver en-

largement in mice when administered throughout the gestational period 

(Wolf et al., 2010). Using a PPAR knockout mouse model Wolf and co-

workers showed that the effects of PFNA on survival rate and develop-

ment of prenatally exposed mice was dependent on expression of PPAR 

(Wolf et al., 2010). 

Immune toxic effects have also been observed for PFNA. Exposure of 

mice to PFNA for 14-days led to a decreased weight of the lymphoid 

organs, and the study suggested immune toxic effects on lymphoid or-

gans and T cell (Fang et al., 2008). Cell apoptosis in rats can be caused by 

PFNA (Fang et al., 2010). Recently, PFNA was suggested to disrupt the 

hepatic glucose metabolism by increasing the levels of rat serum glucose 

and hepatic glycogen via altering the expression of the genes related to 

glucose metabolism and suppressing the hepatic insulin pathway (Fang 

et al., 2012).  

In summary, studies suggest that PFNA exposures of rodents are relat-

ed to liver toxicity including disrupting glucose metabolism; PPAR de-

pendent effects on development and survival upon in utero exposure and 

PFNA induced immune toxicity. A proposal to classify PFNA as a reproduc-

tiv toxicant in the EU has been submitted by Sweden (ECHA, 2012a). 

Human studies: Occupational  

One occupational study of exposures to a PFNA surfactant blend was under-

taken. The PFNA study examined liver enzymes and blood lipid levels 

(Mundt et al., 2007) in a cohort consisting of 630 employees at a U.S. poly-

mer production facility using PFNA between 1989 and 2003. The exposure 

was assessed by work history and not by measuring the PFNA concentra-

tions in the serum. Seven parameters of liver function (total cholesterol, 

Gamma glutamyl transpeptidase, transminases, alkaline phosphatase, bili-
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rubin, and triglycerides) were examined and they showed no significant 

effect. This study did not either find any effect on thyroid function as as-

sessed by serum levels of TSH, T4, fT4 and T3 uptake. 

The authors concluded that based on laboratory measures assessed 

over more than a decade; no adverse clinical effects were detected from 

occupational exposure to a PFNA blend. 

Human studies: general exposures (PFNA) 

 Lipid metabolism and cholesterol  

In a cross-sectional study of general US population (NHANES data; 

2003–2004) Nelson et al. investigated the relationship between 

exposure to PFNA (also PFOA, PFOS and PFHxS), and cholesterol levels, 

obesity and insulin resistance (Nelson et al., 2010). Total cholesterol 

and non-HDL were positively associated with PFNA levels.  

Another study from NHANES data (1999–2000 and 2003–2004) 

examined the relationship between PFCs and components of the 

metabolic syndrome in participants (Lin et al., 2009). They found that 

in adolescents, increased serum PFNA concentrations were 

associated with decreased blood insulin and clinical hyperglycaemia, 

increased serum HDL cholesterol, and was inversely associated with 

the prevalence of metabolic syndrome.  

 Thyroid function 

In a study of New York State anglers (n = 31), potential associations 

were investigated between serum concentrations of 5 measured 

carboxylates (PFDA, PFNA, PFHpA, PFOA, PFUnA) and levels of TSH 

and free T4 (Bloom et al., 2010). No statistically significant 

associations were found for PFNA (mean concentration 0.79 ng/mL 

(0.66–0.96)). 

 Reproductive effects 

A recent study evaluated the possible association between PFC 

exposure and biomarkers of male reproductive health in a larger 

population of almost 600 men from Greenland, Poland and Ukraine 

(Toft et al., 2012). PFNA (median: 1.2 ng/mL) was not associated 

with sperm concentration, volume, total count or percent motile 

sperm. However, PFNA was associated with a non-significant lower 

proportion of normal sperm at higher exposure. 

A study evaluated the association of female serum concentrations of 

different PFCs (PFOA, PFNA, PFDA) with time to pregnancy (TTP) in 

222 Danish first-time pregnancy planners (prospective design) 

(Vestergaard et al., 2012). No clear association between PFNA 

(median concentration 0.45 ng/mL) and TTP were observed. 
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 Developmental effects 

In a small Canadian study (n = 101; sampling date 2004–2005) no 

association was found between birth weight and maternal PFNA 

levels (Monroy et al., 2008). 

A US study examined the association between PFC exposure and 

ADHD among children (Hoffman et al., 2010). Data from this NHANES 

study (n = 571; age 12–17; from 1999–2000 and 2003–2004) 

showed increased odds of ADHD disease with higher serum PFNA 

level (Odds ratio OR 1.32).  

 Immune system 

A study investigating childhood infection (immunoglobulin E) found no 

significant correlation between cord blood PFNA and serum total IgE or 

cord blood IgE in 244 2-year old Taiwanese children (Wang et al., 2011). 

In summary, there are very few data on the suspected health effects 

of PFNA and further studies are needed to explore the adverse effects 

of PFNA in human. 

8.1.4 PFDA (or PFDeA) (C10) 

Animal experimental studies 

Animal studies have identified PFDA as toxic to the liver. Administration 

of single gavage doses of ≥20 mg/kg PFDA to female C57BL/6N mice 

resulted in significant and dose-related increases in relative liver weight, 

assessed 30 days after dosing (Harris and Birnbaum, 1989; Harris et al., 

1989). Significant elevations in liver weight (69%) were seen in mice 2 

days after treatment with 40 mg/kg PFDA (Brewster and Birnbaum, 

1989), which also significantly increased hepatic acyl-CoA oxidase activ-

ity and hepatic lipids. Kawashima et al. (Kawashima et al., 1995) com-

pared the effects of lower dietary doses of PFDA (1.2–9.5 mg/kg/day) 

and PFOA (2.4–38 mg/kg/day) on hepatic effects in male rats in a 7-day 

dietary study. PFDA was considerably more potent than PFOA in reduc-

ing body weight gain, food consumption, causing hepatomegaly, and 

inducing biochemical markers of peroxisome proliferation.  

Other reported animal effects of PFDA: increasing serum cholesterol 

in male rats exposed to 10 mg/kg/day (Shi et al., 2007); 2-and 4-fold 

increases in serum T3 and T4, respectively, 30 days after a single dose of 

80 mg/kg PFDA to female C57BL/6N mice (Harris et al., 1989); reduc-

tion of body weight (33%) in male C57BL/6 mice (78 mg/kg/day) (Per-

madi et al., 1992); potent inducer of the estrogen-responsive biomarker 

protein vitellogenin (Vtg) in juvenile rainbow trout (Benninghoff et al., 
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2011), decreased testicular androgen production (plasma testosterone 

and dihydrotestosterone levels) in male rats (Bookstaff et al., 1990). 

In summary, the animal studies have demonstrated that the liver is 

the primary target for PFDA toxicity including inducement of the peroxi-

some proliferation and acyl-CoA oxidase activity; the PFDA had a higher 

toxic potency than PFOA. Furthermore, effects on the thyroid and testic-

ular androgen level were observed in mice and rats, respectively. A pro-

posal to classify PFNA as a reproductiv toxicant in the EU has been sub-

mitted by Sweden ((ECHA), 2012b). 

Human studies: general exposures (PFDA) 

 Thyroid function  

In the study of New York State anglers (n = 31), PFDA was above 

the LOD for 65% of the samples (mean 0.21 ng/ml (0.18–0.26)). 

No associations were found between serum concentrations of 

PFDA and levels of TSH and free T4 (Bloom et al., 2010). However 

the authors suggested that there was a possibility of weak positive 

associations between FT4 and PFDA by use of a larger sample size 

(Bloom et al., 2010). 

 Reproductive effects 

A study evaluated the association of female serum concentrations of 

different PFCs (PFDA, PFOA, PFNA) with time to pregnancy (TTP) in 

222 Danish first-time pregnancy planners (prospective design) 

(Vestergaard et al., 2012). No clear association between PFDA 

(median: 0.10 ng/mL) and TTP was observed.  

 Developmental outcome 

No associations were found between PFDA exposure and birth 

weight in a Canadian study (Monroy et al., 2008) or between PFDA 

exposure and ADHD among children from US NHANES study 

(Hoffman et al., 2010).  

 Immune system 

A study investigating childhood infection (immunoglobulin E) found no 

significant correlation between cord blood PFDA and serum total IgE or 

cord blood IgE in 244 2-year old Taiwanese children (Wang et al., 2011).  

In summary, there are very few data on the suspected health effects 

of PFDA and further studies are needed to explore the adverse effects 

of PFDAs in human. 
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8.1.5 PFUnDA/ PFUnA (C11) 

Animal experimental studies 

In vitro, PFUnA could at low level activate the mouse PPARα in transient-

ly transfected COS-1 cells (Wolf et al., 2012). 
No further animal experimental toxicity data were found.  

Human studies (PFUnA) 

In the study of New York State anglers (n = 31; PFOA mean conc. 1.33 

ng/mL), no associations were found between serum concentrations of 

among others PFUnA and levels of TSH and free T4 (Bloom et al., 2010). 

However the authors suggested that there was a possibility of weak pos-

itive associations between FT4 and PFUnA by use of a larger sample size 

(Bloom et al., 2010). 

In two Korean studies, no correlations were found between PFUnA 

exposure and TSH and T4 levels (Ji et al., 2012) in the general population 

and neither between PFUnA in maternal blood serum and T3/T4/TSH of 

fetal cord blood serum (Kim et al., 2011). 

Very few studies have measured and evaluated the PFUnA in the hu-

man studies, and they found no correlations to the assessed health effects. 

8.1.6 PFDoA or PFDoDA (C12) 

Animal experimental studies 

Treatment of male rats with PFDoA by gavage for 14 days significantly 

induced an increase in total serum cholesterol (10 mg/kg/day) and re-

duction in body weight (5 mg/kg/day). PFDoA exposure at 5 mg/kg/day 

or 10 mg/kg/day resulted in testis cell (Leydig and Sertoli) apoptosis 

and a decline in serum estradiol and testosterone levels (Shi et al., 

2007). Another study showed that 110 days of PFDoA exposure led to 

significantly decreased testosterone and expressional changes of testicu-

lar steroidogenic genes in rats (Shi et al., 2009). The authors suggested 

that testosterone decline may be involved in the pathway of cholesterol 

transportation and steroidogenesis, and that these pathways were dis-

rupted in testes following PFDoA exposure (Shi et al., 2007). 

In summary, rodent studies suggest that PFDoA exposures decreases 

body weight, causes liver and testes toxicity, including changes in an 

array of parameters such as serum cholesterol and testes hormone level. 
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Human studies 

In the few studies that measured the PFDoA, there was not found any 

association with thyroid hormone, semen quality or lipid metabolism 

(Joensen et al., 2009; Kim et al., 2011) (Halldorsson et al., 2012). In some 

of these studies PFDoA was found in few samples above LOD.  

8.1.7 PFTrDA (C13) 

Animal experimental studies 

No data on the toxicity of PFTrDA were found. 

Human studies 

In the Korean studies, investigating the exposure levels of 13 PFCs, 

PFTrDA were detected in >90% of maternal serum samples (0.39 ng/mL 

(0.27–0.57). One study observed that only PFTrDA concentrations were 

positively correlated with TSH levels, but negatively with total T4 con-

centrations among the female population (Ji et al., 2012). A positive as-

sociation was detected between PFTrDA in maternal blood serum and 

T3 and T4 of fetal cord blood serum and between PFOA and cord serum 

TSH (Kim et al., 2011). 

In another study where PFTrDA was measured, PFTrDA was under 

LOD in many of the samples (Joensen, 2009). 

8.1.8 PFOA (C8) 

Animal experimental studies 

There is a considerable amount of animal data on the health effects of 

PFOA, which has been reviewed (Lau et al., 2007). The relevance of ani-

mal data for humans is controversial because of a much shorter half-life 

in rodents (measured in days) and the possible dependence of some 

animal toxicity on a peroxisome proliferation mechanism that is likely to 

be less important in humans (Steenland et al., 2010a).  

In its draft risk assessment, the U.S. EPA (2005) concluded that evi-

dence was suggestive that PFOA is carcinogenic in humans. In its review 

of that risk assessment, three of the four members of the EPA scientific 

advisory board concluded more strongly that PFOA was “likely to be 

carcinogenic in humans” (U.S. EPA 2006). There has been submitted a 

proposal for harmonised classification and labelling of PFOA/APFO in 

EU by Norway. In December 2011 the Risk Assessment Committee of the 

ECHA came to the conclusion that classification according to regulation 

EC No. 1272/2008 for PFOA is Repr. 1B and STOT RE 1 (ECHA, 2011). 
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 Tumor induction 

PFOA was not mutagenic or genotoxic in the classic battery of test for 

genotoxicity and mutations detected by the Ames test and structural 

chromosome damage (Fernandez Freire et al., 2008). However, in 

human HepG2 cells this compound exerted genotoxic effects as a 

consequence of oxidative stress (Yao and Zhong, 2005). 

In rodents dietary intake of PFOA induced tumors of the testicles, 

liver, and pancreas (Biegel et al., 2001; Sibinski, 1987). A 2-year 

study in rats reported a statistically significant increase in mammary 

fibroadenomas and Leydig cell adenomas suggesting impact of PFOA 

on reproductive tissues (Sibinski, 1987). In 2007 White and 

coworkers reported gestational exposure to PFOA in mice was 

associated with altered mammary gland development in dams and 

female offspring (White et al., 2007). 

 Hepatotoxicity 

The liver is the primary target organ by the exposure of animals to 

PFOA (and PFOS). PFOA has been shown to induce peroxisome 

(microbodies) proliferation in mouse and rat liver, and causes 

hepatomegaly. This proliferation has been shown to alter lipids, liver 

enzymes, and liver size (Kennedy et al., 2004; Lau et al., 2007; Takagi 

et al., 1992). Peroxisome induced proliferation and the resulting 

activation of a nuclear receptor peroxisome proliferator-activated 

receptor  (PPAR) have also been proposed as a mechanism for 

tumor induction and for the immune and hormonal changes seen in 

rodents (Lau et al., 2007). Other proposed mechanism for tumor 

promotion is by inhibition of gap-junctional intercellular 

communication (GJIC)(Upham et al., 2009). GJIC plays a vital role in 

maintaining tissue homeostasis, and disruption of gap junction 

function can lead to diseased states such as tumorigenesis. PFOA was 

shown to decrease GJIC activity in the liver of rats treated for both 

acute and long-term dosing (Upham et al., 2009).  

 Developmental toxicity 

The developmental toxicity of PFOA (and PFOS) has been examined 

in rats and mice (Butenhoff et al., 2004; Hinderliter et al., 2005; Lau 

et al., 2006). Generally, the developmental toxicity induced by 

exposure to PFOA throughout gestation included increased neonatal 

mortality, reduced postnatal survival, delayed eye opening, growth 

deficits, and sex-specific alterations in pubertal maturation (Lau et 

al., 2006). A cross-foster study indicated that the postnatal effects on 

survival, eye opening, and weight gain were a consequence of 

gestational exposure and that exposure via lactation was not a major 
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factor (Wolf et al., 2007). Using a PPAR- knockout mouse model it 

was shown that PFOA developmental toxicity was dependent on 

expression of PPAR (Abbott et al., 2007). 

 Immunotoxicity 

In rodents PFOA decreases the B-cell and T-cell immune responses 

and results in atrophy of the spleen and thymus (Yang et al., 2002), 

causes hepatomegaly (Takagi et al., 1992), and decreases levels of 

cholesterol (Kennedy et al., 2004).  

 Endocrine disruption 

Several experimental studies have reported that PFCs impair thyroid 

hormone homeostasis. Effects of PFOA on thyroid hormones are not 

as well characterized as those of PFOS. Depression of serum 

triiodothyronine (T3) and/or thyroxine (T4) in PFOA exposed rats 

and monkeys has been reported (Butenhoff et al., 2002; Lau et al., 

2007), but without an expected corresponding elevation of thyroid-

stimulating hormone (TSH) through feedback stimulation of the 

hypothalamic–pituitary–thyroid axis. Increases in estradiol and 

decreases in testosterone with PFOA exposure have also been 

observed in rodents (Lau et al., 2007). In addition to thyroid 

hormone disruption, changes in sex steroid hormone biosynthesis 

have been reported. Administration of PFOA to adult male rats for 14 

days led to a decrease in serum and testicular testosterone and an 

increase in serum estradiol levels (Biegel et al., 1995), which was 

suggested to be associated with aromatase induction in the liver. 

 Neurotoxicity 

Not much data was found for neurotoxicity of PFCAs including PFOA. 

Neonatal exposure of mice to PFOA (and PFOS) affected the proteins 

involved in neurogenesis and synaptogenesis in the developing 

mouse brain, which were accompanied by neurobehavioral defects in 

adulthood (Johansson et al., 2008). Also in an avian model PFOA was 

reported to be a developmental neurotoxicant (Pinkas et al., 2010). 

In summary, PFOA exposures in rodent indicate carcinogenic 

responses in liver, pancreas, testes and mammary glands. 

Furthermore, PFOA exposure in animals affect the development and 

reproduction, thyroid and immune system negatively; induces 

peroxisome proliferation believed to be a mechanism behind tumor 

initiation and effect on immune- and hormone systems. 

Human studies: Occupational exposures 

The first retrospective cohort study on mortality of employees of the 

PFOA-producing factory (3M) demonstrated a significant association be-

tween prostate cancer mortality and employment duration (Gilliland and 
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Mandel, 1993). In an updated study the previously found association be-

tween prostate cancer and time of employment could not be confirmed.  

However, in a later study of exposed workers in the 3 M factory in 

Minnesota, ammonium perfluorooctanoate (APFO) exposure was pre-

sumably associated with prostate cancer, cerebral vascular disease, and 

diabetes mellitus, but not with liver, pancreas, or testicular cancer 

(Lundin et al., 2009). 

Based on the occupational exposures there were reported no signifi-

cant associations between serum PFOA and reproductive hormones in 

men (Olsen et al., 1998). In the study of Olsen and Zobel (2007) PFOA 

was not statistically significantly associated with total cholesterol or 

low-density lipoproteins. High-density lipoprotein (HDL) and free T4 

were negatively associated with the PFOA level, whereas triglycerides 

and T3 tended to be positively associated (Olsen and Zobel, 2007). Sev-

eral studies have investigated the relation to liver toxicity. The liver en-

zymes, transaminase levels, were positively associated with PFOA serum 

concentrations in some studies (Olsen and Zobel, 2007) but not in others 

(Sakr et al., 2007), indicating controversial hepatotoxic effects. 

Human studies: Communities with high exposed population 

In the United States two communities in Minnesota and West Virgin-

ia/Ohio have been exposed via water contamination coming from adja-

cent industrial plants (water mean levels for PFOA: 15 ng/ml in Minne-

sota and 82 ng/ml in Ohio in 2005, respectively). Several studies de-

scribe the health effects of the PFOA in the “C8 Health Project” 

(http://publichealth.hsc.wvu.edu/c8/) which has data on 69,030 per-

sons, and provide an opportunity to examine a very large population 

with high exposure median (26.6 ng/mL of serum vs. 4ng/mL in the 

general U.S. population). The results are summarized in Table 13. 

The following associations have been seen for PFOA in the “C8 Health 

Project”: increased total cholesterol and low-density lipoprotein in chil-

dren and adolescents (Frisbee et al., 2010); increased blood lipid levels 

in relation to elevated PFOA (and PFOS) concentrations in the blood 

(Steenland et al., 2009); no associations to HDL cholesterol; positive 

associations with serum and liver enzymes (transaminase; a marker of 

hepatocellular damage) indicating hepatotoxic effect in humans (Gallo et 

al., 2012); positive association to serum uric acid (Steenland et al., 

2010); no association between PFOA and TSH (n = 371) (Emmett et al., 

2006); significant positive elevation in serum T4 and a significant reduc-

tion in T3 uptake in adults (Knox et al., 2011a); no associations with 

preterm birth and fetal growth restrictions (Savitz et al., 2012), positive 

association with hypothyroidism in children (Odds ratio (OR): 1.54; 95% 

http://publichealth.hsc.wvu.edu/c8/
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confidence interval (CI): 1.00, 2.37) (Lopez-Espinosa et al., 2012); asso-

ciations with Attention Deficit Hyperactivity Disorder (ADHD) in chil-

dren 5–18 years of age, with a small increase in prevalence for the sec-

ond quartile of exposure and a decrease for the highest versus lowest 

quartile (Stein and Savitz, 2011); more likely to have experienced meno-

pause among perimenopausal women with higher level of PFOA (and 

PFOS), suggesting endocrine disrupting effects (Knox et al., 2011b); as-

sociation with lower serum concentrations of IgA and IgE (for IgE in 

females only) (C8 Science Panel, 2009). 

The C8 Science Panel has concluded its work in determining whether 

there is a probable link between exposure to C8 (PFOA) and a range of 

human diseases (http://www.c8sciencepanel.org/prob_link.html). The 

Science Panel did find a Probable Link between exposure to C8 and med-

ically-diagnosed high cholesterol, and thyroid disease, testicular cancer 

and kidney cancer, and pregnancy-induced hypertension (elevated 

blood pressure in pregnancy). 

The Science Panel found no Probable Link between C8 and the fol-

lowing diseases: Parkinson’s disease, non-malignant liver disease, non-

malignant kidney disease, osteoarthritis, coronary artery disease or high 

blood pressure, adult onset diabetes, chronic obstructive pulmonary 

disease, asthma, childhood and adult infections such as influenza, neu-

rodevelopmental disorders in children, stroke, and five other autoim-

mune diseases (lupus, rheumatoid arthritis, Type 1 (juvenile) diabetes, 

Type II (adult-onset) diabetes, Crohn’s disease, and multiple sclerosis, 

risk of pregnancy loss, either miscarriage or stillbirth, preterm or low 

birth weight infants, measures of prematurity. 

In summary, the Community high exposed population studies sup-

port the occcupational studies on hepatoxic and thyroid toxic effects of 

PFOA. In addition, association with ADHD in children, endocrine and 

immunotoxic effects and testis and kidney cancers was reported. 

Human studies: General population  

Few epidemiological studies exist with data from the general popula-

tion. Below are summarized the adverse health effects observed for 

PFCAs (Table 14). 

 

 Lipid metabolism and cholesterol  

The discovery that PFCs bind to the PPARs (nuclear receptors that 

play a key role in lipid metabolism) have raised the concern that the 

PFCs may disrupt lipid and weight regulation. The occupational 

studies have suggested a positive association between PFOA and 

levels of cholesterol in humans. 

http://www.c8sciencepanel.org/prob_link.html
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In a cross-sectional study of general US population (NHANES data; 

2003–2004) Nelson et al. investigated the relationship between 

exposure to PFOA and PFNA (and also PFOS and PFHxS), and 

cholesterol levels, obesity and insulin resistance (Nelson et al., 2010). 

Total cholesterol and non-HDL was positively associated with PFOA 

(and PFNA and PFOS) level. The median serum concentration in 

NHANES was 4 ng/mL. 

Another study from NHANES data (1999–2000 and 2003–2004) 

examined the relationship between PFCs and components of the 

metabolic syndrome in participants (Lin et al., 2009). They found no 

correlation to PFOA, but in adolescents, increased serum PFNA 

concentrations were associated with decreased blood insulin and 

clinical hyperglycaemia, increased serum HDL cholesterol, and was 

inversely associated with the prevalence of metabolic syndrome. 

In a Danish study mothers who were overweight or obese before 

pregnancy had higher plasma levels of PFOA (and PFOS) (Fei et al., 

2007), suggesting a relation between BMI and PFOA levels. In 

addition, a recent prospective study of pregnant women and their 

children 20 years later (n = 665; maternal serum from 1988–1989) 

showed that in utero exposure to PFOA was positively associated 

with the prevalence of overweight and a high waist circumference at 

20 years in female but not male offspring (Halldorsson et al., 2012). 

In summary, the present studies on human exposure to PFCAs 

suggest some liver toxicity with changes in parameters involved in 

metabolic syndrome such as lipids, cholesterol levels and non-HDL, 

with the risk of obesity and insulin resistance.  

 Cardiovascular diseases 

Melzer et al. found no trend in self-reported history of heart disease in 

adults from the NHANES, after dividing PFOA serum levels into quartiles 

(Melzer et al., 2010). However, in a recent study from NHANES, higher 

serum PFOA levels were positively associated with self-reported 

cardiovascular diseases including coronary heart disease and stroke, 

and objective peripheral arterial disease (Shankar et al., 2012). 

 Cancer  

A follow-up study of the general population in Denmark (55,053 

Danish adults; 50–65 years of age; 1993–2006) found no clear 

differences in incidence rate ratios for bladder and liver cancers in 

relation to plasma concentrations of PFOA; although a modest 

positive associations were reported for prostate and pancreas 

cancers (Eriksen et al., 2009). A recent case-control study of 

Greenlandic Inuit (31 cases, 115 controls; collected in 2000–2003) 
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showed a significant association between serum PFOA (sum of PFCs) 

and risk of breast cancer (Bonefeld-Jorgensen et al., 2011).  

In summary, PFCAs might be risk factors in prostate, pancreas and 

breast cancers, but further studies are needed. 

 Thyroid function 

In a study of New York State anglers (n = 31; PFOA mean conc. = 1.33 

ng/mL), potential associations were investigated between serum 

concentrations of 5 measured carboxylates (PFDA, PFNA, PFHpA, 

PFOA, PFUnA) and levels of TSH and free T4 (Bloom et al., 2010). No 

statistically significant associations were found for any of the PFCs or 

the sum of them. A recent cross-sectional analysis of self-reported 

thyroid disease in the NHANES (n = 3,974 adults) reported a 

significant association for PFOA and thyroid disease in general US 

population and particularly in females (Melzer et al., 2010). More 

women with blood concentrations of ≥5.7 ng PFOA/mL were found to 

have currently treated thyroid disease compared with women having 

≤ 4.0 ng/mL of blood levels.  

In a Korean study, investigating the exposure levels of 13 PFCs, they 

observed no association to PFOA, but only PFTrDA concentrations was 

positively correlated with TSH level, but negatively with total T4 

concentration among the female population (Ji et al., 2012). In summary, 

possible association for PFOA and thyroid diseases is suggested. Further 

studies are needed before any conclusion can be taken. 

 Reproductive effects 

A Danish study (n = 105) showed an association between PFOA (and 

PFOS) exposure and the proportion of morphologically normal sperm 

cells (Joensen et al., 2009). However, an American study evaluated 

the semen quality among 256 infertility patients in relation to PFOS 

and PFOA in serum and semen and found no association between 

PFOS or PFOA levels and sperm concentration, volume or motility 

(Raymer et al., 2012). 

A recent study evaluated the possible association between PFC 

exposure and biomarkers of male reproductive health in a larger 

population of almost 600 men from Greenland, Poland and Ukraine 

(Toft et al., 2012). Sperm concentration, total sperm count and semen 

volume was not consistently associated with PFOA. 

Couple fecundity and time to pregnancy (TTP) were evaluated in the 

Danish National Birth Cohort study (n = 1,240) (Fei et al., 2009). The 

evaluation of TTP showed increased risk of irregular menstrual 

cycles in the upper three quartiles of PFOA relative to the lowest 

quartile and an increase in mean PFOA with longer TTP. The odds of 
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infertility (≥ 12 months without conception) were elevated in the 

upper three quartiles of PFOA. Similar patterns were reported for 

PFOS (Fei et al., 2009). Among Norwegian pregnant women having 

given birth before, increased odds of sub-fecundity were associated 

with high PFOA and PFOS (Whitworth et al., 2012b). Among 

nulliparous women, higher PFC plasma level was associated with a 

decreased odd of subfecundity (Whitworth et al., 2012b). 

Another study evaluated the association of female serum 

concentrations of eight different PFCs (PFOS, PFOA, PFHxS, PFNA, 

PFDA, MeFOSAA, EtFOSAA and FOSA) with TTP in 222 Danish first-

time pregnancy planners (prospective design) (Vestergaard et al., 

2012). Inconsistently with earlier observations no clear association 

between any of the measured PFCs and TTP were observed, which 

might be related to study design and the parity status of the women. 

In summary, controversial data on PFCA effects on human semen 

quality is reported, further studies must evaluate whether the 

compounds such as PFOA or PFNA affect the sperm output. Some 

studies suggest that PFCAs (PFOA, PFOS) affect the time to pregnancy 

and fecundity of females. 

 Developmental outcome 

The most extensive set of studies has examined foetal growth, birth 

weight, duration of gestation, and related indices of in utero 

development (Apelberg et al., 2007; Fei et al., 2007, 2008; Hamm et 

al., 2010; Hoffman et al., 2010; Monroy et al., 2008; So et al., 2006; 

Washino et al., 2009; Maisonet et al., 2012). 

In the Danish National Birth Cohort study (DNBC) (n = 1,400 

mother/child), Fei et al. investigated the possible correlations between 

the concentration of PFOA (and PFOS) in the maternal blood during the 

first and second trimesters of pregnancy and the birth weight and risk 

of premature birth (Fei et al., 2007). Only PFOA levels were inversely 

associated with birth weight. Gestational length was unaffected by 

PFOA concentrations. A statistically non-significant inverse association 

was also observed between PFOA and head circumference, and a 

positive association with newborn ponderal index (like BMI for babies) 

(Fei et al., 2008). Also another study from the US (n = 293) reported 

levels of cord blood PFOA (and PFOS) to be inversely associated with 

birth weight, new-born head circumference, crown–heel length, and 

ponderal index (Apelberg et al., 2007).  

Data from a subgroup of the Norwegian Mother and Child Cohort study 

(n = 901 women; 2003–2004) showed lower birth weight among 

infants born to mothers in the highest quartiles of PFOA (and PFOS) 
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compared to lowest quartiles (Whitworth et al., 2012a).  

Also a British study found that girls born to mothers with maternal 

serum concentrations of PFOA in the upper tertile weighed less (130 g 

(95%CI: –237, –30)) at birth compared with girls born to mothers with 

serum concentrations in the lower tertile (Maisonet et al., 2012). 

Contrary to the above findings, 2 smaller Canadian studies found no 

evidence of decreased birth weight and maternal PFOA levels 

(Monroy et al., 2008;Hamm et al., 2010). 

In summary, in general Nordic and British studies suggest that PFOA 

affects the foetal growth negatively, whereas smaller Canadian 

studies did not see this effect. 

Developmental milestones of children were examined in the sub-

study of the Danish National Birth Cohort (n = 1,400), where early 

pregnancy plasma PFOA levels were unrelated to motor or mental 

development through 18 months of age (Fei et al., 2008). Beside the 

study from “C8 Health project” in USA (Stein and Savitz, 2011), 

another study did examine the association between PFC exposure 

and ADHD among children (Hoffman et al., 2010). Data from this 

NHANES study from 1999–2000 and 2003–2004 (n = 571; age 12–

17) showed increased odds of ADHD disease with higher serum PFOA 

and PFNA levels (OR1.12 and 1.32, respectively).  

Further studies are needed to explore the suspected effects of PFCAs 

on CNS and child development including behavior and ADHD. 

 Immune system 

There are few epidemiological studies on the effects of PFOA on 

immune function related to infectious disease. A Danish study 

examined the prenatal exposure to PFOA (and PFOS) and the 

association with the infectious diseases in children (Fei et al., 2010) 

in the Danish National Birth Cohort. Hospitalizations for infection of 

the children were not associated with prenatal exposure to PFOA and 

PFOS. The authors concluded that their data did not support the 

hypothesis that prenatal PFOS and PFOA exposures decrease 

resistance to childhood infections. 

Wang et al. (2011) found that cord blood PFOA was positively 

associated with cord blood serum IgE in 2-year old Taiwanese boys, 

whereas Okada et al. (2012) found that maternal serum PFOA was 

negatively associated with cord blood IgE in newborn Japanese girls 

However, in the latter study no relationship was found between 

maternal PFOA levels and infant allergies and infectious diseases at 

age in 18 months (Okada et al., 2012). 

Recently, another prospective study of birth cohort from the National 
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Hospital in the Faroe Islands (n = 656) reported a negative 

correlation with antibody response to tetanus and diphtheria booster 

immunizations at age 5 years with increasing serum PFOA (and 

PFOS) (Grandjean et al., 2012). The conclusion was that elevated 

exposures to PFAAs were associated with reduced immune response 

to vaccination.  

Further studies are needed to reject or document the few studies on 

the suspected effect on the human immune system. 

8.1.9 Summary findings for PFCAs  

Overall summary of animal toxicity upon PFCA exposure 

PFBA (C4) exposures in rodents induce peroxisome proliferation but at a 

lower level than PFOA. Study suggested liver toxicity and some effects 

on the thyroid system. The reported studies suggest minimal develop-

mental and endocrine effects for PFBA exposures. 

PFHxA (C6) exposures in rats affect body and liver weight, chang-

es in liver and hematologic parameters, and PFHxA is a poor peroxi-

somal inducer. 

PFNA (C9) exposures in rodents are related to liver toxicity including 

glucose metabolism; immune toxicity, and PPAR dependent effects on 

development and survival upon in utero exposure in knock out mouse. A 

proposal to classify PFNA as a reproductiv toxicant in the EU has been 

submitted by Sweden  

PFOA (C8) exposure in rodent causes carcinogenic responses in 

liver, pancreas, testes and mammary glands. Furthermore, PFOA ex-

posure in animals affect the development and reproduction, thyroid 

and immune system negatively; induces peroxisome proliferation 

believed to be a mechanism behind tumor initiation and effect on 

immune- and hormone systems. 

PFDA (C10) exposures in animal studies have demonstrated that the 

liver is the primary target including inducement of the peroxisome pro-

liferation and acyl-CoA oxidase activity; the PFDA had a higher toxic 

potency than PFOA. Furthermore, effects on the thyroid and testicular 

androgen level were observed in mice and rats, respectively. A proposal 

to classify PFDA as a reproductiv toxicant in the EU has been submitted 

by Sweden.  

No animal experimental toxicity data were found for PFUnA (C11), 

however in vitro, at a low level PFUnA (C11) activated the mouse PPARα 

in transiently transfected COS-1 cells.  
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PFDoA (C12) exposures in rodents decrease the body weight, causes 

liver and testes toxicity, including changes in an array of parameters 

such as serum cholesterol and testes hormone level. 

Overall summary for human health effects upon PFCA exposure 

Data on occupational exposures to PFOA (C8) are controversial but 

suggest possible relation to the risk of prostate cancer, cerebral vas-

cular disease, and diabetes mellitus, but not liver, pancreas, or testic-

ular cancer. Moreover, there might be effects on steroid and thyroid 

hormone levels, whereas the relation to liver toxicity is controversial. 

Based on laboratory measurements assessed over more than one 

decade; no adverse clinical effects were detected from occupational 

exposure to PFNA (C9). 

Data on community high-exposed population studies support the 

occcupational studies on hepatoxic and thyroid toxic effects of PFOA. In 

addition, association with ADHD in children, endocrine and immunotox-

ic effects, testis and kidney cancers and pregnancy-induced hyperten-

sion was reported.  

For the general population the present studies on human exposure to 

PFCAs suggest some liver toxicity with changes in parameters involved 

in metabolic syndrome such as lipids, cholesterol levels and non-HDL, 

with the risk of obesity and insulin resistance.  

Higher serum PFOA levels were found positively associated with self-

reported cardiovascular diseases including coronary heart disease and 

stroke, and objective peripheral arterial disease. Moreover, PFCAs might 

be risk factors in prostate, pancreas and breast cancers, but further stud-

ies are needed. 

Although further studies are needed, a possible association be-

tween PFOA and PFTrDA and thyroid diseases as well as weak posi-

tive relations between thyroid effects and FT4, PFDA and PFUnDA 

was suggested.  

Controversial data on reproductive factors have been reported such 

as the effect of PFCA (PFOA, PFNA) on human semen quality and sperm 

output and need further studies. Some studies suggest that PFCAs 

(PFOA) affect the time to pregnancy and fecundity of females. 

Some Nordic and British studies suggest that PFOA affects the foe-

tal growth negatively, whereas some Canadian studies did not see 

this effect. Moreover, one Danish study on developmental milestones 

up to 18 month did not find any association to plasma PFOA levels; 

whereas one US study found an increased odds of ADHD disease with 

higher serum PFOA and PFNA levels at age 12 to 17. Further studies 
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are needed to explore the suspected effects of PFCAs on CNS and 

child development including behavior and ADHD. 

Further studies are needed to reject or document the few studies on 

the suspected effect on the human immune system. 

8.2 PFSA (Perfluoroalkyl sulfonates) 

The epidemiological studies of general population are summarized in 

Table 14. 

8.2.1 PFBS (C4) 

Animal experimental studies 

PFBS (K+PFBS) was assessed for developmental and reproductive ef-

fects in a two- generational rat study (Sprague Dawley) (Lieder et al., 

2009b). The study showed that maternal exposure to PFBS did not ad-

versely affect the reproductive function in Sprague Dawley rats at doses 

as high as 1,000 mg/kg/day or developmental outcomes at doses as high 

as 300 mg/kg/day. In both the parental and F1-generation male, there 

were increased liver weight and histological changes (increased cell 

proliferation) in kidneys in the 300 and 1,000 mg/kg/day dose group 

rats. Similar kidney effects were reported in the 90-day study (Lieder et 

al., 2009a), and the authors discussed in that article that these changes 

likely were due to high concentrations of PFBS, a strong surface active 

compound, passing through the kidney, as urine is the major excretory 

route for PFBS (Olsen et al., 2009). In the 90-day study other observed 

effects included decreased red blood cell count, hemoglobin, and hema-

tocrit at 200 and 600 mg/kg (Lieder et al., 2009a).  

In summary, mild effects at the liver, kidney and blood parameters 

have been observed in rat studies upon exposure to PFBS (C4) at rela-

tively high doses. 

Human studies (PFBS) 

No data found. 
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8.2.2 PFHxS (C6) 

Animal experimental studies 

Only few published studies were found regarding potential toxicological 

properties of PFHxS in experimental animals. 

A reproductive and developmental toxicity study of PFHxS was con-

ducted in rats by York (York et al., 2010) (Butenhoff et al., 2009). In pa-

rental males there was a significant reduction in cholesterol already at 

doses 0.3 mg/kg/day, and hepatotoxicity at doses 3 mg/kg/day. No 

treatment-related effect was reported on the fertility and reproductive 

outcomes or on viability and growth of the offspring at doses as high as 

10 mg/kg/day. A NOAEL of 10 mg/kg/day was therefore estimated for 

the developmental effects of PFHxS. 

Human studies (PFHxS) 

 Thyroid function 

Among Koreans, PFHxS were not correlated to total T4 or TSH levels 

(Ji et al., 2012; Kim et al., 2011). In a recent study of self-reported 

ADHD in children, increasing PFHxS levels were associated with 

increasing prevalence of ADHD (adjusted odds ratio of 1.59) (Stein 

and Savitz, 2011). 

 Reproduction 

A recent study evaluated the possible association between PFC 

exposure and biomarkers of male reproductive health in a larger 

cross country population including 588 men from Greenland 

(n = 106), Poland (n = 189) and Ukraine (n = 203) (Toft et al., 2012). 

For PFHxS a 35% (95% CI: 1; 70%) lower proportion of normal 

sperm were found at the highest tertile compared with the first, and a 

non-significant decrease in the proportion of normal sperm was also 

observed at the second tertile. 

 Lipid metabolism and cholesterol 

In the cross-sectional study with NHANES data (Nelson et al., 2010) 

an inverse relationship between exposure to PFHxS and total 

cholesterol levels were observed. Another study from NHANES data 

(1999–2000 and 2003–2004) examined the relationship between 

PFCs and components of the metabolic syndrome in participants (Lin 

et al., 2009). They found no associations for PFHxS in adults.  

 Developmental effects 

A British study found that girls born to mothers with maternal serum 

concentrations of PFHxS in the upper tertile weighed less (-108 g; 

95% CI: –206 to –10) at birth compared with girls born to mothers 

with serum concentrations in the lower tertile (Maisonet et al., 2012). 
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Two other smaller Canadian studies did not find any associations 

between maternal PFHxS levels and fetal weight and length of 

gestation (Hamm et al., 2010; Monroy et al., 2008).  

A study examined the association between PFCs and ADHD among 

children in the US (Hoffman et al., 2010). Data from this NHANES 

study from 1999–2000 and 2003–2004 (n = 571; age 12–17) showed 

significant increased odds of ADHD disease with higher serum PFHxS 

level (OR 1.06).  

 Immune system 

Two studies investigated the childhood infection (immunoglobulin E) 

and found no association to cord blood PFHxS in 2-year old 

Taiwanese boys (n = (Wang et al., 2011) and newborn Japanese 

infants (Okada et al., 2012). 

A recent prospective study of a birth cohort from the National 

Hospital in the Faroe Islands (n = 656) reported a small negative 

correlation with antibody response to tetanus and diphtheria booster 

immunizations at age 5 years with increasing serum PFHxS 

(Grandjean et al., 2012). 

8.2.3 PFHpS (C7), PFNS (C8) and PFDS (C10) 

No toxicology studies were found in animals or human. 

8.2.4 PFOS (C8) 

Animal experimental studies 

PFOS is classified as Repr. 1B and Carc.2 (Harmonised classification – 

Annex VI of Regulation (EC) No 1272/2008 (CLP Regulation)) (ECHA, 

2008) and it was added to Annex B of the Stockholm Convention on Per-

sistent Organic Pollutants in May 2009. 

The toxicity of PFOS has been extensively studied, and numerous 

studies have been conducted including toxicological studies in multiple 

species. The results have been reviewed in an OECD report (2002) and 

Lau et al. (Lau et al., 2007; Lau et al., 2004). A summary of the important 

findings are given here. 

Repeated-dose studies in rats and nonhuman primates have shown 

decreased body weight, hepatotoxicity, reduced cholesterol, and a steep 

dose-response curve for mortality. In a study performed by 3M, refereed 

in the OECD-report, male and female rats were exposed to PFOS in diet 

for 104 weeks (0.5 ppm–20 ppm). The study showed that PFOS induced 

a small increase in the incident of tumors in liver, and thyroid and 
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mammary glands (OECD, 2006). The NOAEL for male and female was 

considered to be 0.5 ppm and 2 ppm in diet respectively, which corre-

sponds to approximately 0.03 mg/kg/day and 0.15 mg/kg/day. PFOS 

has not been shown mutagenic in a variety of assays. Two-generation 

reproductive toxicity studies in rats showed neonatal mortality (Lau et 

al., 2004; Luebker et al., 2005a). 

The maternal and developmental studies of PFOS in rats and mice 

showed both maternal and developmental toxicity. Pregnant Sprague-

Dawley rats and CD-1 mice were given 1–20 mg/ kg/day from gestation 

day (GD) 2 to GD 20 and GD 1 to GD 17 respectively (Thibodeaux et al., 

2003;Lau et al., 2003). The major findings on the mothers were a reduc-

tion in serum T4 and T3, without effects on TSH. The mice dam experi-

enced a reduction in serum triglycerides and an elevation in liver weight 

at a dose of 1 mg/kg/day. 50% of the newborn rats and mice died within 

24 hours when prenatally exposed to 3 mg/kg/day and 10 mg/kg/day 

respectively. Serum T4 levels were suppressed in the PFOS-treated rat 

pups, although T3 and TSH levels were not altered. Delays in growth and 

development were observed (Lau et al., 2003). Luebker et al. (2005b) 

showed that maternal exposure up to 1.6 mg/kg/day was a critical dose 

leading to approximately 50% mortality among prenatally exposed pups 

within 4 days after delivery.  

A two-generation reproduction toxicity study in rats showed no ef-

fects on reproduction in F0 females or their fetuses (on mating, estrous 

cycling and fertility) (Luebker et al., 2005a). However, reproductive 

outcome, such as decreased length of gestation, number of implantation 

sites, and increased numbers of dams with stillborn pups or with all 

pups dying on LDs 1–4, was affected at 3.2 mg/(kg day) and neonatal 

toxicity, as demonstrated by reduced survival and body-weight gain, 

occurred at a maternal dose of 1.6 mg/kg/day (Luebker et al., 2005a). 

In a series of studies pregnant mice have been exposed to PFOS in 

order to evaluate the behavioral effects on the offspring. The studies are 

summarized by Mariussen (2012). Neonatal exposure of PFOS at specific 

time points, at the period of high neuronal growth, was shown to induce 

behaviour effects in adult mice. The exposure appeared to involve an 

effect on the development of the cholinergic system.  

In summary, in rodents PFOS is related to decreased body weight, 

liver toxicity, induction of PPAR-alpha, and has adverse reproductive 

effects at the fetal and at the neonatal level. PFOS increases developmen-

tal mortality and affectsa the thyroid system and may induce neurobe-

havioral effects, particularly in developmentally exposed animals. 
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Human studies (PFOS) 

Except for PFOS, there are very few data on the health effects of other 

PFSAs, probably due to lower concentrations in human blood. Since in 

most studies there was a high correlation between PFOS and PFOA, many 

of the health effects in the epidemiological studies that were observed and 

summarized under the PFOA section, is also mentioned below. 

Data on liver function, serum cholesterol and thyroid hormone levels 

have been collected and associated with levels of PFOS in serum of occupa-

tionally exposed workers. However, we will not focus any further on this.  

The epidemiological studies of general population are summarized in 

Table 14. 

 

 Cancer 

Grice et al. were unable to detect an association between 

occupational PFOS exposure and the occurrence of skin, breast, 

prostate, or intestinal cancer in workers at a PFC-producing company 

(Grice et al., 2007). 

 Thyroid hormone 

In Inuit adults (n = 623), PFOS concentrations were negatively 

associated with TSH and total T3 and positively with free T4 

concentrations (Dallaire et al., 2009). Maternal PFOS correlated 

negatively with fetal T3 (Kim et al., 2011). PFOS was shown to 

compete with T4 for binding sites on human transthyretin (Weiss et 

al., 2009), which may also lead to a reduction in total thyroid 

hormone concentrations in the blood. Also in children serum PFOS 

concentrations were positively correlated with total T4 

concentration (Lopez-Espinosa et al., 2012). An earlier study of 15 

mother–infant pairs in Japan reported no association between a 

median 2.5 ng/mL cord blood concentration of PFOS, approximately 

13% of the current study median, and newborn TSH or FT4 levels 

(Inoue et al., 2004). A recent cross-sectional analysis of self-reported 

thyroid disease in the NHANES (n = 3,974 adults) reported a 

significant association for PFOS (PFOS ≥ 36.8 ng/mL) and current 

treated thyroid disease in men (Melzer et al., 2010). 

In summary, although the data are controversial, reported studies 

suggest negative effects of PFOS on the thyroid system and on the 

risk of ADHD. 

 Reproduction 

A recent study evaluated the possible association between PFC 

exposure and biomarkers of male reproductive health in a larger 

cross country population including 588 men from Greenland 
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(n = 106), Poland (n = 189) and Ukraine (n = 203) (Toft et al., 2012). 

Higher PFC blood levels were found in Greenlandic Inuit. Cross 

country for the three populations and for the two European 

populations alone an increase in sperm cell morphology defects at 

increasing PFOS exposure was found, but not analyzing the Inuit 

population from Greenland alone. Cross country the proportion of 

morphological normal cells was 35% lower [95% confidence interval 

(CI): 4–66%) for the third tertile of PFOS exposure as compared with 

the first. Thus, the study suggests a concentration dependent effect 

and maybe diet/race dependent effect of PFOS on semen quality. The 

results of the present study are supported by the findings of effects of 

PFCs on sperm morphology reported in a previous smaller Danish 

study (Joensen et al., 2009). 

 Lipid metabolism and cholesterol 

No explicit changes in liver enzymes, cholesterol, or lipoproteins in 

serum could be detected in the serum of workers with PFOS 

concentrations below 6 mg/L (Olsen et al., 1999). 

A study from NHANES data (1999–2000 and 2003–2004) examined 

the relationship between PFCs and components of the metabolic 

syndrome in participants (Lin et al., 2009). They found that in adults, 

increased serum PFOS concentrations were associated with 

increased blood insulin, insulin resistance status, beta-cell function, 

increased serum HDL cholesterol.  

 Developmental effects 

Some studies have reported inverse associations between PFOS and 

birth weight. In a study from US (n = 293) cord blood PFOS levels was 

significantly associated with decreases in birth weight and size but 

not newborn length and gestational age (Apelberg et al., 2007).  

Data from a subgroup of the Norwegian Mother and Child Cohort 

study (n = 901 women; 2003–2004) showed slightly lower birth 

weight among infants born to mothers with the highest plasma levels 

of PFOS (Whitworth et al., 2012a).  

A British study found that girls born to mothers with maternal serum 

concentrations of PFOS in the upper tertile weighed less (-140 g 

(95%CI: –238 to –42)) at birth compared with girls born to mothers 

with serum concentration in the lower tertile (Maisonet et al., 2012). 

Also in a study from Japan (n = 428), maternal PFOS levels correlated 

negatively with birth weight (-148.8 g (95%CI: −297.0 to 

−0.5),particularly in female infants. (Washino et al, 2009). 

In contrast, in the Danish National Birth Cohort study (DNBC) (n = 

1,400 mother/child), maternal PFOS was not associated with birth 
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weight and risk of premature birth (Fei et al., 2007), and suggested 

that the associations might be related to PFOA. 

Two other smaller Canadian studies did also not find any association 

between maternal PFOS and fetal weight and length of gestation 

(Hamm et al., 2010; Monroy et al., 2008).  

Developmental milestones of children were examined in the sub-

study of the Danish National Birth Cohort (n = 1,400). No convincing 

associations were found beside that children who were born to 

mothers with higher PFOS levels were slightly more likely to start 

sitting without support at a later age (Fei et al., 2008). Another study 

did examine the association between PFCs and ADHD among children 

(Hoffman et al., 2010). Data from this NHANES study from 1999–

2000 and 2003–2004 (n = 571; age 12–17) showed significant 

increase odds of ADHD disease with higher serum PFOS (OR 1.03).  

 Immune system 

A Danish study examined the prenatal exposure to PFOA (and PFOS) 

and the association with the infectious diseases in children (Fei et al., 

2010) in the Danish National Birth Cohort (n = 1,400). 

Hospitalizations for infection of the children were not associated 

with prenatal exposure to PFOS.  

Two studies investigated the childhood infection (immunoglobulin 

E): cord blood PFOS was positively associated with cord blood serum 

IgE in 2-year old Taiwanese boys (n = (Wang et al., 2011), but not in 

newborn Japanese infants (Okada et al., 2012). 

A recent prospective study of birth cohort from the National Hospital 

in the Faroe Islands (n = 656) reported a negative correlation with 

antibody response to tetanus and diphtheria booster immunizations 

at age 5 years with increasing serum PFOS (and to a lesser extend 

PFHxS) (Grandjean et al., 2012). The conclusion was that elevated 

exposures to PFAAs were associated with reduced immune response 

to vaccination. 

8.2.5 Summary for PFSAs  

Summary for animal toxicity upon PFSAs exposure  

Most studies reported are on PFOS exposures, and very few studies on 

effects by short chain substances have been conducted.  

In rodents PFOS (C8) is related to decreased body weight, liver toxici-

ty and is a PPAR-alpha inducer. PFOS has adverse reproductive effects at 

the fetal and the neonatal level. PFOS increases developmental mortality 

and affects the thyroid system.  
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Upon exposure to PFBS (C4) at relatively high doses, mild effects at 

the liver, kidney and blood parameters were observed in rat studies. 

Few studies on PFHxS (C6) toxicity in experimental animals have 

been conducted and need further research. A single study found hepa-

toxicity in rats, whereas no reproductive effect on fertility and offspring 

outcome was observed at relatively high PFHxS exposure. 

Summary for human health effects of PFSA 

Except for PFOS, only some Nordic and in general few data on the health 

effects of other PFSAs are found. 

Occupational studies found an association between PFOS exposure and 

liver function, serum cholesterol, thyroid hormone levels and skin, breast, 

prostate, or intestinal cancer in workers at a PFC-producing company. 

General population studies: A cross country study on European and Inu-

it populations found an increase in sperm cell morphology defects at in-

creasing PFOS and PFHxS exposure, but not for the Inuit population from 

Greenland alone. This observation is supported by a smaller Danish study. 

Reproductive and developmental effects: An inverse association between 

maternal PFOS (and for some studies PFHxS) and birth weight were report-

ed for studies in US, Norway and England, but not significantly for the Dan-

ish birth cohort and the smaller studies in Canada. Concerning developmen-

tal milestones weak association was found in the Danish National birth co-

hort. In the arctic Inuit adult PFOS exposure was positively related to 

changes in thyroid factors but not for PFHxS. However, PFHxS levels were 

positively related to ADHD prevalence in children. Thus, although contro-

versial data, the reported studies suggest negative effects of PFOS on the 

thyroid system and PFHxS as a risk factor in development of ADHD. In sup-

port to the Inuit study a US study found a relationship between the serum 

PFOS and PFHxS levels at age 12–17 and the risk of ADHD. However, further 

studies are needed to elucidate the possible risks.  

A single study reported a link between PFOS exposure and metabolic 

syndrome with effects such as increased blood insulin, insulin resistance 

status, beta-cell function, increased serum HDL cholesterol. In addition, 

a cross-sectional study in the US found an inverse relationship between 

exposure to PFHxS and total cholesterol levels.  

A few studies indicated an effect of PFOS on the immune system: In 

the Faroe Islands, a negative effect on the vaccination response in chil-

dren at 5–7 year; and a Japanese study found an association between 

childhood infection (immunoglobulin E) and cord blood PFOS levels in 

2-year old boys. However, no significant association between prenatal 

exposure to PFOS and infectious diseases in children in the Danish Na-

tional Birth Cohort was found. 
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8.3 FTOH (fluorotelomer alcohols) 

Limited information is currently available on the toxicological effects 

and the risks of FTOHs in experimental animals and humans. However, 

these compounds are metabolically converted to PFCAs including PFOA 

and therefore may be associated with the induction of hepatic peroxi-

some proliferation and acyl-CoA oxidase (ACOX) activity. There is a pro-

posed classification under CLP regulations for 8:2 FTOH by Norway in 

2012 as reproductive toxicant. 

8.3.1 Toxicity of FTOH in experimental animals 

Fluorotelomer alcohols have been shown to metabolize into PFCAs in 

rodents (Fasano et al., 2009; Kudo et al., 2005). Therefore, they may 

potentially have the same health effects as PFOA and some other PFCAs 

(PFNA and PFHpA). 

Dietary administration of 8:2 FTOH to mice (7–28 days) resulted in 

liver enlargement in a dose-dependent manner. Peroxisomal acyl-CoA 

oxidase was induced by these treatments (Kudo et al., 2005). Five me-

tabolites (PFOA, PFNA, 8-2 telomer acid and two unidentified) were 

present in the liver and serum of the treated mice. The concentration of 

PFOA positively correlated to the activity of peroxisomal acyl-CoA oxi-

dase in the liver of mice, which suggest that rather PFOA than 8:2 FTOH 

itself produced the effects. 

In a 90-day oral repeated dose toxicity study (Ladics et al., 2008) the 

liver and kidney were target organs. Doses of 25 mg/kg or greater in-

creased relative liver weight, hepatic β-oxidation (females only at 25 

mg/kg, both sexes at 125 mg/kg), and induced focal hepatic necrosis. No 

evidence of a neurotoxic response was reported. The NOAEL in this 

study was 5 mg/kg. 

In a reproductive toxicity study with FTOH mixture [F(CF2)xC2H4OH, 

x = 3–6; (27% 8:2 FTOH)] by oral gavage at 0, 25, 100 or 250 mg/kg/day, 

pup weights were reduced at ≥100 mg/kg/day (Mylchreest et al., 2005a); 

in the developmental part of the study (0, 50, 200, or 500 mg/kg/day), 

maternal bodyweight was reduced and there was an increase in fetal skel-

etal alterations at 200 mg/kg/day. There were no effects on oestrous cycle 

parameters sperm morphology and motility or epididymal sperm counts 

in the P1 generation. NOAEL for the FTOH mixture (27% 8:2 FTOH) re-

productive toxicity was 25 mg/kg/day based on litter size reduction. In 

another study Mylchreest et al. (2005b) investigated the developmental 

effects of 8:2 FTOH  at the same doses as above. Increases in skeletal vari-



132 Per- and polyfluorinated substances in the Nordic Countries 

ations were reported from 200 mg/kg bw/day as for the FTOH mixture. 

Severe maternal toxicity was reported at 500 mg/kg bw/day including 

mortality. The NOAEL for both maternal and developmental toxicity was 

sat to be 200 mg/kg/day. 

Overall, the liver appears to be the most sensitive target organ for 8:2 

FTOH toxicity based on the available studies. However, no carcinogenic 

studies were available and the reproductive and developmental studies 

are insufficient to draw any conclusions. Based on the toxicity effects of 

PFOA (major serum metabolite of FTOH), there is proposed a classifica-

tion for 8:2 FTOH equal to PFOA (http://echa.europa.eu/). 

In an in vitro study investigating oxidative damage that may contrib-

ute to testicular toxicity, primary rat testicular cells were exposed to 8:2 

FTOH and 6:2 FTOH. The study showed no significant increase in oxida-

tive DNA damage (Lindeman et al., 2012). 

In summary, fluorotelomer alcohols and/or there metabolites 

(e.g.PFOA) can induce liver toxicity in rodent, and the potency of endocrine 

disruption are demonstrated in in vitro cell culture and in vivo fish studies.  

Gap of knowledge: Fluorotelomer unsaturated aldehydes (FTUALs) 

and acids (FTUCAs) are intermediate metabolites that form from the 

degradation of FTOHs. Their potential for toxicity is not yet defined and 

may be more significant compared to PFCAs. These intermediates can 

form adducts with glutathione (GSH) (Rand and Mabury, 2012). 

8.3.2 Human health effects of FTOH 

In vitro studies using human cells have reported following endocrine ef-

fects for fluorotelomer alchohols: 8:2 FTOH and 6:2 FTOH had potential 

estrogenic effects by inducing the proliferation of MCF-7 breast cancer 

cells in E-screen assay; by up-regulating of the estrogen receptor (Maras 

M et al., 2006); by interacting with the human estrogen receptor alpha and 

beta in vitro (Ishibashi H et al., 2007). Moreover, 8:2 FTOH showed the 

capacity to decrease testosterone levels in the human adrenal cortico-

carcinoma cell line (Liu et al., 2010b) but did not interfere with androgen 

receptor activation (Rosenmai et al., 2012). The authors assumed that the 

effect was due to FTOH and not the metabolite PFOA, as the hormone pro-

file of these two compounds did not uniformly match.  

 

http://echa.europa.eu/
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8.3.3 Summary on FTOH 

FTOH Toxicity in experimental animals 

Few data on FTOH health effects in animal and humans are found. 

In rodents the liver appears to be the most sensitive target organ for 

8:2 FTOH toxicity. Futher studies on carcinogenesis, repoductive and 

developmental effects are needed.  

The potency of endocrine disruption is demonstrated in in vitro stud-

ies. In vitro, oxidative damage were found in rat testicular cells exposed 

to 8:2 FTOH and 6:2 FTOH. 

There are gaps of data for the intermediate metabolites of FTOH 

(fluorotelomer unsaturated aldehydes (FTUALs) and acids (FTUCAs)) 

that form from the degradation of FTOHs. Their potential for toxicity is 

not yet defined and may be more significant compared to PFCAs.  

Human health effects of FTOH 

No available human data for FTOH are found but in vitro studies using 

human cells have reported endocrine effects for the fluorotelomer al-

chohols 8:2 FTOH and 6:2 FTOH. 

8.4 FTS (fluorotelomer sulfonates).  

Acute and repeated-dose mammalian and aquatic toxicity has been re-

portefor 6:2 FTS.26 

8.5 PAP/di-PAP (polyfluoroalkyl phosphate esters) 

8.5.1 Toxicity in experimental animals 

In rats biotransformation of monoPAP and diPAP congeners to FTOH and 

PFCAs have been observed (D’Eon J and Mabury, 2011). The animals were 

dosed with a mixture of 4:2, 6:2, 8:2, and 10:2 monoPAP or diPAP chain 

lengths. Concentrations of the PAPs and PFCAs, as well as metabolic in-

termediates and phase II metabolites, were monitored over time in blood, 

urine, and feces. The diPAPs were bioavailable, with bioavailability de-

────────────────────────── 
26 UNEP/POPS/POPRC.8/INF/17 
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creasing as the chain length increased from 4 to 10 perfluorinated car-

bons. The monoPAPs were not absorbed from the gut. However, the PAP 

dosing concentrations at 50 mg/kg used in the studies (D’Eon J and 

Mabury, 2011; D’Eon and Mabury, 2007), where not toxic for the animals.  

No other toxicity data were found for PAP/di-PAP. 

8.5.2 Human health effects  

No epidemiological data regarding health effects were found for 

PAP/di-PAP.  

In vitro assays using human cell cultures (H295R human adrenal cor-

tico-carcinoma cells) showed that 8:2 diPAPS and 8:2 monoPAPS gave 

rise to decreases in androgens (testosterone, dehydroepiandrosterone, 

and androstenedione) in the steroidogenic pathway, indicating an affect 

of steroidogenesis (Rosenmai et al., 2012). 8:2 triPAPS, 10:2 diPAPS 

showed a less marked effect on androgens in the steroidogenesis assay 

and did not disrupt the binding to androgen receptor.  

8.6 Perfluoropolyethers (PEFPs) 

The general toxicity profile of perfluoropolyethers is reported low. A 

study evaluating the safety of PEFPs, tested the representative Fomblin 

HC in experimental animals for acute, subacute toxicity, in vitro muta-

genicity and irritancy or sensitization on human skin (Malinverno et al., 

1996). Daily oral administration (1,000 mg/kg/day) to rats over 28 days 

produced no significant reaction.  

No other toxicity data were found. 

8.6.1 Summary for PAP/di-PAP (polyfluoroalkyl 
phosphate esters) and perfluoropolyethers (PFPEs) 

Toxicity in experimental animals 

MonoPAP and di-PAP congeners are bioavailable in rats and biotrans-

formed to FTOH and PFCAs. PAP doses up to 50 mg/kg was not toxic in 

the rat study. No other toxicity data were found for PAP/di-PAP. 
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Human health effects  

No epidemiological data regarding health effects were found for 

PAP/di-PAP.  

In vitro assays using human cell cultures showed some endocrine dis-

rupting potential by affecting the steroidogenesis.  

Few data on PFPEs are reported. The general toxicity profile of PFPEs 

is low and no significant reaction in experimental animals was found for 

acute, subacute toxicity, in vitro mutagenicity and irritancy or sensitiza-

tion on human skin.  

No other toxicity data were found. 

8.7 Summary 

8.7.1 Animal toxicity 

In general PFCAs and PFSAs affect the development, reproduction and 

immune system negatively; they decrease body weight, induce hepatox-

icity, affect the endocrine system negatively including the sex hormone 

and thyroid hormone system; induces peroxisome proliferation believed 

to be one of the mechanisms behind tumor initiation and affects the im-

mune- and hormone systems. 

Hepatotoxicity: Hepatocytic hypertrophy effect in laboratory animals 

were reported for PFOS, PFHxS, PFBS, PFDA, PFNA, PFOA, PFHpA, 

PFHxA, and PFBA and is most likely associated with induced peroxisome 

proliferation. 

Developmental Toxicity: Early pregnancy loss was noted with PFOA or 

PFBA exposure but only at very high doses, and the etiology of this effect 

is not clear. No fetal toxicity was observed after gestational exposure to 

PFBA or PFDA. Compared to long-chain PFAAs (≥C8), the short-chain 

chemicals are much less toxic to the developing animal, in part due to 

their faster rate of clearance. Thus, even at very high doses of PFBA 

(350 mg/kg, intended to match the body burden of PFOA), neither neo-

natal survival nor postnatal growth was compromised, although mater-

nal hepatomegaly was detected (indicating the effectiveness of the PFBA 

dose regimen) and neonatal liver weight was transiently elevated. A 

similar lack of reproductive and developmental toxicity has been report-

ed for PFHxA, PFBS and PFHxS. 

Immunotoxic: In general adverse immunological outcomes were re-

ported from exposure to PFOS, PFHxS, PFOA and PFNA. 
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Endocrine disruption: In general, alterations of thyroid hormones and 

sex steroid hormones have been shown after exposure to primarily PFOS 

and PFOA, although PFDA induced reductions of thyroid hormones have 

also been reported. PFOA has been shown to decrease serum and testicu-

lar testosterone and increase serum estradiol in male rats, presumably via 

induction of the hepatic aromatase. PFOS, PFOA, and telomer alcohols 

have been shown to exhibit estrogenic activity in vivo models and to inhib-

it testicular steroidogenic enzymes. In addition, PFDoA has recently been 

shown to decrease testosterone synthesis in male rats and to decrease 

serum estradiol and gene expression of estrogen receptors in the female 

rats, possibly through oxidative stress pathways. 

8.7.2 Human epidemiological studies 

An array of studies, mainly cross sectional design in US has been con-

ducted with the main focus on PFOS and PFOA (Table 13). The overall 

observations were an association between PFCAs, PFSAs and effects on 

liver parameters such as lipid profile, the reproductive system (e.g. 

menopause), the thyroid hormone system, and an increased risk of 

ADHD (PFHxS). Serum PFAAs were associated with altered glucose ho-

meostasis, indicators of metabolic syndrome, and elevated liver en-

zymes; a positive association between serum PFOS, PFOA and PFNA and 

cholesterol level; a significant association of PFOS and PFOA with thy-

roid related diseases.  

Also an array of population studies on developmental effects have been 

conducted of which only 4 out of 12 are Nordic studies (Table 14). An 

inverse relationship between in utero exposure to PFOS and PFOA and 

birth weight was reported. However, these data call for further studies. 

Follow-up evaluations of infants and children in the Danish National 

Birth Cohort indicated no associations between prenatal exposure to 

PFAAs and risk of infectious diseases, developmental milestones, and be-

havioral and motor coordination problems. Whereas a study on the Faroe 

Islands birth cohort study showed that PFC levels inversely correlated to 

the vaccination response at age 5. These data call for further studies. 

Some reports suggest a relationship between PFOS, PFOA and/or 

PFHxS exposure and the risk of ADHD, but again these data call for fur-

ther research. 

A single Danish study found that in utero exposure to PFOA was posi-

tively associated with BMI at age 20. 

A recent British cohort study did not find an association between ma-

ternal PFAA exposure and altered age at menarche of their offspring.  



  Per- and polyfluorinated substances in the Nordic Countries 137 

Five Nordic (out of seven) studies on PFCA and PFSA effects on re-

productive factors have been conducted. The overall observations were: 

Time-to-pregnancy in pregnant women in the Danish National Birth 

Cohort was suggested to be associated with PFOA and PFOS exposure 

and cause a reduction of fecundity; high PFAA levels and reduced normal 

sperm in Danish men; fewer normal sperm in a cross sectional study 

(Poland, Sweden, Ukraine, Greenland) upon high PFAA (PFOS); no effect 

on age of menarche in a single UK study. 

Few data on the population studies calls for further research on repro-

ductive factors as TTP, fecundity / fertility and the mechanisms behind. 

Two Nordic studies have focused on the effect of PFCA and PFSA on 

the immune system and found controtradictory data: in Denmark no 

association to hospitalization and exposure was found for PFOS and 

PFOA, whereas in the Faroe Islands a negative effect on children vaccina-

tion response was reported. Two other studies (Taiwan, Japan) have 

suggested a correlation between PFOS and PFOA exposure and effect on 

the immune system such as changes in IgE levels in infants and cord 

blood, whereas no relationship between allergy in infant and maternal 

exposure was found. 

In a Danish study including women and men no association was found 

on PFOA and PFOS exposure and the risk of prostate, bladder, or liver 

cancer. However, a recent study showed a significant association between 

serum PFOA (sum of PFCs) and risk of breast cancer among Inuit.  

Very few studies (no Nordic) suggesting a relationship between PFCA 

and PFSA exposure and lipid profile changes and cardiovascular deceas-

es calls for further research. 

 



Table13. Results of human studies from exposure to PFOA-contaminated water in Ohio/West Virginia communities (C8 Health Project)  

1st. Author, Year, 

Ref. 

Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Emmett, 2006 

(Emmett 

 et al., 2006) 

USA/ Ohio 53% female; 

age 2,5–89 

(median 50) 

cross-

sectional 

? 371 PFOA health parameters PFOA: 354 ng/ml 

(median) 

No associations between PFOA and liver 

function, cholesterol, TSH, red 

cell/white cell or platelet counts. 

 

Steenland, 2009 

(Steenland  

et al., 2009) 

USA/West 

Virginia + 

Ohio (C8) 

 

adults (<18) cross-

sectional 

2005–

2006 

46,294 PFOS, PFOA serum lipids PFOS: 20 ; PFOA: 

27 ng/ml (median) 

Positive associations– No association to 

HDL  

MacNiel, 2009 

(MacNeil et al., 

2009) 

 

USA/ Ohio adults cross-

sectional 

2005–

2006 

54,468 PFOA diabetes II PFOA: 28 ng/ml No association between PFOA and typeII 

diabetes 

Frisbee, 2010 

(Frisbee et al., 2010) 

USA/Ohio 

(C8) 

children and 

adolescents 

(1–17.9) 

cross-

sectional 

2005–

2006 

12,476 PFOS, PFOA Serum lipids (total, 

HDL, and LDL 

cholesterol, and 

fasting triglycerides 

PFOS: 20.7; PFOA: 

32.6 ng/ml (medi-

an) 1–12years 

PFOA associated with increased total and 

LDL cholesterol, and PFOS associated 

with increased total, HDL, and LDL 

cholesterol. 

 

Steenland, 2010 

(Steenland et al., 

2010b) 

USA/ 

West 

Virginia + 

Ohio (C8) 

 

adults ≥ 20 

years 

cross–

sectional 

2005–

2006 

54,951 PFOS, PFOA uric acid PFOS: 20.2; PFOA: 

27.9 ng/ml 

positive association with hyperuricemia 

Stein, 2011 (Stein 

and Savitz, 2011) 

USA/Ohio 

(C8) 

children (5–

18) 

cross-

sectional 

2005–

2006 

10,546 PFOS, PFOA, 

PFHxS, PFNA 

(detectable) 

ADHD and PFCs PFOS: 20.2 ng/ml; 

PFOA 28.2 ng/mL 

(median) 

 

 

 

 

positive association for PFHxS  



1st. Author, Year, 

Ref. 

Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Knox, 2011 

 (Knox et al., 2011a) 

 

USA/Ohio 

(C8) 

adults (M+F) cross-

sectional 

2005–

2006 

52,296 PFOS, PFOA Thyroid function Female: PFOS: 

17.3; PFOA: 52.6 

(mean)- Male: 

PFOS: 24.8; PFOA: 

91 (mean) 

 

PFOA and PFOS associated with eleva-

tions in serum thyroxine and reduction in 

T3 uptake. 

Knox, 2011 

(Knox et al., 2011b) 

 

USA/Ohio 

(C8) 

women (18–

65) 

cross-

sectional 

2005–

2006 

25,957 PFOS, PFOA menopause PFOS: 15-21.5 ; 

PFOA: 17.6-32.5 

ng/ml (median) 

perimenopausal women: experience 

menopause if they have high serum 

concentrations of PFOS and PFOA 

 

Gallo, 2012  

(Gallo et al., 2012) 

USA/Ohio 

(C8) 

adults cross-

sectional 

2005–

2006 

47,092 PFOS, PFOA Liver function 

(enzymes) 

PFOS: 20.3; PFOA: 

28 ng/ml (median)  

positive association between PFOA and 

PFOS concentrations and serum ALT level 

 

Lopez-Espinosa, 

2012 

(Lopez-Espinosa  

et al., 2012) 

US/ Ohio children (1–

17) 

cross-

sectional 

2005–

2006 

10.725 PFOA, PFOS, 

and PFNA 

TSH, TT4 PFOS:20; 

PFOA:29,3 ng/ml 

Associations of serum PFOS and PFNA 

with thyroid hormone levels and of 

serum PFOA and hypothyroidism. 

 

 

 

 

 

 

 

 

 



Table14. Epidemiological studies on adverse human health effects related to PFCA and PFSA exposures (general population) 

Author, Year, Ref. Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Developmental outcome 

Fei, 2007  

(Fei et al., 2007) 

Denmark Pregnant/ 

infant 

(DNBC) 

 

prospective 

follow-up 

1996–

2002 

1,400 PFOS, PFOA 

(measured) 

Fetal growth PFOS: 35.3 PFOA: 

5.6 (mean) 

PFOA inversely associated with BW  

Fei, 2008  

(Fei et al., 2008) 

Denmark 

(DNBC) 

Mother/ 

child 

prospective  1996–

2002 

1,400 PFOS, PFOA Developmental 

milestones 

PFOS: 34.4 PFOA: 

5.4 

Higher PFOS in mothers associated to 

childs later start at sitting 

 

Fei and Olsen, 2011 

(Fei and Olsen, 

2011) 

Denmark 

(DNBC) 

Mother/ 

child 

prospective  1996–

2002 

1,400 PFOS, PFOA ADHD PFOS: 34.4 PFOA: 

5.4 

No association between higher SDQ 

scores and maternal levels of PFOS or 

PFOA; no association with motor coordi-

nation disorders. 

 

Whitworth, 2012 

(Whitworth  

et al., 2012a) 

Norway pregnant 

women 

(MoBa) 

  2003–

2004 

910 PFOA, PFOS BW PFOS: 19.3 

PFOA: 3.7  

(median)  

Lower adjusted BW among infants born to 

women with the highest plasma levels of 

PFOA and PFOS 

 

Inoue, 2004  

(Inoue et al., 2004) 

Japan/ 

Hokkaido 

Pregnant 

(17–37 age) 

cross-

sectional 

2003 15 PFOS, PFOA, 

PFOSA 

BW/thyroid 

function (T4, TSH) 

PFOS: 8.1 

PFOA: 0.7  

 

No association 

Apelberg, 2007 

(Apelberg  

et al., 2007) 

 

US/ 

Maryland 

pregnant 

/infants 

cross-

sectional 

2004–

2005 

293 PFOA, PFOS Fetal growth (BW 

and size) 

PFOS: 5 

PFOA: 1.6 

Neg. association with BW, ponderal index, 

head circumference 

Monroy, 2008 

(Monroy  

et al., 2008) 

Canada Pregnant  cross-

sectional 

2004–

2005 

101 PFOA, PFOS, 

PFDeA, PFHxS, 

PFHpA, PFNA,  

 

 

 

BW PFOS: 16.6 PFOA: 

2.13  

No association with BW  



Author, Year, Ref. Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Hamm, 2010 

(Hamm et al., 2010) 

Canada Pregnant  cross-

sectional 

2005–

2006 

252 PFOA, PFOS, 

PFHxS 

fetal growt PFOS: 35 

PFOA: 1.5  

No correlations with BW, GSA, and other 

birth parameters 

 

Washino, 2009 

(Washino  

et al., 2009) 

 

Japan Pregnant prospective  2002–

2005 

428 PFOA, PFOS BW and size PFOS: 5.2 

PFOA: 1.3 

PFOS negatively correlated with BW 

(girls); no association with PFOA 

Hoffman, 2010 

(Hoffman  

et al., 2010) 

US  

(NHANES) 

children (12–

15) 

cross-

sectional 

1999–

2000; 

2003–

2004 

 

571 PFOA, PFNA, 

PFOS, PFHxS 

ADHD PFOS: 22.6 

PFOA: 4.4  

Positive relationship between parent-

reported ADHD and serum PFOS, PFOA, 

and PFHxS 

Gump, 2011  

(Gump et al., 2011) 

USA Child 

 

cross 

sectional 

? 83 11 PFCs: PFOS, 

PFHxS, PFBS, 

PFDS, 

PFOSA,PFHpA, 

PFOA, PFNA, 

PFDA, PFUnDA, 

PFDoDA 

 

impaired response 

inhibition 

PFOS: 8.79 

PFOA: 3.28  

Higher levels of blood PFOS, PFNA, PFDA, 

PFHxS, and PFOSA associated with shorter 

IRTs (children’s impulsivity) 

Chen, 2012 

(Chen et al., 2012)  

Taiwan mother-

infant (TBPS) 

  2004–

2005 

429 PFOA, PFOS, 

PFNA, and 

PFUA 

 

GSA, BW, head 

circumference 

PFOS: 5.94 

PFOA: 1.84  

PFOS inversely associated with GSA, birth 

weight, and head circumference 

Maisonet, 2012 

(Maisonet  

et al., 2012) 

UK singelton 

girls (ALSPA 

cohort) 

  1991–

1992 

447 PFOS, PFOA, 

PFHxS 

BW,  

weight for age.  

PFOS: 19.6 

PFOA: 3.7  

PFOS negatively associated with girls 

weight at birth; No associations with 

PFOA and PFHxS 

 

 

 

 

 



Author, Year, Ref. Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Thyroid function 

Dallaire, 2009 

(Dallaire  

et al., 2009) 

Nunavik Inuit adults cross-

sectional 

2004 623 PFOS Thyroid function PFOS: 18.28 (GM) PFOS concentrations were negatively 

associated with TSH, tT3 and TBG and 

positively with fT4 concentrations 

 

Bloom, 2010 

(Bloom et al., 2010) 

USA/ NY sportfish 

anglers 

prospec-

tive  

1995–

1997 

31 PFDA, PFNA, 

PFHpA, PFHxS, 

PFOA, PFOS, 

PFOSA, PFUnDA 

 

T4. TSH PFOS: 19.6 PFOA: 

1.3 

No associations between PFCs exposures 

and thyroid function 

Melzer, 2010 

(Melzer et al., 2010) 

USA men and 

women 

  1999–

2006 

3966 

(52% 

women) 

PFOA, PFOS Thyroid diseases PFOS: 19.14 PFOA: 

3.77 (Female) 

PFOS: 25.08 PFOA: 

4.91 (men) (GM) 

 

Higher concentrations of serum PFOA and 

PFOS are associated with current thyroid 

disease 

Kim, 2011  

(Kim et al., 2011) 

Korea/ 

soul 

Mother/ 

child  

cross 

sectional 

2008–

2009 

44 13 PFCs: PFHxS, 

PFHpS, PFOS, 

PFDS, PFOA, 

PFNA, PFDA, 

PFUnDA, 

PFDoDA, 

PFTrDA PFTe-

DA, MePFOSAA, 

EtPFOSAA. 

 

 

 

 

 

 

 

Thyroid hormone; 

Bith weight  

PFOS: 2.72 

PFOA: 1.46  

Fetal PFOS, PFOA, PFTrDA and maternal 

PFTrDA were correlated with fetal total T4 

concentrations (before adjustment). After 

adjustment: negative correlations be-

tween maternal PFOS and fetal T3, and 

maternal PFTrDA and fetal T4 and T3. 



Author, Year, Ref. Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Ji, 2012  

(Ji et al., 2012) 

Korea/  

Siheung 

>12 years cross-

sectional 

2008 633 

(59% 

female) 

13 PFCs: PFHxS, 

PFHpS, PFOS, 

PFDS, PFOA, 

PFNA, PFDA, 

PFUnDA, 

PFDoDA, 

PFTrDA, 

PFTeDA, 

MePFOSAA, 

EtPFOSAA. 

Thyroid function 

(T4. TSH) 

PFOS: 7.96 

PFOA: 2.74 

PFTrDA negatively correlated with TT4 

and positively with TSH 

Reproduction 

Joensen, 2009 

(Joensen  

et al., 2009) 

Denmark men (19) cross 

sectional 

2003 105 10 PFCs (C6 to 

C13); PFHxS. 

PFHpA. PFOA. 

PFOS.PFOSA. 

PFNA. PFDA. 

PFUnA. 

PFDoA. PFTrA 

 

Reproductive 

hormones and 

semen 

PFOS: 24.5 

PFOA: 4.9  

High PFAA levels were associated with 

fewer normal sperm. 

Fei, 2009  

(Fei et al., 2009) 

Denmark pregnant 

women 

prospec-

tive  

1996–

2002 

1,240 PFOA. PFOS TTP; Fecundity PFOS: 33.7 PFOA: 

5.3  

Pos association to TTP and reduced 

fecundity 

 

Vestergaard, 2012 

(Vestergaard  

et al., 2012) 

Denmark Women (18–

35) 

prospec-

tive study 

1992–

1995 

222 8 PFCs: PFOS. 

PFOA.PFHxS. 

PFNA. PFDA. 

MeFOSAA.EtF

OSAA and 

FOSA 

 

 

 

Fecundity PFOS: 36 

PFOA: 5.6  

No clear association between PFCs  

and TTP 



Author, Year, Ref. Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Whitworth, 2012 

(Whitworth et al., 

2012b) 

Norway pregnant 

women 

(MoBa) 

case-

control 

2003–

2004 

910 (416 

cases) 

PFOA. PFOS TTP PFOS: 13 PFOA: 

2.2  

PFOA and PFOS exposure at plasma levels 

seen in the general population may 

reduce fecundity; 

 

Toft, 2012  

(Toft et al., 2012) 

GRL/PL/ukra

ine 

Men cross 

sectional 

2002–

2004 

196 PFHxS. PFOS. 

PFOA. PFNA. 

PFDA. PFUnDA 

and PFDoDA 

Semen quality PFOS: 44.7 

PFOA: 4.5 (GRL) 

PFOS: 18.5 PFOA: 

4.8 (PL) PFOS:7.6 

PFOA: 1.3 

(Ukraine) 

 

Negative associations between PFOS 

exposure and sperm morphology  

Christensen, 2011 

(Christensen  

et al., 2011) 

UK  ALSPA 

cohort 

nested 

case 

control 

1991–

1992 

218 

cases; 

230 

controls 

 

8 PFCs: incl. 

PFOS. PFOA 

Age of menarche PFOS: 19.8 PFOA: 

3.7  

No associations with age at menarche 

Raymer, 2011 

(Raymer 

 et al., 2012) 

US Men cross-

sectional 

2002–

2005 

256 PFOA. PFOS Semen quali-

ty/reproductive 

hormones 

PFOS: 32.3 

PFOA: 5.2  

No association with sperm parameters. 

pos correlation with LH  

Immune system 

Fei, 2010  

(Fei et al., 2010) 

Denmark 

(DNBC) 

Mother/ 

child 

prospec-

tive  

1996–

2002 

1,400 PFOS. PFOA Hospitaliza-

tion/infection 

PFOS: 34.4 PFOA: 

5.4  

No association between hospitalizaion 

and PFCs 

 

Grandjean, 2012 

(Grandjean  

et al., 2012) 

Faroe 

Iceland 

Mother/ 

child 

prospec-

tive  

1997–

2000 

587 PFOS. PFOA. 

PFHxS. PFNA. 

PFDA 

Antibody conc. 

after vaccination 

PFOS: 27.3 PFOA: 

3.20 

(GM) 

PFOS and PFOA associated with lower 

antibody responses to childhood im-

munizations at age 5. PFDA positively 

associated with the antibody concentra-

tion in blood 

 

 

 



Author, Year, Ref. Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Wang, 2011 

(Wang et al., 2011) 

Taiwan children birth 

cohort 

study 

2004 244 12 PFCs: 

detected PFOA. 

PFOS. PFNA. 

and PFHxS 

 

Pediatric atopi PFOA:1.71 

PFOS: 5.50 

PFOA and PFOS levels positively correlat-

ed with cord blood IgE levels 

Okada, 2012 

(Okada et al., 2012) 

Japan / 

Sapporo 

Pregnant 

women/ 

infant 

Cross-

sectional 

2002–

2005 

343 PFOS, PFOA Allergies and 

infectious diseases 

PFOS: 5.2 

PFOA: 1.3 

Among female infants, cord blood IgE 

levels decreased significantly with high 

maternal PFOA serum levels. No rela-

tionship was found between maternal 

PFOS and PFOA serum levels and infant 

allergies and infectious diseases at 18 

months of age. 

 

Cancer 

Eriksen, 2009 

(Eriksen et al., 

2009) 

Denmark men and 

women 

prospecti-

ve 

1993–

1997 

1,240 

(90% 

women) 

PFOA. PFOS Cancer PFOS: 35 PFOA: 

6.8  

No association to bladder, pancreatic or 

liver cancer. Small increase in risk for 

prostate cancer 

 

Bonefeld-Jørgense, 

2011 (Bonefeld-

Jorgensen et al., 

2011) 

Greenland Inuit women case-

control 

2000–

2003 

31 cases 

115 

controls 

PFOS. PFOA. 

PFHxS. PFOSA. 

PFHpA. PFNA. 

PFDA. PFUnA. 

PFDoA. PFTrDA 

Breast Cancer PFOS: 45.6 

PFOA: 2.5  

Higher PFC levels in breast cancer cases; 

Pos odds ratio 

Lipid metabolisme /biochemicalparameters 

Halldorsson TI, 

2012 (Halldorsson 

et al., 2012) 

Denmark Mother/ 

child  

(Aarhus BC) 

prospec-

tive cohort 

1988–

1989 

665  19 PFCs BMI at 20 years PFOS: 21.5; PFOA: 

3.7  

in utero exposure to PFOA positively 

associated with anthropometry at 20 

years in female but not male offspring 

 

 

 



Author, Year, Ref. Location Population Design Sampling 

date 

No. PFCs measured Outcome Median 

PFOS/PFOA conc. 

(ng/ml) 

Results 

Lin, 2009 

(Lin et al., 2009) 

USA/ 

NHANES 

474adolesve

nts + 696 

adults 

cross-

sectional 

1999–

2000 and 

2003–

2004 

1,443 PFOA. PFNA. 

PFOS. PFHxS 

Glucose homeosta-

tis. metabolic 

syndrome 

PFOS: 24.3 PFOA: 

4.3  

Increased serum PFNA conc. associated 

with hyperglycemia; serum HDL choles-

terol; inversely with prevalence of meta-

bolic syndrome 

 

Nelson, 2010 

(Nelson et al., 2010) 

USA/ 

NHANES 

≥ 12 years cross-

sectional 

2003–

2004 

2,094 PFOA. PFNA. 

PFOS. PFHxS 

Lipid and weight 

outcomes 

PFOS:19.9 PFOA: 

3.8  

A positive association between concentra-

tions of PFOS, PFOA, and PFNA and total 

and non-high-density cholesterol 

Cardiovascular diseases 

Shankar, 2012 

(Shankar  

et al., 2012) 

USA/ 

NHANES 

Men and 

women 

above 40 

years 

Cross-

sectional 

1999–

2000 and 

2003–

2004 

1,216 

(51.2% 

wom-

en) 

PFOA Cardiovascular 

disease and 

peripherial arterial 

disease 

Not reported Exposure to PFOA is associated with 

cardiovascular disease and peripherial 

arterial disease, independent of tradi-

tional cardiovascular risk factors 

BW: Birth weight; GSA: Gestational age. 

Environmental effects of per- and polyfluorinated substances. 



9. Environmental effects of  
per- and polyfluorinated 
substances 

The general observed trend of PFC toxicity is the linear relationship 

found between increasing chain-length and decreasing EC50 (Hoke et al., 

2012; Latała et al., 2009; Mitchell et al., 2011; Mulkiewicz et al., 2007; 

Nobels et al., 2010). This in combination with the longer half-lives and 

elimination rate of the longer chain PFCs should be recognised as a great 

health and environmental concern (Mulkiewicz et al., 2007). It has been 

shown that PFCs may affect the thyroid system (Weiss et al., 2009), in-

fluence the calcium homeostasis, protein kinase C, synaptic plasticity, 

cellular differentiation, induce neurobehavioral effects and induce pe-

roxisome proliferation (Ishibashi et al., 2008; Mariussen, 2012). In vitro 

assessment of environmental fate and ecotoxicologial effects of individ-

ual PFCs in some cases demonstrate that their current environmental 

levels do not pose a threat to ecosystems (O’Brien et al., 2009). On the 

other hand, in the environment, exposure is rarely limited to one PFC, 

but to a mixture of various PFCs and other environmental pollutants. 

Toxic effects may occur as a result of interactions between hazardous 

chemicals and co-exposure may cause additive or synergistic effects 

(Eriksen et al., 2010). Latała et al. (2009) therefore suggest that future 

studies of PFCs ecotoxicity should mainly focus on the effects of mix-

tures of PFCs and their derivatives. Another factor that should be con-

sidered when PFC levels in wildlife are evaluated is the substantial dif-

ferences in PFC concentrations found among life history stages. In a 

study on porpoises, the highest concentrations of PFCs were found in 

neonates, suckling juveniles and lactating females which is of concern as 

PFCs are known to cause toxic effects on the development of the central 

nervous system and reproductive organs (Galatius et al., 2011). 

Some mechanistic studies on PFC toxicity have revealed that there 

are species specific differences. However, this was not the outcome 

when PFOS, PFOSA, PFHxA and PFBS were studied (Hu et al., 2002) in 

both a rat liver epithelial cell line (WB-F344) and a dolphin kidney epi-

thelial cell line (CDK) for GJIC interfering effects. Gap junctional intercel-
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lular communication (GJIC) is the major pathway of intercellular signal 

transduction, and is therefore important for normal cell growth and 

function. Inhibition of GJIC was found in a dose-dependent manner for 

all compounds except for PFBS and the inhibitory effects were neither 

species- nor tissue specific. A Specific Absorption Rate (SAR) was also 

established among the four compounds tested, and the effect was de-

termined by the length of the fluorinated tail and not by the functional 

groups. This is contradicted by a study made by Hagenaars et al. 

(2011a), comparing the potential effects of the four different PFCs; PFOS, 

PFBS, PFOA and PFBA on embryonic development in zebrafish (Danio 

rerio). The authors conclude that sulfonated and carboxylated PFCs act 

by different processes and that the exact mechanisms of the potential 

effects of PFOS, PFOA and PFBS on endothelial cells or vasoactive sub-

stances of the heart will need further investigation. 

In order to evaluate the potential reproductive effects of PFCs, a 

study was conducted on the toxic effects of the four PFCs; PFOA, PFNA, 

PFOS and FC-807 (perfluoro alkyl phosphate) on zebrafish embryos. 

Oedemas and spine malformations occurred throughout the duration of 

the study and all the tested PFCs caused lethality in a concentration-

dependent fashion. Based on the LC50 values the toxic potency was in the 

order of PFOS>FC807>PFNA>PFOA. Although all four compounds 

caused malformations, FC-807, with the larger ester molecule, caused 

more yolk-sac and pericardial-sac oedemas than the other PFCs. The 

authors therefore propose that FC-807 might more easily disturb the 

water barrier around the embryos and disturb heart functions, causing 

oedemas (Zheng et al., 2012).  

9.1 Perfluoro carboxylates (PFCAs) 

PFCA toxicity has been tested in different organisms. Blue-green algae and 

cyanobacteria were shown to be very sensitive to PFCAs (Latała et al., 

2009). E. coli bacteria were exposed to selected PFCs which resulted in 

clear indications of markers for oxidative stress and DNA damage with the 

most severe DNA damage observed after exposure to PFDA, PFUnDA and 

PFDoDA (Nobels et al., 2010). The structure-activity results from the E. 

coli study (Nobels et al., 2010) indicated that the carboxylic acids with 

long carbon tails induced several stress genes. Other studies have made 

similar findings; ROS and DNA damage was observed in HepG2 cells after 

exposure to PFCAs (Eriksen et al., 2010), cytotoxicity was found against 

primary rat testicular cells, where PFNA attributed as most DNA damag-
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ing (Lindeman et al., 2012). In vitro cytotoxicity of PFCAs was determined 

in human colon carcinoma (HCT116) cells (Kleszczyński et al., 2007; 

Kleszczyński and Składanowski, 2009) and treatment with PFCAs caused 

cell apoptosis. It seems that the PFCAs are not acutely toxic, but the cell 

viability inhibition is intensified after longer exposure. The estimated EC50 

values decreased with elongation of the fluorocarbon chain (PFHxA > 

PFHpA > PFOA > PFNA > PFDA > PFDoA > PFTeDA), although, chain 

lengths above C16 and C18 did not increase the effect. PFCA effects on 

hatching success of birds was investigated by O´Brien et al. (2009) and in 

their results, only PFUDA caused statistically significant increases in gene 

transcription at the highest dose applied (10 μg/g).  

PFCAs are also potent inducers of the oestrogen-responsive biomarker 

protein vitellogenin (Vtg). This effect was investigated in vivo in rainbow 

trout by Benninghoff et al. (2011). They found that all PFCAs tested 

(PFOA, PFNA, PFDA and PFUnDA) bound weakly to trout liver ER with 

IC50 values of 15.2–289 mM, whereas, 8 to 10 fluorinated carbons and a –

COOH end group were optimal for Vtg induction. The same authors sug-

gest that multiple PFCAs can promote hepatic tumorigenesis in trout in a 

manner similar to that of 17β-estradiol (Benninghoff et al., 2012). 

9.2 Perfluoroalkyl sulfonates (PFSAs) 

The perfluoroalkyl sulfonates contain a sulfonate group instead of a car-

boxyl group, but as mentioned earlier, there still seems to be no clear 

understanding of the relative importance of chain length and functional 

groups for the toxic effects of PFCs.  

Some of the bigger PFC producers, such as 3M, have already phased 

out the production of PFOS (C8) and replaced it with the production of 

PFBS (perfluorobutane sulfonate, C4) as an alternative. Due to its short-

er chain length it is expected to be less bioaccumulative. As a result, the 

production volumes of PFBS have expanded during the last decade and 

PFBS has already been detected in environmental samples. The general 

lack of information on its toxicological mode of action and the potential 

hazard it may pose against ecological species, has therefore directed a 

great deal of focus on PFBS during the last years (Hagenaars et al., 

2011b). According to the obtained ecotoxicological information on PFBS, 

its direct toxicity seems to be relatively low. Flow cytometric measure-

ments on some membrane systems of the freshwater alga species 

Scenedesmus obliquus revealed that PFBS did not inhibit algal growth 

within the test concentration ranges (Liu et al., 2008). PFBS was exam-
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ined by Rosal et al. (2010) against the marine bacterium Vibrio fischeri, 

the cyanobacterial recombinant strain Anabaena CPB4337 and the algae 

Pseudokirchneriella subcapitata and the toxicity against all organisms 

tested was very low (EC50 > 8,000 ml/L). In the study mentioned above 

on effects of PFBS on embryonic development in zebrafish (Danio rerio), 

it was not possible to determine its LC50 value due to the low mortality 

rate of the compound even at high exposure concentrations (500 and 

3,000 mg/L). The results however, demonstrated significantly altered 

heart rates in the embryos as well as malformations of their heads after 

exposure to PFBS (Hagenaars et al., 2011b). In juvenile mallards and 

northern bobwhite quail, PFBS was found to affect the body weight gains 

of quail exposed to 5,620 or 10,000 mg PFBS/kg feed, which were statis-

tically less than that of unexposed controls (Newsted et al., 2008). 

What appears to be of more concern regarding the short-chained 

PFCs is their elicited transcriptional responses. Long-chained PFCs bind 

more strongly to extracellular proteins than short-chained PFCs, which 

may render their availability for uptake into cells. Hence, short-chained 

PFCs may be more bioavailable and may cause more genetic and neural 

damage (Vongphachan et al., 2011). 

Slotkin et al. (2008) used PC12 cells, (a standard in vitro model for 

neuronal development) to characterise essential features of the devel-

opmental neurotoxicity of PFBS. PFBS demonstrated a unique effect on 

differentiation of both dopamine (DA) and acetylcholine (ACh) neuro-

transmitter phenotypes; displaying a concentration-dependent suppres-

sion in both the expression of TH (Tyrosine Hydroxylase) and ChAT 

(Choline AcetylTransferase). PFBS did not evoke any effect on DNA syn-

thesis, although it did produce significant cell enlargement due to an 

increase in the total protein/DNA ratio (Slotkin et al., 2008). 

The short-chained PFCs, PFBS and PFHxS were shown to significantly 

alter the messenger RNA (mRNA) of TH-responsive genes in primary cul-

tures of avian (chicken embryonic and herring gull embryonic) neuronal 

cells. Exposure to these compounds resulted in e.g. induction of D3 mRNA, 

RC3 mRNA and down-regulation of TTR mRNA (Vongphachan et al., 

2011). These effects could affect e.g. TH-dependent processes as well as 

changes in RC3 expression could have consequences in synaptic plasticity, 

associative learning and memory (Iniguez et al., 1993; Iniguez et al., 1996; 

Vongphachan et al., 2011). Likewise, an earlier in vitro study on CEH 

(Chicken Embryo Hepatocyte) cultures exposed to PFHxS, PFHpS and 

PFDS demonstrated alterations of transcriptional responses. The shorter-

chained PFHxS and PFHpS induced CYP1A4 or CYP1A5 mRNA, while the 

longer-chained PFDS repressed CYP1A4 mRNA (Hickey et al., 2009).  
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These reported significant effects of PFHxS treatment on messenger 

RNA (mRNA) levels of thyroid hormone (TH)-responsive genes in chick-

en embryonic neuronal cells initiated the determination of in ovo effects 

of PFHxS exposure (maximum dose = 38,000 ng/g egg). The previous in 

vitro results were successfully validated, since plasma TH levels of 

chicken embryos were reduced in a concentration-dependent manner 

following PFHxS exposure. In addition, pipping success was significantly 

reduced, the tarsus length and embryo mass decreased and D2 and D3 

and cytochrome P450 3A37 mRNA levels were induced in the liver tis-

sue, whereas D2, RC3 and octamer motif binding factor 1 mRNA levels 

were up-regulated in cerebral cortex. PFHxS accumulation could be seen 

in the three tissue compartments analysed: yolk sac > liver > cerebral 

cortex (Cassone et al., 2012). 

In an in vivo study (Nøst et al., 2012), plasma concentrations of a 

wide range of halogenated organic contaminants, including PFHxS and 

PFHpS, and their correlations with circulating thyroid hormones (TH) in 

developing Arctic seabirds was assessed. Plasma from chicks of black-

legged kittiwake (Rissa tridactyla) and northern fulmar (Fulmarus glaci-

alis) was taken and analysed for thyroid hormones. A positive associa-

tion was found between total thyroxin (TT4) and PFHpS in both species 

and PFHxS was negatively correlated to the TT3:FT3 ratio. Since the 

disruption of TH homeostasis may cause developmental effects in young 

birds, the correlations between the relatively low plasma levels of PFCs 

and THs found in the study may be of concern on the health related ef-

fects of these compounds in seabird fledglings (Nøst et al., 2012). 

The C10 PFSA, PFDS, seems to be less industrially utilised and has ac-

cordingly attained less attention, which is reflected by its appearance in the 

scientific literature. But since Hickey et al. (2009) identified the responsive-

ness of genes exposed to PFDS in in vitro cultured chicken embryonic 

hepatocytes (CEH) the in ovo toxicity of PFDS was assessed by injection into 

white leghorn chicken (Gallus gallus domesticus) eggs (O’Brien et al., 2009). 

The compound was detected in livers of the chicken embryos, at levels in 

agreement with concentrations (up to 10 μg/g) injected, indicating that 

PFDS was efficiently taken up by the developing embryos. Despite this, 

transcriptional activity for CYP1A4, CYP1A5, CYP4B1 or L-FABP mRNA in 

the chicken embryo liver tissue was not significant altered and the pipping 

success was not affected (O’Brien et al., 2009). 
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9.3 FTOHs  

The PFOS and PFOA use has been exchanged for shorter chain PFCs such 

as the fluorotelomer alcohols. Little data on the distribution and envi-

ronmental fate of FTOH makes it difficult to assess the environmental 

risk. Available studies of their biological and ecotoxicological assessment 

have demonstrated the need to monitor their environmental distribu-

tion and further investigate their effects on the biota, especially for long-

term exposure of environmental relevant concentrations. FTOHs have 

been detected in the aquatic environment and their biotic and abiotic 

degradation lead to a range of products, including PFCAs of various 

chain lengths, causing secondary pollution. PFOA and PFNA have been 

confirmed as metabolites of 8:2 FTOH (Ishibashi et al., 2008; Martin et 

al., 2005), and since PFCAs, particularly PFOA, have been reported to 

cause liver cancer, pancreatic tumour, and Leydig cell tumour, FTOHs 

might indirectly induce tumours via PFCAs (Oda et al., 2007).  

As other PFCs, FTOHs have been characterised as xenoestrogens in 

vitro and owe their oestrogen-like effects to their structural and chemi-

cal similarities to other xenoestrogenic compounds. Fluorotelomer alco-

hols have been shown to exert estrogenic activity in MCF-7 cells, in a 

yeast two-hybrid assay and in aquatic organisms where 6:2 FTOH has 

been characterised as a stronger xenoestrogen than 8:2 FTOH (Ishibashi 

et al., 2008; Maras et al., 2006; Vanparys et al., 2006; Wang et al., 2012). 

According to Ishibashi et al. (2007) treatment with 6:2 FTOH, 8:2 FTOH 

and NFDH (nonadecafluoro-1-decanol) show a dose-dependent interac-

tion with the human estrogen receptor (hER), and rank the estrogenic 

effects for hERα and hERβ in the descending order of 17β-estradiol>>> 

6:2 FTOH > NFDH > 8:2 FTOH. Waterborne exposure of both 6:2 and 8:2 

FTOH alter the plasma levels of testosterone and estradiol and 8:2 FTOH 

adversely impair reproductive success in the offspring of zebrafish (Liu 

et al., 2010a; Liu et al., 2009). In addition, it has been suggested that 8:2 

FTOH has the potential to suppress stereoidgenesis (Liu et al., 2010b).  

The fluorotelomer alcohols have been ecotoxocologically assessed 

through their growth impairment potential. Wang et al. (2010) suggest-

ed that 4:2 and 6:2 FTOH might cause apoptosis, while, Oda et al. (2007) 

suggested that they are unlikely mutagens. The fluorotelomer alcohols 

8:2 FTOH and 10:2 FTOH were shown to be rapidly metabolised by rain-

bow trout to the fluorotelomer acids (8:2 FTCA, 10:2 FTCA) and the un-

saturated acids (8:2 FTUCA, 10:2 FTUCA), respectively (Brandsma et al., 

2011). Studies have found that these transformation products are more 

bioaccumulative and more acutely toxic to aquatic organisms than their 



  Per- and polyfluorinated substances in the Nordic Countries 153 

precursors (Brandsma et al., 2011; Hoke et al., 2012; Mitchell et al., 

2011). Both Hoke et al. (2012) and Mitchell et al. (2011) suggest, how-

ever, that these fluorinated acids pose little or negligible risk to aquatic 

biota, since the available environmental concentrations are still well 

under the toxicity thresholds. 

9.4 Other fluorinated compounds of interest 

Polyfluorinated iodine alkanes (PFIs) are important intermediates in the 

synthesis of organic fluoride products. Recently, they have been detected in 

fluoropolymers as residual raw materials, as well as in the ambient envi-

ronment. Wang et al. (2012) studied for the first time the estrogenic activity 

of PFIs, fluorinated iodine alkanes (FIAs), fluorinated telomer iodides 

(FTIs), and fluorinated di-iodine alkanes (FDIAs) in MCF-7 cells. They con-

cluded that some PFIs could act on ERs and potentially cause detrimental 

effects on reproductive and developmental systems (Wang et al., 2012).  

Semi-fluorinated emulsifiers derived from the dimorpholinophos-

phate polar head group CnF2n+1(CH2)mOP(O)[N(CH2CH2)2O]2 

(FnHmDMP) allow for the preparation of stable water-in-fluorocarbon 

emulsions. These emulsions are being investigated as delivery systems 

of drugs into the lung, either by systemic or local administration. The 

cytotoxicity of a series of FnHmDMP was evaluated by Courrier et al. 

(2003). FnHmDMP compounds with the longest fluorinated chain length 

or total chain length ratio, i.e. F8H11DMP and F10H11DMP were shown 

to be the least toxic. Moreover, emulsions stabilised with these am-

phiphiles were found to be non-cytotoxic, or less cytotoxic than solu-

tions of the same amphiphiles in fluorocarbons (Courrier et al., 2003). 

Fluorotelomer unsaturated aldehydes (FTUALs) and acids (FTUCAs) 

are intermediate metabolites that form from the degradation of FTOHs. 

Their toxicity potential is not yet defined and may be more significant 

compared to PFCAs, but studies have shown that they form adducts with 

glutathione (GSH). Results presented by Rand and Mabury (2012) indi-

cate that the α,β-unstaurated aldehydes react most comparatively with 

GSH and that the reaction is possibly influenced by the length of the 

fluorinated tail. They also suggest that given the low EC50 values meas-

ured for 6:2 FTUAL and 8:2 FTUAL, these compounds may exert cytotox-

ic influences on biological nucleophiles present in proteins as well as 

nucleic acids.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10. Discussion 

There are considerable data gaps on the content of specific PFCs in 

commercial products used on the Nordic market. Some of these PFCs 

exhibit hazardous characteristics and therefore it is of very high concern 

to facilitate access to specific PFC substance information from industrial 

actors on the market either on a voluntary basis or if this is not possible 

by legal means. The current legal tools such as the EC Regulation 

1272/2008 (CLP) and the EC Regulation 1907/2006 (REACH) are cur-

rently not sufficient to provide that kind of specific substance infor-

mation although the information exists. For publicly available MSDS 

there is no legal incentive for a company to provide specific substance 

data and when provided to the authority this information is legally clas-

sified as confidential with no access to the public. Concerning PFCs in 

articles it is not possible to achieve specific PFC substance information 

according to REACH unless they are identified as Substances of Very 

High Concern (SVHC). Then there is a legal possibility to access down-

stream information. However, this is only possible if the concentration 

of the PFC (then as an SVHC) exceeds 0,1% by weight of the article in 

question. Since many PFCs are added in much lower concentrations in 

products, the SVHC approach to PFCs may be ineffective from a legal 

perspective. It is important to mention that there are small opportuni-

ties to get production data on specific PFCs in articles since almost all 

production occurs outside the EU.  

There are few studies on PFCs in the Nordic environment. Therefore 

there is an urgent need for new data on PFCs, especially for PFCs other 

than PFOA and PFOS, regarding their environmental occurrence. This is 

necessary if we want to get a better and more complete picture of the 

PFC levels in different Nordic environmental compartments. This in-

cludes more in-depth knowledge of spatial and temporal distribution, 

and clear temporal trends.  

Modeling and field monitoring are essential prerequisites for detailed 

environmental fate studies of PFCs. In many cases these studies are hin-

dered by the lack of reliable (or in some cases total lack of) physical-

chemical properties for many fluorinated compounds. Furthermore, 

there is still a lack of analytical reference standards of PFCs but lately 

there is an increased access to new and better reference standard sub-
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stances on the market which are necessary for these kinds of environ-

mental studies. Further resources for in depth research are thus needed. 

There are few studies on biomonitoring of PFCs other than PFOA and 

PFOS. Therefore there is a great need for further studies. This is espe-

cially true for those with shorter carbon chains and their corresponding 

precursors in human/maternal blood and cord blood. There is also a 

need to explore the real pre-term and post-term exposure of the fetus 

and newborn child. For some less known PFCs such as PFAL (per-

flouroaldehyde), FTS (fluorotelomer sulfonates), PAP/di-PAP and 

FTMAPs (fluorotelomer mercaptoalkyl phosphate diester) there are no 

studies at all carried out and consequently no data is available. Also in 

this case further in-depth research is needed. Further studies concerning 

PFCs’ impact on maternity and immunology are called for since only 

inconsistent data exist.  

 



11. Conclusions 

As a result of the mapping study, stage 1 of this project, carried out on 

more than 50 actors on the Nordic market that trade with PFC products 

it was concluded that there are considerable information gaps for most 

of the PFC chemicals regarding the exact chemical composition in com-

mercial products, their quantities produced and uses on the Nordic mar-

ket. These gaps may be a combination of lack of knowledge and/or trade 

secrets from the actors on the Nordic market.  

In parallel with the mapping of the Nordic market a net list of specific 

PFCs that may be used on the market was produced. This net list was 

extracted from three public lists, namely one list from OECD, the REACH 

preregistration database, and the Nordic SPIN database. Since neither of 

these databases contains complete information on the market use of 

PFCs, the net list is necessarily incomplete and there may be other PFCs 

used on the Nordic market in addition to those found in the net list.  

There exists only a few scientific reports on PFCs in the Nordic envi-

ronment other than PFOA and PFOS that cover both biotic and abiotic 

samples. Regarding PFCAs, most studies report results for PFOA, PFHxA 

and PFNA. However other PFCA substances (C10–C13) have also been 

detected in a few studies. For PFSAs, PFOS and PFHxS are the most stud-

ied compounds. Observations reported in the few studies available report 

that the concentrations in the Nordic environment and the Arctic are 

much lower compared to other countries especially when compared with 

central European countries with high GDPs, which is to be expected as 

populations are smaller and there is less industry in the Nordic countries. 

However these substances have also been found in the Arctic, far from any 

sources, which shows that these substances are global contaminants. 

Publications that report human biomonitoring data of PFCs (PFCAs 

and PFSAs) for the Nordic countries during the period from 1992 to 

2010 are available. Most and most recent data are reported from Nor-

way and Sweden, whereas fewer exist from Denmark. No human data 

were found for Iceland and Finland. Results from these studies report 

that since 2002 decreasing trends have been observed for PFOA and 

PFOS but not for other PFCAs and PFSAs. In Sweden, for instance, it was 

found that perfluorinated sulfonates with shorter carbon chains (≤6) 

currently show an increasing trend.  
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Only a few studies on PFSAs and PFCAs in amniotic fluids have been 

published but all show low levels that are 10–20 folds below the levels 

in the corresponding serum. Nordic studies show that the PFSAs and 

PFCAs can be transferred to human breast milk with a concentration 

range of 1–2% and 3–4%, respectively of the serum concentration. For 

other PFCs such as PFAL (perflouroaldehyde), FTS (fluorotelomer sul-

fonates), PAP/di-PAP and FTMAPs (fluorotelomer mercaptoalkyl phos-

phate diester) no studies have been carried out.  

Animal studies on toxicity show that PFCAs and PFSAs affect the de-

velopment, reproduction and immune system negatively by decreasing 

body weight, inducing hepatoxicity, affecting the endocrine system in-

cluding the sex hormone and thyroid hormone system. Hepatocytic hy-

pertrophy effect in laboratory animals were reported for PFOS, PFHxS, 

PFBS, PFDA, PFNA, PFOA, PFHpA, PFHxA, and PFBA and is likely associ-

ated with induced peroxisome proliferation. 

Early pregnancy loss was observed in animal studies with PFOA or 

PFBA exposure but only at very high doses, and the etiology of this effect 

is not clear. No fetal toxicity was observed after gestational exposure to 

PFBA or PFDA. Compared to long-chain PFAAs (≥C8), the short-chain 

chemicals are much less toxic to the developing animal, in part due to 

their faster rate of clearance. A similar lack of reproductive and devel-

opmental toxicity has been reported for PFHxA, PFBS and PFHxS. 

Adverse immunological outcomes have been reported from exposure 

to PFOS, PFHxS, PFOA and PFNA. Alterations of thyroid hormones and 

sex steroid hormones (endocrine disruption) have been shown after 

exposure to primarily PFOS and PFOA, although PFDA-induced reduc-

tions of thyroid hormones have also been reported. PFDoA has recently 

been shown to decrease testosterone synthesis in male rats and to de-

crease serum estradiol and gene expression of estrogen receptors in the 

female rats, possibly through oxidative stress pathways. 

The overall observations on liver parameters such as lipid profile, the 

reproductive (e.g. menopause), the thyroid hormone system, and the 

risk of ADHD (PFHxS) were observed as a combined effect of PFCAs and 

PFSAs. Follow-up evaluations of infants and children in the Danish Na-

tional Birth Cohort indicated no associations between prenatal exposure 

to PFAAs and risk of infectious diseases, normal developmental mile-

stones, and behavioral and motor coordination problems. Whereas a 

study on the Faroe Islands birth cohort showed that PFC levels inversely 

correlated to the vaccination response at age 5. 

A linear relationship between increasing PFC chain-length and de-

creasing EC50 has been observed. This in combination with the longer 
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half-lives and elimination rate of the longer chain PFCs should be recog-

nised as a great health and environmental concern. In the environment, 

exposure is rarely limited to one PFC, but to a mixture of various PFCs 

and other environmental pollutants. Toxic effects may occur as a result 

of interactions between hazardous chemicals and co-exposure may 

cause additive or synergistic effects. Future studies of PFCs ecotoxicity 

should focus on the effects of mixtures of PFCs and their derivatives. 
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Sammanfattning 

Nordiska Kemikaliegruppen (NKG) som är underställd Nordiska Minister 

Rådet har via Klima- og forurensningsdirektoratet (KLIF) gett i uppdrag 

till författarna att genomföra en Nordisk studie baserad på öppna infomat-

ionskällor samt egna marknadsstudier för att beskriva de vanligaste per-

fluorerade ämnena (PFC) med mindre fokus på PFOS och PFOA. 

Undersökningen omfattar tre delmoment: 

 

1. Identifiering av relevanta per- och polyfluorerade ämnen och deras 

användning inom olika industrisektorer på den nordiska marknaden. 

2. Förekomst i industri-och konsumentprodukter och potentiella 

utsläpp till och i den nordiska miljön och människor av de ämnen 

som beskrivs i delmoment 1. 

3. En sammanfattning av kunskapen om toxiska effekter på människa 

och miljö hos de ämnen som prioriterats i delmoment 2. 

 

Intervjuer genomfördes med fler än 50 aktörer på den Nordiska mark-

naden med syftet att få information om användning och typ av av PFC-

ämnen. Denna undersökning gav emellertid magert resultat. Parallellt 

med denna kartläggning togs därför en nettolista över PFC-ämnen fram 

baserat på listor (var och en för sig och tillsammans ofullständiga) från 

OECD, REACH förregistreringsdatabas samt den nordiska SPIN-

databasen. Större delen av varuproduktionen sker idag utanför EU och 

dagens regelverk inte ger tillräckliga förutsättningar för att få tillräcklig 

information om specifika PFC ämnen som finns i importerade varor. 

Denna nettolista är således inte komplett varför det kan finnas avsevärt 

fler PFC-ämnen som används på den nordiska marknaden.  

Det finns få studier om PFC-ämnens förekomst i miljön i de nordiska 

länderna utöver PFOA och PFOS som omfattar både biotiska (luft, mark 

och vatten) och abiotiska (djur och människa) data.  

De flesta humandata avseende PFCA och PFSA från åren 1992 till 

2010 kommer från Norge och Sverige, färre från Danmark och inga upp-

gifter från Island och Finland. Gällande PFCA visar de flesta studier på 

förekomst av PFOA, PFHxA och PFNA. Även andra PFCA ämnen (C10–

C13) har också påvisats i flera studier. För PFSA är PFOS och PFHxS är 
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de mest studerade föreningarna. Humandata saknas helt för PFAL, FTS, 

PAP/di-PAP samt FTMAPs.  

I jämförelse med långkedjiga PFC-ämnen (≥C8) är de kortkedjiga för-

eningarna bedömts vara mindre toxiska men ett antal studier visar på 

både ekotoxikologiska och humantoxikologiska effekter. Inom detta 

område är dock bristen på studier stor. 

I stort iakttas minskande halter av PFOA och PFOS i miljön sedan 

2002. Däremot observeras en ökande halt av kortkedjiga sulfonater i 

miljön. I jämförelse med andra länder är bakgrundskoncentrationen i 

miljön av PFOA och PFOS lägre i de nordiska länderna särskilt i jämfö-

relse med centraleuropeiska länder, som kan förväntas pga lägre befolk-

ningstäthet och mindre industriell verksamhet i de Nordiska länderna. . 

Dessa ämnen har även hittats i Arktis, långt från alla källor, vilket visar 

att dessa ämnen är globala föroreningar.  

Ett resultat av denna översikt av förekomsten av fluorerande ämnen i 

miljön, är att det finns en stor informations- och kunskapsbrist om PFC 

utöver PFOA och PFOS. Dessutom finns generellt en stor brist på human- 

och miljödata kring dessa PFC-ämnen. De få data som finns indikerar 

viss toxisk påverkan på människa och miljö. Det krävs fler och djupare 

studier för att få en tydligare bild av dessa PFC ämnens innan mer långt-

gående slutsatser kan dras om deras toxiska egenskaper. 

Bristen på fysikalisk-kemiska data för PFC-ämnen utöver PFOA och 

PFOS utgör ett hinder för modellberäkningar kring dessa ämnens sprid-

ning i miljön 

Bristen på analytiska referenssubstanser utgör idag också ett hinder 

för utökade studier kring dessa ämnens förekomst i människa och miljö.  
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Perfluoro- / Perfluorinated  

A general term for a substance where fluorine (F) is substituted 

for all hydrogen (H) atoms attached to carbon atoms except 

carbon atoms whose substitution would affect the nature of 

the functional group(s) present
2
. Examples: F(CF2)nCHO, 

F(CF2)nCO2H, F(CF2)nSO3H, (CF3)2NH  

A fully fluorinated or perfluorinated chemi-

cal is one in which all the carbon-hydrogen 

bonds in a chain have been replaced by 

carbon-fluorine ones. All fully fluorinated 

chemicals are man-made. Examples include 

perfluorooctanoic acid (PFOA) and perfluo-

rooctane sulfonate (PFOS). 

Perfluoroalkyl Substance / Compound (PFA)  

A general term for a substance that is perfluorinated according 

to the definition given above, but excluding perfluorocarbons.  

A substance which bears a perfluorocarbon, 

also known as a perfluororoalkyl, functional 

group. F(CF2)n-X where n is an integer and X 

is not a halogen, or hydrogen. 

Comments: The term has also been used to describe substanc-

es which contain a perfluoroalkyl moiety attached to other 

atoms that may not be perfluorinated but may have potential 

to transform to a perfluoroalkyl substance. Justification for the 

acronym PFA is given in Part 3 of this document.  

 

Perfluorocarbon (PFC)  

A perfluorinated hydrocarbon, especially a perfluorinated 

alkane, CnF2n+2. Perfluorocarbons contain only carbon and 

fluorine atoms.  

Perfluorinated chemicals in which all 

carbon-hydrogen bonds in a chain have 

been replaced by carbon-fluorine bonds. 

Examples include perfluorooctanoic acid 

(PFOA) and perfluorooctane sulfonate 

(PFOS). PFC term also refers to PFC precur-

sors, chemicals which contain a perfluoro-

alkyl moiety attached to other atoms that 

may not be perfluorinated, and have 

potential to transform to produce PFCs. 

Perfluorinated Surfactant / “Perfluorinated Tenside (PFT)” (in publications of German origin)  

A general term for a surface active, low molecular weight 

(<1,000 daltons), substance where fluorine (F) is substituted for 

all hydrogen (H) atoms attached to carbon atoms except 

carbon atoms whose substitution would affect the nature of 

the functional group(s) present
2
. Example: F(CF2)6SO3

-
NH4

+
.  

A term used to describe a surface active, 

low molecular weight (<1,000), substance 

where all carbons bear fluorine in place of 

hydrogen; the term Fluorosurfactant is less 

specific but misused synonymously; a 

perfluorinated example is F(CF2)6SO3-

NH4+; while a fluorinated surfactant might 

be F(CF2)4CH2SO2-NH4+. 

 

────────────────────────── 
27 http://www.oecd.org/document/54/0,3746,en_21571361_44787844_45162486_1_1_1_1,00.html 

http://www.oecd.org/document/54/0,3746
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Perfluoroalkyl Acid / Perfluorinated Acid (PFAA)  

A general term for a substance which contains a perfluoroalkyl, 

F(CF2)n-, functionality bound to an acid functionality, e.g., 

carboxylate, sulfonate, phosphonate.  

Perfluoroalkyl acids 

Perfluoroalkyl Carboxylic Acid / Perfluoroalkyl Carboxylate (PFCA)  

A general term for a substance whose chemical structure is 

F(CF2)nCO2H and its anionic form F(CF2)nCO2

-

.  

Perfluorinated carboxylic acids and their 

salts are a series of substances whose 

anion has the general structure of 

CF3(CF2)nCOO-. Certain members of this 

class, including the PFCA with 8 carbons, 

called perfluorooctanoic acid (PFOA or C8), 

are manufactured as a processing aid to 

produce fluoropolymers. 

Comments: This term may also be used to describe the salts of 

these acids (e.g., ammonium, sodium, potassium). Justification 

for the acronyms proposed to represent the various species 

(free acid, anion and salts) is given in Part 3 of this document.  

 

Examples:  

 

 

PFNA:   

Perfluorononanoic acid, F(CF2)8CO2H, is a fully fluorinated, 

nine-carbon chain length carboxylic acid (C9) (CAS 375-95-1). 

Perfluorononanoic acid is a fully fluorinat-

ed, nine-carbon chain length carboxylic 

acid (C9) (CAS 375-95-1). 

PFOA:   

Perfluorooctanoic acid, F(CF2)7CO2H, is a fully fluorinated, 

eight-carbon chain length carboxylic acid (C8) (CAS 335-67-1). 

Perfluorooctanoic acid is a fully fluorinat-

ed, eight-carbon chain carboxylic acid (C8) 

(CAS 335-67-1) sometimes used to refer to 

the anionic salt form. 

APFO:   

Ammonium perfluorooctanoate, F(CF2)7CO2NH4  

(CAS 3825-26-1), is the ammonium salt of PFOA.  

 

 

PFBA:   

Perfluorobutanoic acid, F(CF2)3CO2H, is a fully fluorinated, four-

carbon chain length carboxylic acid (C4) (CAS 375-22-4).  

 

 

PFSA  

Perfluoroalkyl (or Perfluoroalkane) Sulfonic Acid / Perfluoroal-

kyl (or Perfluoroalkane) Sulfonate  

 

 

A generic term for a substance whose chemical structure is 

F(CF2)nSO3H and its anionic form F(CF2)nSO3
-
.  

Perfluoroalkyl sulfonate is a generic term 

used to describe any fully fluorinated carbon 

chain length sulfonic acid, including higher 

and lower homologues as well as PFOS. 

 

Comments: This term may also be used to describe its salts 

(e.g., ammonium, sodium, potassium). Justification for the 

acronyms proposed to represent the various species (free acid, 

anion and salts) is given in Part 3 of this document.  

 

Examples 

 

PFOS:  

Perfluorooctane sulfonic acid (CAS 1763-23-1) / sulfonate (CAS 

45298-90-6) is a fully fluorinated, eight-carbon chain homologue.  

Perfluorooctane sulfonic acid is a fully 

fluorinated, eight chain sulfonic acid (CAS 

1763-23-1) sometimes used to refer to the 

anionic salt form. 
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PFHxS:  

Perfluorohexane sulfonic acid (CAS 355-46-4) / sulfonate (CAS 

108427-53-8) is a fully fluorinated, six-carbon chain homologue.  

 

PFBS:  

Perfluorobutane sulfonic acid (CAS 375-73-5) / sulfonate (CAS 

45187-15-3) is a fully fluorinated, four-carbon chain homologue.  

 

 

Perfluoroether  

A general term for a substance which contains short perfluoroal-

kyl moieties, typically 1–3 carbon atoms, connected to an oxygen 

and capped by the same type of perfluoroalkyl / perfluorocarbon 

functionality or/and by other non-fluorinated functionality.  

 

 

Polyfluoroether  

A general term for a substance which contains short fluoroalkyl 

moieties that are not fully fluorinated and do contain hydrogen 

bound to carbon, typically 1–3 carbon atoms, connected to an 

oxygen and capped by a fluoroalkyl / fluorocarbon functionality 

or/and by other non-fluorinated functionality.  

 

 

Perfluoropolyether (PFPE)  

A general term for a substance which contains short perfluoroal-

kyl moieties, 1–3 carbon atoms, connected by oxygen bridges 

and capped by the same type of perfluoroalkyl / perfluorocarbon 

functionality or/and by other non-fluorinated functionality.  

 

 

ECF & TELOMERS – TERMINOLOGY  

 

 

Electrochemical fluorination 

A process technology used to manufacture fluorinated chemicals 

where an organic raw material is dissolved in hydrogen fluoride 

and electrolyzed, resulting in the replacement of hydrogen with 

fluorine The free-radical nature of the process leads to rear-

rangement resulting in a product mixture of linear and branched 

isomers of multiple carbon chain lengths.  

 

 

Comment: A systematic numbering system for identifying the 

linear and branched congeners of several families of perfluoroal-

kyl substances has been proposed
3
.  

 

 

Telomerisation (or Telomerisation)
 

 

A process technology used to manufacture fluorinated chemicals 

where pentafluoroethyl iodide (telogen) is reacted with tetraflu-

oroethylene (TFE, taxogen) to yield a mixture of even carbon-

numbered perfluoroalkyl iodides F(CF2CF2)nI.  

 

 

Telomer (or Fluorotelomer)  

A general term for a substance derived from a raw material 

produced from the telomerisation process.  

Telomer Based Product: Chemical 

substances that have the fluoroalkyl 

portion of the molecule derived from 

telomers manufactured from low 

molecular weight polymerisation of 

tetrafluoroethylene. 
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Examples  

 

 

Fluorotelomer alcohol (FTOH)  

A general term for substances with the general structure 

F(CF2CF2)nCH2CH2OH.  

 

 

Fluorotelomer olefin (FTO)  

A general term for substances with the general structure 

F(CF2CF2)nCH=CH2.  

 

 

 



Appendix B – Illustration of 
mapping of SPIN- and 
preregistered chemicals 

Aggregated PFC information of SPIN- and preregistered chemicals 

There were 118 CAS numbers on the SPIN list of which 27 were poly-

mers or not-precise defined mixtures, which are excluded from the 

schemes but listed in the end. 91 CAS numbers were included in the 

sorting. The SPIN chemicals are indicated with an asterisk (*). 

There were 518 CAS numbers on the preregistration list. Of these 79 

were polymers or not-precise defined mixtures which are listed at the end.  

Additionally synonyms, acronyms, trade names, physical-chemical 

data and use data have been collected, but only included a few of these 

data in the tables. This can be further developed. 

The applied names are as simple as possible and we have chosen to 

use the the ones that are easiest to understand. Those are not necessari-

ly the most correct ones but we have made this choice to make it easier 

to get an overview and see homologue rows and relationships. That’s 

also why “perfluor” and fluorotelomer names have been used where 

possible. Fluorotelomers with a branched fluoroalkyl chain, however, 

have got more systematic names. 

Perfluoroalkyl sulfonic acids (PFSAs) 

CAS 375-73-5  Perfluorobutane sulfonic acid,  PFBS 

CAS 355-46-4  Perfluorohexanesulfonic acid,  PFHxS 

CAS 375-92-8  Perfluoroheptane sulfonic acid,  PFHpS 

CAS 335-77-3  Perfluorodecane sulfonic acid,  PFDS 

CAS 79780-39-5 Perfluorododecane sulfonic acid PFDoS 

CAS 70259-86-8 4H-Perfluorobutane sulfonic acid  
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Perfluoroalkyl sulfonates (salts) 

*CAS 29420-49-3 Potassium perfluorobutane -sulfonate,  PFBS-K 

*CAS 3872-25-1  Potassium perfluoropentane sulfonate,  PFPS-K 

*CAS 3871-99-6  Potassium perfluorohexane -sulfonate,  PFHxS-K 

*CAS 60270-55-5 Potassium perfluoroheptane-sulfonate,  PFHpS-K 

CAS 85187-17-3 Potassium perfluorododecane sulfonate,  PFDS 

CAS 70259-85-7 Potassium 4H-perfluorobutane sulfonate  

CAS 68259-10-9 Ammonium perfluoro-butanesulfonate  

CAS 68259-09-6 Ammonium perfluoro-pentane sulfonate  

CAS 68259-08-5 Ammonium perfluoro-hexane sulfonate  

CAS 68259-07-4 Ammonium perfluoroheptane sulfonate   

*CAS 17202-41-4 Ammonium perfluorononane sulfonate  

*CAS 67906-42-7 Ammonium perfluorodecanesulfonate  

*CAS 54950-05-9 Sodium 1,4-dioxo-1,4-bis(3,3,4,4,5,5,6,6,7,7,8,8,8-

tridecafluorooctoxy)butane-2-sulfonate 

 

*CAS 70225-15-9  Bis(2-hydroxyethyl)ammonium perfluoroheptane sulfonate  

*CAS 70225-16-0  Bis(2-hydroxyethyl)ammonium perfluorohexane sulfonate  

*CAS 70225-17-1  Bis(2-hydroxyethyl) ammonium perfluoropentane sulfonate  

*CAS 70225-18-2 Bis(2-hydroxyethyl) ammonium perfluorobutane sulfonate  

CAS 56773-42-3 Tetraethyl ammonium heptadecafluorooctane sulfonate  Metal plating, Fumetrol 108, 

Fluortensid FT 248,  

CAS 220689-12-3 Tetrabutyl phosphonium perfluorobutane sulfonate Anti-Stat FC-1,wetting agent 

Perfluoroalkyl sulfinic acid/sulfinates  

CAS 68555-66-8 Sodium perfluoroheptane -sulfinate  

CAS 68555-67-9 sodium perfluorooctane sulfinate C8 Chemical 

Perfluorocycloalkyl sulfonic acid and derivatives 

CAS 335-24-0  Potassium perfluoro-4-ethyl cyclohexane sulfonate  

*CAS 68156-01-4  Potassium perfluoro[1,2-dimethylcyclohexane] sulfonate  

*CAS 68156-07-0 Potassium perfluoro[1-methylcyclohexane] sulfonate  

CAS 355-03-3  Perfluorocyclohexane sulfonyl fluoride  

CAS 68318-34-3  Perfluoro(2-methylcyclohexane) sulfonyl fluoride  

CAS 68156-06-9 Perfluoro[4-methylcyclohexane] sulfonyl fluoride  

CAS 68156-00-3 Perfluoro[1,2-dimethylcyclohexane] sulfonyl fluoride  

Perfluoroalkyl sulfonamides (FASAs) 

CAS 68298-12-4  N-Methyl perfluorobutane sulfonamide FBSA 

CAS 68298-13-5 N-Methyl perfluoropentane sulfonamide  

CAS 68259-15-4  N-Methyl perfluorohexane sulfonamide  

CAS 68259-14-3  N-Methyl perfluoroheptane sulfonamide   

*CAS 68957-62-0 N-Ethyl perfluoroheptane sulfonamide  

CAS 68298-10-2  N-(Phenylmethyl) perfluoroheptane sulfonamide  

*CAS 34449-89-3  N-Ethyl-N-(2-hydroxyethyl )perfluorobutane sulfonamide  

*CAS 34454-97-2  N-(2-hydroxyethyl)-N-methyl perfluorobutane sulfonamide/ 

N-Methyl perfluorobutane sulfonamidoethanol 

MeFBSE 

CAS 40630-65-7  N-Allyl perfluorobutane sulfonamide AlFBSE 

CAS 335-97-7  N-Allyl perfluoropentane sulfonamide  

CAS 67584-48-9 N-Allyl perfluorohexane sulfonamide  

CAS 67584-49-0  N-Allyl perfluoroheptane sulfonamide  

CAS 67906-41-6  N-Allyl -N-ethyl perfluoroheptane sulfonamide  

CAS 93894-53-2 N-(2-Hydroxyethyl)-N-methyl 4H-perfluorobutane sulfonamide  

*CAS 68555-74-8 N-(2-Hydroxyethyl)-N-methyl perfluoropentane sulfonamide  
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*CAS 68555-75-9  N-(2-Hydroxyethyl)-N-methyl perfluorohexane sulfonamide  

*CAS 68555-76-0  N-(2-Hydroxyethyl)-N-methyl perfluoroheptane sulfonamide  

*CAS 68555-72-6  N-Ethyl-N-(2-hydroxyethyl) perfluoropentane sulfonamide  

*CAS 34455-03-3  N-Ethyl-N-(2-hydroxyethyl) perfluorohexane sulfonamide  

*CAS 68555-73-7 N-Ethyl-N-(2-hydroxyethyl) perfluoroheptane sulfonamide  

CAS 85665-64-1  N-(2-Hydroxyethyl)-N-propyl perfluorohexane sulfonamide  

CAS 68310-02-1 N-Butyl-N-(2-hydroxyethyl) perfluoroheptane sulfonamide  

CAS 93894-54-3 N,N-Bis(2-hydroxyethyl) 4H-perfluorobutane sulfonamide  

CAS 34455-00-0 N,N-Bis(2-hydroxyethyl) perfluorobutane sulfonamide  

CAS 812-94-2 N-(4-Hydroxybutyl)-N-methyl perfluorobutane sulfonamide  

CAS 68239-72-5  N-(4-Hydroxybutyl)-N-methyl perfluoropentane sulfonamide,   

CAS 68239-74-7  N-(4-Hydroxybutyl)-N-methyl perfluorohexane sulfonamide  

CAS 68298-89-5  N-(4-Hydroxybutyl)-N-Methyl perfluoroheptane sulfonamide  

CAS 68555-77-1  N-[3-(Dimethylamino)propyl] perfluorobutane sulfonamide  

CAS 68555-78-2 N-[3-(Dimethylamino)propyl] perfluoropentane sulfonamide  

CAS 50598-28-2 N-[3-(Dimethylamino)propyl] perfluorohexane sulfonamide  

CAS 67584-54-7 N-[3-(Dimethylamino)propyl] perfluoroheptane sulfonamide  

CAS 67584-63-8 Perfluorobutane sulfonamide, N-ethyl-N-ethyl (ethyl acetate)  

Perfluoroalkyl sulfonamide, quaternary ammonium salts 

CAS 68957-59-5  Perfluorobutane sulfonamide, N-[3-(dimethylamino)propyl)]-, hydrochloride 

CAS 68957-60-8  Perfluoropentane sulfonamide, N-[3-(dimethylamino)propyl)]-,-hydrochloride 

CAS 68957-61-9  Perfluorohexane sulfonamide, N-[3-(dimethylamino)propyl)]-,-hydrochloride 

CAS 67940-02-7  Perfluoroheptane sulfonamide, N-[3-(dimethylamino)propyl)]-,-hydrochloride 

CAS 38850-52-1 Perfluorohexane sulfonamide ,N-carboxymethyl-N-(N’N’N’-trimethylpropanaminium  

*CAS 38850-58-7 Perfluorohexane sulfonamide, N-sulfoxypropyl-N-(N’,N’-dimethyl-N’-hydroxyethyl pro-

panaminium)  

CAS 38850-60-1 Perfluorohexane sulfonamide, N-sulfoxypropyl-N-(N’,N’-dimethyl-propanaminium)  

*CAS 52166-82-2 Perfluorohexane sulfonamide, N-(N’,N’,N’-trimethyl propanaminium) chloride 

*CAS 53518-00-6 Perfluorobutane sulfonamide, N-(N’,N’,N’-trimethyl propanaminium) chloride 

CAS 67939-95-1 Perfluorobutane sulfonamide, N-(N’,N’,N’-trimethyl propanaminium) iodide 

*CAS 68957-55-1  Perfluoropentane sulfonamide N-(N’,N’,N’-trimethyl propanaminium) chloride 

*CAS 68957-57-3 Perfluoropentane sulfonamide N-(N’,N’,N’-trimethyl propanaminium) iodide 

*CAS 68957-58-4   Perfluorohexane sulfonamide N-(N’,N’,N’-trimethyl propanaminium) iodide 

*CAS 68555-81-7 Perfluoroheptane sulfonamide N-(N’,N’,N’-trimethyl propanaminium) chloride 

*CAS 67584-58-1 Perfluoroheptane sulfonamide N-(N’,N’,N’-trimethyl propanaminium) iodide 

CAS 70225-22-8  Di[Perfluorobutane sulfonamide N-(N’,N’,N’-trimethyl propanaminium)] sulfate 

CAS 70225-24-0 Di[Perfluoropentane sulfonamide N-(N’,N’,N’-trimethyl propanaminium)] sulfate 

CAS 70248-52-1 Di[Perfluorohexane sulfonamide N-(N’,N’,N’-trimethyl propanaminium)] sulfate 

CAS 70225-20-6 Di[Perfluoroheptane sulfonamide N-(N’,N’,N’-trimethyl propanaminium)] sulfate 
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Perfluoroalkyl sulfonamide acrylates (MeFASACs) 

*CAS 67584-55-8 Perfluorobutane sulfonamide, N-methyl -N-ethyl acrylate/ 

N-Methyl perfluorobutane sulfonamidoethyl acrylate 

 

*CAS 67584-56-9 Perfluoropentane sulfonamide, N-methyl -N-ethyl acrylate  

*CAS 67584-57-0 Perfluorohexane sulfonamide, N-methyl -N-ethyl acrylate  

*CAS 68084-62-8 Perfluoroheptane sulfonamide, N-methyl-N-ethyl acrylate  

CAS 17329-79-2 Perfluorobutane sulfonamide, N-ethyl-N-ethyl acrylate   

CAS 68298-06-6 Perfluoropentane sulfonamide N-ethyl-N-ethyl acrylate  

CAS 1893-52-3 Perfluorohexane sulfonamide, N-ethyl-N-ethyl acrylate   

CAS 59071-10-2 Perfluoroheptane sulfonamide, N-ethyl-N-ethyl acrylate  

CAS 1492-87-1 Perfluorobutane sulfonamide, N-methyl- N-butyl acrylate  

CAS 68227-99-6 Perfluoropentane sulfonamide, N-methyl-N-butyl acrylate  

CAS 68227-98-5 Perfluorohexane sulfonamide, N-methyl-N-butyl acrylate  

*CAS 68298-60-2 Perfluoroheptane sulfonamide, N-butyl-N-ethyl acrylate  

CAS 66008-70-6 1H,1H-Perfluoroheptane sulfonamide, N-methyl-N-ethyl acrylate  

*CAS 49859-70-3 1H,1H-Perfluorooctane sulfonamide, N-methyl-N-ethyl acrylate  

CAS 66008-69-3 1H,1H-Perfluorononane sulfonamide, N-methyl-N-ethyl acrylate  

CAS 66008-68-2 1H,1H-Perfluoroundecane sulfonamide, N-methyl-N-ethyl acrylate  

*CAS 72276-05-2 1H,1H-Perfluorododecane sulfonamide, N-methyl-N-ethyl acrylate  

CAS 66008-67-1 1H,1H-Perfluorotridecane sulfonamide, N-methyl-N-ethyl acrylate C8 Chemical  

CAS 72276-06-3 1H,1H-Perfluorotetradecane sulfonamide, N-methyl-N-ethyl acrylate  

CAS 68758-55-4 1H,1H-Perfluoro-pentadecyl sulfonamide N-methyl-N-ethyl acrylate  

CAS 68758-56-5  1H,1H-Perfluoroheptadecyl sulfonamide N-methyl-N-ethyl acrylate  

Perfluoroalkyl sulfonamide methacrylates 

*CAS 67584-59-2  Perfluorobutane sulfonamide, N-methyl-N-ethyl methacrylate 

*CAS 67584-60-5  Perfluoropentane sulfonamide, N-methyl-N-ethyl methacrylate 

*CAS 67584-61-6  Perfluorohexane sulfonamide, N-methyl-N-ethyl methacrylate 

CAS 67939-96-2  Perfluoroheptane sulfonamide, N-methyl-N-ethyl methacrylate 

CAS 67939-33-7 Perfluorobutane sulfonamide, N-ethyl-N-ethyl methacrylate 

CAS 67906-73-4 Perfluoropentane sulfonamide, N-ethyl-N-ethyl methacrylate 

CAS 67906-70-1   Perfluorohexane sulfonamide, N-ethyl-N-ethyl methacrylate 

CAS 67939-36-0 Perfluoroheptane sulfonamide, N-ethyl-N-ethyl methacrylate 

CAS 67906-39-2 Perfluorobutane sulfonamide, N-methyl-N-butyl methacrylate 

CAS 67906-40-5 Perfluoropentane sulfonamide, N-methyl-N-butyl methacrylate 

CAS 67939-61-1 Perfluorohexane sulfonamide, N-methyl-N-butyl methacrylate 

CAS 68227-97-4 Perfluoroheptane sulfonamide, N-methyl-N-butyl methacrylate 

Perfluoroalkyl sulfonamide phosphates 

CAS 67939-89-3 [Perfluorobutane sulfonamide-N-ethyl]-N-ethyl dihydrogen-phosphate  

CAS 67939-90-6 [Perfluoropentane sulfonamide-N-ethyl]-N-ethyl dihydrogen-phosphate MonoPAP 

CAS 67969-65-7 [Perfluoroheptane sulfonamide-N-ethyl]-N-ethyl dihydrogen-phosphate MonoPAP 

CAS 67923-61-9 [Perfluoroheptane sulfonamide-N-ethyl]-N,N’-diethyl dihydrogen-phosphate DiPAP 

CAS 67939-98-4  Diammonium [Perfluoroheptane sulfonamide-N-ethyl]-N,N’-diethyl  

dihydrogenphosphate 

DiPAP 

CAS 67939-91-7 Di[perfluorobutane sulfonamide N-ethyl]-N,N’-diethyl phosphate DiPAP 

CAS 67939-87-1 Di[perfluoropentane sulfonamide N-ethyl]-N,N’-diethyl phosphate DiPAP 

CAS 67939-92-8 Di[perfluorohexane sulfonamide N-ethyl]-N,N’-diethyl phosphate DiPAP 

CAS 67939-93-9 Di[perfluoroheptane sulfonamide N-ethyl]-N,N’-diethyl phosphate DiPAP 

CAS 67939-97-3 Ammonium di[perfluoroheptane sulfonamide N-ethyl]-N,N’-diethyl phosphate DiPAP 

CAS 67939-94-0 Tri[perfluoroheptane sulfonamide N-ethyl]-N,N’,N”-triethyl phosphate TriPAP 
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Perfluoroalkyl sulfonyl halides 

CAS 375-72-4  Perfluorobutane sulfonyl fluoride  

CAS 90268-45-4 Perfluorobutane sulfonyl fluoride, branched  

CAS 375-81-5  Perfluoropentane sulfonyl fluoride  

CAS 335-71-7  Perfluoroheptane sulfonyl fluoride  

CAS 55591-23-6 Perfluorohexane sulfonyl chloride  

CAS 68259-06-3  Perfluorononane sulfonyl fluoride  

CAS 51947-19-4 4-Perfluoroalkenoxybenzene -sulfonyl chloride  

Other polyfluoroalkyl sulfur compounds 

CAS 36913-91-4  Perfluorobutane sulfonic -anhydride  

CAS 93894-55-4 4H-Perfluorobutane sulfonic -anhydride  

CAS 68957-33-5 N-Ethyl-N-perfluorobutyl sulfonyl glycine  

CAS 68957-31-3 N-Ethyl-N-perfluoropentyl -sulfonyl glycine  

CAS 68957-32-4 N-Ethyl-N-perfluorohexyl sulfonyl glycine  

CAS 68957-63-1 N-Ethyl-N-perfluoroheptyl -sulfonyl glycine  

CAS 68555-79-3 Ethyl N-ethyl-N-perfluoropentyl sulfonyl glycinate  

CAS 68957-53-9 Ethyl N-ethyl-N-perfluorohexyl sulfonyl glycinate  

CAS 68957-54-0 Ethyl N-ethyl-N-perfluoroheptyl sulfonyl glycinate  

*CAS 67584-51-4 Potassium N-ethyl-N-perfluorobutyl sulfonyl glycinate  

*CAS 67584-52-5 Potassium N-ethyl-N-perfluoropentyl sulfonyl glycinate  

*CAS 67584-53-6 Potassium N-ethyl-N-perfluorohexyl sulfonyl glycinate  

*CAS 67584-62-7 Potassium N-ethyl-N-perfluoroheptyl sulfonyl glycinate  

*CAS 68900-97-0 Chromium(III) N-ethyl-N-perfluorobutyl sulfonyl glycinate  

*CAS 68891-99-6 Chromium(III) N-ethyl-N-perfluoropentyl sulfonyl glycinate  

*CAS 68891-98-5 Chromium(III) N-ethyl-N-perfluorohexyl sulfonyl glycinate  

*CAS 68891-97-4 Chromium(III) N-ethyl-N-perfluoroheptyl sulfonyl glycinate  

CAS 68555-68-0 Sodium N-ethyl-N-perfluorobutyl sulfonyl glycinate  

CAS 68555-69-1 Sodium N-ethyl-N-perfluoropentyl sulfonyl glycinate  

CAS 68555-70-4 Sodium N-ethyl-N-perfluorohexyl sulfonyl glycinate  

CAS 68555-71-5 Sodium N-ethyl-N-perfluoroheptyl sulfonyl glycinate  

CAS 52584-45-9  4-Perfluoroalkenoxybenzene sulfonic acid  

CAS 68299-19-4 Sodium (perfluorobutylsulfonyl)aminomethyl benzene sulfonate   

CAS 68299-20-7 Sodium (perfluoropentylsulfonyl)aminomethyl benzene sulfonate  

CAS 68299-21-8 Sodium (perfluorohexylsulfonyl)-aminomethyl benzene sulfonate  

CAS 68299-29-6 Sodium (perfluoroheptylsulfonyl)-aminomethyl benzene sulfonate  

*CAS 68649-26-3  Reaction product with PFOS and PFBS derivatives C8 chemical 

*CAS 68541-01-5 Perfluoroheptane sulfonic acid ester with complex alcohol Tetrachloro-phthalic 

acid derivative 

*CAS 68541-02-6 Perfluoropentane sulfonic acid ester with complex alcohol  Tetrachloro-phthalic 

acid derivative 

*CAS 68568-54-7 Perfluorobutane sulfonic acid ester with complex alcohol Tetrachloro-phthalic 

acid derivative 

CAS 69013-34-9 N-Methyl-4-[[4,4,5,5,5-pentafluoro-3-(1,1,2,2,2-pentafluoroethyl)-

1,2,3-tris(trifluoromethyl)-1-penten-1-yl]oxy]-N-[2-

(phosphonooxy)ethyl]-benzene sulfonamide 
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Perfluoroalkyl carboxylic acids (PFCA) 

*CAS 2706-90-3 Perfluoropentanoic acid  PFPA 

*CAS 307-24-4  Perfluorohexanoic acid  PFHxA 

*CAS 375-85-9  Perfluoroheptanoic acid  PFHpA 

CAS 375-95-1  Perfluorononanoic acid  PFNA 

CAS 15899-31-7 Perfluoroisononanoic acid  

CAS 335-76-2  Perfluorodecanoic acid  PFDA, C10 

CAS 2058-94-8  Perfluoroundecanoic acid  PFuDA, C11 

CAS 16486-94-5 Perfluoroisoundecanoic acid  

CAS 307-55-1  Perfluorododecanoic acid  PFDoA, C12 

CAS 72629-94-8 Perfluorotridecanoic acid C13 

CAS 16486-96-7 Perfluoroisotridecanoic acid  

CAS 376-06-7  Perfluorotetradecanoic acid C14 

CAS 18024-09-4 Perfluoropentadecanoic acid C15 

CAS 18024-09-4 Perfluoroisopentadecanoic acid  

CAS 67905-19-5 Perfluorohexadecanoic acid C16 

CAS 16517-11-6 Perfluorostearic acid C18 

CAS 68310-12-3 Perfluoroeicosanoic acid C20 

CAS 336-08-3 Perfluoroadipic acid  

CAS 376-72-7 5H-Perfluoropentanoic acid  

CAS 1546-95-8 7H-Perfluoroheptanoic acid  

CAS 76-21-1 9H-perfluorononanoic acid  

CAS 1765-48-6 11H-Perfluoroundecanoic acid  

Perfluoroalkyl carboxylic salts 

CAS 2706-89-0 Sodium perfluoropentanoate PFPA 

CAS 20109-59-5 Sodium perfluoroheptanoate PFHpA 

CAS 68259-11-0 Ammonium perfluoropentanoate PFPA 

CAS 21615-47-4 Ammonium perfluorohexanoate PFHxA 

CAS 6130-43-4  Ammonium perfluoroheptanoate PFHpA 

CAS 3658-62-6 Ammonium perfluoro-isononanoate PFiNA 

CAS 3108-42-7  Ammonium perfluorodecanoate PFDA 

CAS 3658-63-7 Ammonium perfluoro-isoundecanoate  

CAS 3793-74-6 Ammonium perfluorododecanoate  

CAS 22715-45-3 Ammonium 5H-perfluoropentanoate  

CAS 376-34-1 Ammonium 7H-perfluoroheptanoate  

CAS 1868-86-6 Ammonium 9H-perfluorononanoate  

CAS 307-71-1 Potassium 11H-Perfluoroundecanoate  

CAS 3658-57-9 Ammonium 7-(chlorodifluoromethyl)perfluorooctanoate  

CAS 16557-94-1 Ammonium 7-(chlorodifluoromethyl)perfluoroheptanoate  

CAS 68015-84-9 Ethylammonium perfluoro-isohexanoate  

CAS 68015-86-1 Ethylammonium perfluoro-isooctanoate  

CAS 68015-85-0 Ethylammonium perfluoro-isodecanoate  

CAS 68015-87-2 Ethylammonium perfluoro-isododecanoate  

CAS 68052-68-6 Ethylammonium perfluoro-isopentadecanoate  
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Perfluoroalkyl carboxylic acid halides 

CAS 375-62-2  Perfluoropentanoyl fluoride  

CAS 355-38-4  Perfluorohexanoyl fluoride  

CAS 375-84-8  Perfluoroheptanoyl fluoride  

CAS 18017-31-7 Perfluoroisohexanoyl fluoride  

CAS 15899-29-3  Perfluoroisoheptanoyl fluoride  

CAS 15742-62-8 Perfluoroisononanoyl fluoride  

CAS 15720-98-6 Perfluoroisoundecanoyl fluoride  

CAS: 15811-52-6 Perfluoroisotridecanoyl fluoride  

CAS 68025-62-7 Perfluoroisopentadecanoyl fluoride  

CAS 37881-62-2 Perfluorohexanedioyl difluoride  

CAS 423-95-0  9H-Perfluorononanoyl chloride  

CAS 64018-26-4  1H,1H-Perfluorododecanoyl chloride  

Perfluoroalkyl alcohols/ketones 

CAS 355-80-6  1H,1H,5H-perfluoropentanol 

CAS 375-82-6 1H,1H-Perfluoroheptanol 

CAS 335-99-9 1H,1H,7H-Perfluoroheptanol 

CAS 307-30-2 1H,1H-Perfluorooctanol 

*CAS 376-18-1 1H,1H,9H-Perfluorononanol 

CAS 307-70-0  1H,1H,11H-Perfluoroundecanol 

CAS 67824-44-6 3-Perfluoroisononyl-propane-1,2-diol 

CAS 94159-92-9 1-Phenoxy-3-perfluoroisononyl-2-propanol 

CAS 94158-62-0 1-[2-(2-butoxyethoxy)ethoxy]-3-perfluoroisononyl-propan-2-ol 

CAS 93776-07-9 32-(Perfluorodecyl)-2,5,8,11,14,17,20,23,26-decaoxatetratetracontan-31-ol 

CAS 93776-06-8  32-(Perfluorododecyl)-2,5,8,11,14,17,20,23,26-decaoxatetratetracontan-31-ol 

CAS 93776-09-1 32-(Perfluoroisotridecyl)-2,5,8,11,14,17,20,23,26-decaoxatetratetracontan-31-ol 

CAS 93776-11-5 32-(Perfluoroisononyl)- 31-hydroxy-dotetracontane-2,5,8,11,14,17,20,23,26,29-decone 

CAS 93776-10-4 32-(Perfluoroisoundecyl)- 31-hydroxy-dotetracontane-2,5,8,11,14,17,20,23,26,29-decone 

Perfluoroalkyl halides 

CAS 375-88-2 Perfluoroheptyl bromide C7 

CAS 307-43-7 Perfluorodecyl bromide C10 

CAS 25398-32-7 Perfluoroalkyl iodides Zonyl TELA-N 

CAS 423-39-2 Perfluorobutyl iodide C4 

CAS 638-79-9  Perfluoropentyl iodide C5 

CAS 355-43-1  Perfluorohexyl iodide C6 

CAS 335-58-0  Perfluoroheptyl iodide C7 

CAS 507-63-1  Perfluorooctyl iodide C8 chemical  

CAS 558-97-4  Perfluorononyl iodide C9 

CAS 865-77-0  Perfluoroisononyl iodide C9 

CAS 423-62-1  Perfluorodecyl iodide C10 

CAS 677-93-0  Perfluoroisoundecyl iodide C11 

CAS 307-60-8  Perfluorododecyl iodide C12 

CAS 307-63-1  Perfluorotetradecyl iodide C14 

CAS 3248-61-1  Perfluoroisotridecyl iodide C13 

CAS 3248-63-3  Perfluoroisopentadecyl iodide C15 

CAS 355-50-0  Perfluorohexadecyl iodide C16 

CAS 29809-35-6 Perfluorooctadecyl iodide C18 

CAS 29809-34-5 Perfluoroeicosyl iodide C20 

CAS 29809-36-7 Perfluorodocosanyl iodide C22 

CAS 39823-55-7 Perfluorotetracosyl iodide C24 
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CAS 65975-15-7 Perfluorohexacosanyl iodide C26 

CAS 375-50-8 1,4-diiodoperfluorobutane  

CAS  375-80-4 1,6-Diiodoperfluorohexane  

Perfluoroalkyl alkyl ethers 

*CAS 297730-93-9 Ethyl perfluoroisoheptyl ether  Novec Engineered Fluid HFE 7500 

*CAS 163702-08-7 Methyl perfluoroisobutyl ether 3M Novec Engineered Fluid HFE-7100 

(Mixture with CAS 163702-07-6. 

*CAS 163702-07-6 Methyl perfluorobutyl ether Cosmetic Fluid CF 61; 3M Novec 

Engineered Fluid HFE-7100 (Mixture 

with CAS 163702-08-7) 

*CAS 163702-05-4  Ethyl perfluorobutyl ether  

CAS 66396-73-4   4H-Perfluorobutyl vinyl ether  

CAS 78971-81-0 1H,1H,7H-Perfluoroheptyl vinyl ether  

CAS 71726-31-3  1H,1H,9H-Perfluorononyl vinyl ether  

CAS 94231-58-0 1H,1H,11H-Perfluoroundecyl vinyl ether  

CAS 73928-40-2 Perfluorovinyl 5H-perfluoropentane ether  

CAS 70729-63-4 Tributyl ammonium 4-((4,4,5,5,5-pentafluoro-3-(pentafluoroethyl)-

1,2,3-tris(trifluoromethyl)pent-1-enyl)oxy)benzene sulfonate 

 

CAS 84029-54-9 Tetratriacontafluoro-10,13,16,19-tetraoxaoctacosadiene  

CAS 93776-05-7 Bis(1-perfluoroiisononyl-4-methyl- 3-oxy-2-hexanol) ether  

CAS 93776-01-3 Bis(1-perfluorodecyl-4-methyl- 3-oxy-2-hexanol) ether   

CAS 93776-04-6 Bis(1-perfluoroisoundecyl-4-methyl- 3-oxy-2-hexanol) ether  

CAS 93776-00-2 Bis(1-perfluorododecyl-4-methyl- 3-oxy-2-hexanol) ether   

CAS 93776-03-5 Bis(1-perfluoroisotridecyl-4-methyl- 3-oxy-2-hexanol) ether  

Perfluoroalkyl amines 

CAS 311-89-7  Tri(perfluorobutyl)amine  

CAS 338-84-1  Tri(perfluoropentyl)amine  

CAS 31841-41-5  N,N-bis(2-hydroxyethyl)-N-methyl ammonium iodide C8 chemical  

CAS 80909-29-1 Perfluoroisononyl 2-ethyl-propyl trimethyl ammonium iodide  

CAS 94159-78-1  N,N-Bis(2-hydroxyethyl)-N-methyl-N-[(2-hydroxy-3-

perfluoroisononyl)propyl] ammonium iodide 

 

CAS 93776-17-1 N,N-Bis(2-hydroxyethyl)-N-methyl-N-[(2-hydroxy-3-

perfluorodecyl)propyl] ammonium iodide 

 

CAS 94159-77-0 N,N-Bis(2-hydroxyethyl)-N-methyl-N-[(2-hydroxy-3-

perfluoroisoundecyl)propyl] ammonium iodide 

 

CAS 93776-16-0 N,N-Bis(2-hydroxyethyl)-N-methyl-N-[(2-hydroxy-3-

perfluorododecyl)propyl] ammonium iodide 

 

CAS 94159-76-9 N,N-Bis(2-hydroxyethyl)-N-methyl-N-[(2-hydroxy-3-

perfluoroisotridodecyl)propyl] ammonium iodide 

 

CAS 73353-26-1 1-[[3-(Dimethylamino)propyl]amino]-3-perfluoroisononyl-2-propanol  

CAS 94159-80-5 1-[[3-(Dimethylamino)propyl]amino]-3- perfluorodecyl-2-propanol  

CAS 94159-83-8  1-[[3-(Dimethylamino)propyl]amino]-3-perfluoroisoundecyl-2-

propanol 

 

CAS 94159-79-2 1-[[3-(Dimethylamino)propyl]amino]-3- perfluoro-dodecyl-2-propanol  

CAS 94159-82-7 1-[[3-(Dimethylamino) propyl]amino]-3-perfluoro-isotridecyl-2-

propanol 
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Perfluoroalkyl amino acids/salts 

CAS 94159-89-4 Potassium N-methyl-N- [(3-perfluoro-isononyl-2-

hydroxy)propyl] glycinate 

 

CAS 93776-13-7 3-[Dimethyl-[3-[(3-perfluoro-decyl-2-hydroxy)amino]-

propyl]ammonio] propanoate 

 

CAS 93777-12-9 3-[Dimethyl-[3-[(3-perfluoro-isoun-decyl-2-

hydroxy)amino]-propyl]-ammonio] propanoate 

 

CAS 93776-15-9 3-[Dimethyl-[3-[(3-perfluoro-isotridecyl-2-hydroxy)amino]-

propyl]ammonio] propanoate 

  

CAS 93776-12-6 3-[Ethyl-[3-[(3-perfluorododecyl-2-hydroxy)amino]propyl-

]ammonio]-propanoate 

 

CAS 73353-25-0 N-[(2-Carboxyethyl)-3-[2-hydroxy-3-perfluoroisononyl]- 

propylamino] -N,N-dimethyl-propanaminium hydroxide 

  

Perfluoroalkyl phosphates 

CAS 78974-42-2 Perfluoroisononyl ethyl dihydrogen phosphate MonoPAP, isotelomer 

CAS 94200-56-3 Perfluoroisoundecyl ethyl dihydrogen phosphate MonoPAP, isotelomer 

CAS 94200-57-4 Perfluoroisotridecyl ethyl dihydrogen phosphate MonoPAP, isotelomer 

CAS 93857-42-2 Perfluoroisopentadecyl ethyl dihydrogen phosphate MonoPAP, isotelomer 

CAS 94231-59-1 Perfluoroisoheptadecyl ethyl dihydrogen phosphate MonoPAP, isotelomer 

CAS 93857-49-9 Diammonium perfluoroisononyl ethyl phosphate MonoPAP 

CAS 93857-45-5 Diammonium perfluorodecyl ethyl phosphate MonoPAP 

CAS 93857-50-2 Diammonium perfluoroisoundecyl ethyl phosphate MonoPAP 

CAS 93857-46-6 Diammonium perfluorododecyl ethyl phosphate MonoPAP 

CAS 93857-51-3 Diammonium perfluoroisotridecyl ethyl phosphate MonoPAP 

CAS 93857-47-7 Diammonium perfluorotetradecyl ethyl phosphate MonoPAP 

CAS 93857-52-4 Diammonium perfluoroisopentadecyl ethyl phosphate MonoPAP 

CAS 93857-48-8 Diammonium perfluorohexadecyl ethyl phosphate MonoPAP 

CAS 93857-43-3 Diammonium perfluoroisoheptadecyl ethyl phosphate MonoPAP 

CAS 1895-26-7 Di[2-(perfluorodecyl)ethyl] hydrogen phosphate DiPAP 

CAS 78974-41-1 Di[(2-perfluoroisononyl)ethyl] hydrogen phosphate DiPAP 

CAS 93857-55-7 Di[(2-perfluoroisoundecyl)ethyl] hydrogen phosphate DiPAP 

CAS 93857-56-8 Di[(2-perfluoroisotridecyl)ethyl] hydrogen phosphate DiPAP 

CAS 93857-53-5 Di[2-(perfluorotetradecyl)ethyl] hydrogen phosphate DiPAP 

CAS 93776-29-5 Di[(2-perfluoroisopentadecyl)ethyl] hydrogen phosphate DiPAP 

CAS 93857-54-6 Di[2-(perfluorohexadecyl)ethyl] hydrogen phosphate DiPAP 

CAS 93776-19-3 Di[(2-perfluoroisoheptadecyl)ethyl] hydrogen phosphate DiPAP 

CAS 93776-24-0 Ammonium di[(2-perfluoroisononyl)ethyl] phosphate DiPAP 

CAS 93776-21-7 Ammonium di[(2-perfluorodecyl)ethyl] phosphate DiPAP 

CAS 93776-25-1 Ammonium di[(2-perfluoro-isoundecyl)ethyl] phosphate DiPAP 

CAS 93776-22-8 Ammonium di[(2-perfluoro-dodecyl)ethyl] phosphate DiPAP 

CAS 93776-26-2 Ammonium di[(2-perfluoro-isotridecyl)ethyl] phosphate DiPAP 

CAS 93777-13-0 Ammonium di[(2-perfluoro-tetradecyl)ethyl] phosphate DiPAP 

CAS 93776-27-3 Ammonium di[(2-perfluoro-isopentadecyl)ethyl] phosphate DiPAP 

CAS 93776-23-9 Ammonium di[(2-perfluoro-hexadecyl)ethyl] phosphate DiPAP 

CAS 93776-28-4 Ammonium di[(2-perfluoroisoheptadecyl)ethyl] phosphate DiPAP 

CAS 94291-77-7 Bis(2-hydroxyethyl)ammonium di [(2-

perfluoroisononyl)ethyl] phosphate 

DiPAP 

CAS 94291-78-8 Bis(2-hydroxyethyl)ammonium di [(2-

perfluoroisoundecyl)ethyl] phosphate 

DiPAP 

CAS 94231-56-8 Bis(2-hydroxyethyl)ammonium di [(2-

perfluoroisotridecyl)ethyl] phosphate 

DiPAP 

CAS 93776-30-8 Bis(2-hydroxyethyl)ammonium di [(2-

perfluoroisopentadecyl)ethyl] phosphate 

 

DiPAP 
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CAS 93776-31-9 Bis(2-hydroxyethyl)ammonium di [(2-

perfluoroisoheptadecyl)ethyl] phosphate 

DiPAP 

CAS 355-86-2 Tri(1H,1H,5H-perfluoropentyl) phosphate TriPAP 

CAS 54009-73-3 (2-Hydroxy-3-perfluoroisononyl)propyl dihydrogenphosphate MonoPAP 

CAS 94158-70-0 (2-Hydroxy-3-perfluorodecyl)-propyl dihydrogenphosphate MonoPAP 

CAS 63295-27-2 (2-Hydroxy-3-perfluoroisoundecan-yl)propyl dihydrogen 

phosphate 

MonoPAP 

CAS 94200-42-7 (2-Hydroxy-3-perfluorododecyl)-propyl dihydrogen-

phosphate 

MonoPAP 

 

CAS 63295-28-3 (2-Hydroxy-3-perfluoroisotridecanyl)propyl dihydrogen 

phosphate 

MonoPAP 

CAS 94200-43-8 (2-Hydroxy-3-perfluorotetradecyl)propyl dihydrogen-

phosphate 

MonoPAP 

CAS 63295-29-4 (2-Hydroxy -3-perfluoroisopentadecanyl)propyl dihydrogen 

phosphate  

MonoPAP 

CAS 94200-44-9 (2-Hydroxy -3-perfluoroisohexadecanyl)propyl dihydrogen 

phosphate 

MonoPAP 

CAS 63295-18-1 Diammonium (2-hydroxy-3-perfluorononyl)propyl 

phosphate 

MonoPAP 

CAS 94200-46-1 Diammonium (2-hydroxy-3-perfluorodecyl)propyl phosphate MonoPAP 

CAS 94200-50-7 Diammonium (2-hydroxy-3-perfluoroisoundecyl)propyl 

phosphate 

MonoPAP 

CAS 94200-47-2 Diammonium (2-hydroxy-3-perfluorododecyl)propyl 

phosphate 

MonoPAP 

CAS 94200-51-8 Diammonium (2-hydroxy-3-per-fluoroisotridecyl)propyl 

phosphate 

MonoPAP 

CAS 94200-48-3 Diammonium (2-hydroxy-3-per-fluorotetradecyl)propyl 

phosphate 

MonoPAP 

CAS 94200-52-9 Diammonium (2-hydroxy-3-perfluoroisopentadecyl)propyl 

phosphate 

MonoPAP 

CAS 94200-49-4 Diammonium (2-hydroxy-3-per-fluorohexadecyl)propyl 

phosphate 

MonoPAP 

CAS 94200-53-0 Diammonium (2-hydroxy-3-perfluoroisoheptadecyl)propyl 

phosphate 

MonoPAP 

Perfluoroalkyl acrylates 

CAS 307-98-2 1H,1H-Perfluorooctyl acrylate  

CAS 4180-26-1 1H,1H,9H-Hexadecafluorononyl acrylate  

Perfluoroalkyl methacrylates 

*CAS 3934-23-4 1H,1H-Perfluorooctyl methacrylate  

CAS 1841-46-9 1H,1H,9H-Perfluorononyl methacrylate  

Other perfluoralkyl esters 
CAS 376-50-1  Perfluoroadipic acid diethylester  

Perfluoroalkyl heterocyclic compounds 

CAS 38565-52-5  1H,1H-Perfluoroheptyl oxirane  

CAS 38565-53-6 1H,1H-Perfluorononyl oxirane  

CAS 47795-34-6 1H,1H-Perfluorododecyl oxirane  

CAS 41925-33-1 1H-1H-Perfluoroisodecyl oxirane  

CAS 54009-78-8 1H,1H-Perfluoroisotridecanyl oxirane  

CAS 54009-79-9 1H,1H-Perfluoroisoheptadecanyl oxirane  

CAS 54009-77-7 2H-Perfluoroisohexadecyl oxirane  

CAS 356-47-8  Perfluoro-2-methyl tetrahydropyran)  
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CAS 40464-54-8 Perfluoro-2-butyl tetrahydrofuran  

*CAS 335-36-4  Perfluoro-2-isobutyl tetrahydrofuran  

CAS 69661-30-9 Perfluoro-[2,3,4,5-tetramethyl-3-ethyl] tetrahydrofuran  

CAS 94159-90-7 2,2-Dimethyl-4-(1H,1H-perfluoroisodecyl)-1,3-dioxolane  

CAS 359-71-7  Perfluoro-N-methyl piperidine  

CAS 564-11-4 Perfluoro-N-ethyl piperidine  

CAS 42060-64-0 Perfluorosulfolane  

CAS 71356-38-2 1-(Carboxylatomethyl)-1-(2-hydroxyethyl)-4-(perfluoro-1-

oxodecyl) piperazinium 

 

Perfluoroalkylsilanes 

CAS 375-63-3  Trichloro(1,1,2,2,3,3,4,4-octafluoro-butyl)silane  

CAS 67584-50-3 N-Ethyl-N-(3-(trichlorosilyl)-propyl)perfluoroheptane sulfonamide  

CAS 68239-75-8 N-Ethyl-N-(3-(trimethoxysilyl) propyl) perfluoroheptane sulfonamide  

Fluorotelomer alcohols 

*CAS 2043-47-2 4:2 Fluorotelomer alcohol 4:2 FTOH 

*CAS 647-42-7  6:2 Fluorotelomer alcohol 6:2 FTOH 

*CAS 678-39-7 8:2 Fluorotelomer alcohol 8:2 FTOH, C8 chemical  

*CAS 865-86-1  10:2 Fluorotelomer alcohol 10:2 FTOH 

*CAS 39239-77-5 12:2 Fluorotelomer alcohol 12:2 FTOH 

*CAS 60699-51-6 14:2 Fluorotelomer alcohol 14:2 FTOH 

*CAS 65104-67-8 16:2 Fluorotelomer alcohol  

CAS 65104-65-6 18:2 Fluorotelomer alcohol  

Fluorotelomer halogenides 

CAS 2043-55-2  4:2 Fluorotelomer iodide  

CAS 1682-31-1 5:2 Fluorotelomer iodide  

CAS 2043-57-4 6:2 Fluorotelomer iodide Zonyl®, TELB-LN 

CAS 2043-52-9 7:2 Fluorotelomer iodide  

*CAS 2043-53-0 8:2 Fluorotelomer iodide C8 chemical, Zonyl®TELB-LN 

CAS 65510-56-7 9:2 Fluorotelomer iodide  

CAS 2043-54-1 10:2 Fluorotelomer iodide Zonyl®, TELB-LN 

CAS 30046-31-2 12:2 Fluorotelomer iodide  

CAS 65104-63-4 18:2 Fluorotelomer iodide  

CAS 65510-55-6 14:2 Fluorotelomer iodide  

CAS 26650-09-9 6:2 Fluorotelomer thiocyanate  

Fluortelomer sulfonates, sulfonyl chlorides and sulfonamides 

*CAS 27619-97-2 6:2 Fluorotelomer sulfonic acid Fumetrol®21 (metal plating), 

Forafac 1033 

CAS 59587-38-1 Potassium 6:2 fluortelomer sulfonate Zonyl 1176, wetting agent 

CAS 65702-23-0 5:2 Fluorotelomer sulfonyl chloride  

CAS 65702-24-1 9:2 Fluorotelomer sulfonyl chloride  

*CAS 72276-08-5 10:2 Fluorotelomer sulfonyl chloride   

CAS 68758-57-6 12:2 Fluorotelomer sulfonyl chloride  

*CAS 34455-29-3 6:2 Fluorotelomer sulfonamide N-propylmethyl betaine  

CAS 61798-69-4 6:2 Fluorotelomer sulfonamide, N-propylethyl betaine  

CAS 66008-71-7 6:2 Fluorotelomer sulfonamide, N-methyl-N-propyl betaine  

CAS 66008-72-8 6:2 Fluorotelomer sulfonamide, N-methyl-N-propan-

aminium N’-2-carboxyethyl 

 

CAS 72276-07-4 14:2 Fluorotelomer sulfonamide, N-methyl-N-ethyl acrylate  
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Fluorotelomer acrylates 

CAS 1799-84-4 4:2 Fluorotelomer acrylate  

*CAS 17527-29-6 6:2 Fluorotelomer acrylate Zonyl® TA-N <5% 

*CAS 27905-45-9 8:2 Fluorotelomer acrylate C8 Chemical, Zonyl® TA-N<65% 

*CAS 17741-60-5 10:2 Fluorotelomer acrylate Zonyl® TA-N <29% 

*CAS 34395-24-9 12:2 Fluorotelomer acrylate  

*CAS 34362-49-7 14:2 Fluorotelomer acrylate  

*CAS 65150-93-8 16:2 Fluorotelomer acrylate  

*CAS 65104-64-5 18:2 Fluorotelomer acrylate  

CAS 15577-26-1 2-(Perfluoroisononyl) ethyl acrylate  

CAS 52956-81-7 2-(Perfluoroisoundecyl) ethyl acrylate  

CAS 52956-82-8 2-(Perfluoroisotridecyl) ethyl acrylate  

CAS 91615-22-4 2-(Perfluoroisopentadecyl) ethyl acrylate  

CAS 94158-63-1 2-(Perfluoroisoheptadecyl) ethyl acrylate  

Fluorotelomer methacrylates 

*CAS 2144-53-8 6:2 Fluorotelomer methacrylate Capstone
TM

 62-MA 

*CAS 1996-88-9 8:2 Fluorotelomer methacrylate C8 chemical  

CAS 2144-54-9 10:2 Fluorotelomer methacrylate  

*CAS 6014-75-1 12:2 Fluorotelomer methacrylate  

CAS 4980-53-4 14:2 Fluorotelomer methacrylate  

CAS 59778-97-1 16:2 Fluorotelomer methacrylate  

CAS 65104-66-7 18:2 Fluorotelomer methacrylate  

CAS 15166-00-4 2-(Perfluoroisononyl) ethyl methacrylate  

CAS 74256-14-7 2-(Perfluoroisoundecyl) ethyl methacrylate  

CAS 74256-15-8 2-(Perfluoroisotridecyl) ethyl methacrylate  

CAS 94158-64-2 2-(Perfluoroisopentadecyl) ethyl methacrylate  

CAS 94158-65-3 2-(Perfluoroisoheptadecyl) ethyl methacrylate  

Other acrylates 

CAS 24407-09-8 3-Perfluoroisononyl-2-hydroxypropyl acrylate  

CAS 16083-87-7 3-Perfluoroisotridecyl-2-hydroxypropyl acrylate  

CAS 16083-78-6 3-Perfluoroisoheptadecyl-2-hydroxypropyl acrylate  

Fluorotelomer phosphates 

CAS 94200-54-1 14:2 Fluorotelomer dihydrogen phosphate PAP 

CAS 57678-05-4 10:2 Fluorotelomer dihydrogen phosphate PAP 

CAS 57678-07-6 12:2 Fluorotelomer dihydrogen phosphate PAP 

CAS 94200-55-2 16:2 Fluorotelomer dihydrogen phosphate PAP 

CAS 101896-22-4 Di(9:2 Fluorotelomer) phosphate diPAP 

CAS 57677-98-2 Di(10:2 Fluorotelomer) hydrogen phosphate with 2,2'-iminodiethanol  diPAP 

CAS 57677-99-3 Di(12:2 fluorotelomer) hydrogen phosphate diPAP 

CAS 57678-00-9 Di(12:2 Fluorotelomer) hydrogen phosphate with 2,2'-iminodiethanol  diPAP 

CAS 94291-75-5 Di(14:2 fluorotelomer) hydrogen phosphate with 2,2’iminodiethanol  diPAP 

CAS 94291-76-6 Di(16:2 fluorotelomer) hydrogen phosphate with 2,2’iminodiethanol diPAP 
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Other fluorotelomers 

CAS 94094-26-5 4:2 Fluorotelomer -1,1’-di(tetradecanoic acid)-methyl silane  

CAS 61798-68-3 8:2 Fluorotelomer pyridinium salt C8 Chemical  

*CAS 78560-45-9 6:2 Fluorotelomer trichlorosilane  

*CAS 78560-44-8 8:2 Fluorotelomer trichlorosilane C8 chemical  

CAS 83048-65-1 8:2 Fluorotelomer trimethoxysilane C8 chemical  

CAS 67846-66-6 Sodium C-ethyl [2-(sulfonato-thio)ethyl]-(3,3,4,4,5,5,6,6,7,7,8,-

8,8-tridecafluorooctyl) carbamate 

 

Polymers, CAS numbers 

479029-28-2 56372-23-7 65530-65-6 

68298-79-3 68298-80-6 68298-81-7 

45080-67-0  Polyfox PF-156A, 

polymer with C3-fluoro chain, floor 

polish 

452080-64-7 Polyfox PF-136A, polymer 

with C3-fluoro chain, floor polish 

65545-80-4Zonyl FSO 

100, wetting agent 

69991-61-3 65530-61-2 Zonyl UR 65530-60-1 Zonyl BA-N 

123171-68-6 Zonyl® FSK, wetting 

agent
28

 

135228-60-3 Zonyl 9155, carpet protec-

tor 

203743-03-7 Foraper-

le®225, repellent 

60164-51-4 polyperfluoropropyl 

ether, Zonyl PFPE, lubricant 

 

65605-70-1 Zonyl Acrylate N-Li 65605-58-5 Zonyl G 

Fabric Protector 

65530-62-3 Zonyl UR 65530-64-5  Zonyl 9027, repellant 65530-63-4 Zonyl 9027, 

repellant 

65530-69-0 Zonyl FSA, wetting 

agent 

6530-82-7 Zonyl TELB-L67 65530-74-7 Zonyl 9027, 

repellent 

71215-70-8 (Zonyl PFHEI),   

Undefined mixtures, CAS numbers 

68081-83-4 68140-18-1 68140-19-2 68140-20-5 

68187-25-7 68187-47-3 68140-21-6 68391-08-2 (Zonyl BA-LD) 

68391-09-3 68412-68-0 68412-69-1 70983-60-7 

71608-60-1 74499-44-8 84238-62-0 85631-54-5 

86508-42-1 90622-43-8 91032-01-8 91081-99-1 

101940-12-9 161074-58-4 479029-28-2 68081-83-4 

68140-18-1 68140-19-2 68140-20-5 68140-21-6 

68187-24-6 68187-25-7 68187-42-8 68187-47-3 

68188-12-5 (Zonyl TELB) 68333-92-6 68391-08-2 68391-09-3 

68412-68-0 68412-69-1 68608-13-9 68954-01-8 

70983-60-7 72968-38-8 74499-44-8 84238-62-0 

85631-40-9 85631-54-5 85681-64-7 85995-90-0 

85995-91-1 86508-42-1 90481-10-0 90622-43-8 

90622-71-2 90622-99-4 91032-01-8 91081-09-3 

91081-99-1 91648-32-7 91770-74-0 91770-94-4 

92129-34-5 92332-25-7 92332-26-8 93062-53-4 

93572-72-6 94095-37-1 94166-88-8 95370-51-7 

97660-44-1 98219-29-5 98561-40-1  

 

 

────────────────────────── 
28 MST 2008 Report. 



 

 

 

 



Appendix C – List of contacted 
companies/institutions 

Company name Country Application/use 

DuPont USA Producer 

DuPont France Producer 

3M USA Producer 

3M Belgium Producer 

Plastics Europe Belgium Trade association 

Fluorocouncil USA  

KEMI (Swedish Chemicals Agency) Sweden Authority 

NYCO Norway, France Aviation hydraulic fluids 

Solberg  Fire fighting foams 

Dr. Sthamer Switzerland Fire fighting foams 

Kiesow Dr. Brinkmann Germany Metal plating 

Atotech Sweden Metal plating 

McDermid Sweden Metal plating 

Wolfgang Podestà Germany Trade association; Metal plating 

Statoil Norway Chemically driven oil production 

Clariant Germany Impregnation 

Daikin  Impregnation 

Rudolf Chemie Germany Impregnation 

Huntsman Germany; Sweden Impregnation 

Everest  Impregnation 

Dickson Sweden Impregnation 

Helly Hansen Norway Impregnation 

Emballageindustrien (Dansk Industri) Denmark Trade association; Food contact materials 

Valsemøllen Denmark Food contact materials 

Sonax Germany Impregnation 

Melvo Germany Impregnation 

NixWax UK Impregnation 

Dansk Industri Denmark Trade association; Coatings 

STAMI Norway Authority 

Omnova Solutions USA Cleaning products 

Dansk Mode & Textil Denmark Trade associations; Textiles; Impregnation 

 

Tukes (Finnish Safety and Chemicals 

Agency) 

Finland Authority 

Umhverfisstofnun (The Environment 

Agency of Iceland) 

Iceland Authority 

Plastindustrien i Danmark Denmark Trade asscociation; Plastics 
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Company name Country Application/use 

The Icelandic Industry Association Iceland Trade association – industry 

ITEK, Dansk Industri Denmark Trade association; Electronics 

Finish Printing Ink Association Finland Trade association; Coatings 

Tikkurila Finland Coatings 

The Federation of Finnish Textiles and 

Clothing Industries 

Finland Trade association; Textiles 

Finnish Forest Industries Finland Trade association; Packaging/paper 

Finnish Plastics Industries Federation Finland Trade association; Plastics 

The Federation of Finnish Technology 

Industries 

Finland Trade association; Electronics 

Selected trade associations in Norway  Trade associations 

Selected trade associations in Sweden  Trade associations 

Mondi Finland Paper and packaging 

Solvay Specialty Polymers Italien Producer 

AGC Chemicals Europe Netherlands Producer 

Mitsubishi International GmBH Germany Distributor 

HOPI POPI Czech Republic Food paper (popcornbags) 

Questionaire sent for the contacted companies 

Questions – Nordic study on use and emission of per- and polyfluorinat-

ed substances 

In short we would like information about the use of certain groups 

of per- and polyfluorinated substances (see item no. 1) used in the 

Nordic countries. Any information is welcome, however, the more 

detailed the better. 

 

1. Mapping of polyfluorinated chemicals in the Nordic countries 

Please provide information about the use of these groups of 

fluorinated compounds within your industry. Are the substances 

used – yes or no? 

o PFCA (Perfluoro carboxylates) 

o PFSA (Perfluoroalkyl sulfonates) 

o PFAL (Perfluoro aldehydes) 

o FTOH (fluorotelomer alcohols) 

o FTS (fluorotelomer sulfonates) 

o Other fluorinated telomers 

o PAP/di-PAP (polyfluoroalkyl phosphate esters) 

2. Mapping of polyfluorinated chemicals in the Nordic countries – 

detailed information 

Please provide more detailed information about the use of the above 

mentioned groups of fluorinated compounds: 

o information about quantities 

o information about application/uses 
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o information about producers 

o information about downstream users and traders in the Nordic 

countries for the uses within your industry 

o information about trade names for products containing any of 

these substances 

 

For those uses that are not relevant for the Nordic market, please, make 

a remark for these uses. 

 

3. Identity and properties 

Please provide the following information for the above PFCs in 

question that are relevant for the Nordic market: 

o Chemical name 

o CAS number 

o Trade name 

o Concentration 

o The corresponding uses 

4. Efficacy and availability 

Please provide, if available, for these PFCs any information on: 

o Performance 

o Benefits 

o Costs and limitations 

o Availability on the Nordic market 

 

Thank you very much for your help! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix D – Commercial PFC 
products and brands on the 
market 

Table 1. A selection of fire fighting foam products on the market
29

 

PFC product References  

DuPont Capstone® Fluorosurfactants  http://www2.dupont.com/Capstone/en_US/assets/downloads/ 

capstone_1157.pdf 

 

Chemguard Fluorosurfactants  http://www.chemguard.com/fire-suppression/catalog/ 

foam-concentrates/aqueous-film-forming-foam-afff/
 

 

Dynax Fluorosurfactants  http://www.dynaxcorp.com/resources/pdf/2009/ 

dx5022.bul-rev0909.pdf 

 

Solberg high hydrocarbon foaming agent 

concentration (Fluorine Free)  

http://www.solbergfoam.com/Foam-Concentrates/ 

RE-HEALING™-Foam.aspx  

Table 2. A selection of metal plating mist suppressant products on the market
30

 

PFC product References  

3M Mist Suppressants  http://solutions.3m.com/wps/portal/3M/en_US/ 

Energy-Advanced/Materials/Products/Acid_Mist_Suppressants/
 

 

Atotech Mist Suppressants  http://www.atotech.com/products/general-metal-finishing/ 

functional-chrome-plating/fumetrolr-21-lf.html 

 

Enthone Mist Suppressants  http://enthone.com/en/Industries/Industrial_Finishes/ 

Technology_Selector/Products/ 

ENTHONE_PFOS-Free_Solutions.aspx  

McDermid Mist Suppressants  http://industrial.macdermid.com/cms/engineering/hardchrome/

index.shtml  

Hunter Chemical Fume Suppressants  http://www.hunterchem.com/metal-finishing-Cr.html 

 

Kiesow Dr. Brinkmann http://www.kiesow.org/aktuelles/aktuelles/article/ 

proquel-of-mit-grossem-erfolg/  

 

 

────────────────────────── 
29 Personal information from the Fluorocouncil. 
30 Personal information from the Fluorocouncil and from producers/suppliers of mist  

suppressants 

http://www2.dupont.com/Capstone/en_US/assets/downloads/
http://www.chemguard.com/fire-suppression/catalog/
http://www.dynaxcorp.com/resources/pdf/2009/
http://www.solbergfoam.com/Foam-Concentrates/
http://solutions.3m.com/wps/portal/3M/en_US/
http://www.atotech.com/products/general-metal-finishing/
http://enthone.com/en/Industries/Industrial_Finishes/
http://industrial.macdermid.com/cms/engineering/hardchrome/
http://www.hunterchem.com/metal-finishing-Cr.html
http://www.kiesow.org/aktuelles/aktuelles/article/
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Table 3. A selection of dirt- and water repellent ( DWR) products on the market
31

 

PFC product References  

Everest Water Repellant Finishes  http://www.everest.com.tw/_english/00_site/01_edit.aspx?MI

D=87&SID=118&TID=125 

 

Maflon Leather Fluorosurfactants  http://www.maflon.com/index.php/fluoropolymers.html 

 

Perfluorobutane sulfonamido-based 

products  

Scotchgard® 

 

http://www.scotchgard.com/wps/portal/3M/en_US/NAScotchg

ard/Global/  

Fluorinated oxetane-based products  

Polyfox® 

 

http://www.omnova.com/products/chemicals/PolyFox.aspx  

Wacker Silicone-based Dirt and Water 

Repellants  

http://www.wacker.com/cms/media/publications/ 

downloads/6304_EN.pdf 

 

AsahiGuard  http://www.asahiguard.jp/eng/  

Short-chain fluorotelomer-based products – Finishing Agents  

Nuva® finishing agents  http://www.textiles.clariant.com/C12571C400483A78/ 

vwWebPagesByID/ABCE5BDE71BE7555C12572AC0049E92D  

Unidyne® finishing agents  http://www.daikin-america.com/products/ProductGrades/ 

default.aspx?ApplicationID=&IndustryID=&MyDaikin= 

&productgradeid=73 

 

Rudolf Finishing Agents  http://www.rudolf.de/products/ 

details-brochure.htm?year=2010&ri=201005 

 

Oleophobol® Finishing Agents  http://www2.dupont.com/Capstone/en_US/assets/downloads/

Capstone_Oleophobol_Detail_Chart_ProductsForTextiles_K-

25183_CapstoneforTeflon_FINAL_22february2011.pdf  

Table 4. A selection of paper and packaging impregnation products on the market
32

 

PFC product References  

DuPont Capstone® Fluorosurfactants  http://www2.dupont.com/Capstone/en_US/uses_apps/ 

paper_packaging/paper_packaging.html  

Solvay PFPE specialty polymers  http://www.solvayplastics.com/sites/solvayplastics/EN 

/specialty_polymers/Fluorinated_Fluids/Pages/Solvera_PFPE.aspx 

 

AsahiGuard  http://www.asahiguard.jp/eng/  

 

 

 

 

 

 

────────────────────────── 
31 Personal information from the Fluorocouncil. 
32 Personal information from the Fluorocouncil. 

http://www.everest.com.tw/_english/00_site/01_edit.aspx?MI
http://www.maflon.com/index.php/fluoropolymers.html
http://www.scotchgard.com/wps/portal/3M/en_US/NAScotchg
http://www.omnova.com/products/chemicals/PolyFox.aspx
http://www.wacker.com/cms/media/publications/
http://www.asahiguard.jp/eng/
http://www.textiles.clariant.com/C12571C400483A78/
http://www.daikin-america.com/products/ProductGrades/
http://www.rudolf.de/products/
http://www2.dupont.com/Capstone/en_US/assets/downloads/
http://www2.dupont.com/Capstone/en_US/uses_apps/
http://www.solvayplastics.com/sites/solvayplastics/EN
http://www.asahiguard.jp/eng/
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Table 5. A selection of coating agents on the market
33

 

PFC product References  

DuPont Capstone® Fluorosurfactants  http://www2.dupont.com/Capstone/en_US/uses_apps/ 

Fluorosurfactants/paints_coatings.html 

 

Chemguard Fluorosurfactants  http://www.chemguard.com/specialty-chemicals/ 

lodyne-connections.htm 
 

 

Dynax Fluorosurfactants  http://www.dynaxcorp.com/technology/coating.html 

 

3M Fluorosurfactants  http://solutions.3m.com/wps/portal/3M/en_US/ 

Energy-Advanced/Materials/Industry_Solutions/ 

Paints-Coatings/Novec/
 

 

Maflon Fluorosurfactants  http://www.maflon.com/index.php/ 

fluorosurfactant-products-and-applications.html 

 

3M Aqueous Fluorinated Polyurethane  http://multimedia.3m.com/mws/mediawebserver?mwsId= 

66666UF6EVsSyXTtMXf6LXfXEVtQEVs6EVs6EVs6E666666--

&fn=prodinfo_src220.pdf 

 

Byk Chemie Additives  http://www.byk.com/en/press-events/new-additives.html 
 

 

Tego Siloxane based Surfactants  http://www.tego.de/sites/dc/Downloadcenter/Evonik/ 

Product/Tego/en/Technical-Papers-Additives/ 

article-multifuctional-siloxane-based-gemini-surfactatng-

tego-twin-4000-e.pdf 

 

Air Products Hydrocarbon Surfactants  http://www.airproducts.com/~/media/Files/PDF/industries/

paints-coatings-surfynol-surfactants-multifunctional-

problem-solvers-waterborne.ashx 

 

Fluorinated oxetane-based products Polyfox®  http://www.omnova.com/products/chemicals/PolyFox.aspx 

 

Diederich Siloxane additives  http://www.diedrichtechnologies.com/ 

Water-Repellents-3.php  

 

 

 

 

 

 

 

 

 

 

 

 

 

────────────────────────── 
33 Personal information from the Fluorocouncil 

http://www2.dupont.com/Capstone/en_US/uses_apps/
http://www.chemguard.com/specialty-chemicals/
http://www.dynaxcorp.com/technology/coating.html
http://solutions.3m.com/wps/portal/3M/en_US/
http://www.maflon.com/index.php/
http://multimedia.3m.com/mws/mediawebserver?mwsId=
http://www.byk.com/en/press-events/new-additives.html
http://www.tego.de/sites/dc/Downloadcenter/Evonik/
http://www.airproducts.com/~/media/Files/PDF/industries/
http://www.omnova.com/products/chemicals/PolyFox.aspx
http://www.diedrichtechnologies.com/


 

 

 

 

 



Appendix E – Data contributions 
to “Mapping of uses and 
applications of PFCs on the 
Nordic market” 



Table 1. FTOHs, FTSs, PFSAs and PFOSA in comsumer products (excluding PFCAs) 

Reference Data Country Product type Usage  FTOHs FTS   Sulfonates   

Dinglasan-Panlilio MJA 

 

A.D. n.i. Polyfox-L-diol C.P. 4:2  6:2  8:2  10:2    X      

Dinglasan-Panlilio MJA 

 

A.D. n.i. Teflon Advance C.P.  6:2  8:2  10:2    X      

Dinglasan-Panlilio MJA, 

DuPONT 3 

 

A.D. DuPont Zonyl FSO 100 C.P.  6:2  8:2  10:2          

Dinglasan-Panlilio MJA 

 

A.D. DuPont Zonyl FSE C.P.  6:2  8:2  10:2    X      

Dinglasan-Panlilio MJA A.D. Canada Motomaster 

windshield 

washer 

 

C.P. 4:2  6:2  8:2  10:2    X      

Dinglasan-Panlilio MJA 

 

A.D. n.i. 8:2 Methacrylate C.P.  6:2  8:2           

Dinglasan-Panlilio MJA 

 

A.D. n.i. Scotchgard C.P.       X      

Sinclair E A.D. n.i. Teflon Frying 

pans 

 

C.P.  6:2  8:2           

Sinclair E A.D. n.i. Microwave 

popcorn 

 

C.P.  6:2  8:2           

Sinclair E A.D. n.i. Microwave 

popcorn  

packing paper 

 

C.P.  6:2  8:2           

Herzke D A.D. Norway Paint 

 

C.P.         PFHxS PFHpS   

Herzke D A.D. Norway AFFF* I.U.  6:2  8:2  10:2  6:2  8:2   PFBS PFHxS PFHpS PFDcS PFOSA 

 

Herzke D A.D. Norway Waterproofing 

agents 

 

C.P.  6:2  8:2  10:2     PFBS     

Herzke D A.D. Norway PCB 

 

I.U.         PFHxS    

Herzke D A.D. Norway Coated fabrics 

 

C.P.  6:2  8:2  10:2  6:2    PFBS PFHxS    

Herzke D A.D. Norway Non-stick ware 

 

C.P.  6:2   10:2     PFBS PFHxS    

Berger A.D. n.i. Textile 

 

C.P.             

Berger A.D. n.i. textile C.P.             

C.P.: Consumer products; I.U.: Industrial use; X: NMeFOSE; * Still usage of some products. 

 



Table 2. PFCAs in consumer products 

References Data Country Product type  PFCAs 

Dinglasan-Panlilio MJA A.D. n.i. Polyfox-L-diol 

 

           

Dinglasan-Panlilio MJA A.D. n.i. Teflon Advance 

 

           

Dinglasan-Panlilio MJA, 

DuPONT 3 

 

A.D. DuPont Zonyl FSO 100            

Dinglasan-Panlilio MJA A.D. DuPont Zonyl FSE 

 

           

Dinglasan-Panlilio MJA A.D. Canada Motomaster windshield 

washer 

 

           

Dinglasan-Panlilio MJA A.D. n.i. 8:2 Meth-acrylate 

 

           

Dinglasan-Panlilio MJA A.D. n.i. Scotchgard 

 

           

Sinclair E A.D. n.i. Teflon Frying pans 

 

           

Sinclair E A.D. n.i. Microwave popcorn 

 

           

Sinclair E A.D. n.i. Microwave popcorn  

packing paper 

 

 PFPA  PFHpA PFNA PFDcA PFUnDA PFDoDA    

Herzke D A.D. Norway Paint 

 

PFBA           

Herzke D A.D. Norway AFFF* 

 

PFBA PFPA PFHxA   PFDcA  PFDoA    

Herzke D A.D. Norway Waterproofing agents 

 

PFBA  PFHxA PFHpA PFNA PFDcA PFUnDA PFDoA  PFTeA  

Herzke D A.D. Norway PCB 

 

PFBA           

Herzke D A.D. Norway Coated fabrics 

 

 PFPA PFHxA PFHpA PFNA PFDcA  PFDoA    

Herzke D A.D. Norway Non-stick ware 

 

PFBA           

Berger A.D. n.i. Textile 

 

  PFHxA PFHpA PFNA PFDcA PFUnDA PFDoA PFTriA PFTeA PFPDA 

Berger A.D. n.i. Textile PFBA  PFHxA PFHpA PFNA PFDcA PFUnDA PFDoA  PFTeA  

 

 

 

 



Table 3. PFCs in consumer productions, (other than stated in table 1 and 2) 

Reference   Prod. 

Country 

Product type Usage type Usage 

still? 

                

Vorob'ev SI A.D. Japan Fluosol-DA 20% Blood substitutes perfluorocarbon emulsions 

 

No PFD PFTPA       

Vorob'ev SI A.D. Japan Fluosol-DA 35% Blood substitutes perfluorocarbon emulsions 

 

No PFD PFTPA       

Vorob'ev SI A.D. Russia Perftoran Blood substitutes perfluorocarbon emulsions 

 

No PFD  PFMCP      

Vorob'ev SI A.D. Russia Ftorosan Blood substitutes perfluorocarbon emulsions 

 

Yes PFD  PFMCP      

Vorob'ev SI; Castro IC A.D. USA Oxygent Blood substitutes perfluorocarbon emulsions 

 

Yes    PFOB PFDB    

3M MSDS P.I. n.i. Scotchgard Carped & 

rug protector  

(1023-17N) 

 

surfactant n.i. n.i. Fluorochemical 

Urethane 

(trade secret) 

   

3M P.I. n.i. Dyneon Industrial  

processing 

 

Polytetrafluoroethylene 

 

n.i.   

3M P.I. n.i. Fluorinet Electonic liquid Perfluoro compounds (>C15) 

 

 

n.i.   

3M P.I. n.i. Novec 1230 Fire extinguishing 

agent 

 

CF3CF2C(=O)CF(CF3)2 n.i.   

3M P.I. n.i. Novec™ Fluorosurfac-

tants FC-4432 

Paints and 

coatings 

 

PFBS n.i.   

Daikin P.I. Japan, 

EU, USA 

Neoflon-PCTFE Flu-

oropolymer 

 

n.i. Poly(chlorotrifluoroethylene)    

Daikin P.I. Japan, 

EU, USA 

Neoflon-PFA Fluoro-

telomer 

n.i. Perfluorovinylpropyl ether-

tetrafluoroethylene 

 

   

Daikin P.I. Japan, 

EU, USA 

OPTOOL Prevent finger-

print marking 

 

Perfluorohexane    

Daikin P.I. Japan, 

EU, USA 

 

UNIDYNE Fluoro coating n.i.    

Daikin P.I. Japan, 

EU, USA 

 

DAIFREE Fluoro coating n.i.    

Daikin P.I. Japan, 

EU, USA 

Polyflon PTFE-

Fluoropolymer 

 

Teflon polytetrafluoroethylene    

Daikin P.I. Japan, 

EU, USA 

Dai-El Elastomer vinylidenefluoride/ 

hexafluoropropylene 

copolymer 

 

 

   



Reference   Prod. 

Country 

Product type Usage type Usage 

still? 

                

Asahi Glass Company P.I.  Fluon PTFR_E Polymers Polytetrafluoroethylene 

 

   

Dow Corning P.I.  Molykote Grease PFPE, PTFE 

 

   

DuPont 1,2 P.I. USA Teflon Advanced Carpet and 

upholstery 

protection 

n.i. n.i. Fluorochemi-

cal dispersion 

in water 

 

Partially fluorinated aliphatic polyurethane 

DuPont P.I. USA Viton Elastomer Hexafluoropropene  

polymer 

 

       

DuPont P.I. USA Kalrez Fire fighting Perfluoroalkylpolyether, 

polytetrafluoroethylene 

 

       

DuPont P.I. USA Krytox Lubricant Polyhexafluoropropylene 

oxide, PFPE, Perfluoroalky-

lether, PTFE 

       

Moe M; Zaggia A A.D.  ForaFac (DuPont) Fire extinguishing 

surfactant 

 

(CF2)nC9H19 fluorotelomer        

Key BD P.I. n.i. monofluoroacetic acid pesticide CH2FCO2H 

 

n.i.       

Key BD P.I. n.i. Trifluoroacetic acid Reagent CF2CO2H 

 

n.i.       

Key BD P.I. n.i. trifluoromethanesulfo-

nic acid 

 

catalyst/reagent CF3SO3H n.i.       

Key BD P.I. n.i. 1H,1H,2H,2Hperfluoro

octanesulfonic acid 

 

surfactant C6F13CH2CH2SO3H n.i.       

Key BD P.I. n.i. N-acetic-N-ethyl 

perfluorooctane 

sulfonamide 

 

surfactant C8F17SO2N(CH2COOH) 

(CH2CH3) 

n.i.       

Key BD P.I. n.i. sulfuramid insecticide C8F17SO2NH(CH2CH3) 

 

 

n.i.       

Key BD P.I. n.i. polytetrafluoroethylene teflon (-(CF2CF2)n-) 

 

n.i.       

Key BD P.I. n.i. Perfluoropolyether lubricant (-(CF(CF3)CF2O)n-) 

 

n.i.       

Key BD P.I. n.i. Zonyl alcohol surfactant C8F17CH2CH2OH n.i.      8:2-

FTOH 

 

Yang Z P.I. n.i. Oxycyte Blood substitutes perfluorocarbon emulsions n.i. 

 

      

Castro IC P.I. n.i. Fluosol Blood substitutes perfluorocarbon emulsions n.i. PFD PFTPA 

 

    

Castro IC P.I. n.i. Oxypherol Blood substitutes perfluorocarbon emulsions n.i.  PFTPA 

 

    



Reference   Prod. 

Country 

Product type Usage type Usage 

still? 

                

Castro IC P.I. n.i. Perftoran Blood substitutes perfluorocarbon emulsions n.i. PFD 

 

     

Castro IC P.I. n.i. Oxyfluor Blood substitutes perfluorocarbon emulsions n.i.    PFDCO 

 

  

Castro IC P.I. n.i. Oxycyte Blood substitutes perfluorocarbon emulsions n.i.     TBPCH 

 

 

Castro IC P.I. Columbia Columbian emulsion Blood substitutes perfluorocarbon emulsions n.i.   PFOB 

 

   

Castro IC P.I. France French emulsion Blood substitutes perfluorocarbon emulsions n.i.   PFOB 

 

   

Gelest P.I. n.i. SiBRID FCS 331 Skin care product 

ingredient  

(cosmetics) 

 

n.i. n.i. tetrafluoro-

ethylene 

 

fluorinated dimethyl fluid 

Solvay plastics P.I. n.i. Fomblin PFPE  Lubricants/ 

oils/grease/ 

surfactant 

 

 

PFPE    

Solvay plastics P.I. n.i. Fomblin HC PFPE Personal care 

products 

 

PFPE    

Solvay plastics P.I. n.i. Hyflon Wire & cable 

coatings 

 

PFA/MFA    

Solvay plastics P.I. n.i. Tecnoflon Per- 

fluoroelastomer 

 

Fluoropolyether derivative    

Solvay plastics P.I. n.i. Algoflon Wire & cable 

coatings 

 

PTFE    

Solvay plastics P.I. n.i. Fluorolink Miscellaneous 

 

 

PFPE    

Solvay plastics P.I. n.i. Galden Electronics 

 

PFPE    

Solvay plastics P.I. n.i. Solvera Paper packaging 

 

n.i.    

Hoechst AG P.I. Germany Hostaflon Teflon 

 

    

Hoechst AG P.I. Germany Hostinert In electronic 

components 

 

Perfluorinated liquid No   

Penwalt P.I. n.i. Pentel Water and soil 

repellency to 

fabrics 

 

Fluorotelomer composition    

Miteni P.I. Italy Perflutel RM82 Industry and 

science 

 

Perfluorohexane    



Reference   Prod. 

Country 

Product type Usage type Usage 

still? 

                

Miteni P.I. Italy Perflutel RM57 Industry and 

science 

Perfluoroheptane    

NearChimica P.I. Italy Naiguard Repellant finishes PTFE 

 

   

Zaggia A P.I. n.i. PolyFox Fire-extinguishing 

surfactant 

Hydroxyl terminated 

Fluoropolyether co-polymer 

 

   

OMNOVA P.I. n.i. X-Cape Repellants Fluoropolymer    

A.D.: Analytical data, P.I.: Producer information. 

Abbreviations used in Table 3 

PFD Perfluorodecalin 

PFTPA Perfluorotributylamine 

PFMCP perfluoromethylcyclohexylpiperidine 

PFOB Perfluorooctylbromide 

PFDB Perfluorodecylbromide 

PFDCO Perfluorodichlorooctane 

TBPCH Tetrabutylperfluorocyclohexane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Geometric mean concentration in home and work related environments indicating human exposure  

 Reference Jogsten IE Fracer AJ Shoeib M (2005) Shoeib M (2004) Barber JL Barber JL Jahnke A Jahnke A Shoeib M (2007) 

 Country Spain USA Canada Canada Norway Norway Norway Norway Canada 

 Matrix Indoor dust Office air Indoor air/dust Indoor air/dust Indoor air/dust Indoor air/dust Indoor air/dust Indoor air/dust Indoor air/dust 

 Year 2012 2012 2005 2004 2007 2007 2007 2007 2007 

 Unit ng/g pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 pg/m3 

Telomers 4:2 FTOH     114 <20    

 6:2-FTOH 0.295 1,320   2,990 <40 177 248  

 8:2-FTOH 4.04 9,920   3,424 <10 853 421 2,070 

 10:2-FTOH 0.76 2,850   3,559 13 898 1,660 891 

 EtFOSA <0.062 17 59  6,626 7 188 158  

 MeFOSA <0.054 29,1   6,608 6    

 EtFOSE 3.238 18,1 1,100 770 5,755 76 305 815  

 MeFOSE 1.19 289 1,970 2,590 6,018 763 727 798  

     35 73      

 PFBS 1.028         

 PFHxS 1.073         

 PFDS <0.002         

 PFBA 16.35         

 PFPeA 0.367         

 PFHxA 1.382         

 PFHpA 1.63         

 PFNA 6.769         

 PFDA 9.735         

 PFUnDA 3.373         

 PFDoDA 3.363         

 PFTrDA 10.9086         

 PFTDA 0.67         

 PFOcDA <0.46         

 5:3 FTSA <2         

 6:2 FTUCA 0.0107         

 8:2 FTUCA 0.0265         

 10:2 FTUCA <0.006         

 

 

 



 Reference Goosey E 

(2012) 

Goosey E 

(2012) 

Goosey E 

(2011) 

Goosey E 

(2011) 

Goosey E 

(2011) 

Goosey E 

(2011) 

Goosey E 

(2011) 

Goosey E 

(2011) 

Goosey E 

(2011) 

Goosey E 

(2011) 

Goosey E 

(2011) 

Kim SK 

(2012) 

Liu W 

(2012) 

 Country UK UK UK UK Australia Canada France Germany Kazahkstan Thailand USA Korea Japan 

 

 Matrix Indoor 

air -

homes 

Indoor 

air -

offices 

Indoor 

air /dust 

-homes 

Indoor 

air /dust 

-offices 

Indoor 

air /dust 

- homes 

Indoor 

air /dust 

- homes 

Indoor 

air /dust 

- homes 

Indoor 

air /dust 

- homes 

Indoor air 

/dust - 

homes 

Indoor 

air /dust 

- homes 

Indoor 

air /dust 

– homes 

Indoor 

air 

Indoor 

air – 

homes 

 

 Year 2008–

2009 

2008–

2009 

2007–

2009 

2007–

2009 

2007–

2009 

2007–

2009 

2007–

2009 

2007–

2009 

2007–

2009 

2007–

2009 

2007–

2009 

2009 2008 

 

 

 Unit pg/m3 pg/m3 ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g ng/g pg/m3 ng/m3 

 

Telomers 4:2 FTOH              

 

 6:2-FTOH             0.59 

 

 8:2-FTOH            4,839 10.16 

 

 10:2-FTOH            2,610 2.29 

 

 8:2-FTOHAc             0.34 

 

 8:2-FTOHMac             0.05 

 

 EtFOSA 120 59 98 120 2,000 1,300 150 190 150 140 140 5.3  

 

 MeFOSA <2.5 6 13 61 360 32 5.4 1.7 <0.1 1.6 15   

 

 EtFOSE 600 490 320 290 60 8.4 190 100 5.7 59 210 27  

 

 

 MeFOSE 950 480 230 250 84 8.4 190 84 12 14 120 8.3  

 

 MeFOSEA            6.9  

 

 FOSA 152 74 54 21 25 190 3.4 56 <0.02 13 66   

 

 PFBS              

 

 PFHxS 36 94 450 620 240 150 130 290 94 25 270   

 

 



 



Appendix F – Data contributions 
of PFCA and PFSA in food and 
drinking water 



Concentration, mean (range) of perfluorocarboylates, PFCA, in food (ng/kg or ug/kg) and drinking water (ng/L)

Reference Foodstuff Country

Number 

of 

samples Year PFBA PFPA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFTrDA PFTeDA 

Data in ng/kg

Haug et al., 2010 a Lettuce Norway 3 2010 0.98 0.43 1.8 < 1.0 0.78 < 1.3 1.3

(NB: Data in ng/kg) Carrot 3 < 1.3 < 0.89 2.0 < 2.1 < 1.4 < 2.5 < 2.4

Potato 3 3.1 1.1 5.3 < 4.1 3.0 2.2 < 4.8

Cheese 3 < 7.7 7.4 13 16 6.6 4.1 < 15

Margarine 3 2.5 < 5.6 12 < 13 < 8.6 < 16 < 16

Milk 3 1.5 < 0.87 4.7 < 2.1 4.0 < 2.5 < 2.4

Bread 3 14 11 51 9.5 17 < 15 < 15

Strawberry jam 3 < 7 < 4.7 14 3.7 8.7 < 13 < 13

Pork meat 3 < 4.3 2.8 15 5.5 16 < 8.2 < 8.0

Beef 3 < 3.3 7.6 12 15 23 < 6.4 < 6.2

Chicken meat 3 < 13 20 52 6.8 < 23 13 < 9.2

Egg 3 13 < 16 30 < 7.4 12 9.9 < 8.1

Fish sticks 3 < 18 21 49 < 11 17 18 < 13

Canned mackerel 3 < 18 < 24 24 < 11 < 31 19 2

Salmon 3 11 16 46 10 26 4.5 < 12

Cod 1 < 11 < 15 30 5.9 13 21 < 7.5

Cod liver 1 < 48 < 66 51 14 39 230 < 33

Data in ug/kg

Clarke et al., 2009 All oily fish UK 47 2009 < 1 - 7 < 1 1.1 < 1 < 1 -2 < 1 - 2 < 1 - 2

All whitefish 12 < 1 < 1 < 1 < 1 < 1 < 1 < 1 

All shellfish 12 < 1 < 1- 1 3.3 (1-8)  <1 - 3 < 1 < 1 < 1 - 1

Liver, diffent animals 25 < 1 1.1 (1-3) < 1 < 1 < 1

Kidney different animals 12 < 1 < 1 < 1 < 1 < 1

Vegetables 42 < 1 < 1 < 1 < 1 < 1

Table 1. PFCA in food and drinking water 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Concentration, mean (range) of perfluorocarboylates, PFCA, in food (ng/kg or ug/kg) and drinking water (ng/L)

Data in ug/kg

Kit Granby, DTU, 2012 Herring Denmark 6 2012 < 0.5

White fish 3 < 0.5 

Data in ng/L

Skutlarek et al., 2006 Drinking water Germany 2006 11 5 22 23 519

Haug et al., 2010 a Drinking water 1 Norway 2010 0.78 0.76 2.5 < 0.22 1.0 0.35

Drinking water 2 Norway 2010 0.31 0.32 1.2 < 0.22 0.52 0.20

Drinking water 3 Norway 2010 < 0.11 < 0.12 0.65 < 0.22 0.22 0.065

Table 2. PFCA in food and drinking water 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Concentration, mean (range), of perfluoroalkyl sulfonates, PFSA, and  perfluoroalkyl sulfonic Acid Amides in food (ng/kg or  ug/kg) and drinking water (ng/L)

Reference Foodstuff Country

Number 

of samples Year PFBS PFHxS PFHpS PFOS PFDS PFOSA ∑ PFC's

Data in ng/kg

Haug et al., 2010 Lettuce Norway 3 < 0.12 < 0.06 0.17

Carrot 3 < 0.25 < 0.1 0.67

Potato 3 < 0.48 < 0.22 1.0

Cheese 3 < 1.5 < 0.6 12

Margarine 3 < 1.6 1.3 2.

Milk 3 < 0.24 < 0.1 7.0

Bread 3 < 1.5 1.7 17

Strawberry jam 3 < 1.3 < 0.59 3.0

Pork meat 3 < 0.81 1.2 17

Beef 3 < 0.63 < 0.28 60

Chicken meat 3 3.2 2.3 21

Egg 3 2.0 3.5 39

Fish sticks 3 5.0 1.6 13

Canned mackerel 3 5.5 < 3 43

Salmon 3 2.2 5.5 55

Cod 1 < 3.4 2.8 100

Cod liver 1 < 15 < 8.2 310

Data in ug/kg

Clarke et al., 2009 All oily fish Germany 47 < 1 < 1- 1 4.8 (<1-59) 2.5 (1 - 27) 6.7 (0-63)*

All whitefish 12 < 1 < 1 1.2 (<1-2) 1.1 (1-2) 0.8 (0-4)*

All shellfish 12 < 1 -2 4.4 (1-13) 1.3 (1-3) 8.2 (0-20)*

Liver, diffent animals < 1 < 1 2.5 (1-10) < 1 2.4 (0-14)*

Kidney different animals < 1 < 1 1.4 (1-3) < 1 12 (0-5)*

Vegetables < 1 - 1 < 1 < 1 < 1 0.1 (0-2)*

Note ∑PFC's: * =  ∑PFHxA, PFHpA, PFOA, PFNA, PFDeA, PFUnA, PFDoA, PFBS, PFHxS, PFOS and PFOSA

Table 3. PFSA in food and drinking water 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



Concentration, mean (range), of perfluoroalkyl sulfonates, PFSA, and  perfluoroalkyl sulfonic Acid Amides in food (ng/kg or  ug/kg) and drinking water (ng/L)

Data in ug/kg

Kit Granby, DTU, 2012 Herring Denmark 6 1.6

White fish 3 2.1 (1.3 - 3.3)

Data in ng/L

Haug et al., 2010 a Drinking water 1 Norway 2010 < 0.045 0.15 0.23

Drinking water 2 Norway 2010 < 0.045 0.12 0.31

Drinking water 3 Norway 2010 < 0.045 0.045 0.071
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