
Comparing and Merging Files
with GNU diff and patch

for Diffutils 2.8.1 and patch 2.5.4
5 April 2002

David MacKenzie, Paul Eggert, Richard Stallman

Edited for publication by Brian Gough

Published by Network Theory Ltd.

A catalogue record for this book is available from the British Library.

First Printing, December 2002 (22/12/2002)
Second Printing, June 2003 (1/6/2003)

Published by Network Theory Limited.

15 Royal Park
Clifton
Bristol BS8 3AL
United Kingdom

Email: info@network-theory.co.uk

ISBN 0-9541617-5-0

Further information about this book is available from
http://www.network-theory.co.uk/diff/manual/

Modifications copyright c© 2003 Network Theory Ltd.

Copyright c© 1992, 1993, 1994, 1998, 2001, 2002 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under

the terms of the GNU Free Documentation License, Version 1.1 or any later

version published by the Free Software Foundation; with no Invariant Sections,

with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover

Texts as in (a) below. A copy of the license is included in the section entitled

“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify

this GNU Manual, like GNU software. Copies published by the Free Software

Foundation raise funds for GNU development.”

The texinfo source files for this manual are available from
http://www.network-theory.co.uk/diff/manual/src/

i

Table of Contents

Publisher’s Preface . 1

Overview . 3

1 What Comparison Means 5
1.1 Hunks . 5
1.2 Suppressing Differences in Blank and Tab Spacing 6
1.3 Suppressing Differences in Blank Lines 7
1.4 Suppressing Case Differences . 7
1.5 Suppressing Lines Matching a Regular Expression 7
1.6 Summarizing Which Files Differ . 8
1.7 Binary Files and Forcing Text Comparisons 8

2 diff Output Formats 11
2.1 Two Sample Input Files . 11
2.2 Showing Differences Without Context 12

2.2.1 Detailed Description of Normal Format 12
2.2.2 An Example of Normal Format 13

2.3 Showing Differences in Their Context 13
2.3.1 Context Format. 14

2.3.1.1 Detailed Description of Context
Format . 14

2.3.1.2 An Example of Context Format 15
2.3.1.3 An Example of Context Format with

Less Context . 16
2.3.2 Unified Format . 16

2.3.2.1 Detailed Description of Unified Format
. 17

2.3.2.2 An Example of Unified Format 17
2.3.3 Showing Which Sections Differences Are in . . 18

2.3.3.1 Showing Lines That Match Regular
Expressions . 18

2.3.3.2 Showing C Function Headings 19
2.3.4 Showing Alternate File Names 19

2.4 Showing Differences Side by Side . 19
2.4.1 Controlling Side by Side Format 20
2.4.2 An Example of Side by Side Format 21

ii Comparing and Merging Files with GNU diff and patch

2.5 Making Edit Scripts . 21
2.5.1 ed Scripts . 21

2.5.1.1 Detailed Description of ed Format . . 22
2.5.1.2 Example ed Script 22

2.5.2 Forward ed Scripts . 23
2.5.3 rcs Scripts . 23

2.6 Merging Files with If-then-else . 24
2.6.1 Line Group Formats . 24
2.6.2 Line Formats . 27
2.6.3 Detailed Description of If-then-else Format . . . 29
2.6.4 An Example of If-then-else Format 30

3 Incomplete Lines . 33

4 Comparing Directories 35

5 Making diff Output Prettier 37
5.1 Preserving Tab Stop Alignment . 37
5.2 Paginating diff Output . 37

6 diff Performance Tradeoffs 39

7 Comparing Three Files 41
7.1 A Third Sample Input File . 41
7.2 Detailed Description of diff3 Normal Format 41
7.3 diff3 Hunks . 42
7.4 An Example of diff3 Normal Format 43

8 Merging From a Common Ancestor . . 45
8.1 Selecting Which Changes to Incorporate 45
8.2 Marking Conflicts . 46
8.3 Generating the Merged Output Directly 48
8.4 How diff3 Merges Incomplete Lines 48
8.5 Saving the Changed File . 49

9 Interactive Merging with sdiff. 51
9.1 Specifying diff Options to sdiff . 51
9.2 Merge Commands . 52

iii

10 Merging with patch 53
10.1 Selecting the patch Input Format 53
10.2 Revision Control . 54
10.3 Applying Imperfect Patches . 54

10.3.1 Applying Patches with Changed White Space
. 54

10.3.2 Applying Reversed Patches 55
10.3.3 Helping patch Find Inexact Matches 55
10.3.4 Predicting what patch will do 56

10.4 Creating and Removing Files. 57
10.5 Updating Time Stamps on Patched Files 57
10.6 Multiple Patches in a File. 58
10.7 Applying Patches in Other Directories 59
10.8 Backup Files . 60
10.9 Backup File Names . 60
10.10 Reject File Names . 61
10.11 Messages and Questions from patch 61

10.11.1 Controlling the Verbosity of patch 62
10.11.2 Inhibiting Keyboard Input 62
10.11.3 patch Quoting Style . 62

10.12 patch and the posix Standard . 63
10.13 gnu patch and Traditional patch 63

11 Tips for Making and Using Patches . . 67
11.1 Tips for Patch Producers . 67
11.2 Tips for Patch Consumers . 67
11.3 Avoiding Common Mistakes . 68
11.4 Generating Smaller Patches . 69

12 Invoking cmp . 71
12.1 Options to cmp . 71

13 Invoking diff . 75
13.1 Options to diff. 75

14 Invoking diff3 . 83
14.1 Options to diff3 . 83

15 Invoking patch . 87
15.1 Options to patch . 87

iv Comparing and Merging Files with GNU diff and patch

16 Invoking sdiff . 93
16.1 Options to sdiff . 93

17 Standards conformance 97

18 Reporting Bugs . 99

Appendix A Copying This Manual 101
A.1 GNU Free Documentation License 101

A.1.1 ADDENDUM: How to use this License for your
documents . 108

History . 109

Appendix B Index 111

Publisher’s Preface 1

Publisher’s Preface

This manual describes how to use GNU diff and patch to compare
and merge files.

GNU diff and patch are free software. The term "free software" is
sometimes misunderstood — it has nothing to do with price. It is about
freedom. It refers to your freedom to run, copy, distribute, study, change
and improve the software. With GNU diff and patch you have all these
freedoms.

GNU diff and patch are part of the GNU Project. The GNU Project
was launched in 1984 to develop a complete Unix-like operating system
which is free software: the GNU system. It was conceived as a way
of bringing back the cooperative spirit that prevailed in the computing
community in earlier days. Its goal is to make cooperation possible once
again by removing the obstacles to cooperation imposed by the owners
of proprietary software. Variants of the GNU operating system, which
use the kernel Linux, are now widely used; though these systems are
often referred to as “Linux”, they are more accurately called GNU/Linux
systems.

The Free Software Foundation is a tax-exempt charity that raises funds
for work on the GNU Project. It is dedicated to promoting computer
users’ right to use, study, copy, modify, and redistribute computer pro-
grams. You can support the Free Software Foundation by becoming an
associate member — for more information visit the website www.gnu.org.

Brian Gough
Publisher
June 2003

2 Comparing and Merging Files with GNU diff and patch

Overview 3

Overview

Computer users often find occasion to ask how two files differ. Perhaps
one file is a newer version of the other file. Or maybe the two files started
out as identical copies but were changed by different people.

You can use the diff command to show differences between two files,
or each corresponding file in two directories. diff outputs differences
between files line by line in any of several formats, selectable by command
line options. This set of differences is often called a diff or patch. For
files that are identical, diff normally produces no output; for binary
(non-text) files, diff normally reports only that they are different.

You can use the cmp command to show the byte and line numbers
where two files differ. cmp can also show all the bytes that differ be-
tween the two files, side by side. A way to compare two files character
by character is the Emacs command M-x compare-windows. See section
“Other Window” in The gnu Emacs Manual, for more information on
that command.

You can use the diff3 command to show differences among three
files. When two people have made independent changes to a common
original, diff3 can report the differences between the original and the
two changed versions, and can produce a merged file that contains both
persons’ changes together with warnings about conflicts.

You can use the sdiff command to merge two files interactively.
You can use the set of differences produced by diff to distribute

updates to text files (such as program source code) to other people. This
method is especially useful when the differences are small compared to
the complete files. Given diff output, you can use the patch program to
update, or patch, a copy of the file. If you think of diff as subtracting
one file from another to produce their difference, you can think of patch
as adding the difference to one file to reproduce the other.

This manual first concentrates on making diffs, and later shows how
to use diffs to update files.

gnu diff was written by Paul Eggert, Mike Haertel, David Hayes,
Richard Stallman, and Len Tower. Wayne Davison designed and imple-
mented the unified output format. The basic algorithm is described in
“An O(ND) Difference Algorithm and its Variations”, Eugene W. Myers,
Algorithmica Vol. 1 No. 2, 1986, pp. 251–266; and in “A File Compar-
ison Program”, Webb Miller and Eugene W. Myers, Software—Practice
and Experience Vol. 15 No. 11, 1985, pp. 1025–1040. The algorithm was
independently discovered as described in “Algorithms for Approximate

4 Comparing and Merging Files with GNU diff and patch

String Matching”, E. Ukkonen, Information and Control Vol. 64, 1985,
pp. 100–118.

gnu diff3 was written by Randy Smith. gnu sdiff was written by
Thomas Lord. gnu cmp was written by Torbjorn Granlund and David
MacKenzie.

patch was written mainly by Larry Wall and Paul Eggert; several gnu
enhancements were contributed by Wayne Davison and David MacKenzie.
Parts of this manual are adapted from a manual page written by Larry
Wall, with his permission.

Chapter 1: What Comparison Means 5

1 What Comparison Means

There are several ways to think about the differences between two
files. One way to think of the differences is as a series of lines that were
deleted from, inserted in, or changed in one file to produce the other file.
diff compares two files line by line, finds groups of lines that differ, and
reports each group of differing lines. It can report the differing lines in
several formats, which have different purposes.

gnu diff can show whether files are different without detailing the dif-
ferences. It also provides ways to suppress certain kinds of differences that
are not important to you. Most commonly, such differences are changes
in the amount of white space between words or lines. diff also provides
ways to suppress differences in alphabetic case or in lines that match a
regular expression that you provide. These options can accumulate; for
example, you can ignore changes in both white space and alphabetic case.

Another way to think of the differences between two files is as a se-
quence of pairs of bytes that can be either identical or different. cmp
reports the differences between two files byte by byte, instead of line by
line. As a result, it is often more useful than diff for comparing binary
files. For text files, cmp is useful mainly when you want to know only
whether two files are identical, or whether one file is a prefix of the other.

To illustrate the effect that considering changes byte by byte can have
compared with considering them line by line, think of what happens if a
single newline character is added to the beginning of a file. If that file is
then compared with an otherwise identical file that lacks the newline at
the beginning, diff will report that a blank line has been added to the
file, while cmp will report that almost every byte of the two files differs.

diff3 normally compares three input files line by line, finds groups of
lines that differ, and reports each group of differing lines. Its output is
designed to make it easy to inspect two different sets of changes to the
same file.

1.1 Hunks

When comparing two files, diff finds sequences of lines common to
both files, interspersed with groups of differing lines called hunks. Com-
paring two identical files yields one sequence of common lines and no
hunks, because no lines differ. Comparing two entirely different files yields
no common lines and one large hunk that contains all lines of both files.
In general, there are many ways to match up lines between two given files.

6 Comparing and Merging Files with GNU diff and patch

diff tries to minimize the total hunk size by finding large sequences of
common lines interspersed with small hunks of differing lines.

For example, suppose the file ‘F’ contains the three lines ‘a’, ‘b’, ‘c’,
and the file ‘G’ contains the same three lines in reverse order ‘c’, ‘b’, ‘a’. If
diff finds the line ‘c’ as common, then the command ‘diff F G’ produces
this output:

1,2d0
< a
< b
3a2,3
> b
> a

But if diff notices the common line ‘b’ instead, it produces this output:
1c1
< a

> c
3c3
< c

> a

It is also possible to find ‘a’ as the common line. diff does not always find
an optimal matching between the files; it takes shortcuts to run faster.
But its output is usually close to the shortest possible. You can adjust this
tradeoff with the ‘--minimal’ option (see Chapter 6 [diff Performance],
page 39).

1.2 Suppressing Differences in Blank and
Tab Spacing

The ‘-E’ and ‘--ignore-tab-expansion’ options ignore the distinc-
tion between tabs and spaces on input. A tab is considered to be equiva-
lent to the number of spaces to the next tab stop. diff assumes that tab
stops are set every 8 print columns.

The ‘-b’ and ‘--ignore-space-change’ options are stronger. They
ignore white space at line end, and consider all other sequences of one or
more white space characters to be equivalent. With these options, diff
considers the following two lines to be equivalent, where ‘$’ denotes the
line end:

Here lyeth muche rychnesse in lytell space. -- John Heywood$

Here lyeth muche rychnesse in lytell space. -- John Heywood $

Chapter 1: What Comparison Means 7

The ‘-w’ and ‘--ignore-all-space’ options are stronger still. They
ignore difference even if one line has white space where the other line has
none. White space characters include tab, newline, vertical tab, form feed,
carriage return, and space; some locales may define additional characters
to be white space. With these options, diff considers the following two
lines to be equivalent, where ‘$’ denotes the line end and ‘^M’ denotes a
carriage return:

Here lyeth muche rychnesse in lytell space.-- John Heywood$

He relyeth much erychnes seinly tells pace. --John Heywood ^M$

1.3 Suppressing Differences in Blank Lines

The ‘-B’ and ‘--ignore-blank-lines’ options ignore insertions or
deletions of blank lines. These options affect only lines that are completely
empty; they do not affect lines that look empty but contain space or tab
characters. With these options, for example, a file containing

1. A point is that which has no part.

2. A line is breadthless length.
-- Euclid, The Elements, I

is considered identical to a file containing
1. A point is that which has no part.
2. A line is breadthless length.

-- Euclid, The Elements, I

1.4 Suppressing Case Differences

gnu diff can treat lower case letters as equivalent to their upper case
counterparts, so that, for example, it considers ‘Funky Stuff’, ‘funky
STUFF’, and ‘fUNKy stuFf’ to all be the same. To request this, use the
‘-i’ or ‘--ignore-case’ option.

1.5 Suppressing Lines Matching a Regular
Expression

To ignore insertions and deletions of lines that match a grep-style regu-
lar expression, use the ‘-I regexp’ or ‘--ignore-matching-lines=regexp’
option. You should escape regular expressions that contain shell
metacharacters to prevent the shell from expanding them. For example,

8 Comparing and Merging Files with GNU diff and patch

‘diff -I ’^[[:digit:]]’’ ignores all changes to lines beginning with a
digit.

However, ‘-I’ only ignores the insertion or deletion of lines that contain
the regular expression if every changed line in the hunk—every insertion
and every deletion—matches the regular expression. In other words, for
each nonignorable change, diff prints the complete set of changes in its
vicinity, including the ignorable ones.

You can specify more than one regular expression for lines to ignore
by using more than one ‘-I’ option. diff tries to match each line against
each regular expression.

1.6 Summarizing Which Files Differ

When you only want to find out whether files are different, and you
don’t care what the differences are, you can use the summary output
format. In this format, instead of showing the differences between the
files, diff simply reports whether files differ. The ‘-q’ and ‘--brief’
options select this output format.

This format is especially useful when comparing the contents of two
directories. It is also much faster than doing the normal line by line
comparisons, because diff can stop analyzing the files as soon as it knows
that there are any differences.

You can also get a brief indication of whether two files differ by using
cmp. For files that are identical, cmp produces no output. When the files
differ, by default, cmp outputs the byte and line number where the first
difference occurs. You can use the ‘-s’ option to suppress that informa-
tion, so that cmp produces no output and reports whether the files differ
using only its exit status (see Chapter 12 [Invoking cmp], page 71).

Unlike diff, cmp cannot compare directories; it can only compare two
files.

1.7 Binary Files and Forcing Text
Comparisons

If diff thinks that either of the two files it is comparing is binary (a
non-text file), it normally treats that pair of files much as if the summary
output format had been selected (see Section 1.6 [Brief], page 8), and
reports only that the binary files are different. This is because line by line
comparisons are usually not meaningful for binary files.

diff determines whether a file is text or binary by checking the first
few bytes in the file; the exact number of bytes is system dependent, but
it is typically several thousand. If every byte in that part of the file is

Chapter 1: What Comparison Means 9

non-null, diff considers the file to be text; otherwise it considers the file
to be binary.

Sometimes you might want to force diff to consider files to be text.
For example, you might be comparing text files that contain null char-
acters; diff would erroneously decide that those are non-text files. Or
you might be comparing documents that are in a format used by a word
processing system that uses null characters to indicate special formatting.
You can force diff to consider all files to be text files, and compare them
line by line, by using the ‘-a’ or ‘--text’ option. If the files you compare
using this option do not in fact contain text, they will probably contain
few newline characters, and the diff output will consist of hunks showing
differences between long lines of whatever characters the files contain.

You can also force diff to consider all files to be binary files, and
report only whether they differ (but not how). Use the ‘-q’ or ‘--brief’
option for this.

Differing binary files are considered to cause trouble because the re-
sulting diff output does not capture all the differences. This trouble
causes diff to exit with status 2. However, this trouble cannot occur
with the ‘--a’ or ‘--text’ option, or with the ‘-q’ or ‘--brief’ option, as
these options both cause diff to treat binary files like text files.

In operating systems that distinguish between text and binary files,
diff normally reads and writes all data as text. Use the ‘--binary’
option to force diff to read and write binary data instead. This option
has no effect on a posix-compliant system like gnu or traditional Unix.
However, many personal computer operating systems represent the end
of a line with a carriage return followed by a newline. On such systems,
diff normally ignores these carriage returns on input and generates them
at the end of each output line, but with the ‘--binary’ option diff treats
each carriage return as just another input character, and does not generate
a carriage return at the end of each output line. This can be useful when
dealing with non-text files that are meant to be interchanged with posix-
compliant systems.

The ‘--strip-trailing-cr’ causes diff to treat input lines that end
in carriage return followed by newline as if they end in plain newline.
This can be useful when comparing text that is imperfectly imported
from many personal computer operating systems. This option affects how
lines are read, which in turn affects how they are compared and output.

If you want to compare two files byte by byte, you can use the cmp
program with the ‘-l’ option to show the values of each differing byte in
the two files. With gnu cmp, you can also use the ‘-b’ option to show
the ascii representation of those bytes. See Chapter 12 [Invoking cmp],
page 71, for more information.

10 Comparing and Merging Files with GNU diff and patch

If diff3 thinks that any of the files it is comparing is binary (a non-text
file), it normally reports an error, because such comparisons are usually
not useful. diff3 uses the same test as diff to decide whether a file is
binary. As with diff, if the input files contain a few non-text bytes but
otherwise are like text files, you can force diff3 to consider all files to
be text files and compare them line by line by using the ‘-a’ or ‘--text’
options.

Chapter 2: diff Output Formats 11

2 diff Output Formats

diff has several mutually exclusive options for output format. The
following sections describe each format, illustrating how diff reports the
differences between two sample input files.

2.1 Two Sample Input Files

Here are two sample files that we will use in numerous examples to
illustrate the output of diff and how various options can change it.

This is the file ‘lao’:
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their outcome.

The two are the same,
But after they are produced,
they have different names.

This is the file ‘tzu’:
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their outcome.

The two are the same,
But after they are produced,
they have different names.

They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

In this example, the first hunk contains just the first two lines of ‘lao’,
the second hunk contains the fourth line of ‘lao’ opposing the second and
third lines of ‘tzu’, and the last hunk contains just the last three lines of
‘tzu’.

12 Comparing and Merging Files with GNU diff and patch

2.2 Showing Differences Without Context

The “normal” diff output format shows each hunk of differences with-
out any surrounding context. Sometimes such output is the clearest way
to see how lines have changed, without the clutter of nearby unchanged
lines (although you can get similar results with the context or unified
formats by using 0 lines of context). However, this format is no longer
widely used for sending out patches; for that purpose, the context for-
mat (see Section 2.3.1 [Context Format], page 14) and the unified format
(see Section 2.3.2 [Unified Format], page 16) are superior. Normal for-
mat is the default for compatibility with older versions of diff and the
posix standard. Use the ‘--normal’ option to select this output format
explicitly.

2.2.1 Detailed Description of Normal Format

The normal output format consists of one or more hunks of differences;
each hunk shows one area where the files differ. Normal format hunks look
like this:

change-command
< from-file-line

< from-file-line...

> to-file-line
> to-file-line...

There are three types of change commands. Each consists of a line
number or comma-separated range of lines in the first file, a single char-
acter indicating the kind of change to make, and a line number or comma-
separated range of lines in the second file. All line numbers are the original
line numbers in each file. The types of change commands are:

‘lar’ Add the lines in range r of the second file after line l of the
first file. For example, ‘8a12,15’ means append lines 12–15
of file 2 after line 8 of file 1; or, if changing file 2 into file 1,
delete lines 12–15 of file 2.

‘f ct’ Replace the lines in range f of the first file with lines in range
t of the second file. This is like a combined add and delete,
but more compact. For example, ‘5,7c8,10’ means change
lines 5–7 of file 1 to read as lines 8–10 of file 2; or, if changing
file 2 into file 1, change lines 8–10 of file 2 to read as lines
5–7 of file 1.

‘rdl’ Delete the lines in range r from the first file; line l is where
they would have appeared in the second file had they not

Chapter 2: diff Output Formats 13

been deleted. For example, ‘5,7d3’ means delete lines 5–7
of file 1; or, if changing file 2 into file 1, append lines 5–7 of
file 1 after line 3 of file 2.

2.2.2 An Example of Normal Format

Here is the output of the command ‘diff lao tzu’ (see Section 2.1
[Sample diff Input], page 11, for the complete contents of the two files).
Notice that it shows only the lines that are different between the two files.

1,2d0
< The Way that can be told of is not the eternal Way;
< The name that can be named is not the eternal name.
4c2,3
< The Named is the mother of all things.

> The named is the mother of all things.
>
11a11,13
> They both may be called deep and profound.
> Deeper and more profound,
> The door of all subtleties!

2.3 Showing Differences in Their Context

Usually, when you are looking at the differences between files, you will
also want to see the parts of the files near the lines that differ, to help you
understand exactly what has changed. These nearby parts of the files are
called the context.

gnu diff provides two output formats that show context around the
differing lines: context format and unified format. It can optionally show
in which function or section of the file the differing lines are found.

If you are distributing new versions of files to other people in the
form of diff output, you should use one of the output formats that show
context so that they can apply the diffs even if they have made small
changes of their own to the files. patch can apply the diffs in this case
by searching in the files for the lines of context around the differing lines;
if those lines are actually a few lines away from where the diff says they
are, patch can adjust the line numbers accordingly and still apply the diff
correctly. See Section 10.3 [Imperfect], page 54, for more information on
using patch to apply imperfect diffs.

14 Comparing and Merging Files with GNU diff and patch

2.3.1 Context Format

The context output format shows several lines of context around the
lines that differ. It is the standard format for distributing updates to
source code.

To select this output format, use the ‘-C lines’, ‘--context[=lines]’,
or ‘-c’ option. The argument lines that some of these options take is the
number of lines of context to show. If you do not specify lines, it defaults
to three. For proper operation, patch typically needs at least two lines of
context.

2.3.1.1 Detailed Description of Context Format

The context output format starts with a two-line header, which looks
like this:

*** from-file from-file-modification-time

--- to-file to-file-modification time

The time stamp normally looks like ‘2002-02-21 23:30:39.942229878
-0800’ to indicate the date, time with fractional seconds, and time zone
in Internet RFC 2822 format. However, a traditional time stamp like ‘Thu
Feb 21 23:30:39 2002’ is used if the LC_TIME locale category is either ‘C’
or ‘POSIX’.

You can change the header’s content with the ‘--label=label’ option;
see Section 2.3.4 [Alternate Names], page 19.

Next come one or more hunks of differences; each hunk shows one area
where the files differ. Context format hunks look like this:

*** from-file-line-range ****

from-file-line

from-file-line...
--- to-file-line-range ----

to-file-line

to-file-line...

The lines of context around the lines that differ start with two space
characters. The lines that differ between the two files start with one of
the following indicator characters, followed by a space character:

‘!’ A line that is part of a group of one or more lines that
changed between the two files. There is a corresponding
group of lines marked with ‘!’ in the part of this hunk for
the other file.

Chapter 2: diff Output Formats 15

‘+’ An “inserted” line in the second file that corresponds to
nothing in the first file.

‘-’ A “deleted” line in the first file that corresponds to nothing
in the second file.

If all of the changes in a hunk are insertions, the lines of from-file are
omitted. If all of the changes are deletions, the lines of to-file are omitted.

2.3.1.2 An Example of Context Format

Here is the output of ‘diff -c lao tzu’ (see Section 2.1 [Sample diff
Input], page 11, for the complete contents of the two files). Notice that
up to three lines that are not different are shown around each line that is
different; they are the context lines. Also notice that the first two hunks
have run together, because their contents overlap.

*** lao 2002-02-21 23:30:39.942229878 -0800
--- tzu 2002-02-21 23:30:50.442260588 -0800

*** 1,7 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;

! The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

--- 1,6 ----
The Nameless is the origin of Heaven and Earth;

! The named is the mother of all things.
!
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

*** 9,11 ****
--- 8,13 ----
The two are the same,
But after they are produced,

they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

16 Comparing and Merging Files with GNU diff and patch

2.3.1.3 An Example of Context Format with
Less Context

Here is the output of ‘diff -C 1 lao tzu’ (see Section 2.1 [Sample diff
Input], page 11, for the complete contents of the two files). Notice that
at most one context line is reported here.

*** lao 2002-02-21 23:30:39.942229878 -0800
--- tzu 2002-02-21 23:30:50.442260588 -0800

*** 1,5 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;

! The Named is the mother of all things.
Therefore let there always be non-being,

--- 1,4 ----
The Nameless is the origin of Heaven and Earth;

! The named is the mother of all things.
!
Therefore let there always be non-being,

*** 11 ****
--- 10,13 ----

they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

2.3.2 Unified Format

The unified output format is a variation on the context format that
is more compact because it omits redundant context lines. To select this
output format, use the ‘-U lines’, ‘--unified[=lines]’, or ‘-u’ option. The
argument lines is the number of lines of context to show. When it is not
given, it defaults to three.

At present, only gnu diff can produce this format and only gnu
patch can automatically apply diffs in this format. For proper operation,
patch typically needs at least three lines of context.

Chapter 2: diff Output Formats 17

2.3.2.1 Detailed Description of Unified Format

The unified output format starts with a two-line header, which looks
like this:

--- from-file from-file-modification-time

+++ to-file to-file-modification-time

The time stamp looks like ‘2002-02-21 23:30:39.942229878 -0800’ to
indicate the date, time with fractional seconds, and time zone.

You can change the header’s content with the ‘--label=label’ option;
see See Section 2.3.4 [Alternate Names], page 19.

Next come one or more hunks of differences; each hunk shows one area
where the files differ. Unified format hunks look like this:

@@ from-file-range to-file-range @@
line-from-either-file

line-from-either-file...

The lines common to both files begin with a space character. The
lines that actually differ between the two files have one of the following
indicator characters in the left print column:

‘+’ A line was added here to the first file.

‘-’ A line was removed here from the first file.

2.3.2.2 An Example of Unified Format

Here is the output of the command ‘diff -u lao tzu’ (see Section 2.1
[Sample diff Input], page 11, for the complete contents of the two files):

--- lao 2002-02-21 23:30:39.942229878 -0800
+++ tzu 2002-02-21 23:30:50.442260588 -0800
@@ -1,7 +1,6 @@
-The Way that can be told of is not the eternal Way;
-The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
-The Named is the mother of all things.
+The named is the mother of all things.
+
Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
@@ -9,3 +8,6 @@
The two are the same,
But after they are produced,
they have different names.

18 Comparing and Merging Files with GNU diff and patch

+They both may be called deep and profound.
+Deeper and more profound,
+The door of all subtleties!

2.3.3 Showing Which Sections Differences Are in

Sometimes you might want to know which part of the files each change
falls in. If the files are source code, this could mean which function was
changed. If the files are documents, it could mean which chapter or ap-
pendix was changed. gnu diff can show this by displaying the nearest
section heading line that precedes the differing lines. Which lines are
“section headings” is determined by a regular expression.

2.3.3.1 Showing Lines That Match Regular
Expressions

To show in which sections differences occur for files that are
not source code for C or similar languages, use the ‘-F regexp’ or
‘--show-function-line=regexp’ option. diff considers lines that
match the grep-style regular expression regexp to be the beginning of
a section of the file. Here are suggested regular expressions for some
common languages:

‘^[[:alpha:]$_]’
C, C++, Prolog

‘^(’ Lisp

‘^@node’ Texinfo

This option does not automatically select an output format; in order
to use it, you must select the context format (see Section 2.3.1 [Context
Format], page 14) or unified format (see Section 2.3.2 [Unified Format],
page 16). In other output formats it has no effect.

The ‘-F’ and ‘--show-function-line’ options find the nearest un-
changed line that precedes each hunk of differences and matches the given
regular expression. Then they add that line to the end of the line of as-
terisks in the context format, or to the ‘@@’ line in unified format. If no
matching line exists, they leave the output for that hunk unchanged. If
that line is more than 40 characters long, they output only the first 40
characters. You can specify more than one regular expression for such
lines; diff tries to match each line against each regular expression, start-
ing with the last one given. This means that you can use ‘-p’ and ‘-F’
together, if you wish.

Chapter 2: diff Output Formats 19

2.3.3.2 Showing C Function Headings

To show in which functions differences occur for C and similar lan-
guages, you can use the ‘-p’ or ‘--show-c-function’ option. This option
automatically defaults to the context output format (see Section 2.3.1
[Context Format], page 14), with the default number of lines of context.
You can override that number with ‘-C lines’ elsewhere in the command
line. You can override both the format and the number with ‘-U lines’
elsewhere in the command line.

The ‘-p’ and ‘--show-c-function’ options are equivalent to ‘-F
’^[[:alpha:]$_]’’ if the unified format is specified, otherwise ‘-c -F
’^[[:alpha:]$_]’’ (see Section 2.3.3.1 [Specified Headings], page 18).
gnu diff provides them for the sake of convenience.

2.3.4 Showing Alternate File Names

If you are comparing two files that have meaningless or uninformative
names, you might want diff to show alternate names in the header of the
context and unified output formats. To do this, use the ‘--label=label’
option. The first time you give this option, its argument replaces the
name and date of the first file in the header; the second time, its argument
replaces the name and date of the second file. If you give this option more
than twice, diff reports an error. The ‘--label’ option does not affect
the file names in the pr header when the ‘-l’ or ‘--paginate’ option is
used (see Section 5.2 [Pagination], page 37).

Here are the first two lines of the output from ‘diff -C 2
--label=original --label=modified lao tzu’:

*** original
--- modified

2.4 Showing Differences Side by Side

diff can produce a side by side difference listing of two files. The
files are listed in two columns with a gutter between them. The gutter
contains one of the following markers:

white space
The corresponding lines are in common. That is, either the
lines are identical, or the difference is ignored because of one
of the ‘--ignore’ options (see Section 1.2 [White Space],
page 6).

‘|’ The corresponding lines differ, and they are either both com-
plete or both incomplete.

20 Comparing and Merging Files with GNU diff and patch

‘<’ The files differ and only the first file contains the line.

‘>’ The files differ and only the second file contains the line.

‘(’ Only the first file contains the line, but the difference is
ignored.

‘)’ Only the second file contains the line, but the difference is
ignored.

‘\’ The corresponding lines differ, and only the first line is in-
complete.

‘/’ The corresponding lines differ, and only the second line is
incomplete.

Normally, an output line is incomplete if and only if the lines that
it contains are incomplete; See Chapter 3 [Incomplete Lines], page 33.
However, when an output line represents two differing lines, one might
be incomplete while the other is not. In this case, the output line is
complete, but its the gutter is marked ‘\’ if the first line is incomplete, ‘/’
if the second line is.

Side by side format is sometimes easiest to read, but it has limitations.
It generates much wider output than usual, and truncates lines that are
too long to fit. Also, it relies on lining up output more heavily than
usual, so its output looks particularly bad if you use varying width fonts,
nonstandard tab stops, or nonprinting characters.

You can use the sdiff command to interactively merge side by side
differences. See Chapter 9 [Interactive Merging], page 51, for more infor-
mation on merging files.

2.4.1 Controlling Side by Side Format

The ‘-y’ or ‘--side-by-side’ option selects side by side format. Be-
cause side by side output lines contain two input lines, the output is wider
than usual: normally 130 print columns, which can fit onto a traditional
printer line. You can set the width of the output with the ‘-W columns’
or ‘--width=columns’ option. The output is split into two halves of equal
width, separated by a small gutter to mark differences; the right half is
aligned to a tab stop so that tabs line up. Input lines that are too long
to fit in half of an output line are truncated for output.

The ‘--left-column’ option prints only the left column of two com-
mon lines. The ‘--suppress-common-lines’ option suppresses common
lines entirely.

Chapter 2: diff Output Formats 21

2.4.2 An Example of Side by Side Format

Here is the output of the command ‘diff -y -W 65 lao tzu’ (see Sec-
tion 2.1 [Sample diff Input], page 11, for the complete contents of the two
files).

The Way that can be told of i <

The name that can be named is <

The Nameless is the origin of The Nameless is the origin of

The Named is the mother of al | The named is the mother of al

>

Therefore let there always be Therefore let there always be

so we may see their subtlet so we may see their subtlet

And let there always be being And let there always be being

so we may see their outcome so we may see their outcome

The two are the same, The two are the same,

But after they are produced, But after they are produced,

they have different names. they have different names.

> They both may be called deep

> Deeper and more profound,

> The door of all subtleties!

2.5 Making Edit Scripts

Several output modes produce command scripts for editing from-file
to produce to-file.

2.5.1 ed Scripts

diff can produce commands that direct the ed text editor to change
the first file into the second file. Long ago, this was the only output mode
that was suitable for editing one file into another automatically; today,
with patch, it is almost obsolete. Use the ‘-e’ or ‘--ed’ option to select
this output format.

Like the normal format (see Section 2.2 [Normal], page 12), this output
format does not show any context; unlike the normal format, it does not
include the information necessary to apply the diff in reverse (to produce
the first file if all you have is the second file and the diff).

If the file ‘d’ contains the output of ‘diff -e old new’, then the com-
mand ‘(cat d && echo w) | ed - old’ edits ‘old’ to make it a copy of
‘new’. More generally, if ‘d1’, ‘d2’, . . . , ‘dN’ contain the outputs of ‘diff
-e old new1’, ‘diff -e new1 new2’, . . . , ‘diff -e newN-1 newN’, respec-

22 Comparing and Merging Files with GNU diff and patch

tively, then the command ‘(cat d1 d2 ... dN && echo w) | ed - old’ ed-
its ‘old’ to make it a copy of ‘newN’.

2.5.1.1 Detailed Description of ed Format

The ed output format consists of one or more hunks of differences. The
changes closest to the ends of the files come first so that commands that
change the number of lines do not affect how ed interprets line numbers
in succeeding commands. ed format hunks look like this:

change-command
to-file-line

to-file-line...
.

Because ed uses a single period on a line to indicate the end of input,
gnu diff protects lines of changes that contain a single period on a line
by writing two periods instead, then writing a subsequent ed command
to change the two periods into one. The ed format cannot represent an
incomplete line, so if the second file ends in a changed incomplete line,
diff reports an error and then pretends that a newline was appended.

There are three types of change commands. Each consists of a line
number or comma-separated range of lines in the first file and a single
character indicating the kind of change to make. All line numbers are the
original line numbers in the file. The types of change commands are:

‘la’ Add text from the second file after line l in the first file. For
example, ‘8a’ means to add the following lines after line 8 of
file 1.

‘rc’ Replace the lines in range r in the first file with the following
lines. Like a combined add and delete, but more compact.
For example, ‘5,7c’ means change lines 5–7 of file 1 to read
as the text file 2.

‘rd’ Delete the lines in range r from the first file. For example,
‘5,7d’ means delete lines 5–7 of file 1.

2.5.1.2 Example ed Script

Here is the output of ‘diff -e lao tzu’ (see Section 2.1 [Sample diff
Input], page 11, for the complete contents of the two files):

11a
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

Chapter 2: diff Output Formats 23

.
4c
The named is the mother of all things.

.
1,2d

2.5.2 Forward ed Scripts

diff can produce output that is like an ed script, but with hunks in
forward (front to back) order. The format of the commands is also changed
slightly: command characters precede the lines they modify, spaces sep-
arate line numbers in ranges, and no attempt is made to disambiguate
hunk lines consisting of a single period. Like ed format, forward ed for-
mat cannot represent incomplete lines.

Forward ed format is not very useful, because neither ed nor patch
can apply diffs in this format. It exists mainly for compatibility with older
versions of diff. Use the ‘-f’ or ‘--forward-ed’ option to select it.

2.5.3 rcs Scripts

The rcs output format is designed specifically for use by the Revision
Control System, which is a set of free programs used for organizing differ-
ent versions and systems of files. Use the ‘-n’ or ‘--rcs’ option to select
this output format. It is like the forward ed format (see Section 2.5.2
[Forward ed], page 23), but it can represent arbitrary changes to the con-
tents of a file because it avoids the forward ed format’s problems with
lines consisting of a single period and with incomplete lines. Instead of
ending text sections with a line consisting of a single period, each com-
mand specifies the number of lines it affects; a combination of the ‘a’ and
‘d’ commands are used instead of ‘c’. Also, if the second file ends in a
changed incomplete line, then the output also ends in an incomplete line.

Here is the output of ‘diff -n lao tzu’ (see Section 2.1 [Sample diff
Input], page 11, for the complete contents of the two files):

d1 2
d4 1
a4 2
The named is the mother of all things.

a11 3
They both may be called deep and profound.
Deeper and more profound,

24 Comparing and Merging Files with GNU diff and patch

The door of all subtleties!

2.6 Merging Files with If-then-else

You can use diff to merge two files of C source code. The output
of diff in this format contains all the lines of both files. Lines common
to both files are output just once; the differing parts are separated by
the C preprocessor directives #ifdef name or #ifndef name, #else, and
#endif. When compiling the output, you select which version to use by
either defining or leaving undefined the macro name.

To merge two files, use diff with the ‘-D name’ or ‘--ifdef=name’
option. The argument name is the C preprocessor identifier to use in the
#ifdef and #ifndef directives.

For example, if you change an instance of wait (&s) to waitpid
(-1, &s, 0) and then merge the old and new files with the
‘--ifdef=HAVE_WAITPID’ option, then the affected part of your code
might look like this:

do {

#ifndef HAVE_WAITPID

if ((w = wait (&s)) < 0 && errno != EINTR)

#else /* HAVE_WAITPID */

if ((w = waitpid (-1, &s, 0)) < 0 && errno != EINTR)

#endif /* HAVE_WAITPID */

return w;

} while (w != child);

You can specify formats for languages other than C by using line group
formats and line formats, as described in the next sections.

2.6.1 Line Group Formats

Line group formats let you specify formats suitable for many appli-
cations that allow if-then-else input, including programming languages
and text formatting languages. A line group format specifies the output
format for a contiguous group of similar lines.

For example, the following command compares the TeX files ‘old’
and ‘new’, and outputs a merged file in which old regions are surrounded
by ‘\begin{em}’-‘\end{em}’ lines, and new regions are surrounded by
‘\begin{bf}’-‘\end{bf}’ lines.

diff \
--old-group-format=’\begin{em}

%<\end{em}
’ \

Chapter 2: diff Output Formats 25

--new-group-format=’\begin{bf}
%>\end{bf}
’ \

old new

The following command is equivalent to the above example, but it is
a little more verbose, because it spells out the default line group formats.

diff \
--old-group-format=’\begin{em}

%<\end{em}
’ \

--new-group-format=’\begin{bf}
%>\end{bf}
’ \

--unchanged-group-format=’%=’ \
--changed-group-format=’\begin{em}

%<\end{em}
\begin{bf}
%>\end{bf}
’ \

old new

Here is a more advanced example, which outputs a diff listing with
headers containing line numbers in a “plain English” style.

diff \

--unchanged-group-format=’’ \

--old-group-format=’--- %dn line%(n=1?:s) deleted at %df:

%<’ \

--new-group-format=’--- %dN line%(N=1?:s) added after %de:

%>’ \

--changed-group-format=’--- %dn line%(n=1?:s) changed at %df:

%<--- to:

%>’ \

old new

To specify a line group format, use diff with one of the options listed
below. You can specify up to four line group formats, one for each kind of
line group. You should quote format, because it typically contains shell
metacharacters.

‘--old-group-format=format’
These line groups are hunks containing only lines from the
first file. The default old group format is the same as the
changed group format if it is specified; otherwise it is a for-
mat that outputs the line group as-is.

26 Comparing and Merging Files with GNU diff and patch

‘--new-group-format=format’
These line groups are hunks containing only lines from the
second file. The default new group format is same as the
changed group format if it is specified; otherwise it is a for-
mat that outputs the line group as-is.

‘--changed-group-format=format’
These line groups are hunks containing lines from both files.
The default changed group format is the concatenation of
the old and new group formats.

‘--unchanged-group-format=format’
These line groups contain lines common to both files. The
default unchanged group format is a format that outputs the
line group as-is.

In a line group format, ordinary characters represent themselves; con-
version specifications start with ‘%’ and have one of the following forms.

‘%<’ stands for the lines from the first file, including the trailing
newline. Each line is formatted according to the old line
format (see Section 2.6.2 [Line Formats], page 27).

‘%>’ stands for the lines from the second file, including the trailing
newline. Each line is formatted according to the new line
format.

‘%=’ stands for the lines common to both files, including the trail-
ing newline. Each line is formatted according to the un-
changed line format.

‘%%’ stands for ‘%’.

‘%c’C’’ where C is a single character, stands for C. C may not be a
backslash or an apostrophe. For example, ‘%c’:’’ stands for
a colon, even inside the then-part of an if-then-else format,
which a colon would normally terminate.

‘%c’\O’’ where O is a string of 1, 2, or 3 octal digits, stands for the
character with octal code O. For example, ‘%c’\0’’ stands
for a null character.

‘Fn’ where F is a printf conversion specification and n is one of
the following letters, stands for n’s value formatted with F.

‘e’ The line number of the line just before the
group in the old file.

‘f’ The line number of the first line in the group
in the old file; equals e + 1.

Chapter 2: diff Output Formats 27

‘l’ The line number of the last line in the group in
the old file.

‘m’ The line number of the line just after the group
in the old file; equals l + 1.

‘n’ The number of lines in the group in the old file;
equals l - f + 1.

‘E, F, L, M, N’
Likewise, for lines in the new file.

The printf conversion specification can be ‘%d’, ‘%o’, ‘%x’,
or ‘%X’, specifying decimal, octal, lower case hexadecimal,
or upper case hexadecimal output respectively. After the
‘%’ the following options can appear in sequence: a series
of zero or more flags; an integer specifying the minimum
field width; and a period followed by an optional integer
specifying the minimum number of digits. The flags are ‘-’
for left-justification, ‘’’ for separating the digit into groups
as specified by the LC_NUMERIC locale category, and ‘0’ for
padding with zeros instead of spaces. For example, ‘%5dN’
prints the number of new lines in the group in a field of width
5 characters, using the printf format "%5d".

‘(A=B?T:E)’
If A equals B then T else E. A and B are each either a dec-
imal constant or a single letter interpreted as above. This
format spec is equivalent to T if A’s value equals B’s; oth-
erwise it is equivalent to E.
For example, ‘%(N=0?no:%dN) line%(N=1?:s)’ is equivalent
to ‘no lines’ if N (the number of lines in the group in the
new file) is 0, to ‘1 line’ if N is 1, and to ‘%dN lines’ oth-
erwise.

2.6.2 Line Formats

Line formats control how each line taken from an input file is output
as part of a line group in if-then-else format.

For example, the following command outputs text with a one-character
change indicator to the left of the text. The first character of output is ‘-’
for deleted lines, ‘|’ for added lines, and a space for unchanged lines. The
formats contain newline characters where newlines are desired on output.

diff \
--old-line-format=’-%l

28 Comparing and Merging Files with GNU diff and patch

’ \
--new-line-format=’|%l

’ \
--unchanged-line-format=’ %l

’ \
old new

To specify a line format, use one of the following options. You should
quote format, since it often contains shell metacharacters.

‘--old-line-format=format’
formats lines just from the first file.

‘--new-line-format=format’
formats lines just from the second file.

‘--unchanged-line-format=format’
formats lines common to both files.

‘--line-format=format’
formats all lines; in effect, it sets all three above options
simultaneously.

In a line format, ordinary characters represent themselves; conversion
specifications start with ‘%’ and have one of the following forms.

‘%l’ stands for the contents of the line, not counting its trailing
newline (if any). This format ignores whether the line is
incomplete; See Chapter 3 [Incomplete Lines], page 33.

‘%L’ stands for the contents of the line, including its trailing new-
line (if any). If a line is incomplete, this format preserves its
incompleteness.

‘%%’ stands for ‘%’.

‘%c’C’’ where C is a single character, stands for C. C may not be
a backslash or an apostrophe. For example, ‘%c’:’’ stands
for a colon.

‘%c’\O’’ where O is a string of 1, 2, or 3 octal digits, stands for the
character with octal code O. For example, ‘%c’\0’’ stands
for a null character.

‘Fn’ where F is a printf conversion specification, stands for the
line number formatted with F. For example, ‘%.5dn’ prints
the line number using the printf format "%.5d". See Sec-
tion 2.6.1 [Line Group Formats], page 24, for more about
printf conversion specifications.

Chapter 2: diff Output Formats 29

The default line format is ‘%l’ followed by a newline character.
If the input contains tab characters and it is important that they line

up on output, you should ensure that ‘%l’ or ‘%L’ in a line format is just
after a tab stop (e.g. by preceding ‘%l’ or ‘%L’ with a tab character), or
you should use the ‘-t’ or ‘--expand-tabs’ option.

Taken together, the line and line group formats let you specify many
different formats. For example, the following command uses a format
similar to normal diff format. You can tailor this command to get fine
control over diff output.

diff \

--old-line-format=’< %l

’ \

--new-line-format=’> %l

’ \

--old-group-format=’%df%(f=l?:,%dl)d%dE

%<’ \

--new-group-format=’%dea%dF%(F=L?:,%dL)

%>’ \

--changed-group-format=’%df%(f=l?:,%dl)c%dF%(F=L?:,%dL)

%<---

%>’ \

--unchanged-group-format=’’ \

old new

2.6.3 Detailed Description of If-then-else Format

For lines common to both files, diff uses the unchanged line group
format. For each hunk of differences in the merged output format, if the
hunk contains only lines from the first file, diff uses the old line group
format; if the hunk contains only lines from the second file, diff uses the
new group format; otherwise, diff uses the changed group format.

The old, new, and unchanged line formats specify the output format
of lines from the first file, lines from the second file, and lines common to
both files, respectively.

The option ‘--ifdef=name’ is equivalent to the following sequence of
options using shell syntax:

--old-group-format=’#ifndef name

%<#endif /* ! name */
’ \
--new-group-format=’#ifdef name

%>#endif /* name */
’ \

30 Comparing and Merging Files with GNU diff and patch

--unchanged-group-format=’%=’ \
--changed-group-format=’#ifndef name

%<#else /* name */
%>#endif /* name */
’

You should carefully check the diff output for proper nesting. For ex-
ample, when using the ‘-D name’ or ‘--ifdef=name’ option, you should
check that if the differing lines contain any of the C preprocessor direc-
tives ‘#ifdef’, ‘#ifndef’, ‘#else’, ‘#elif’, or ‘#endif’, they are nested
properly and match. If they don’t, you must make corrections manually.
It is a good idea to carefully check the resulting code anyway to make sure
that it really does what you want it to; depending on how the input files
were produced, the output might contain duplicate or otherwise incorrect
code.

The patch ‘-D name’ option behaves like the diff ‘-D name’ option,
except it operates on a file and a diff to produce a merged file; See Sec-
tion 15.1 [patch Options], page 87.

2.6.4 An Example of If-then-else Format

Here is the output of ‘diff -DTWO lao tzu’ (see Section 2.1 [Sample
diff Input], page 11, for the complete contents of the two files):

#ifndef TWO
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
#endif /* ! TWO */
The Nameless is the origin of Heaven and Earth;
#ifndef TWO
The Named is the mother of all things.
#else /* TWO */
The named is the mother of all things.

#endif /* TWO */
Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their outcome.

The two are the same,
But after they are produced,
they have different names.

#ifdef TWO
They both may be called deep and profound.

Chapter 2: diff Output Formats 31

Deeper and more profound,
The door of all subtleties!
#endif /* TWO */

32 Comparing and Merging Files with GNU diff and patch

Chapter 3: Incomplete Lines 33

3 Incomplete Lines

When an input file ends in a non-newline character, its last line is
called an incomplete line because its last character is not a newline. All
other lines are called full lines and end in a newline character. Incomplete
lines do not match full lines unless differences in white space are ignored
(see Section 1.2 [White Space], page 6).

An incomplete line is normally distinguished on output from a full
line by a following line that starts with ‘\’. However, the rcs format (see
Section 2.5.3 [RCS], page 23) outputs the incomplete line as-is, without
any trailing newline or following line. The side by side format normally
represents incomplete lines as-is, but in some cases uses a ‘\’ or ‘/’ gut-
ter marker; See Section 2.4 [Side by Side], page 19. The if-then-else line
format preserves a line’s incompleteness with ‘%L’, and discards the new-
line with ‘%l’; See Section 2.6.2 [Line Formats], page 27. Finally, with
the ed and forward ed output formats (see Chapter 2 [Output Formats],
page 11) diff cannot represent an incomplete line, so it pretends there
was a newline and reports an error.

For example, suppose ‘F’ and ‘G’ are one-byte files that contain just
‘f’ and ‘g’, respectively. Then ‘diff F G’ outputs

1c1
< f
\ No newline at end of file

> g
\ No newline at end of file

(The exact message may differ in non-English locales.) ‘diff -n F G’ out-
puts the following without a trailing newline:

d1 1
a1 1
g

‘diff -e F G’ reports two errors and outputs the following:
1c
g
.

34 Comparing and Merging Files with GNU diff and patch

Chapter 4: Comparing Directories 35

4 Comparing Directories

You can use diff to compare some or all of the files in two directory
trees. When both file name arguments to diff are directories, it com-
pares each file that is contained in both directories, examining file names
in alphabetical order as specified by the LC_COLLATE locale category. Nor-
mally diff is silent about pairs of files that contain no differences, but if
you use the ‘-s’ or ‘--report-identical-files’ option, it reports pairs
of identical files. Normally diff reports subdirectories common to both
directories without comparing subdirectories’ files, but if you use the ‘-r’
or ‘--recursive’ option, it compares every corresponding pair of files in
the directory trees, as many levels deep as they go.

For file names that are in only one of the directories, diff normally
does not show the contents of the file that exists; it reports only that the
file exists in that directory and not in the other. You can make diff act
as though the file existed but was empty in the other directory, so that it
outputs the entire contents of the file that actually exists. (It is output
as either an insertion or a deletion, depending on whether it is in the first
or the second directory given.) To do this, use the ‘-N’ or ‘--new-file’
option.

If the older directory contains one or more large files that are not
in the newer directory, you can make the patch smaller by using the
‘--unidirectional-new-file’ option instead of ‘-N’. This option is like
‘-N’ except that it only inserts the contents of files that appear in the
second directory but not the first (that is, files that were added). At the
top of the patch, write instructions for the user applying the patch to
remove the files that were deleted before applying the patch. See Chap-
ter 11 [Making Patches], page 67, for more discussion of making patches
for distribution.

To ignore some files while comparing directories, use the ‘-x pattern’
or ‘--exclude=pattern’ option. This option ignores any files or subdirec-
tories whose base names match the shell pattern pattern. Unlike in the
shell, a period at the start of the base of a file name matches a wildcard
at the start of a pattern. You should enclose pattern in quotes so that the
shell does not expand it. For example, the option ‘-x ’*.[ao]’’ ignores
any file whose name ends with ‘.a’ or ‘.o’.

This option accumulates if you specify it more than once. For example,
using the options ‘-x ’RCS’ -x ’*,v’’ ignores any file or subdirectory
whose base name is ‘RCS’ or ends with ‘,v’.

36 Comparing and Merging Files with GNU diff and patch

If you need to give this option many times, you can instead put
the patterns in a file, one pattern per line, and use the ‘-X file’ or
‘--exclude-from=file’ option.

If you have been comparing two directories and stopped partway
through, later you might want to continue where you left off. You can do
this by using the ‘-S file’ or ‘--starting-file=file’ option. This com-
pares only the file file and all alphabetically later files in the topmost
directory level.

If two directories differ only in that file names are lower case in one
directory and upper case in the upper, diff normally reports many dif-
ferences because it compares file names in a case sensitive way. With
the ‘--ignore-file-name-case’ option, diff ignores case differences
in file names, so that for example the contents of the file ‘Tao’ in one
directory are compared to the contents of the file ‘TAO’ in the other.
The ‘--no-ignore-file-name-case’ option cancels the effect of the
‘--ignore-file-name-case’ option, reverting to the default behavior.

If an ‘-x pattern’, ‘--exclude=pattern’, ‘-X file’,
or ‘--exclude-from=file’ option is specified while the
‘--ignore-file-name-case’ option is in effect, case is ignored
when excluding file names matching the specified patterns.

Chapter 5: Making diff Output Prettier 37

5 Making diff Output Prettier

diff provides several ways to adjust the appearance of its output.
These adjustments can be applied to any output format.

5.1 Preserving Tab Stop Alignment

The lines of text in some of the diff output formats are preceded by
one or two characters that indicate whether the text is inserted, deleted,
or changed. The addition of those characters can cause tabs to move to
the next tab stop, throwing off the alignment of columns in the line. gnu
diff provides two ways to make tab-aligned columns line up correctly.

The first way is to have diff convert all tabs into the correct number
of spaces before outputting them; select this method with the ‘-t’ or
‘--expand-tabs’ option. diff assumes that tab stops are set every 8 print
columns. To use this form of output with patch, you must give patch
the ‘-l’ or ‘--ignore-white-space’ option (see Section 10.3.1 [Changed
White Space], page 54, for more information).

The other method for making tabs line up correctly is to add a tab
character instead of a space after the indicator character at the beginning
of the line. This ensures that all following tab characters are in the same
position relative to tab stops that they were in the original files, so that
the output is aligned correctly. Its disadvantage is that it can make long
lines too long to fit on one line of the screen or the paper. It also does
not work with the unified output format, which does not have a space
character after the change type indicator character. Select this method
with the ‘-T’ or ‘--initial-tab’ option.

5.2 Paginating diff Output

It can be convenient to have long output page-numbered and time-
stamped. The ‘-l’ and ‘--paginate’ options do this by sending the diff
output through the pr program. Here is what the page header might look
like for ‘diff -lc lao tzu’:

2002-02-22 14:20 diff -lc lao tzu Page 1

38 Comparing and Merging Files with GNU diff and patch

Chapter 6: diff Performance Tradeoffs 39

6 diff Performance Tradeoffs

gnu diff runs quite efficiently; however, in some circumstances you
can cause it to run faster or produce a more compact set of changes.

One way to improve diff performance is to use hard or symbolic
links to files instead of copies. This improves performance because diff
normally does not need to read two hard or symbolic links to the same file,
since their contents must be identical. For example, suppose you copy a
large directory hierarchy, make a few changes to the copy, and then often
use ‘diff -r’ to compare the original to the copy. If the original files
are read-only, you can greatly improve performance by creating the copy
using hard or symbolic links (e.g., with gnu ‘cp -lR’ or ‘cp -sR’). Before
editing a file in the copy for the first time, you should break the link and
replace it with a regular copy.

You can also affect the performance of gnu diff by giving it options
that change the way it compares files. Performance has more than one
dimension. These options improve one aspect of performance at the cost
of another, or they improve performance in some cases while hurting it in
others.

The way that gnu diff determines which lines have changed always
comes up with a near-minimal set of differences. Usually it is good enough
for practical purposes. If the diff output is large, you might want diff
to use a modified algorithm that sometimes produces a smaller set of
differences. The ‘-d’ or ‘--minimal’ option does this; however, it can also
cause diff to run more slowly than usual, so it is not the default behavior.

When the files you are comparing are large and have small
groups of changes scattered throughout them, you can use the
‘--speed-large-files’ option to make a different modification to the
algorithm that diff uses. If the input files have a constant small density
of changes, this option speeds up the comparisons without changing the
output. If not, diff might produce a larger set of differences; however,
the output will still be correct.

Normally diff discards the prefix and suffix that is common to both
files before it attempts to find a minimal set of differences. This makes
diff run faster, but occasionally it may produce non-minimal output.
The ‘--horizon-lines=lines’ option prevents diff from discarding the
last lines lines of the prefix and the first lines lines of the suffix. This
gives diff further opportunities to find a minimal output.

Suppose a run of changed lines includes a sequence of lines at one end
and there is an identical sequence of lines just outside the other end. The
diff command is free to choose which identical sequence is included in

40 Comparing and Merging Files with GNU diff and patch

the hunk. In this case, diff normally shifts the hunk’s boundaries when
this merges adjacent hunks, or shifts a hunk’s lines towards the end of the
file. Merging hunks can make the output look nicer in some cases.

Chapter 7: Comparing Three Files 41

7 Comparing Three Files

Use the program diff3 to compare three files and show any differences
among them. (diff3 can also merge files; see Chapter 8 [diff3 Merging],
page 45).

The “normal” diff3 output format shows each hunk of differences
without surrounding context. Hunks are labeled depending on whether
they are two-way or three-way, and lines are annotated by their location
in the input files.

See Chapter 14 [Invoking diff3], page 83, for more information on how
to run diff3.

7.1 A Third Sample Input File

Here is a third sample file that will be used in examples to illustrate
the output of diff3 and how various options can change it. The first
two files are the same that we used for diff (see Section 2.1 [Sample diff
Input], page 11). This is the third sample file, called ‘tao’:

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their result.

The two are the same,
But after they are produced,
they have different names.

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

7.2 Detailed Description of diff3 Normal
Format

Each hunk begins with a line marked ‘====’. Three-way hunks have
plain ‘====’ lines, and two-way hunks have ‘1’, ‘2’, or ‘3’ appended to
specify which of the three input files differ in that hunk. The hunks
contain copies of two or three sets of input lines each preceded by one or
two commands identifying where the lines came from.

42 Comparing and Merging Files with GNU diff and patch

Normally, two spaces precede each copy of an input line to distinguish
it from the commands. But with the ‘-T’ or ‘--initial-tab’ option,
diff3 uses a tab instead of two spaces; this lines up tabs correctly. See
Section 5.1 [Tabs], page 37, for more information.

Commands take the following forms:

‘file:la’ This hunk appears after line l of file file, and contains no
lines in that file. To edit this file to yield the other files,
one must append hunk lines taken from the other files. For
example, ‘1:11a’ means that the hunk follows line 11 in the
first file and contains no lines from that file.

‘file:rc’ This hunk contains the lines in the range r of file file. The
range r is a comma-separated pair of line numbers, or just
one number if the range is a singleton. To edit this file to
yield the other files, one must change the specified lines to be
the lines taken from the other files. For example, ‘2:11,13c’
means that the hunk contains lines 11 through 13 from the
second file.

If the last line in a set of input lines is incomplete (see Chapter 3
[Incomplete Lines], page 33), it is distinguished on output from a full line
by a following line that starts with ‘\’.

7.3 diff3 Hunks

Groups of lines that differ in two or three of the input files are called
diff3 hunks, by analogy with diff hunks (see Section 1.1 [Hunks], page 5).
If all three input files differ in a diff3 hunk, the hunk is called a three-way
hunk; if just two input files differ, it is a two-way hunk.

As with diff, several solutions are possible. When comparing the
files ‘A’, ‘B’, and ‘C’, diff3 normally finds diff3 hunks by merging the
two-way hunks output by the two commands ‘diff A B’ and ‘diff A C’.
This does not necessarily minimize the size of the output, but exceptions
should be rare.

For example, suppose ‘F’ contains the three lines ‘a’, ‘b’, ‘f’, ‘G’ con-
tains the lines ‘g’, ‘b’, ‘g’, and ‘H’ contains the lines ‘a’, ‘b’, ‘h’. ‘diff3 F
G H’ might output the following:

====2
1:1c
3:1c
a

2:1c
g

Chapter 7: Comparing Three Files 43

====
1:3c
f

2:3c
g

3:3c
h

because it found a two-way hunk containing ‘a’ in the first and third files
and ‘g’ in the second file, then the single line ‘b’ common to all three files,
then a three-way hunk containing the last line of each file.

7.4 An Example of diff3 Normal Format

Here is the output of the command ‘diff3 lao tzu tao’ (see Sec-
tion 7.1 [Sample diff3 Input], page 41, for the complete contents of the
files). Notice that it shows only the lines that are different among the
three files.

====2
1:1,2c
3:1,2c
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.

2:0a
====1
1:4c
The Named is the mother of all things.

2:2,3c
3:4,5c
The named is the mother of all things.

====3
1:8c
2:7c

so we may see their outcome.
3:9c

so we may see their result.
====
1:11a
2:11,13c
They both may be called deep and profound.
Deeper and more profound,

44 Comparing and Merging Files with GNU diff and patch

The door of all subtleties!
3:13,14c

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

Chapter 8: Merging From a Common Ancestor 45

8 Merging From a Common
Ancestor

When two people have made changes to copies of the same file, diff3
can produce a merged output that contains both sets of changes together
with warnings about conflicts.

One might imagine programs with names like diff4 and diff5 to
compare more than three files simultaneously, but in practice the need
rarely arises. You can use diff3 to merge three or more sets of changes
to a file by merging two change sets at a time.

diff3 can incorporate changes from two modified versions into a com-
mon preceding version. This lets you merge the sets of changes represented
by the two newer files. Specify the common ancestor version as the second
argument and the two newer versions as the first and third arguments,
like this:

diff3 mine older yours

You can remember the order of the arguments by noting that they are in
alphabetical order.

You can think of this as subtracting older from yours and adding the
result to mine, or as merging into mine the changes that would turn older
into yours. This merging is well-defined as long as mine and older match
in the neighborhood of each such change. This fails to be true when all
three input files differ or when only older differs; we call this a conflict.
When all three input files differ, we call the conflict an overlap.

diff3 gives you several ways to handle overlaps and conflicts. You
can omit overlaps or conflicts, or select only overlaps, or mark conflicts
with special ‘<<<<<<<’ and ‘>>>>>>>’ lines.

diff3 can output the merge results as an ed script that that can be
applied to the first file to yield the merged output. However, it is usually
better to have diff3 generate the merged output directly; this bypasses
some problems with ed.

8.1 Selecting Which Changes to Incorporate

You can select all unmerged changes from older to yours for merging
into mine with the ‘-e’ or ‘--ed’ option. You can select only the nonover-
lapping unmerged changes with ‘-3’ or ‘--easy-only’, and you can select
only the overlapping changes with ‘-x’ or ‘--overlap-only’.

The ‘-e’, ‘-3’ and ‘-x’ options select only unmerged changes, i.e.
changes where mine and yours differ; they ignore changes from older to

46 Comparing and Merging Files with GNU diff and patch

yours where mine and yours are identical, because they assume that such
changes have already been merged. If this assumption is not a safe one,
you can use the ‘-A’ or ‘--show-all’ option (see Section 8.2 [Marking
Conflicts], page 46).

Here is the output of the command diff3 with each of these three
options (see Section 7.1 [Sample diff3 Input], page 41, for the complete
contents of the files). Notice that ‘-e’ outputs the union of the disjoint
sets of changes output by ‘-3’ and ‘-x’.

Output of ‘diff3 -e lao tzu tao’:
11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.
8c
so we may see their result.

.

Output of ‘diff3 -3 lao tzu tao’:
8c
so we may see their result.

.

Output of ‘diff3 -x lao tzu tao’:
11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.

8.2 Marking Conflicts

diff3 can mark conflicts in the merged output by bracketing them
with special marker lines. A conflict that comes from two files A and B
is marked as follows:

<<<<<<< A

lines from A

=======
lines from B

>>>>>>> B

A conflict that comes from three files A, B and C is marked as follows:
<<<<<<< A

lines from A
||||||| B

Chapter 8: Merging From a Common Ancestor 47

lines from B
=======
lines from C

>>>>>>> C

The ‘-A’ or ‘--show-all’ option acts like the ‘-e’ option, except that
it brackets conflicts, and it outputs all changes from older to yours,
not just the unmerged changes. Thus, given the sample input files (see
Section 7.1 [Sample diff3 Input], page 41), ‘diff3 -A lao tzu tao’ puts
brackets around the conflict where only ‘tzu’ differs:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao

And it outputs the three-way conflict as follows:

<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

The ‘-E’ or ‘--show-overlap’ option outputs less information than the
‘-A’ or ‘--show-all’ option, because it outputs only unmerged changes,
and it never outputs the contents of the second file. Thus the ‘-E’ option
acts like the ‘-e’ option, except that it brackets the first and third files
from three-way overlapping changes. Similarly, ‘-X’ acts like ‘-x’, except
it brackets all its (necessarily overlapping) changes. For example, for the
three-way overlapping change above, the ‘-E’ and ‘-X’ options output the
following:

<<<<<<< lao
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

If you are comparing files that have meaningless or uninformative
names, you can use the ‘-L label’ or ‘--label=label’ option to show al-
ternate names in the ‘<<<<<<<’, ‘|||||||’ and ‘>>>>>>>’ brackets. This
option can be given up to three times, once for each input file. Thus ‘diff3

48 Comparing and Merging Files with GNU diff and patch

-A -L X -L Y -L Z A B C’ acts like ‘diff3 -A A B C’, except that the out-
put looks like it came from files named ‘X’, ‘Y’ and ‘Z’ rather than from
files named ‘A’, ‘B’ and ‘C’.

8.3 Generating the Merged Output Directly

With the ‘-m’ or ‘--merge’ option, diff3 outputs the merged file di-
rectly. This is more efficient than using ed to generate it, and works even
with non-text files that ed would reject. If you specify ‘-m’ without an ed
script option, ‘-A’ (‘--show-all’) is assumed.

For example, the command ‘diff3 -m lao tzu tao’ (see Section 7.1
[Sample diff3 Input], page 41 for a copy of the input files) would output
the following:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their result.

The two are the same,
But after they are produced,
they have different names.

<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

8.4 How diff3 Merges Incomplete Lines

With ‘-m’, incomplete lines (see Chapter 3 [Incomplete Lines], page 33)
are simply copied to the output as they are found; if the merged output

Chapter 8: Merging From a Common Ancestor 49

ends in an conflict and one of the input files ends in an incomplete line,
succeeding ‘|||||||’, ‘=======’ or ‘>>>>>>>’ brackets appear somewhere
other than the start of a line because they are appended to the incomplete
line.

Without ‘-m’, if an ed script option is specified and an incomplete line
is found, diff3 generates a warning and acts as if a newline had been
present.

8.5 Saving the Changed File

Traditional Unix diff3 generates an ed script without the trailing
‘w’ and ‘q’ commands that save the changes. System V diff3 gener-
ates these extra commands. gnu diff3 normally behaves like traditional
Unix diff3, but with the ‘-i’ option it behaves like System V diff3 and
appends the ‘w’ and ‘q’ commands.

The ‘-i’ option requires one of the ed script options ‘-AeExX3’, and is
incompatible with the merged output option ‘-m’.

50 Comparing and Merging Files with GNU diff and patch

Chapter 9: Interactive Merging with sdiff 51

9 Interactive Merging with sdiff

With sdiff, you can merge two files interactively based on a side-by-
side ‘-y’ format comparison (see Section 2.4 [Side by Side], page 19). Use
‘-o file’ or ‘--output=file’ to specify where to put the merged text. See
Chapter 16 [Invoking sdiff], page 93, for more details on the options to
sdiff.

Another way to merge files interactively is to use the Emacs Lisp
package emerge. See section “emerge” in The gnu Emacs Manual, for
more information.

9.1 Specifying diff Options to sdiff

The following sdiff options have the same meaning as for diff. See
Section 13.1 [diff Options], page 75, for the use of these options.

-a -b -d -i -t -v
-B -E -I regexp

--ignore-blank-lines
--ignore-case
--ignore-matching-lines=regexp

--ignore-space-change
--ignore-tab-expansion
--left-column
--minimal
--speed-large-files
--strip-trailing-cr
--suppress-common-lines
--expand-tabs
--text
--version
--width=columns

For historical reasons, sdiff has alternate names for some options.
The ‘-l’ option is equivalent to the ‘--left-column’ option, and similarly
‘-s’ is equivalent to ‘--suppress-common-lines’. The meaning of the
sdiff ‘-w’ and ‘-W’ options is interchanged from that of diff: with sdiff,
‘-w columns’ is equivalent to ‘--width=columns’, and ‘-W’ is equivalent to
‘--ignore-all-space’. sdiff without the ‘-o’ option is equivalent to
diff with the ‘-y’ or ‘--side-by-side’ option (see Section 2.4 [Side by
Side], page 19).

52 Comparing and Merging Files with GNU diff and patch

9.2 Merge Commands

Groups of common lines, with a blank gutter, are copied from the first
file to the output. After each group of differing lines, sdiff prompts with
‘%’ and pauses, waiting for one of the following commands. Follow each
command with 〈RET〉.
‘e’ Discard both versions. Invoke a text editor on an empty

temporary file, then copy the resulting file to the output.

‘eb’ Concatenate the two versions, edit the result in a temporary
file, then copy the edited result to the output.

‘ed’ Like ‘eb’, except precede each version with a header that
shows what file and lines the version came from.

‘el’ Edit a copy of the left version, then copy the result to the
output.

‘er’ Edit a copy of the right version, then copy the result to the
output.

‘l’ Copy the left version to the output.

‘q’ Quit.

‘r’ Copy the right version to the output.

‘s’ Silently copy common lines.

‘v’ Verbosely copy common lines. This is the default.

The text editor invoked is specified by the EDITOR environment variable
if it is set. The default is system-dependent.

Chapter 10: Merging with patch 53

10 Merging with patch

patch takes comparison output produced by diff and applies the
differences to a copy of the original file, producing a patched version.
With patch, you can distribute just the changes to a set of files instead
of distributing the entire file set; your correspondents can apply patch
to update their copy of the files with your changes. patch automatically
determines the diff format, skips any leading or trailing headers, and uses
the headers to determine which file to patch. This lets your correspondents
feed a mail message containing a difference listing directly to patch.

patch detects and warns about common problems like forward patches.
It saves any patches that it could not apply. It can also maintain a
patchlevel.h file to ensure that your correspondents apply diffs in the
proper order.

patch accepts a series of diffs in its standard input, usually separated
by headers that specify which file to patch. It applies diff hunks (see
Section 1.1 [Hunks], page 5) one by one. If a hunk does not exactly match
the original file, patch uses heuristics to try to patch the file as well as it
can. If no approximate match can be found, patch rejects the hunk and
skips to the next hunk. patch normally replaces each file f with its new
version, putting reject hunks (if any) into ‘f.rej’.

See Chapter 15 [Invoking patch], page 87, for detailed information on
the options to patch.

10.1 Selecting the patch Input Format

patch normally determines which diff format the patch file uses by
examining its contents. For patch files that contain particularly confusing
leading text, you might need to use one of the following options to force
patch to interpret the patch file as a certain format of diff. The output
formats listed here are the only ones that patch can understand.

‘-c’
‘--context’

context diff.

‘-e’
‘--ed’ ed script.

‘-n’
‘--normal’ normal diff.

54 Comparing and Merging Files with GNU diff and patch

‘-u’
‘--unified’

unified diff.

10.2 Revision Control

If a nonexistent input file is under a revision control system supported
by patch, patch normally asks the user whether to get (or check out)
the file from the revision control system. Patch currently supports rcs,
ClearCase and sccs. Under rcs and sccs, patch also asks when the input
file is read-only and matches the default version in the revision control
system.

The ‘-g num’ or ‘--get=num’ affects access to files under supported
revision control systems. If num is positive, patch gets the file without
asking the user; if zero, patch neither asks the user nor gets the file; and
if negative, patch asks the user before getting the file. The default value
of num is given by the value of the PATCH_GET environment variable if it
is set; if not, the default value is zero if patch is conforming to posix,
negative otherwise. See Section 10.12 [patch and POSIX], page 63.

The choice of revision control system is unaffected by the VERSION_
CONTROL environment variable (see Section 10.9 [Backup Names], page 60).

10.3 Applying Imperfect Patches

patch tries to skip any leading text in the patch file, apply the diff,
and then skip any trailing text. Thus you can feed a mail message directly
to patch, and it should work. If the entire diff is indented by a constant
amount of white space, patch automatically ignores the indentation. If a
context diff contains trailing carriage return on each line, patch automat-
ically ignores the carriage return. If a context diff has been encapsulated
by prepending ‘- ’ to lines beginning with ‘-’ as per Internet RFC 934,
patch automatically unencapsulates the input.

However, certain other types of imperfect input require user interven-
tion or testing.

10.3.1 Applying Patches with Changed White
Space

Sometimes mailers, editors, or other programs change spaces into tabs,
or vice versa. If this happens to a patch file or an input file, the files
might look the same, but patch will not be able to match them properly.
If this problem occurs, use the ‘-l’ or ‘--ignore-white-space’ option,

Chapter 10: Merging with patch 55

which makes patch compare blank characters (i.e. spaces and tabs) loosely
so that any nonempty sequence of blanks in the patch file matches any
nonempty sequence of blanks in the input files. Non-blank characters
must still match exactly. Each line of the context must still match a line
in the input file.

10.3.2 Applying Reversed Patches

Sometimes people run diff with the new file first instead of second.
This creates a diff that is “reversed”. To apply such patches, give patch
the ‘-R’ or ‘--reverse’ option. patch then attempts to swap each hunk
around before applying it. Rejects come out in the swapped format.

Often patch can guess that the patch is reversed. If the first hunk of
a patch fails, patch reverses the hunk to see if it can apply it that way. If
it can, patch asks you if you want to have the ‘-R’ option set; if it can’t,
patch continues to apply the patch normally. This method cannot detect
a reversed patch if it is a normal diff and the first command is an append
(which should have been a delete) since appends always succeed, because
a null context matches anywhere. But most patches add or change lines
rather than delete them, so most reversed normal diffs begin with a delete,
which fails, and patch notices.

If you apply a patch that you have already applied, patch thinks it is a
reversed patch and offers to un-apply the patch. This could be construed
as a feature. If you did this inadvertently and you don’t want to un-
apply the patch, just answer ‘n’ to this offer and to the subsequent “apply
anyway” question—or type C-c to kill the patch process.

10.3.3 Helping patch Find Inexact Matches

For context diffs, and to a lesser extent normal diffs, patch can de-
tect when the line numbers mentioned in the patch are incorrect, and it
attempts to find the correct place to apply each hunk of the patch. As a
first guess, it takes the line number mentioned in the hunk, plus or minus
any offset used in applying the previous hunk. If that is not the correct
place, patch scans both forward and backward for a set of lines matching
the context given in the hunk.

First patch looks for a place where all lines of the context match. If it
cannot find such a place, and it is reading a context or unified diff, and the
maximum fuzz factor is set to 1 or more, then patch makes another scan,
ignoring the first and last line of context. If that fails, and the maximum
fuzz factor is set to 2 or more, it makes another scan, ignoring the first
two and last two lines of context are ignored. It continues similarly if the
maximum fuzz factor is larger.

56 Comparing and Merging Files with GNU diff and patch

The ‘-F lines’ or ‘--fuzz=lines’ option sets the maximum fuzz factor
to lines. This option only applies to context and unified diffs; it ignores
up to lines lines while looking for the place to install a hunk. Note that a
larger fuzz factor increases the odds of making a faulty patch. The default
fuzz factor is 2; there is no point to setting it to more than the number of
lines of context in the diff, ordinarily 3.

If patch cannot find a place to install a hunk of the patch, it writes the
hunk out to a reject file (see Section 10.10 [Reject Names], page 61, for
information on how reject files are named). It writes out rejected hunks
in context format no matter what form the input patch is in. If the input
is a normal or ed diff, many of the contexts are simply null. The line
numbers on the hunks in the reject file may be different from those in the
patch file: they show the approximate location where patch thinks the
failed hunks belong in the new file rather than in the old one.

If the ‘--verbose’ option is given, then as it completes each hunk
patch tells you whether the hunk succeeded or failed, and if it failed, on
which line (in the new file) patch thinks the hunk should go. If this is
different from the line number specified in the diff, it tells you the offset.
A single large offset may indicate that patch installed a hunk in the wrong
place. patch also tells you if it used a fuzz factor to make the match, in
which case you should also be slightly suspicious.

patch cannot tell if the line numbers are off in an ed script, and can
only detect wrong line numbers in a normal diff when it finds a change
or delete command. It may have the same problem with a context diff
using a fuzz factor equal to or greater than the number of lines of context
shown in the diff (typically 3). In these cases, you should probably look
at a context diff between your original and patched input files to see if the
changes make sense. Compiling without errors is a pretty good indication
that the patch worked, but not a guarantee.

A patch against an empty file applies to a nonexistent file, and vice
versa. See Section 10.4 [Creating and Removing], page 57.

patch usually produces the correct results, even when it must make
many guesses. However, the results are guaranteed only when the patch
is applied to an exact copy of the file that the patch was generated from.

10.3.4 Predicting what patch will do

It may not be obvious in advance what patch will do with a com-
plicated or poorly formatted patch. If you are concerned that the input
might cause patch to modify the wrong files, you can use the ‘--dry-run’
option, which causes patch to print the results of applying patches with-
out actually changing any files. You can then inspect the diagnostics
generated by the dry run to see whether patch will modify the files that

Chapter 10: Merging with patch 57

you expect. If the patch does not do what you want, you can modify the
patch (or the other options to patch) and try another dry run. Once you
are satisfied with the proposed patch you can apply it by invoking patch
as before, but this time without the ‘--dry-run’ option.

10.4 Creating and Removing Files

Sometimes when comparing two directories, a file may exist in one
directory but not the other. If you give diff the ‘-N’ or ‘--new-file’
option, or if you supply an old or new file that is named ‘/dev/null’
or is empty and is dated the Epoch (1970-01-01 00:00:00 UTC), diff
outputs a patch that adds or deletes the contents of this file. When
given such a patch, patch normally creates a new file or removes the
old file. However, when conforming to posix (see Section 10.12 [patch
and POSIX], page 63), patch does not remove the old file, but leaves
it empty. The ‘-E’ or ‘--remove-empty-files’ option causes patch to
remove output files that are empty after applying a patch, even if the
patch does not appear to be one that removed the file.

If the patch appears to create a file that already exists, patch asks for
confirmation before applying the patch.

10.5 Updating Time Stamps on Patched
Files

When patch updates a file, it normally sets the file’s last-modified time
stamp to the current time of day. If you are using patch to track a software
distribution, this can cause make to incorrectly conclude that a patched
file is out of date. For example, if ‘syntax.c’ depends on ‘syntax.y’,
and patch updates ‘syntax.c’ and then ‘syntax.y’, then ‘syntax.c’ will
normally appear to be out of date with respect to ‘syntax.y’ even though
its contents are actually up to date.

The ‘-Z’ or ‘--set-utc’ option causes patch to set a patched file’s
modification and access times to the time stamps given in context diff
headers. If the context diff headers do not specify a time zone, they are
assumed to use Coordinated Universal Time (utc, often known as gmt).

The ‘-T’ or ‘--set-time’ option acts like ‘-Z’ or ‘--set-utc’, except
that it assumes that the context diff headers’ time stamps use local time
instead of utc. This option is not recommended, because patches using
local time cannot easily be used by people in other time zones, and because
local time stamps are ambiguous when local clocks move backwards during
daylight-saving time adjustments. If the context diff headers specify a
time zone, this option is equivalent to ‘-Z’ or ‘--set-utc’.

58 Comparing and Merging Files with GNU diff and patch

patch normally refrains from setting a file’s time stamps if the file’s
original last-modified time stamp does not match the time given in the diff
header, of if the file’s contents do not exactly match the patch. However,
if the ‘-f’ or ‘--force’ option is given, the file’s time stamps are set
regardless.

Due to the limitations of the current diff format, patch cannot up-
date the times of files whose contents have not changed. Also, if you set
file time stamps to values other than the current time of day, you should
also remove (e.g., with ‘make clean’) all files that depend on the patched
files, so that later invocations of make do not get confused by the patched
files’ times.

10.6 Multiple Patches in a File

If the patch file contains more than one patch, and if you do not specify
an input file on the command line, patch tries to apply each patch as if
they came from separate patch files. This means that it determines the
name of the file to patch for each patch, and that it examines the leading
text before each patch for file names and prerequisite revision level (see
Chapter 11 [Making Patches], page 67, for more on that topic).

patch uses the following rules to intuit a file name from the leading
text before a patch. First, patch takes an ordered list of candidate file
names as follows:

• If the header is that of a context diff, patch takes the old and new file
names in the header. A name is ignored if it does not have enough
slashes to satisfy the ‘-pnum’ or ‘--strip=num’ option. The name
‘/dev/null’ is also ignored.

• If there is an ‘Index:’ line in the leading garbage and if either the old
and new names are both absent or if patch is conforming to posix,
patch takes the name in the ‘Index:’ line.

• For the purpose of the following rules, the candidate file names are
considered to be in the order (old, new, index), regardless of the
order that they appear in the header.

Then patch selects a file name from the candidate list as follows:

• If some of the named files exist, patch selects the first name if con-
forming to posix, and the best name otherwise.

• If patch is not ignoring rcs, ClearCase, and sccs (see Section 10.2
[Revision Control], page 54), and no named files exist but an rcs,
ClearCase, or sccs master is found, patch selects the first named
file with an rcs, ClearCase, or sccs master.

Chapter 10: Merging with patch 59

• If no named files exist, no rcs, ClearCase, or sccs master was found,
some names are given, patch is not conforming to posix, and the
patch appears to create a file, patch selects the best name requiring
the creation of the fewest directories.

• If no file name results from the above heuristics, you are asked for
the name of the file to patch, and patch selects that name.

To determine the best of a nonempty list of file names, patch first
takes all the names with the fewest path name components; of those, it
then takes all the names with the shortest basename; of those, it then
takes all the shortest names; finally, it takes the first remaining name.

See Section 10.12 [patch and POSIX], page 63, to see whether patch
is conforming to posix.

10.7 Applying Patches in Other Directories

The ‘-d directory ’ or ‘--directory=directory ’ option to patch makes
directory directory the current directory for interpreting both file names
in the patch file, and file names given as arguments to other options (such
as ‘-B’ and ‘-o’). For example, while in a mail reading program, you can
patch a file in the ‘/usr/src/emacs’ directory directly from a message
containing the patch like this:

| patch -d /usr/src/emacs

Sometimes the file names given in a patch contain leading directories,
but you keep your files in a directory different from the one given in the
patch. In those cases, you can use the ‘-pnumber’ or ‘--strip=number’
option to set the file name strip count to number. The strip count tells
patch how many slashes, along with the directory names between them,
to strip from the front of file names. A sequence of one or more adjacent
slashes is counted as a single slash. By default, patch strips off all leading
directories, leaving just the base file names.

For example, suppose the file name in the patch file is
‘/gnu/src/emacs/etc/NEWS’. Using ‘-p0’ gives the entire file
name unmodified, ‘-p1’ gives ‘gnu/src/emacs/etc/NEWS’ (no leading
slash), ‘-p4’ gives ‘etc/NEWS’, and not specifying ‘-p’ at all gives ‘NEWS’.

patch looks for each file (after any slashes have been stripped) in
the current directory, or if you used the ‘-d directory ’ option, in that
directory.

60 Comparing and Merging Files with GNU diff and patch

10.8 Backup Files

Normally, patch creates a backup file if the patch does not exactly
match the original input file, because in that case the original data might
not be recovered if you undo the patch with ‘patch -R’ (see Section 10.3.2
[Reversed Patches], page 55). However, when conforming to posix, patch
does not create backup files by default. See Section 10.12 [patch and
POSIX], page 63.

The ‘-b’ or ‘--backup’ option causes patch to make a backup
file regardless of whether the patch matches the original input. The
‘--backup-if-mismatch’ option causes patch to create backup files for
mismatches files; this is the default when not conforming to posix. The
‘--no-backup-if-mismatch’ option causes patch to not create backup
files, even for mismatched patches; this is the default when conforming to
posix.

When backing up a file that does not exist, an empty, unreadable
backup file is created as a placeholder to represent the nonexistent file.

10.9 Backup File Names

Normally, patch renames an original input file into a backup file
by appending to its name the extension ‘.orig’, or ‘~’ if using ‘.orig’
would make the backup file name too long.1 The ‘-z backup-suffix’ or
‘--suffix=backup-suffix’ option causes patch to use backup-suffix as the
backup extension instead.

Alternately, you can specify the extension for backup files with the
SIMPLE_BACKUP_SUFFIX environment variable, which the options override.

patch can also create numbered backup files the way gnu Emacs does.
With this method, instead of having a single backup of each file, patch
makes a new backup file name each time it patches a file. For example, the
backups of a file named ‘sink’ would be called, successively, ‘sink.~1~’,
‘sink.~2~’, ‘sink.~3~’, etc.

The ‘-V backup-style’ or ‘--version-control=backup-style’ option
takes as an argument a method for creating backup file names. You can
alternately control the type of backups that patch makes with the PATCH_
VERSION_CONTROL environment variable, which the ‘-V’ option overrides.
If PATCH_VERSION_CONTROL is not set, the VERSION_CONTROL environment
variable is used instead. Please note that these options and variables con-
trol backup file names; they do not affect the choice of revision control
system (see Section 10.2 [Revision Control], page 54).

1 A coding error in gnu patch version 2.5.4 causes it to always use ‘~’, but
this should be fixed in the next release.

Chapter 10: Merging with patch 61

The values of these environment variables and the argument to the ‘-V’
option are like the gnu Emacs version-control variable (see section
“Backup Names” in The gnu Emacs Manual, for more information on
backup versions in Emacs). They also recognize synonyms that are more
descriptive. The valid values are listed below; unique abbreviations are
acceptable.

‘t’
‘numbered’ Always make numbered backups.

‘nil’
‘existing’ Make numbered backups of files that already have them,

simple backups of the others. This is the default.

‘never’
‘simple’ Always make simple backups.

You can also tell patch to prepend a prefix, such as a directory name,
to produce backup file names. The ‘-B prefix’ or ‘--prefix=prefix’ op-
tion makes backup files by prepending prefix to them. The ‘-Y prefix’ or
‘--basename-prefix=prefix’ prepends prefix to the last file name compo-
nent of backup file names instead; for example, ‘-Y ~’ causes the backup
name for ‘dir/file.c’ to be ‘dir/~file.c’. If you use either of these
prefix options, the suffix-based options are ignored.

If you specify the output file with the ‘-o’ option, that file is the one
that is backed up, not the input file.

Options that affect the names of backup files do not affect
whether backups are made. For example, if you specify the
‘--no-backup-if-mismatch’ option, none of the options described in
this section have any affect, because no backups are made.

10.10 Reject File Names

The names for reject files (files containing patches that patch could
not find a place to apply) are normally the name of the output file with
‘.rej’ appended (or ‘#’ if using ‘.rej’ would make the backup file name
too long).

Alternatively, you can tell patch to place all of the rejected patches
in a single file. The ‘-r reject-file’ or ‘--reject-file=reject-file’ option
uses reject-file as the reject file name.

10.11 Messages and Questions from patch

patch can produce a variety of messages, especially if it has trouble
decoding its input. In a few situations where it’s not sure how to proceed,

62 Comparing and Merging Files with GNU diff and patch

patch normally prompts you for more information from the keyboard.
There are options to produce more or fewer messages, to have it not ask
for keyboard input, and to affect the way that file names are quoted in
messages.

patch exits with status 0 if all hunks are applied successfully, 1 if some
hunks cannot be applied, and 2 if there is more serious trouble. When
applying a set of patches in a loop, you should check the exit status, so
you don’t apply a later patch to a partially patched file.

10.11.1 Controlling the Verbosity of patch

You can cause patch to produce more messages by using the
‘--verbose’ option. For example, when you give this option, the message
‘Hmm...’ indicates that patch is reading text in the patch file, attempting
to determine whether there is a patch in that text, and if so, what kind
of patch it is.

You can inhibit all terminal output from patch, unless an error occurs,
by using the ‘-s’, ‘--quiet’, or ‘--silent’ option.

10.11.2 Inhibiting Keyboard Input

There are two ways you can prevent patch from asking you any ques-
tions. The ‘-f’ or ‘--force’ option assumes that you know what you are
doing. It causes patch to do the following:
• Skip patches that do not contain file names in their headers.
• Patch files even though they have the wrong version for the ‘Prereq:’
line in the patch;

• Assume that patches are not reversed even if they look like they are.

The ‘-t’ or ‘--batch’ option is similar to ‘-f’, in that it suppresses ques-
tions, but it makes somewhat different assumptions:
• Skip patches that do not contain file names in their headers (the
same as ‘-f’).

• Skip patches for which the file has the wrong version for the ‘Prereq:’
line in the patch;

• Assume that patches are reversed if they look like they are.

10.11.3 patch Quoting Style

When patch outputs a file name in a diagnostic message, it can format
the name in any of several ways. This can be useful to output file names
unambiguously, even if they contain punctuation or special characters like

Chapter 10: Merging with patch 63

newlines. The ‘--quoting-style=word’ option controls how names are
output. The word should be one of the following:

‘literal’ Output names as-is.

‘shell’ Quote names for the shell if they contain shell metacharac-
ters or would cause ambiguous output.

‘shell-always’
Quote names for the shell, even if they would normally not
require quoting.

‘c’ Quote names as for a C language string.

‘escape’ Quote as with ‘c’ except omit the surrounding double-quote
characters.

You can specify the default value of the ‘--quoting-style’ option
with the environment variable QUOTING_STYLE. If that environment vari-
able is not set, the default value is ‘shell’, but this default may change
in a future version of patch.

10.12 patch and the posix Standard

If you specify the ‘--posix’ option, or set the POSIXLY_CORRECT en-
vironment variable, patch conforms more strictly to the posix standard,
as follows:
• Take the first existing file from the list (old, new, index) when intuit-
ing file names from diff headers. See Section 10.6 [Multiple Patches],
page 58.

• Do not remove files that are removed by a diff. See Section 10.4
[Creating and Removing], page 57.

• Do not ask whether to get files from rcs, ClearCase, or sccs. See
Section 10.2 [Revision Control], page 54.

• Require that all options precede the files in the command line.
• Do not backup files, even when there is a mismatch. See Section 10.8
[Backups], page 60.

10.13 gnu patch and Traditional patch

The current version of gnu patch normally follows the posix standard.
See Section 10.12 [patch and POSIX], page 63, for the few exceptions to
this general rule.

Unfortunately, posix redefined the behavior of patch in several im-
portant ways. You should be aware of the following differences if you must

64 Comparing and Merging Files with GNU diff and patch

interoperate with traditional patch, or with gnu patch version 2.1 and
earlier.
• In traditional patch, the ‘-p’ option’s operand was optional, and
a bare ‘-p’ was equivalent to ‘-p0’. The ‘-p’ option now requires
an operand, and ‘-p 0’ is now equivalent to ‘-p0’. For maximum
compatibility, use options like ‘-p0’ and ‘-p1’.
Also, traditional patch simply counted slashes when stripping path
prefixes; patch now counts pathname components. That is, a se-
quence of one or more adjacent slashes now counts as a single slash.
For maximum portability, avoid sending patches containing ‘//’ in
file names.

• In traditional patch, backups were enabled by default. This behavior
is now enabled with the ‘-b’ or ‘--backup’ option.
Conversely, in posix patch, backups are never made, even when
there is a mismatch. In gnu patch, this behavior is enabled with
the ‘--no-backup-if-mismatch’ option, or by conforming to posix.
The ‘-b suffix’ option of traditional patch is equivalent to the ‘-b
-z suffix’ options of gnu patch.

• Traditional patch used a complicated (and incompletely docu-
mented) method to intuit the name of the file to be patched from
the patch header. This method did not conform to posix, and had
a few gotchas. Now patch uses a different, equally complicated (but
better documented) method that is optionally posix-conforming;
we hope it has fewer gotchas. The two methods are compatible if
the file names in the context diff header and the ‘Index:’ line are all
identical after prefix-stripping. Your patch is normally compatible
if each header’s file names all contain the same number of slashes.

• When traditional patch asked the user a question, it sent the ques-
tion to standard error and looked for an answer from the first file
in the following list that was a terminal: standard error, standard
output, ‘/dev/tty’, and standard input. Now patch sends questions
to standard output and gets answers from ‘/dev/tty’. Defaults for
some answers have been changed so that patch never goes into an
infinite loop when using default answers.

• Traditional patch exited with a status value that counted the number
of bad hunks, or with status 1 if there was real trouble. Now patch
exits with status 1 if some hunks failed, or with 2 if there was real
trouble.

• Limit yourself to the following options when sending instructions
meant to be executed by anyone running gnu patch, traditional
patch, or a patch that conforms to posix. Spaces are significant in
the following list, and operands are required.

Chapter 10: Merging with patch 65

‘-c’
‘-d dir’
‘-D define’
‘-e’
‘-l’
‘-n’
‘-N’
‘-o outfile’
‘-pnum’
‘-R’
‘-r rejectfile’

66 Comparing and Merging Files with GNU diff and patch

Chapter 11: Tips for Making and Using Patches 67

11 Tips for Making and Using
Patches

Use some common sense when making and using patches. For example,
when sending bug fixes to a program’s maintainer, send several small
patches, one per independent subject, instead of one large, harder-to-
digest patch that covers all the subjects.

Here are some other things you should keep in mind if you are going
to distribute patches for updating a software package.

11.1 Tips for Patch Producers

To create a patch that changes an older version of a package into a
newer version, first make a copy of the older and newer versions in adjacent
subdirectories. It is common to do that by unpacking tar archives of the
two versions.

To generate the patch, use the command ‘diff -Naur old new ’ where
old and new identify the old and new directories. The names old and
new should not contain any slashes. The ‘-N’ option lets the patch create
and remove files; ‘-a’ lets the patch update non-text files; ‘-u’ generates
useful time stamps and enough context; and ‘-r’ lets the patch update
subdirectories. Here is an example command, using Bourne shell syntax:

diff -Naur gcc-3.0.3 gcc-3.0.4

Tell your recipients how to apply the patches. This should include
which working directory to use, and which patch options to use; the
option ‘-p1’ is recommended. Test your procedure by pretending to be a
recipient and applying your patches to a copy of the original files.

See Section 11.3 [Avoiding Common Mistakes], page 68, for how to
avoid common mistakes when generating a patch.

11.2 Tips for Patch Consumers

A patch producer should tell recipients how to apply the patches, so
the first rule of thumb for a patch consumer is to follow the instructions
supplied with the patch.

gnu diff can analyze files with arbitrarily long lines and files that
end in incomplete lines. However, older versions of patch cannot patch
such files. If you are having trouble applying such patches, try upgrading
to a recent version of gnu patch.

68 Comparing and Merging Files with GNU diff and patch

11.3 Avoiding Common Mistakes

When producing a patch for multiple files, apply diff to directories
whose names do not have slashes. This reduces confusion when the patch
consumer specifies the ‘-pnumber’ option, since this option can have sur-
prising results when the old and new file names have different numbers of
slashes. For example, do not send a patch with a header that looks like
this:

diff -Naur v2.0.29/prog/README prog/README

--- v2.0.29/prog/README 2002-03-10 23:30:39.942229878 -0800

+++ prog/README 2002-03-17 20:49:32.442260588 -0800

because the two file names have different numbers of slashes, and different
versions of patch interpret the file names differently. To avoid confusion,
send output that looks like this instead:

diff -Naur v2.0.29/prog/README v2.0.30/prog/README

--- v2.0.29/prog/README 2002-03-10 23:30:39.942229878 -0800

+++ v2.0.30/prog/README 2002-03-17 20:49:32.442260588 -0800

Make sure you have specified the file names correctly, either in a con-
text diff header or with an ‘Index:’ line. Take care to not send out
reversed patches, since these make people wonder whether they have al-
ready applied the patch.

Avoid sending patches that compare backup file names like
‘README.orig’ or ‘README~’, since this might confuse patch into patching
a backup file instead of the real file. Instead, send patches that compare
the same base file names in different directories, e.g. ‘old/README’ and
‘new/README’.

To save people from partially applying a patch before other patches
that should have gone before it, you can make the first patch in the patch
file update a file with a name like ‘patchlevel.h’ or ‘version.c’, which
contains a patch level or version number. If the input file contains the
wrong version number, patch will complain immediately.

An even clearer way to prevent this problem is to put a ‘Prereq:’ line
before the patch. If the leading text in the patch file contains a line that
starts with ‘Prereq:’, patch takes the next word from that line (normally
a version number) and checks whether the next input file contains that
word, preceded and followed by either white space or a newline. If not,
patch prompts you for confirmation before proceeding. This makes it
difficult to accidentally apply patches in the wrong order.

Chapter 11: Tips for Making and Using Patches 69

11.4 Generating Smaller Patches

The simplest way to generate a patch is to use ‘diff -Naur’ (see Sec-
tion 11.1 [Tips for Patch Producers], page 67), but you might be able to
reduce the size of the patch by renaming or removing some files before
making the patch. If the older version of the package contains any files
that the newer version does not, or if any files have been renamed be-
tween the two versions, make a list of rm and mv commands for the user
to execute in the old version directory before applying the patch. Then
run those commands yourself in the scratch directory.

If there are any files that you don’t need to include in the patch because
they can easily be rebuilt from other files (for example, ‘TAGS’ and output
from yacc and makeinfo), exclude them from the patch by giving diff
the ‘-x pattern’ option (see Chapter 4 [Comparing Directories], page 35).
If you want your patch to modify a derived file because your recipients
lack tools to build it, make sure that the patch for the derived file follows
any patches for files that it depends on, so that the recipients’ time stamps
will not confuse make.

Now you can create the patch using ‘diff -Naur’. Make sure to specify
the scratch directory first and the newer directory second.

Add to the top of the patch a note telling the user any rm and mv
commands to run before applying the patch. Then you can remove the
scratch directory.

You can also shrink the patch size by using fewer lines of context,
but bear in mind that patch typically needs at least two lines for proper
operation when patches do not exactly match the input files.

70 Comparing and Merging Files with GNU diff and patch

Chapter 12: Invoking cmp 71

12 Invoking cmp

The cmp command compares two files, and if they differ, tells the first
byte and line number where they differ. Bytes and lines are numbered
starting with 1. The arguments of cmp are as follows:

cmp options... from-file [to-file [from-skip [to-skip]]]
The file name ‘-’ is always the standard input. cmp also uses the

standard input if one file name is omitted. The from-skip and to-skip
operands specify how many bytes to ignore at the start of each file; they
are equivalent to the ‘--ignore-initial=from-skip:to-skip’ option.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

12.1 Options to cmp

Below is a summary of all of the options that gnu cmp accepts. Most
options have two equivalent names, one of which is a single letter preceded
by ‘-’, and the other of which is a long name preceded by ‘--’. Multiple
single letter options (unless they take an argument) can be combined into
a single command line word: ‘-bl’ is equivalent to ‘-b -l’.

‘-b’
‘--print-bytes’

Print the differing bytes. Display control bytes as a ‘^’ fol-
lowed by a letter of the alphabet and precede bytes that have
the high bit set with ‘M-’ (which stands for “meta”).

‘--help’ Output a summary of usage and then exit.

‘-i skip’
‘--ignore-initial=skip’

Ignore any differences in the first skip bytes of the input files.
Treat files with fewer than skip bytes as if they are empty.
If skip is of the form ‘from-skip:to-skip’, skip the first from-
skip bytes of the first input file and the first to-skip bytes of
the second.

‘-l’
‘--verbose’

Print the (decimal) byte numbers and (octal) values of all
differing bytes.

‘-n count’
‘--bytes=count’

Compare at most count input bytes.

72 Comparing and Merging Files with GNU diff and patch

‘-s’
‘--quiet’
‘--silent’ Do not print anything; only return an exit status indicating

whether the files differ.

‘-v’
‘--version’

Output version information and then exit.

In the above table, operands that are byte counts are normally decimal,
but may be preceded by ‘0’ for octal and ‘0x’ for hexadecimal.

A byte count can be followed by a suffix to specify a multiple of that
count; in this case an omitted integer is understood to be 1. A bare size
letter, or one followed by ‘iB’, specifies a multiple using powers of 1024.
A size letter followed by ‘B’ specifies powers of 1000 instead. For example,
‘-n 4M’ and ‘-n 4MiB’ are equivalent to ‘-n 4194304’, whereas ‘-n 4MB’ is
equivalent to ‘-n 4000000’. This notation is upward compatible with the
SI prefixes for decimal multiples and with the IEC 60027-2 prefixes for
binary multiples.

The following suffixes are defined. Large sizes like 1Y may be rejected
by your computer due to limitations of its arithmetic.

‘kB’ kilobyte: 10ˆ3 = 1000.

‘k’
‘K’
‘KiB’ kibibyte: 2ˆ10 = 1024. ‘K’ is special: the SI prefix is ‘k’ and

the IEC 60027-2 prefix is ‘Ki’, but tradition and posix use
‘k’ to mean ‘KiB’.

‘MB’ megabyte: 10ˆ6 = 1, 000, 000.

‘M’
‘MiB’ mebibyte: 2ˆ20 = 1, 048, 576.

‘GB’ gigabyte: 10ˆ9 = 1, 000, 000, 000.

‘G’
‘GiB’ gibibyte: 2ˆ30 = 1, 073, 741, 824.

‘TB’ terabyte: 10ˆ12 = 1, 000, 000, 000, 000.

‘T’
‘TiB’ tebibyte: 2ˆ40 = 1, 099, 511, 627, 776.

‘PB’ petabyte: 10ˆ15 = 1, 000, 000, 000, 000, 000.

‘P’
‘PiB’ pebibyte: 2ˆ50 = 1, 125, 899, 906, 842, 624.

Chapter 12: Invoking cmp 73

‘EB’ exabyte: 10ˆ18 = 1, 000, 000, 000, 000, 000, 000.

‘E’
‘EiB’ exbibyte: 2ˆ60 = 1, 152, 921, 504, 606, 846, 976.

‘ZB’ zettabyte: 10ˆ21 = 1, 000, 000, 000, 000, 000, 000, 000

‘Z’
‘ZiB’ 2ˆ70 = 1, 180, 591, 620, 717, 411, 303, 424. (‘Zi’ is a GNU

extension to IEC 60027-2.)

‘YB’ yottabyte: 10ˆ24 = 1, 000, 000, 000, 000, 000, 000, 000, 000.

‘Y’
‘YiB’ 2ˆ80 = 1, 208, 925, 819, 614, 629, 174, 706, 176. (‘Yi’ is a

GNU extension to IEC 60027-2.)

74 Comparing and Merging Files with GNU diff and patch

Chapter 13: Invoking diff 75

13 Invoking diff

The format for running the diff command is:
diff options... files...

In the simplest case, two file names from-file and to-file are given, and
diff compares the contents of from-file and to-file. A file name of ‘-’
stands for text read from the standard input. As a special case, ‘diff -
-’ compares a copy of standard input to itself.

If one file is a directory and the other is not, diff compares the file in
the directory whose name is that of the non-directory. The non-directory
file must not be ‘-’.

If two file names are given and both are directories, diff compares
corresponding files in both directories, in alphabetical order; this compar-
ison is not recursive unless the ‘-r’ or ‘--recursive’ option is given. diff
never compares the actual contents of a directory as if it were a file. The
file that is fully specified may not be standard input, because standard
input is nameless and the notion of “file with the same name” does not
apply.

If the ‘--from-file=file’ option is given, the number of file names
is arbitrary, and file is compared to each named file. Similarly, if the
‘--to-file=file’ option is given, each named file is compared to file.

diff options begin with ‘-’, so normally file names may not begin with
‘-’. However, ‘--’ as an argument by itself treats the remaining arguments
as file names even if they begin with ‘-’.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

13.1 Options to diff

Below is a summary of all of the options that gnu diff accepts. Most
options have two equivalent names, one of which is a single letter preceded
by ‘-’, and the other of which is a long name preceded by ‘--’. Multiple
single letter options (unless they take an argument) can be combined into
a single command line word: ‘-ac’ is equivalent to ‘-a -c’. Long named
options can be abbreviated to any unique prefix of their name. Brackets
([and]) indicate that an option takes an optional argument.

‘-a’
‘--text’ Treat all files as text and compare them line-by-line, even

if they do not seem to be text. See Section 1.7 [Binary],
page 8.

76 Comparing and Merging Files with GNU diff and patch

‘-b’
‘--ignore-space-change’

Ignore changes in amount of white space. See Section 1.2
[White Space], page 6.

‘-B’
‘--ignore-blank-lines’

Ignore changes that just insert or delete blank lines. See
Section 1.3 [Blank Lines], page 7.

‘--binary’ Read and write data in binary mode. See Section 1.7 [Bi-
nary], page 8.

‘-c’ Use the context output format, showing three lines of con-
text. See Section 2.3.1 [Context Format], page 14.

‘-C lines’
‘--context[=lines]’

Use the context output format, showing lines (an integer)
lines of context, or three if lines is not given. See Sec-
tion 2.3.1 [Context Format], page 14. For proper operation,
patch typically needs at least two lines of context.

On older systems, diff supports an obsolete option ‘-lines’
that has effect when combined with ‘-c’ or ‘-p’. posix
1003.1-2001 (see Chapter 17 [Standards conformance],
page 97) does not allow this; use ‘-C lines’ instead.

‘--changed-group-format=format’
Use format to output a line group containing differing lines
from both files in if-then-else format. See Section 2.6.1 [Line
Group Formats], page 24.

‘-d’
‘--minimal’

Change the algorithm perhaps find a smaller set of changes.
This makes diff slower (sometimes much slower). See Chap-
ter 6 [diff Performance], page 39.

‘-D name’
‘--ifdef=name’

Make merged ‘#ifdef’ format output, conditional on the
preprocessor macro name. See Section 2.6 [If-then-else],
page 24.

‘-e’
‘--ed’ Make output that is a valid ed script. See Section 2.5.1 [ed

Scripts], page 21.

Chapter 13: Invoking diff 77

‘-E’
‘--ignore-tab-expansion’

Ignore changes due to tab expansion. See Section 1.2 [White
Space], page 6.

‘-f’
‘--forward-ed’

Make output that looks vaguely like an ed script but has
changes in the order they appear in the file. See Section 2.5.2
[Forward ed], page 23.

‘-F regexp’
‘--show-function-line=regexp’

In context and unified format, for each hunk of differences,
show some of the last preceding line that matches regexp.
See Section 2.3.3.1 [Specified Headings], page 18.

‘--from-file=file’
Compare file to each operand; file may be a directory.

‘--help’ Output a summary of usage and then exit.

‘--horizon-lines=lines’
Do not discard the last lines lines of the common prefix and
the first lines lines of the common suffix. See Chapter 6 [diff
Performance], page 39.

‘-i’
‘--ignore-case’

Ignore changes in case; consider upper- and lower-case letters
equivalent. See Section 1.4 [Case Folding], page 7.

‘-I regexp’
‘--ignore-matching-lines=regexp’

Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 [Specified Folding], page 7.

‘--ignore-file-name-case’
Ignore case when comparing file names during recursive com-
parison. See Chapter 4 [Comparing Directories], page 35.

‘-l’
‘--paginate’

Pass the output through pr to paginate it. See Section 5.2
[Pagination], page 37.

‘--label=label’
Use label instead of the file name in the context format (see
Section 2.3.1 [Context Format], page 14) and unified format

78 Comparing and Merging Files with GNU diff and patch

(see Section 2.3.2 [Unified Format], page 16) headers. See
Section 2.5.3 [RCS], page 23.

‘--left-column’
Print only the left column of two common lines in side by
side format. See Section 2.4.1 [Side by Side Format], page 20.

‘--line-format=format’
Use format to output all input lines in if-then-else format.
See Section 2.6.2 [Line Formats], page 27.

‘-n’
‘--rcs’ Output rcs-format diffs; like ‘-f’ except that each com-

mand specifies the number of lines affected. See Section 2.5.3
[RCS], page 23.

‘-N’
‘--new-file’

In directory comparison, if a file is found in only one direc-
tory, treat it as present but empty in the other directory.
See Chapter 4 [Comparing Directories], page 35.

‘--new-group-format=format’
Use format to output a group of lines taken from just the
second file in if-then-else format. See Section 2.6.1 [Line
Group Formats], page 24.

‘--new-line-format=format’
Use format to output a line taken from just the second
file in if-then-else format. See Section 2.6.2 [Line Formats],
page 27.

‘--old-group-format=format’
Use format to output a group of lines taken from just the
first file in if-then-else format. See Section 2.6.1 [Line Group
Formats], page 24.

‘--old-line-format=format’
Use format to output a line taken from just the first file in if-
then-else format. See Section 2.6.2 [Line Formats], page 27.

‘-p’
‘--show-c-function’

Show which C function each change is in. See Section 2.3.3.2
[C Function Headings], page 19.

‘-q’
‘--brief’ Report only whether the files differ, not the details of the

differences. See Section 1.6 [Brief], page 8.

Chapter 13: Invoking diff 79

‘-r’
‘--recursive’

When comparing directories, recursively compare any sub-
directories found. See Chapter 4 [Comparing Directories],
page 35.

‘-s’
‘--report-identical-files’

Report when two files are the same. See Chapter 4 [Com-
paring Directories], page 35.

‘-S file’
‘--starting-file=file’

When comparing directories, start with the file file. This is
used for resuming an aborted comparison. See Chapter 4
[Comparing Directories], page 35.

‘--speed-large-files’
Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 6 [diff Perfor-
mance], page 39.

‘--strip-trailing-cr’
Strip any trailing carriage return at the end of an input line.
See Section 1.7 [Binary], page 8.

‘--suppress-common-lines’
Do not print common lines in side by side format. See Sec-
tion 2.4.1 [Side by Side Format], page 20.

‘-t’
‘--expand-tabs’

Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 5.1 [Tabs],
page 37.

‘-T’
‘--initial-tab’

Output a tab rather than a space before the text of a line in
normal or context format. This causes the alignment of tabs
in the line to look normal. See Section 5.1 [Tabs], page 37.

‘--to-file=file’
Compare each operand to file; file may be a directory.

‘-u’ Use the unified output format, showing three lines of context.
See Section 2.3.2 [Unified Format], page 16.

80 Comparing and Merging Files with GNU diff and patch

‘--unchanged-group-format=format’
Use format to output a group of common lines taken from
both files in if-then-else format. See Section 2.6.1 [Line
Group Formats], page 24.

‘--unchanged-line-format=format’
Use format to output a line common to both files in if-then-
else format. See Section 2.6.2 [Line Formats], page 27.

‘--unidirectional-new-file’
When comparing directories, if a file appears only in the
second directory of the two, treat it as present but empty in
the other. See Chapter 4 [Comparing Directories], page 35.

‘-U lines’
‘--unified[=lines]’

Use the unified output format, showing lines (an integer)
lines of context, or three if lines is not given. See Sec-
tion 2.3.2 [Unified Format], page 16. For proper operation,
patch typically needs at least two lines of context.

On older systems, diff supports an obsolete option ‘-lines’
that has effect when combined with ‘-u’. posix 1003.1-2001
(see Chapter 17 [Standards conformance], page 97) does not
allow this; use ‘-U lines’ instead.

‘-v’
‘--version’

Output version information and then exit.

‘-w’
‘--ignore-all-space’

Ignore white space when comparing lines. See Section 1.2
[White Space], page 6.

‘-W columns’
‘--width=columns’

Output at most columns (default 130) print columns per
line in side by side format. See Section 2.4.1 [Side by Side
Format], page 20.

‘-x pattern’
‘--exclude=pattern’

When comparing directories, ignore files and subdirectories
whose basenames match pattern. See Chapter 4 [Comparing
Directories], page 35.

Chapter 13: Invoking diff 81

‘-X file’
‘--exclude-from=file’

When comparing directories, ignore files and subdirectories
whose basenames match any pattern contained in file. See
Chapter 4 [Comparing Directories], page 35.

‘-y’
‘--side-by-side’

Use the side by side output format. See Section 2.4.1 [Side
by Side Format], page 20.

82 Comparing and Merging Files with GNU diff and patch

Chapter 14: Invoking diff3 83

14 Invoking diff3

The diff3 command compares three files and outputs descriptions of
their differences. Its arguments are as follows:

diff3 options... mine older yours

The files to compare are mine, older, and yours. At most one of these
three file names may be ‘-’, which tells diff3 to read the standard input
for that file.

An exit status of 0 means diff3 was successful, 1 means some conflicts
were found, and 2 means trouble.

14.1 Options to diff3

Below is a summary of all of the options that gnu diff3 accepts. Mul-
tiple single letter options (unless they take an argument) can be combined
into a single command line argument.

‘-a’
‘--text’ Treat all files as text and compare them line-by-line, even

if they do not appear to be text. See Section 1.7 [Binary],
page 8.

‘-A’
‘--show-all’

Incorporate all unmerged changes from older to yours into
mine, surrounding conflicts with bracket lines. See Sec-
tion 8.2 [Marking Conflicts], page 46.

‘--diff-program=program’
Use the compatible comparison program program to com-
pare files instead of diff.

‘-e’
‘--ed’ Generate an ed script that incorporates all the changes from

older to yours into mine. See Section 8.1 [Which Changes],
page 45.

‘-E’
‘--show-overlap’

Like ‘-e’, except bracket lines from overlapping changes’ first
and third files. See Section 8.2 [Marking Conflicts], page 46.
With ‘-E’, an overlapping change looks like this:

<<<<<<< mine
lines from mine

84 Comparing and Merging Files with GNU diff and patch

=======
lines from yours

>>>>>>> yours

‘--help’ Output a summary of usage and then exit.

‘-i’ Generate ‘w’ and ‘q’ commands at the end of the ed script for
System V compatibility. This option must be combined with
one of the ‘-AeExX3’ options, and may not be combined with
‘-m’. See Section 8.5 [Saving the Changed File], page 49.

‘-L label’
‘--label=label’

Use the label label for the brackets output by the ‘-A’, ‘-E’
and ‘-X’ options. This option may be given up to three times,
one for each input file. The default labels are the names of
the input files. Thus ‘diff3 -L X -L Y -L Z -m A B C’ acts
like ‘diff3 -m A B C’, except that the output looks like it
came from files named ‘X’, ‘Y’ and ‘Z’ rather than from files
named ‘A’, ‘B’ and ‘C’. See Section 8.2 [Marking Conflicts],
page 46.

‘-m’
‘--merge’ Apply the edit script to the first file and send the result to

standard output. Unlike piping the output from diff3 to ed,
this works even for binary files and incomplete lines. ‘-A’ is
assumed if no edit script option is specified. See Section 8.3
[Bypassing ed], page 48.

‘-T’
‘--initial-tab’

Output a tab rather than two spaces before the text of a line
in normal format. This causes the alignment of tabs in the
line to look normal. See Section 5.1 [Tabs], page 37.

‘-v’
‘--version’

Output version information and then exit.

‘-x’
‘--overlap-only’

Like ‘-e’, except output only the overlapping changes. See
Section 8.1 [Which Changes], page 45.

‘-X’ Like ‘-E’, except output only the overlapping changes. In
other words, like ‘-x’, except bracket changes as in ‘-E’. See
Section 8.2 [Marking Conflicts], page 46.

Chapter 14: Invoking diff3 85

‘-3’
‘--easy-only’

Like ‘-e’, except output only the nonoverlapping changes.
See Section 8.1 [Which Changes], page 45.

86 Comparing and Merging Files with GNU diff and patch

Chapter 15: Invoking patch 87

15 Invoking patch

Normally patch is invoked like this:
patch <patchfile

The full format for invoking patch is:
patch options... [origfile [patchfile]]

You can also specify where to read the patch from with the ‘-i patch-
file’ or ‘--input=patchfile’ option. If you do not specify patchfile, or if
patchfile is ‘-’, patch reads the patch (that is, the diff output) from the
standard input.

If you do not specify an input file on the command line, patch tries
to intuit from the leading text (any text in the patch that comes before
the diff output) which file to edit. See Section 10.6 [Multiple Patches],
page 58.

By default, patch replaces the original input file with the patched
version, possibly after renaming the original file into a backup file (see
Section 10.9 [Backup Names], page 60, for a description of how patch
names backup files). You can also specify where to put the output with
the ‘-o file’ or ‘--output=file’ option; however, do not use this option if
file is one of the input files.

15.1 Options to patch

Here is a summary of all of the options that gnu patch accepts. See
Section 10.13 [patch and Tradition], page 63, for which of these options
are safe to use in older versions of patch.

Multiple single-letter options that do not take an argument can be
combined into a single command line argument with only one dash.

‘-b’
‘--backup’ Back up the original contents of each file, even if backups

would normally not be made. See Section 10.8 [Backups],
page 60.

‘-B prefix’
‘--prefix=prefix’

Prepend prefix to backup file names. See Section 10.9
[Backup Names], page 60.

‘--backup-if-mismatch’
Back up the original contents of each file if the patch does not
exactly match the file. This is the default behavior when not
conforming to posix. See Section 10.8 [Backups], page 60.

88 Comparing and Merging Files with GNU diff and patch

‘--binary’ Read and write all files in binary mode, except for standard
output and ‘/dev/tty’. This option has no effect on posix-
conforming systems like gnu/Linux. On systems where this
option makes a difference, the patch should be generated by
‘diff -a --binary’. See Section 1.7 [Binary], page 8.

‘-c’
‘--context’

Interpret the patch file as a context diff. See Section 10.1
[patch Input], page 53.

‘-d directory ’
‘--directory=directory ’

Make directory directory the current directory for interpret-
ing both file names in the patch file, and file names given as
arguments to other options. See Section 10.7 [patch Direc-
tories], page 59.

‘-D name’
‘--ifdef=name’

Make merged if-then-else output using name. See Section 2.6
[If-then-else], page 24.

‘--dry-run’
Print the results of applying the patches without actually
changing any files. See Section 10.3.4 [Dry Runs], page 56.

‘-e’
‘--ed’ Interpret the patch file as an ed script. See Section 10.1

[patch Input], page 53.

‘-E’
‘--remove-empty-files’

Remove output files that are empty after the patches have
been applied. See Section 10.4 [Creating and Removing],
page 57.

‘-f’
‘--force’ Assume that the user knows exactly what he or she is do-

ing, and do not ask any questions. See Section 10.11 [patch
Messages], page 61.

‘-F lines’
‘--fuzz=lines’

Set the maximum fuzz factor to lines. See Section 10.3.3
[Inexact], page 55.

Chapter 15: Invoking patch 89

‘-g num’
‘--get=num’

If num is positive, get input files from a revision control sys-
tem as necessary; if zero, do not get the files; if negative, ask
the user whether to get the files. See Section 10.2 [Revision
Control], page 54.

‘--help’ Output a summary of usage and then exit.

‘-i patchfile’
‘--input=patchfile’

Read the patch from patchfile rather than from standard
input. See Section 15.1 [patch Options], page 87.

‘-l’
‘--ignore-white-space’

Let any sequence of blanks (spaces or tabs) in the patch file
match any sequence of blanks in the input file. See Sec-
tion 10.3.1 [Changed White Space], page 54.

‘-n’
‘--normal’ Interpret the patch file as a normal diff. See Section 10.1

[patch Input], page 53.

‘-N’
‘--forward’

Ignore patches that patch thinks are reversed or already
applied. See also ‘-R’. See Section 10.3.2 [Reversed Patches],
page 55.

‘--no-backup-if-mismatch’
Do not back up the original contents of files. This is the
default behavior when conforming to posix. See Section 10.8
[Backups], page 60.

‘-o file’
‘--output=file’

Use file as the output file name. See Section 15.1 [patch
Options], page 87.

‘-pnumber’
‘--strip=number’

Set the file name strip count to number. See Section 10.7
[patch Directories], page 59.

‘--posix’ Conform to posix, as if the POSIXLY_CORRECT environment
variable had been set. See Section 10.12 [patch and POSIX],
page 63.

90 Comparing and Merging Files with GNU diff and patch

‘--quoting-style=word’
Use style word to quote names in diagnostics, as if the
QUOTING_STYLE environment variable had been set to word.
See Section 10.11.3 [patch Quoting Style], page 62.

‘-r reject-file’
‘--reject-file=reject-file’

Use reject-file as the reject file name. See Section 10.10
[Reject Names], page 61.

‘-R’
‘--reverse’

Assume that this patch was created with the old and
new files swapped. See Section 10.3.2 [Reversed Patches],
page 55.

‘-s’
‘--quiet’
‘--silent’ Work silently unless an error occurs. See Section 10.11 [patch

Messages], page 61.

‘-t’
‘--batch’ Do not ask any questions. See Section 10.11 [patch Mes-

sages], page 61.

‘-T’
‘--set-time’

Set the modification and access times of patched files from
time stamps given in context diff headers, assuming that
the context diff headers use local time. See Section 10.5
[Patching Time Stamps], page 57.

‘-u’
‘--unified’

Interpret the patch file as a unified diff. See Section 10.1
[patch Input], page 53.

‘-v’
‘--version’

Output version information and then exit.

‘-V backup-style’
‘--version=control=backup-style’

Select the naming convention for backup file names. See
Section 10.9 [Backup Names], page 60.

‘--verbose’
Print more diagnostics than usual. See Section 10.11 [patch
Messages], page 61.

Chapter 15: Invoking patch 91

‘-x number’
‘--debug=number’

Set internal debugging flags. Of interest only to patch patch-
ers.

‘-Y prefix’
‘--basename-prefix=prefix’

Prepend prefix to base names of backup files. See Sec-
tion 10.9 [Backup Names], page 60.

‘-z suffix’
‘--suffix=suffix’

Use suffix as the backup extension instead of ‘.orig’ or ‘~’.
See Section 10.9 [Backup Names], page 60.

‘-Z’
‘--set-utc’

Set the modification and access times of patched files from
time stamps given in context diff headers, assuming that the
context diff headers use utc. See Section 10.5 [Patching
Time Stamps], page 57.

92 Comparing and Merging Files with GNU diff and patch

Chapter 16: Invoking sdiff 93

16 Invoking sdiff

The sdiff command merges two files and interactively outputs the
results. Its arguments are as follows:

sdiff -o outfile options... from-file to-file

This merges from-file with to-file, with output to outfile. If from-file
is a directory and to-file is not, sdiff compares the file in from-file whose
file name is that of to-file, and vice versa. from-file and to-file may not
both be directories.

sdiff options begin with ‘-’, so normally from-file and to-file may not
begin with ‘-’. However, ‘--’ as an argument by itself treats the remaining
arguments as file names even if they begin with ‘-’. You may not use ‘-’
as an input file.

sdiff without ‘-o’ (or ‘--output’) produces a side-by-side difference.
This usage is obsolete; use the ‘-y’ or ‘--side-by-side’ option of diff
instead.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

16.1 Options to sdiff

Below is a summary of all of the options that gnu sdiff accepts. Each
option has two equivalent names, one of which is a single letter preceded
by ‘-’, and the other of which is a long name preceded by ‘--’. Multiple
single letter options (unless they take an argument) can be combined into
a single command line argument. Long named options can be abbreviated
to any unique prefix of their name.

‘-a’
‘--text’ Treat all files as text and compare them line-by-line, even

if they do not appear to be text. See Section 1.7 [Binary],
page 8.

‘-b’
‘--ignore-space-change’

Ignore changes in amount of white space. See Section 1.2
[White Space], page 6.

‘-B’
‘--ignore-blank-lines’

Ignore changes that just insert or delete blank lines. See
Section 1.3 [Blank Lines], page 7.

94 Comparing and Merging Files with GNU diff and patch

‘-d’
‘--minimal’

Change the algorithm to perhaps find a smaller set of
changes. This makes sdiff slower (sometimes much slower).
See Chapter 6 [diff Performance], page 39.

‘--diff-program=program’
Use the compatible comparison program program to com-
pare files instead of diff.

‘-E’
‘--ignore-tab-expansion’

Ignore changes due to tab expansion. See Section 1.2 [White
Space], page 6.

‘--help’ Output a summary of usage and then exit.

‘-i’
‘--ignore-case’

Ignore changes in case; consider upper- and lower-case to be
the same. See Section 1.4 [Case Folding], page 7.

‘-I regexp’
‘--ignore-matching-lines=regexp’

Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 [Specified Folding], page 7.

‘-l’
‘--left-column’

Print only the left column of two common lines. See Sec-
tion 2.4.1 [Side by Side Format], page 20.

‘-o file’
‘--output=file’

Put merged output into file. This option is required for
merging.

‘-s’
‘--suppress-common-lines’

Do not print common lines. See Section 2.4.1 [Side by Side
Format], page 20.

‘--speed-large-files’
Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 6 [diff Perfor-
mance], page 39.

‘--strip-trailing-cr’
Strip any trailing carriage return at the end of an input line.
See Section 1.7 [Binary], page 8.

Chapter 16: Invoking sdiff 95

‘-t’
‘--expand-tabs’

Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 5.1 [Tabs],
page 37.

‘-v’
‘--version’

Output version information and then exit.

‘-w columns’
‘--width=columns’

Output at most columns (default 130) print columns per
line. See Section 2.4.1 [Side by Side Format], page 20. Note
that for historical reasons, this option is ‘-W’ in diff, ‘-w’ in
sdiff.

‘-W’
‘--ignore-all-space’

Ignore white space when comparing lines. See Section 1.2
[White Space], page 6. Note that for historical reasons, this
option is ‘-w’ in diff, ‘-W’ in sdiff.

96 Comparing and Merging Files with GNU diff and patch

Chapter 17: Standards conformance 97

17 Standards conformance

In a few cases, the gnu utilities’ default behavior is incompatible
with the posix standard. To suppress these incompatibilities, define
the POSIXLY_CORRECT environment variable. Unless you are checking for
posix conformance, you probably do not need to define POSIXLY_CORRECT.

Normally options and operands can appear in any order, and pro-
grams act as if all the options appear before any operands. For example,
‘diff lao tzu -C 2’ acts like ‘diff -C 2 lao tzu’, since ‘2’ is an option-
argument of ‘-C’. However, if the POSIXLY_CORRECT environment variable
is set, options must appear before operands, unless otherwise specified for
a particular command.

Newer versions of posix are occasionally incompatible with older ver-
sions. For example, older versions of posix allowed the command ‘diff
-c -10’ to have the same meaning as ‘diff -C 10’, but posix 1003.1-2001
‘diff’ no longer allows digit-string options like ‘-10’.

The gnu utilities normally conform to the version of posix that is
standard for your system. To cause them to conform to a different ver-
sion of posix, define the _POSIX2_VERSION environment variable to a
value of the form yyyymm specifying the year and month the standard
was adopted. Two values are currently supported for _POSIX2_VERSION:
‘199209’ stands for posix 1003.2-1992, and ‘200112’ stands for posix
1003.1-2001. For example, if you are running older software that assumes
an older version of posix and uses ‘diff -c -10’, you can work around
the compatibility problems by setting ‘_POSIX2_VERSION=199209’ in your
environment.

98 Comparing and Merging Files with GNU diff and patch

Chapter 18: Reporting Bugs 99

18 Reporting Bugs

If you think you have found a bug in gnu cmp, diff, diff3, or sdiff,
please report it by electronic mail to the GNU utilities bug report mailing
list bug-gnu-utils@gnu.org. Please send bug reports for gnu patch to
bug-patch@gnu.org. Send as precise a description of the problem as you
can, including the output of the ‘--version’ option and sample input files
that produce the bug, if applicable.

If you have a nontrivial fix for the bug, please send it as well. If you
have a patch, please send it too. It may simplify the maintainer’s job if
the patch is relative to a recent test release, which you can find in the
directory ftp://alpha.gnu.org/gnu/diffutils/.

100 Comparing and Merging Files with GNU diff and patch

Appendix A: Copying This Manual 101

Appendix A Copying This Manual

A.1 GNU Free Documentation License

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
written document free in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without mod-
ifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee,
and is addressed as “you”.
A “Modified Version” of the Document means any work containing
the Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

102 Comparing and Merging Files with GNU diff and patch

A “Secondary Section” is a named appendix or a front-matter sec-
tion of the Document that deals exclusively with the relationship of
the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document
is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regard-
ing them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says
that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for in-
put to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that
is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain
ascii without markup, Texinfo input format, LaTEX input for-
mat, sgml or xml using a publicly available dtd, and standard-
conforming simple html designed for human modification. Opaque
formats include PostScript, pdf, proprietary formats that can be
read and edited only by proprietary word processors, sgml or xml
for which the dtd and/or processing tools are not generally available,
and the machine-generated html produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats
which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding
the beginning of the body of the text.

Appendix A: Copying This Manual 103

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may ac-
cept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in sec-
tion 3.

You may also lend copies, under the same conditions stated above,
and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than
100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on
the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document num-
bering more than 100, you must either include a machine-readable
Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access
to download anonymously at no charge using public-standard net-
work protocols. If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

104 Comparing and Merging Files with GNU diff and patch

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document un-
der the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Mod-
ified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications ad-
jacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under
the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Doc-
ument as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

Appendix A: Copying This Manual 105

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and like-
wise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was
published at least four years before the Document itself, or if
the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”,
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgments
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equiva-
lent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to
conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or ap-
pendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it con-
tains nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of
a standard.
You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by
(or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added
by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added
the old one.
The author(s) and publisher(s) of the Document do not by this Li-
cense give permission to use their names for publicity for or to assert
or imply endorsement of any Modified Version.

106 Comparing and Merging Files with GNU diff and patch

5. COMBINING DOCUMENTS

You may combine the Document with other documents released un-
der this License, under the terms defined in section 4 above for mod-
ified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “His-
tory” in the various original documents, forming one section enti-
tled “History”; likewise combine any sections entitled “Acknowledg-
ments”, and any sections entitled “Dedications”. You must delete
all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and dis-
tribute it individually under this License, provided you insert a copy
of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other sepa-
rate and independent documents or works, in or on a volume of a
storage or distribution medium, does not as a whole count as a Mod-
ified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an “ag-
gregate”, and this License does not apply to the other self-contained
works thus compiled with the Document, on account of their being
thus compiled, if they are not themselves derivative works of the
Document.

Appendix A: Copying This Manual 107

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of
the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may dis-
tribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special per-
mission from their copyright holders, but you may include transla-
tions of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation
of this License provided that you also include the original English
version of this License. In case of a disagreement between the trans-
lation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties
remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

108 Comparing and Merging Files with GNU diff and patch

A.1.1 ADDENDUM: How to use this License
for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this

document under the terms of the GNU Free Documentation

License, Version 1.1 or any later version published by the

Free Software Foundation; with the Invariant Sections being

list their titles, with the Front-Cover Texts being

list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled

‘‘GNU Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections”
instead of saying which ones are invariant. If you have no Front-Cover
Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts being
list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their
use in free software.

History 109

History

This section gives the history of the modifications made to the manual
by the publisher, as required by the GNU Free Documentation License.

5/2002 "Comparing and Merging Files" (original edition)
D. MacKenzie, P. Eggert, R. Stallman
Publisher: Free Software Foundation.

12/2002 "Comparing and Merging Files with GNU diff and patch"
Edited for publication by Brian Gough
Publisher: Network Theory Ltd.
Published under different title, as given above. Added
publisher’s preface. Minor modifications for publication
as a printed book: reformatted several examples to fit
smaller page width, removed some long urls to improve line-
breaking. Replaced chapter "Future Projects" by "Report-
ing Bugs". Added this "History" section.

The source code for the original version of this document is available from
ftp.gnu.org/gnu/diffutils/ in the file ‘diffutils-2.8.1.tar.gz’.
The source code for this version is available from http://www.network-
theory.co.uk/diff/manual/src/. A complete set of differences can be
obtained from the same location.

110 Comparing and Merging Files with GNU diff and patch

Appendix B: Index 111

Appendix B Index

!
‘!’ output format. 13

_POSIX2_VERSION 97

+
‘+-’ output format 16

<
‘<’ output format. 12
‘<<<<<<<’ for marking conflicts . . . 46

A
aligning tab stops 37
alternate file names 19

B
backup file names 60
backup file strategy 60
binary file diff . 8
blank and tab difference suppression

. 6
blank line difference suppression . . . 7
brief difference reports 8
bug reports . 99

C
C function headings 19
C if-then-else output format 24
case difference suppression 7
ClearCase . 54
cmp invocation 71
cmp options . 71
columnar output 19

common mistakes with patches . . . 68
comparing three files 41
conflict . 45
conflict marking 46
context output format 13
creating files . 57

D
diagnostics from patch 61
diff invocation 75
diff merging . 51
diff options . 75
diff sample input 11
diff3 hunks . 42
diff3 invocation 83
diff3 options 83
diff3 sample input 41
directories and patch 59
dry runs for patch 56

E
ed script output format 21
EDITOR . 52
empty files, removing 57
exabyte, definition of 73
exbibyte, definition of 73

F
FDL, GNU Free Documentation

License . 101
file name alternates 19
format of diff output 11
format of diff3 output 41
formats for if-then-else line groups

. 24
forward ed script output format . . 23
full lines . 33
function headings, C 19
fuzz factor when patching 55

112 Comparing and Merging Files with GNU diff and patch

G
gibibyte, definition of 72

gigabyte, definition of 72

H
headings . 18

hunks . 5

hunks for diff3 42

I
if-then-else output format 24

ifdef output format 24

imperfect patch application 54

incomplete line merging 48

incomplete lines 33

inexact patches 55

inhibit messages from patch 62

interactive merging 51

introduction . 5

intuiting file names from patches
. 58

invoking cmp . 71

invoking diff 75

invoking diff3 83

invoking patch 87

invoking sdiff 93

K
keyboard input to patch 62

kibibyte, definition of 72

kilobyte, definition of 72

L
LC_COLLATE . 35

LC_NUMERIC . 27

LC_TIME . 14

line formats . 27

line group formats 24

M
mebibyte, definition of 72
megabyte, definition of 72
merge commands 52
merged diff3 format 48
merged output format 24
merging from a common ancestor

. 45
merging interactively 52
messages from patch 61
multiple patches 58

N
newline treatment by diff 33
normal output format 12

O
options for cmp 71
options for diff 75
options for diff3 83
options for patch 87
options for sdiff 93
output formats 11
overlap . 45
overlapping change, selection of . . 45
overview of diff and patch 3

P
paginating diff output 37
patch consumer tips 67
patch input format 53
patch invocation 87
patch messages and questions 61
patch options 87
patch producer tips 67
patch, common mistakes 68
PATCH_GET . 54
PATCH_VERSION_CONTROL 60
patches, shrinking 69
patching directories 59
pebibyte, definition of 72
performance of diff 39
petabyte, definition of 72

Appendix B: Index 113

posix . 63, 97
POSIXLY_CORRECT 63, 97

Q
quoting style . 62
QUOTING_STYLE 63

R
rcs . 54
rcs script output format 23
regular expression matching headings

. 18
regular expression suppression 7
reject file names 61
removing empty files 57
reporting bugs 99
reversed patches 55
revision control 54

S
sample input for diff 11
sample input for diff3 41
sccs . 54
script output formats 21
sdiff invocation 93
sdiff options 93
sdiff output format 51
section headings. 18
side by side . 19
side by side format 20
SIMPLE_BACKUP_SUFFIX 60
specified headings 18
summarizing which files differ 8
System V diff3 compatibility 49

T
tab and blank difference suppression

. 6
tab stop alignment 37
tebibyte, definition of 72
terabyte, definition of 72
testing patch 56
text versus binary diff 8
time stamp format, context diffs . . 14
time stamp format, unified diffs . . 17
time stamps on patched files 57
traditional patch 63
two-column output 19

U
unified output format 16
unmerged change 45

V
verbose messages from patch 62
version control 54
VERSION_CONTROL 54, 60

W
white space in patches 54

Y
yottabyte, definition of 73

Z
zettabyte, definition of 73

