
Automatic Differentiation of Parallelised Convolutional
Neural Networks - Lessons from Adjoint PDE Solvers

Jan Hückelheim, Imperial College London
Paul Hovland, Argonne National Laboratory

December 9, 2017

Jan Hückelheim � Many-core adjoints 1

About me

• M.Sc. from RWTH Aachen, Germany, 2012

• PhD from Queen Mary University of London, 2017

• Research Associate at Imperial College London, present
• Inria, work on Tapenade static analysis
• Argonne National Laboratory, parallel AD

• AD and verification in Computational Fluid Dynamics, Seismic Imaging

Jan Hückelheim � Many-core adjoints 2

An example from PDE solvers: Seismic imaging

• Seismic imaging: Explore the subsurface geological structure

• In real life: Shots are being fired, and the reflections recorded

shot

m
ic m
ic

m
ic m
ic

m
ic

m
ic

surface

subsurface
structure

Jan Hückelheim � Many-core adjoints 3

An example from PDE solvers: Seismic imaging

• In simulation, the same experiment is conducted

• Since we don’t know the subsurface yet, we assume something

surface

unknown
subsurface
structure

??
??

??

Jan Hückelheim � Many-core adjoints 4

An example from PDE solvers: Seismic imaging

• Back-propagate the mismatch between simulation and measurement

• Minimise mismatch by updating assumed subsurface structure

surface

unknown
subsurface
structure

??
??

??

Jan Hückelheim � Many-core adjoints 5

Back-propagation in CNNs

• Convolutional layers, subsampling layers, unknown weights everywhere

• Models are ”trained” to minimise misclassifications

forward pass

backwards pass

output and
training data

mismatch

Jan Hückelheim � Many-core adjoints 6

More similarities

• Stencil computations in PDE solvers look like convolutions

stencilwindow

Image

Features

Wave
field

Updated
wave
field

Note that there are also differences:

• CNNs have few layers, compared to many iterations in PDE solvers

• Loop bodies more complex in PDE solvers

• Boundary treatment is different

Let’s see how much AD knowledge we can transfer.
Jan Hückelheim � Many-core adjoints 7

Algorithmic differentiation (AD)

• Given a program (”primal”) that implements some function

J = F (α),

AD generates a program that implements the derivative

Tangent mode

• Computes the Jacobian-vector product

J̇ = (∇F (x)) · α̇.

Adjoint mode

• Computes the transpose Jacobian-vector product

ᾱ = (∇F (x))T · J̄.
Jan Hückelheim � Many-core adjoints 8

Forward vs. reverse

• Tangent mode is simple to understand and implement, but: Need to
re-run for every input.

• Adjoint mode is cheaper for many inputs and few outputs (run once,
get all directional derivatives).

J

alpha

intermediate
values

Original program Reverse
differentiation

Forward differentiation

Jan Hückelheim � Many-core adjoints 9

AD approaches

There are at least two ways of implementing AD:

Source-to-source transformation

• Creates code that computes partial derivative of each operation, and
assembles them with chain-rule.

• Fast, efficient, but hard to get right. Mainly Fortran/C

Operator overloading

• Trace the computation at runtime, compute adjoints based on trace.
Slow, huge memory footprint, easy to implement. Works for most
high-level languages.

Source transformation can lead to more efficient derivative codes,
Operator overloading is often easier to use, better language support.

Jan Hückelheim � Many-core adjoints 10

Source transformation example

• Each instruction is augmented by its derivative instruction

• Variables are augmented by derivative variables

• Data flow reversal: r receives from a and b, rb sends to ab and bb.

float f(float a, float b) {
return a*b;

}

float f_d(float a, float ad, float b, float bd, float *f) {
*f = a*b;
return ad*b + a*bd;

}

void f_b(float a, float *ab, float b, float *bb, float fb) {
float f;
*ab = *ab + b*fb;
*bb = *bb + a*fb;

}

forward mode

reverse mode

Jan Hückelheim � Many-core adjoints 11

Why do we need AD for parallel code?

• We can’t wait for faster processors.

Image from https://en.wikipedia.org/wiki/File:Clock CPU Scaling.jpg

See also: Andrew Danowitz et.al., Recording Microprocessor History, Communications of the

ACM, Vol. 55 No. 4, Pages 55-63 10.1145/2133806.2133822

Jan Hückelheim � Many-core adjoints 12

Parallelism has many dimensions

• More compute nodes (each node with its own memory and processor)

• More cores (each processor can do several unrelated things at once)

• Vectors (each core can apply the same operation to multiple values)

Each of these lends itself to different programming models:

• Message-passing (e.g. MPI)

• Shared-memory parallelism (Pthreads, OpenMP, OpenACC)

• SIMD/SIMT vectorisation (intel intrinsics, OpenMP, CUDA, OpenCL)

There are also performance portability frameworks.

What can AD do?

• Best case: AD always generates efficient parallel codes (unrealistic)

• Second-best case: AD generates efficient parallel codes if the input
was well parallelised (realistic?)

Jan Hückelheim � Many-core adjoints 13

AD for MPI

• If the original code sends, the adjoint code must receive

• If the original code receives, the adjoint code must send

• Remaining problems with non-blocking communication and other
subtleties

• Adjoint MPI: libraries are available, and used in practice

easy adjoints for blocking calls

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)
a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

Graphic: J. Utke, Adjoints of MPI programs, ECCO2 meeting slides, Argonne National
Laboratory, 2008

Jan Hückelheim � Many-core adjoints 14

Adjoint MPI: Some references

• P. Hovland, Automatic differentiation of parallel programs, PhD thesis,
1997

• J. Utke et al, Toward adjoinable MPI, IPDPS, 2009

• AdjointMPI, AMPI, with more references:
https://www.stce.rwth-aachen.de/research/software/ampi

• AdjoinableMPI, also with more references:
https://trac.mcs.anl.gov/projects/AdjoinableMPI

What can AD do?

• AD can generally handle this well enough for practical use.

Jan Hückelheim � Many-core adjoints 15

The brutal way to adjoint MPI

• In practice, AD tool support is often not necessary

• Hand-differentiate the MPI layer, and apply AD only to some kernel

c=a;

b=d;

P1 P2

RECV(c)

SEND(d)RECV(b)

SEND(a)

fo
rw

ar
d

ad
jo

in
t

SEND(b)

P1

RECV(t)
a=a+t

b=0

SEND(c)
c=0

RECV(t)
d=d+t

P2

a=a+c; c=0;

d=d+b; b=0;

AD

manual

manual

• Just make sure that P1 and P2 don’t contain communication calls
(”grep -ri MPI” is your friend)

Jan Hückelheim � Many-core adjoints 16

AD for multi-core/many-core/SIMD

• Most processors today have multiple cores

• Examples:
• Intel Core i5, between 2 and 6 cores
• Intel Xeon Platinum, up to 28 cores
• Intel XeonPhi, up to 68 cores
• Raspberry Pi: 4 core ARM Cortex-A53
• iPhone X: 6 cores (4+2 different cores)

• If we aren’t using the cores, we are wasting resources.

• If the original code is using all cores, the generated adjoint code
should also use them!

Jan Hückelheim � Many-core adjoints 17

Shared-memory parallelism

• Multiple threads run in parallel (e.g. on multi-core CPU)

• Memory visible to all threads, no explicit communication

• Parallel read-access is fine, parallel write access is a problem

Thread 1 Thread 2

S

PP

Thread 1 Thread 2

S

PP

• Avoid parallel write access
(if necessary, use atomic updates, critical sections or barriers)

Jan Hückelheim � Many-core adjoints 18

Reverse AD and OpenMP - the challenge

• Situation: primal code is parallelised with OpenMP.

• Source-transformation used to generate adjoint code.

• AD support for OpenMP, Pthreads, CUDA, OpenCL etc is poor.

• Can we use the brutal method that worked with MPI?

parallel for

 P

end

parallel for

 P

end

pthread_create(P1)

pthread_create(P2)

pthread_create(P1)

pthread_create(P2)

?

Jan Hückelheim � Many-core adjoints 19

Example: a convolution

• Let’s apply a filter to layer k , resulting in layer k + 1

Layer k

Layer k+1

weights

Jan Hückelheim � Many-core adjoints 20

Example: a convolution

• We could do this in parallel, with two threads

Layer k

Layer k+1

weights

Jan Hückelheim � Many-core adjoints 21

Example: a convolution

• Each thread writes to its own output index, no problem

Layer k

Layer k+1

weights

Jan Hückelheim � Many-core adjoints 22

Example: a convolution

• What about the back-propagation?

Layer k

Layer k+1

weights

Jan Hückelheim � Many-core adjoints 23

Example: a convolution

• Each thread reads from its own index...

Layer k

Layer k+1

weights

Jan Hückelheim � Many-core adjoints 24

Example: a convolution

• And scatters the result to overlapping memory regions. Conflict!

Layer k

Layer k+1

weights

Jan Hückelheim � Many-core adjoints 25

Why did this happen?

• Overlapping write access to ū happens if there was overlapping read
access from u in primal.

• We can only easily parallelise adjoint if primal had exclusive read access

• Reference for this: M Förster, Algorithmic Differentiation of
Pragma-Defined Parallel Regions: Differentiating Computer Programs
Containing OpenMP, PhD thesis, 2014

Jan Hückelheim � Many-core adjoints 26

Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 1

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = sin(c(i))

end do

Jan Hückelheim � Many-core adjoints 27

Exclusive read access examples

•• Do these loops have exclusive read access?

! Example loop 1

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = sin(c(i))

end do

• Answer: Yes

c

b

Loop 1

Jan Hückelheim � Many-core adjoints 28

Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 2:

real :: a

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = a+c(i)

end do

Jan Hückelheim � Many-core adjoints 29

Exclusive read access examples

•• Do these loops have exclusive read access?

! Example loop 2:

real :: a

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = a+c(i)

end do

• Answer: No

c

b

a

Loop 2

Jan Hückelheim � Many-core adjoints 30

Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 3:

size = read_from_command_line(1)

!$omp parallel do

do i=1+size,10-size

b(i) = 0

do j=i-size,i+size

b(i) = b(i) + c(j)

end do

end do

Jan Hückelheim � Many-core adjoints 31

Exclusive read access examples

•• Do these loops have exclusive read access?

! Example loop 3:

size = read_from_command_line(1)

!$omp parallel do

do i=1+size,10-size

b(i) = 0

do j=i-size,i+size

b(i) = b(i) + c(j)

end do

end do

• Answer: Depends on size, unknown at compile time

c

b

? Loop 3

Jan Hückelheim � Many-core adjoints 32

The problem with exclusive read

• Any use of a global memory can become a problem

• Exclusive read is undecidable in general.

• Can’t just use grep to find it.

• Are there heuristics? Maybe. (One example shown later, but mostly
unexplored question)

• Can we rely on users giving pragmas?

• Can we generate several versions (efficient version, safe fallback) and
decide at runtime

Jan Hückelheim � Many-core adjoints 33

What if there’s no exclusive read?

• Or: what if we are not sure?

• Use atomic updates (potentially slow)

• Atomic updates are acceptable if the computation is otherwise
expensive enough to hide the overhead of few atomic updates

• Use OpenMP reduction (Taf does this)

b_adj

a_adj
thread 1 Loop 2

a_adj
thread 2

a_adj

Jan Hückelheim � Many-core adjoints 34

Reduction memory footprint

• Depending on OpenMP implementation, reduction may require
temporary private copy on every thread

• What if the array is large, and we have dozens/hundreds of threads?

c_adj
thread 1

b_adj

? Loop 3

c_adj
thread 2

c_adj

Jan Hückelheim � Many-core adjoints 35

Summary so far:

• Primal parallelism does not imply adjoint parallelism (*)

• ”Exclusive read” is a sufficient condition for (*) to hold.

• Exclusive read is impossible to detect in general.

• Can we detect it in practice?

• What if it doesn’t hold?

Jan Hückelheim � Many-core adjoints 36

Detection of exclusive read

• Static control flow, indices affine functions of loop counter? Maybe.

• Indirections, non-affine indexing, pointer arithmetic, dependence on
user input? Maybe not.

• Special case where it works for complicated indexing with
runtime-dependent indirections: set of read indices identical to set of
write indices. In this case, exclusive read property follows from correct
parallelisation of the primal (see our paper, Reverse-mode algorithmic
differentiation of an OpenMP-parallel compressible flow solver, 2017)

Jan Hückelheim � Many-core adjoints 37

What if exclusive read doesn’t hold?

• Traditional adjoint is not parallel.

• Can we do something non-traditional?

• TF-MAD: transposed forward-mode algorithmic differentiation,
combines forward and reverse mode to compute adjoints using the
original communication pattern.

• Idea: Split code up into segments where each segment writes to only
one index. The redistribute these segments so that everything that
writes to the same index is collected in the same iteration.

Jan Hückelheim � Many-core adjoints 38

Forward stencil

• Each point in the k layer influences 9 points in the k + 1 layer

• Right weight goes to left neighbour, left weight goes to right neighbour

Jan Hückelheim � Many-core adjoints 39

Backward stencil

• Each point in k layer receives from 9 points in k + 1 layer

• Again, right neighbour goes through left weight, and vice versa

Jan Hückelheim � Many-core adjoints 40

TF-MAD

• Implement this more efficiently:

• Flip filter horizontally and vertically, switch from push to pull

Jan Hückelheim � Many-core adjoints 41

Parallelising the adjoint, step 1: Look at the primal

• A stencil code that pulls data from neighbours to update some value.

• Outer loop: parallel loop over all nodes i .

• Inner loop: sequential loop, reading from all neighbours of i and
updating i (write/increment denoted by ↑).

• On the right: Small example mesh, we’ll come back to this.

1
2

34

Primal code

Jan Hückelheim � Many-core adjoints 42

Parallelising the adjoint, step 2: Sequential adjoint

• Primal outer loop is parallel, adjoint outer loop is not.

• Reason: Every inner iteration writes to ūj (some neighbour), and
maybe some other thread is writing to this at the same time.

Primal code Sequential Adjoint code

Jan Hückelheim � Many-core adjoints 43

Parallelising the adjoint, step 3: Segmented adjoint

• Loop body is split into two segments, each writes to only one index.

• Relis on multi-activity differentiation, see our paper, Algorithmic
Differentiation of Code with Multiple Context-Specific Activities, ACM
TOMS, 2017

Sequential Adjoint code Segmented Adjoint code

Jan Hückelheim � Many-core adjoints 44

Parallelising the adjoint, step 3: Redistributed adjoint

• “Transpose the off-diagonal term”

• Why does this work? See next slides.

Segmented Adjoint code Redistributed Parallel Adjoint

Jan Hückelheim � Many-core adjoints 45

Illustration: Standard adjoint

• Every outer iteration writes almost everywhere

~̄u1

~̄u2

~̄u3

~̄u4

 =

(∂f 2,1

1 + ∂f 4,1
1)~̄r1

∂f 2,1
2 ~̄r1
0

∂f 4,1
4 ~̄r1

+

∂f 1,2

1 ~̄r2
(∂f 1,2

2 + ∂f 3,2
2 + ∂f 4,2

2)~̄r2
∂f 3,2

3 ~̄r2
∂f 4,2

4 ~̄r2

+

0

∂f 2,3
2 ~̄r3

(∂f 2,3
3 + ∂f 4,3

3)~̄r3
∂f 4,3

4 ~̄r3

+

∂f 1,4

1 ~̄r4
∂f 2,4

2 ~̄r4
∂f 3,4

3 ~̄r4
(∂f 1,4

4 + ∂f 2,4
4 + ∂f 3,4

4)~̄r4

Jan Hückelheim � Many-core adjoints 46

Illustration: Reorganised adjoint

• Every outer iteration writes only to one index

[
~̄u1

]
=
[
(∂f 2,1

1 + ∂f 4,1
1)~̄r1 + ∂f 1,2

1 ~̄r2 + ∂f 1,4
1 ~̄r4

]
[
~̄u2

]
=
[
∂f 2,1

2 ~̄r1 + (∂f 1,2
2 + ∂f 3,2

2 + ∂f 4,2
2)~̄r2 + ∂f 2,3

2 ~̄r3 + ∂f 2,4
2 ~̄r4

]
[
~̄u3

]
=
[
∂f 3,2

3 ~̄r2 + (∂f 2,3
3 + ∂f 4,3

3)~̄r3 + ∂f 3,4
3 ~̄r4

]
[
~̄u4

]
=
[
∂f 4,1

4 ~̄r1 + ∂f 4,2
4 ~̄r2 + ∂f 4,3

4 ~̄r3 + (∂f 1,4
4 + ∂f 2,4

4 + ∂f 3,4
4)~̄r4

]

Jan Hückelheim � Many-core adjoints 47

Speed of reorganised adjoint code (16 CPU threads)

• Reorganisation slows down serial code, but scales better
• Note: Serial times need recompilation without OpenMP

prim
al

ta
ngent

ato
m

ic

fo
rw

ard

backward

1

2

3

4

2.68

3.54

2.81

4.21 4.16

0.7
0.93

2.22

0.91 0.91

×2.44

p
ro

gr
am

ru
n

ti
m

e
[s

]

serial
parallel

Jan Hückelheim � Many-core adjoints 48

Speed of reorganised adjoint code (240 MIC threads)

• Overhead of atomics larger on many-core machine. Method pays off in
this example.

30

50

70

33.85
43.6

36.58

78.15

66.06

serial
parallel

prim
al

ta
ngent

ato
m

ic

fo
rw

ard

backward

0

2

4

6 6 6 6 6 6

0.37 0.61

4.41

0.83 0.79

×5.31p
ro

gr
am

ru
n

ti
m

e
[s

]

Jan Hückelheim � Many-core adjoints 49

The good, the bad, the ugly

• The adjoint of a stencil computation can be a stencil computation.
The adjoint of GEMM can be GEMM (and look like one to the
compiler). This allows many compiler optimisations: blocking,
polyhedral compilation, auto-vectorisation, ...

• Example: Polly (LLVM) can detect code that looks like GEMM,
achieve speedups of up to 9X

• Both approaches shown here require certain symmetry conditions.
That rules out some ways of handling boundaries. Boundaries need to
be e.g. factored out into separate code part.

• Both approaches require high-level, user-given knowledge (e.g. through
pragmas)

• None of this is available yet in an AD tool.

Our paper on this: Parallelisable adjoint stencil computations using transposed
forward-mode algorithmic differentiation, in review

Jan Hückelheim � Many-core adjoints 50

Future work needed

• New programming models emerge faster than AD can catch up

• Adjoint MPI: Two decades of research.

• Adjoint OpenMP: Two PhD theses so far.

• Needed: Discussion with users to get priorities right. There are more
hard problems than we can solve.

Jan Hückelheim � Many-core adjoints 51

Thank you

Questions?

Jan Hückelheim � Many-core adjoints 52

