
Optimal Resource Allocation with Semi-Bandit Feedback

Tor Lattimore
Dept. of Computing Science

University of Alberta, Canada

Koby Crammer
Dept. of Electrical Engineering

The Technion, Israel

Csaba Szepesvári∗
Microsoft Research

Redmond, USA

Abstract

We study a sequential resource allocation prob-
lem involving a fixed number of recurring jobs.
At each time-step the manager should distribute
available resources among the jobs in order to
maximise the expected number of completed
jobs. Allocating more resources to a given job in-
creases the probability that it completes, but with
a cut-off. Specifically, we assume a linear model
where the probability increases linearly until it
equals one, after which allocating additional re-
sources is wasteful. We assume the difficulty of
each job is unknown and present the first algo-
rithm for this problem and prove upper and lower
bounds on its regret. Despite its apparent sim-
plicity, the problem has a rich structure: we show
that an appropriate optimistic algorithm can im-
prove its learning speed dramatically beyond the
results one normally expects for similar problems
as the problem becomes resource-laden.

1 INTRODUCTION

Assume that there are K jobs and at each time-step t a
learner must distribute the available resources with Mk,t ≥
0 going to job k, subject to a budget constraint,

K∑
k=1

Mk,t ≤ 1.

The probability that the kth job completes in time-step t is
min {1,Mk,t/νk}, where the unknown cut-off parameter
νk ∈ (0,∞] determines the difficulty of job k. After ev-
ery time-step the resources are replenished and all jobs are
restarted regardless of whether or not they completed suc-
cessfully in the previous time-step. The goal of the learner

∗On sabbatical leave from the Department of Computing Sci-
ence, University of Alberta, Canada

is to maximise the expected number of jobs that success-
fully complete up to some known time horizon n.

Despite the simple model, the problem is surprisingly rich.
Given its information structure, the problem belongs to the
class of stochastic partial monitoring problems, which was
first studied by Agrawal et al. [1989]1, where in each time
step the learner receives noisy information about a hidden
“parameter” while trying to maximise the sum of rewards
and both the information received and the rewards depend
in a known fashion on the actions and the hidden parameter.
While partial monitoring by now is relatively well under-
stood, either in the stochastic or the adversarial framework
when the action set is finite [Bartók et al., 2011, Foster and
Rakhlin, 2012, Bartók, 2013], the case of continuous action
sets has received only limited attention [Broder and Rus-
mevichientong, 2012, and references therein]. To illustrate
the difficulty of the problem, notice that over-assigning re-
sources to a given job means that the job completes with
certainty and provides little information about the job’s dif-
ficulty. On the other hand, if resources are under-assigned,
then the information received allows one to learn about the
payoff associated with all possible arms, which is reminis-
cent of bandit problems where the arms have “correlated
payoffs” (e.g., Filippi et al. 2010, Russo and Roy 2013 and
the references therein). Finally, allocating less resources
yields high-variance estimates.

Our motivation to study this particular framework comes
from the problem of cache allocation. In particular, data
collected offline from existing and experimental allocation
strategies showed a relatively good fit to the above paramet-
ric model. In this problem each job is a computer process,
which is successful in a given time-step if there were no
cache misses (cache misses are very expensive). Besides
this specific resource allocation problem, we also envision
other applications, such as load balancing in networked
environments, or any other computing applications where
some precious resource (bandwidth, radio spectrum, CPU,
etc.) is to be subdivided amongst competing processes. In
fact, we anticipate numerous extensions and adaptations for

1The name was invented later by (perhaps) [Rustichini, 1999].

specific applications, such as in the case of bandits (see,
Bubeck and Cesa-Bianchi [2012] for an overview of this
rich literature). Finally, let us point out that although our
problem is superficially similar to the so-called budgeted
bandit problems (or, budget limited bandit problems), there
are some major differences: in budgeted bandits, the in-
formation structure is still that of bandit problems and the
resources are not replenished. Either learning stops when
the budget is exhausted (e.g., Tran-Thanh et al. 2012, Ding
et al. 2013, Badanidiyuru et al. 2013)2, or performance is
measured against the total resources consumed in an ongo-
ing fashion (e.g., György et al. 2007).

The main contribution besides the introduction of a new
problem is a new optimistic algorithm for this problem that
is shown to suffer poly-logarithmic regret with respect to
optimal omniscient algorithm that knows the parameters
(νk)k in advance. The structure of the bound depends sig-
nificantly on the problem dynamics, ranging from a (rel-
atively) easy full-information-like setting, corresponding
to a resource-laden regime, to a bandit-like setting, corre-
sponding to the resource-scant setting. Again, to contrast
this work to previous works, note that the results we obtain
for the full-information-like setting are distinct from those
possible in the finite action case, where the full-information
setting allows one to learn with finite regret [Agrawal et al.,
1989]. On the technical side, we believe that our study and
use of weighted estimators in situations where some sam-
ples are more informative than others might be of indepen-
dent interest, too.

Problems of allocating resources to jobs were studied in
the community of architecture and operating systems. Liu
et al. [2004] build static profile-based allocation of L2-
cache banks to different processes using their current miss
rate data. Suh et al. [2002] proposed a hit-rate optimisation
using hardware counters which used a model-based esti-
mation of hit-rate vs allocated cache. However, they all as-
sume the model is fully known and no learning is required.
Bitirgen et al. [2008] used ANNs to predict individual pro-
gram performance as a function of resources. Finally, Ipek
et al. [2008] used reinforcement learning to allocate DRAM
to multi-processors.

2 PRELIMINARIES

In each time-step t the learner chooses Mk,t ≥ 0 subject
to the constraint,

∑K
k=1Mk,t ≤ 1. Then all jobs are exe-

cuted and Xk,t ∈ {0, 1} indicates the success or failure of
job k in time-step t and is sampled from a Bernoulli distri-
bution with parameter β(Mk,t/νk) := min {1,Mk,t/νk}.
The goal is to maximise the expected number of jobs that
successfully complete, ∑K

k=1 β(Mk,t/νk). We define the gaps
∆j,k = ν−1

j − ν−1
k . We assume throughout for conve-

2Besides Badanidiyuru et al. [2013], all works consider finite
action spaces and unstructured reward functions.

nience, and without loss of generality, that ν1 < ν2 <
· · · < νK . It can be shown that the optimal allocation dis-
tributes the resources to jobs in increasing order of diffi-
culty.

M∗k = min

{
1−

k−1∑
i=1

M∗i , νk

}
.

We let ` be the number of jobs that are fully allocated under
the optimal policy: ` = max {i : M∗i = νi}. The overflow
is denoted by S∗ = M∗`+1, which we assume to vanish if
` = K. The expected reward (number of completed jobs)
when following the optimal allocation is

K∑
k=1

M∗k
νk

= `+
S∗

ν`+1
,

where we define νK+1 = ∞ in the case that ` = K. The
(expected n-step cumulative) regret of a given allocation
algorithm is the difference between the expected number
of jobs that complete under the optimal policy and those
that complete given the algorithm,

Rn = E

[
n∑
t=1

rt

]
, rt =

K∑
k=1

β(M∗k/νk)−
K∑
k=1

β(Mk,t/νk)

=

(
`+

S∗

ν`+1

)
−

K∑
k=1

β(Mk,t/νk).

Some proofs are omitted due to space constraints, but may
be found in the supplementary material [Lattimore et al.,
2014].

3 OVERVIEW OF ALGORITHM

We take inspiration from the optimal policy for known νk,
which is to fully allocate the jobs with the smallest νk (eas-
iest jobs) and allocate the remainder/overflow to the next
easiest job. At each time-step t we replace the unknown νk
by a high-probability lower bound νk,t−1 ≤ νk. This corre-
sponds to the optimistic strategy, which assumes that each
job is as easy as reasonably possible. The construction of a
confidence interval about νk is surprisingly delicate. There
are two main challenges. First, the function β(Mk,t/νk) is
non-differentiable atMk,t = νk, and forMk,t ≥ νk the job
will always complete and little information is gained. This
is addressed by always using a lower estimate of νk in the
algorithm. The second challenge is thatMk,t will vary with
time, so the samples Xk,t are not identically distributed.
This would normally be unproblematic, since martingale
inequalities can be applied, but the specific structure of this
problem means that a standard sample average estimator is
a little weak in the sense that its estimation accuracy can be
dramatically improved. In particular, we will propose an
estimator that is able to take advantage of the fact that the

variance of Xk,t decreases to zero as Mk,t approaches νk
from below.

As far as the estimates are concerned, rather than estimate
the parameters νk, it turns out that learning the reciprocal
ν−1
k is both more approachable and ultimately more useful

for proving regret bounds. Fix k and let Mk,1, . . . ,Mk,t ≤
νk be a sequence of allocations with Mk,s ≤ νk and
Xk,s ∼ Bernoulli (Mk,s/νk). Then a natural (unbiased)
estimator of ν−1

k is given by

1

ν̂k,t
:=

1

t

t∑
s=1

Xk,s

Mk,s
.

The estimator has some interesting properties. First, the
random variable Xk,s/Mk,s ∈ [0, 1/Mk,s] has a large
range for smallMk,s, which makes it difficult to control the
error ν̂−1

k,t − ν
−1
k via the usual Azuma/Bernstein inequali-

ties. Secondly, if Mk,s is close to νk, then the range of
Xk,s/Mk,s is small, which makes estimation easier. Addi-
tionally, the variance is greatly decreased for Mk,s close to
νk. This suggests that samples for which Mk,s is large are
more useful than those where Mk,s is small, which moti-
vates the use of the weighted estimator,

1

ν̂k,t
:=

∑t
s=1 wsXk,s∑t
s=1 wsMk,s

,

where ws will be chosen in a data-dependent way, but with
the important characteristic that ws is large for Mk,s close
to νk. The pseudo-code of the main algorithm is shown
on Algorithm Listing 1. It accepts as input the horizon n,
the number of jobs, and a set {νk,0}Kk=1 for which 0 <
νk,0 ≤ νk for each k. In Section 7 we present a simple
(and efficient) algorithm that relaxes the need for the lower
bounds νk,0.

Remark 1. Later (in Lemma 6) we will show that with
high probability 1 ≤ wk,s ≤ O(s). By definition the con-
fidence bounds νk,t and ν̄k,t are non-decreasing/increasing
respectively. These results are sufficient to guarantee that
the new algorithm is numerically stable. It is also worth
noting that the running time of Algorithm 1 is O(1) per
time step, since all sums can be computed incrementally.

4 UPPER BOUNDS ON THE REGRET

The regret of Algorithm 1 depends in a subtle way on the
parameters νk. There are four natural cases, which will
appear in our main result.

Case 1: Insufficient budget for any jobs. In this case ` =
0 and the optimal algorithm allocates all available resources
to the easiest task, which means M∗1 = 1. Knowing that
` = 0, the problem can be reduced to a K-armed Bernoulli
bandit by restricting the action space to Mk,t = 1 for all
k. Then a bandit algorithm such as UCB1 [Auer et al.,

Algorithm 1 Optimistic Allocation Algorithm

1: input: n,K, {νk,0}Kk=1
2: δ ← (nK)−2 and ν̄k,0 =∞ for each k
3: for t ∈ 1, . . . , n do
4: /* Optimistically choose Mk,t using νk,t−1 */
5: (∀k ∈ 1, . . . ,K) initialise Mk,t ← 0
6: for i ∈ 1, . . . ,K do
7: k ← arg min

k:Mk,t=0
νk,t−1

8: Mk,t ← min
{
νk,t−1, 1−

∑K
j=1Mj,t

}
9: end for

10: (∀k ∈ 1, . . . ,K) observe Xk,t

11: (∀k ∈ 1, . . . ,K) compute weighted estimates:

wk,t ←
1

1− Mk,t

ν̄k,t−1

1

ν̂k,t
←
∑t
s=1 wk,sXk,s∑t
s=1 wk,sMk,s

12: (∀k ∈ 1, . . . ,K) update confidence intervals:

Rk,t ← max
s≤t

wk,s V̂ 2
k,t ←

∑
s≤t

wk,sMk,s

νk,t−1

ε̃k,t ←
f(Rk,t, V̂

2
k,t, δ)∑t

s=1 wk,sMk,s

1

νk,t
← min

{
1

νk,t−1
,

1

ν̂k,t
+ ε̃k,t

}
1

ν̄k,t
← max

{
1

ν̄k,t−1
,

1

ν̂k,t
− ε̃k,t

}
13: end for

14: function f (R,V 2, δ)
15: δ0 ← δ

3(R+1)2(V 2+1)2

16: return R+1
3 log 2

δ0

+
√

2(V 2 + 1) log 2
δ0

+
(
R+1

3

)2
log2 2

δ0

17: end function

2002] will achieve logarithmic (problem dependent) regret
with some dependence on the gaps ∆1,k = 1

ν1
− 1

νk
. In

particular, the regret looks like Rn ∈ O
(∑K

k=2
logn
∆1,k

)
.

Case 2: Sufficient budget for all jobs. In this case
` = K and the optimal policy assigns Mk,t = νk for all
k, which enjoys a reward of K at each time-step. Now
Algorithm 1 will choose Mk,t = νk,t−1 for all time-steps
and by Theorem 4 stated below we will have νk,t−1/νk ∈
O(1 − 1

t log n). Consequently, the regret may be bounded
by Rn ∈ O

(
log2 n

)
with no dependence on the gaps.

Case 3: Sufficient budget for all but one job. Now the
algorithm must learn which jobs should be fully allocated.
This introduces a weak dependence on the gaps ∆`,k for

k > `, but choosing the overflow job is trivial. Again we
expect the regret to be O(log2 n), but with an additional
modest dependence on the gaps.

Case 4: General case. In the completely general case even
the choice of the overflow job is non-trivial. Ultimately it
turns out that in this setting the problem decomposes into
two sub-problems. Choosing the jobs to fully allocate, and
choosing the overflow job. The first component is fast,
since we can make use of the faster learning when fully
allocating. Choosing the overflow reduces to the bandit
problem as described in case 1.

Our main result is the following theorem bounding the re-
gret of our algorithm.
Theorem 2. Let δ be as in the algorithm, ηk =
min {1, νk} /νk,0, δ̃k = δ

48η4kn
6 , ck,1 = 27 log 2

δ̃k
, ck,2 =

6 log 2
δ̃k

, uk,j =
ck,1

νk,0∆j,k
. Then Algorithm 1 suffers regret

at most

Rn ≤ 1 +
∑̀
k=1

ck,1ηk(1 + log n)

+ 1{` < K}

[
K∑

k=`+2

ck,2
νk,0∆`+1,k

+

`+1∑
k=1

ck,1ηk(1 + log n)

+

K∑
k=`+2

ck,1ηk(1 + log u`+1,k) +

K∑
k=`+1

ck,1ηk(1 + log u`,k)

]
.

If we assume ηk ∈ O(1) for each k (reasonable as dis-
cussed in Section 7), then the regret bound looks like

Rn ∈ O

(
` log2 n+

K∑
k=`+1

(
log

1

νk∆`,k

)
log n (1)

+

K∑
k=`+2

(
log

1

νk∆`+1,k

)
log n+

K∑
k=`+1

log n

∆`+1,k

)
,

where the first term is due to the gap between νk,t and νk,
the second due to discovering which jobs should be fully
allocated, while the third and fourth terms are due to mis-
takes when choosing the overflow job.

The proof is broken into two components. In the first part
we tackle the convergence of ν̂t,k to νk and analyse the
width of the confidence intervals, which are data-dependent
and shrink substantially faster whenMk,t is chosen close to
νk. In the second component we decompose the regret in
terms of the width of the confidence intervals. While we
avoided large constants in the algorithm itself, in the proof
we focus on legibility. Optimising the constants would
complicate an already long result.

5 ESTIMATION

We consider a single job with parameter ν and analyse the
estimator and confidence intervals used by Algorithm 1.

We start by showing that the confidence intervals contain
the truth with high-probability and then analyse the rate at
which the intervals shrink as more more data is observed.
Somewhat surprisingly the rate has a strong dependence
on the data with larger allocations leading to faster conver-
gence.

Let {Ft}∞t=0 be a filtration and let M1, . . . ,Mn be a se-
quence of positive random variables such that Mt is Ft−1-
measurable. Define Xt to be sampled from a Bernoulli dis-
tribution with parameter β(Mt/ν) for some ν ∈ [ν0,∞]
and assume that Xt is Ft-measurable. Our goal is to con-
struct a sequence of confidence intervals {[νt, ν̄t]}nt=1 such
that ν ∈ [νt, ν̄t] with high probability and ν̄t − νt → 0 as
fast as possible. We assume a known lower bound ν0 ≤ ν
and define ν̄0 = ∞. Recall that the estimator used by Al-
gorithm 1 is defined by

ws =
1

1− Mt

ν̄t−1

,
1

ν̂t
=

∑t
s=1 wsXs∑t
s=1 wsMs

.

Fix a number 0 < δ < 1 and define ε̃t =
f(Rt, V̂

2
t , δ)/

∑t
s=1 wsMs, where the function f is de-

fined in Algorithm 1, Rt = maxs≤t ws and V̂ 2
t =∑t

s=1
wsMs

νt−1
. The lower and upper confidence bounds on

ν−1 are defined by,

1

νt
=min

{
1

νt−1
,

1

ν̂t
+ ε̃t

}
,

1

ν̄t
=max

{
1

ν̄t−1
,

1

ν̂t
− ε̃t

}
.

We define εt = ν−1
t − ν̄−1

t to be the (decreasing) width of
the confidence interval. Note that both νt and ν̄t depend
on δ, although this dependence is not shown to minimise
clutter.

Theorem 3. If Ms is chosen such that Ms ≤ νs−1 for
all s then P {∃s ≤ t s.t. ν 6∈ [νs, ν̄s]} ≤ tδ holds for any
0 < δ < 1.

Proof of Theorem 3. Let Ft be the event Ft =
{ν ∈ [νt, ν̄t]}. Note that since [νt, ν̄t] ⊂ [νt−1, ν̄t−1] ⊂
· · · ⊂ [ν0, ν̄0], Ft ⊂ Ft−1 ⊂ · · · ⊂ F0. Hence,
Ft = ∩s≤tFs and it suffices to prove that P {F ct } ≤ tδ.3

Define Ys = wsXs − wsMs

ν and St =
∑t
s=1 Ys and V 2

t =∑t
s=1 Var[Ys|Fs−1]. We proceed by induction. Assume

P
{
F ct−1

}
≤ (t − 1)δ, which is trivial for t = 1. Now, on

Ft−1,

V 2
t

(a)
=

t∑
s=1

Var[Ys|Fs−1]
(b)
=

t∑
s=1

w2
sMs

ν

(
1− Ms

ν

)
(c)
=

t∑
s=1

wsMs

ν

(
1− Ms

ν

1− Ms

ν̄s−1

)
(d)

≤
t∑

s=1

wsMs

ν

(e)

≤ V̂ 2
t ,

3For an event E, we use Ec to denote its complement.

where (a) is the definition of V 2
t , (b) follows since ws

is Fs−1-measurable, (c) follows by substituting the def-
inition of ws, (d) and (e) are true since given Ft−1 we
know that νs−1 ≤ ν ≤ ν̄s−1. Therefore f(Rt, V

2
t , δ) ≤

f(Rt, V̂
2
t , δ), which follows since f is monotone increas-

ing in its second argument. Therefore,

P
{∣∣∣∣ 1

ν̂t
− 1

ν

∣∣∣∣ ≥ ε̃t ∧ Ft−1

}
= P

{∣∣∣∣∣
∑t
s=1 wsXs∑t
s=1 wsMs

− 1

ν

∣∣∣∣∣ ≥ f(Rt, V̂
2
t , δ)∑t

s=1 wsMs

∧ Ft−1

}

≤ P

{∣∣∣∣∣
t∑

s=1

wsXs −
t∑

s=1

wsMs

ν

∣∣∣∣∣ ≥ f(Rt, V
2
t , δ) ∧ Ft−1

}
= P

{
|St| ≥ f(Rt, V

2
t , δ) ∧ Ft−1

}
. (2)

By the union bound we have

P
{
|St| ≥ f(Rt, V̂

2
t , δ) ∨ F ct−1

}
≤ P

{
|St| ≥ f(Rt, V

2
t , δ) ∧ Ft−1

}
+ P

{
F ct−1

}
(a)

≤ δ + P
{
F ct−1

}
≤ δ + (t− 1)δ = tδ ,

where (a) follows from a martingale version of Bernstein’s
inequality adapted from Bernstein 1946 and Freedman
1975. See the supplementary material for details. There-
fore P

{
|St| ≤ f(Rt, V

2
t , δ) ∧ Ft−1

}
≥ 1− tδ and so with

probability at least 1− tδ we have that Ft−1 and∣∣∣∣ 1

ν̂t
− 1

ν

∣∣∣∣ ≤ f(Rt, V̂
2
t , δ)∑t

s=1 wsMs

= ε̃t,

in which case

1

νt
= min

{
1

νt−1
,

1

ν̂t
+ ε̃t

}
≥ 1

ν
,

and similarly 1
ν̄t
≤ 1

ν , which implies Ft. Therefore
P {F ct } ≤ tδ as required.

We now analyse the width εt ≡ ν−1
t − ν̄−1

t of the con-
fidence interval obtained after t samples are observed. We
say that a job is fully allocated at time-step s ifMs = νs−1.
The first theorem shows that the width εt drops with or-
der O(1/T (t)), where T (t) =

∑t
s=1 1{Ms = νs−1} is the

number of fully allocated time-steps. The second theorem
shows that for any α > 0, the width εt drops with or-
derO(

√
1/(αUα(t))), where Uα(t) =

∑t
s=1 1{Ms ≥ α}.

The dramatic difference in speeds is due to the low variance
Var[Xt|Ft−1] when Mt is chosen close to ν. For the next
results define η = min {1, ν} /ν0 and δ̃ = δ

48η4n6 .

Theorem 4. εt ≤
c1

ν0(T (t) + 1)
where c1 = 27 log 2

δ̃
.

Theorem 5. εt ≤
√

c2
αν0Uα(t)

where c2 = 6 log 2
δ̃

.

The proofs are based on the following lemma that collects
some simple observations:

Lemma 6. The following hold for any t ≥ 1:

1. wtMt ≤ 1
εt−1

, with equality if Mt = νt−1.
2. 1 ≤ Rt ≤ 1

ν0εt−1
.

3. εt ≥ 1
tmin{1,ν} .

4. 1− νt
ν ≤ νtεt.

Proof. Using the definition of ws and the fact that Ms is
always chosen to be smaller or equal to νs−1, we get

ws ≡
(

1− Ms

ν̄s−1

)−1 (a)

≤
(

1− νs−1

ν̄s−1

)−1

=
1

εs−1νs−1
.

The first claim follows since the inequality (a) can be re-
placed by equality if Ms = νs−1. The second follows
from the definition of Rt and the facts that (εs)s is non-
increasing and (νs)s is non-decreasing. For the third claim
we recall that Rt = maxs≤t ws and Ms ≤ ν. Therefore,

εt
(a)

≥ min

{
εt−1,

Rt∑t
s=1 wsMs

}
(b)

≥ min

{
εt−1,

1

tmin {1, ν}

}
,

where (a) follows from the definition of εt and naive bound-
ing of the function f , (b) follows since Rt ≥ ws for all
s ≤ t and because Ms ≤ min {1, ν} for all s. Trivial in-
duction and the fact that ε0 = ν−1

0 ≥ ν−1 completes the
proof of the third claim. For the final claim we use the facts
that ν−1

t ≤ ν−1 + εt. Therefore, 1− νt
νt

= νt

(
1
νt
− 1

ν

)
≤

νtεt.

Lemma 7. εt ≤
6Rt log 2

δ̃∑t
s=1 wsMs

+

√√√√ 8 log 2
δ̃

ν0

∑t
s=1 wsMs

.

Proof. Let δt = δ/(3(Rt + 1)2(V̂ 2
t + 1)2) < 1. By the

definition of εt,

εt ≤
2f(Rt, V̂

2
t , δ)∑t

s=1 wsMs

(a)

≤
4(Rt+1)

3 log 2
δt

+ 2
√

2(V̂ 2
t + 1) log 2

δt∑t
s=1 wsMs

(b)

≤
6Rt log 2

δt
+
√

8
ν0

∑t
s=1 wsMs log 2

δt∑t
s=1 wsMs

=
6Rt log 2

δt∑t
s=1 wsMs

+

√
8 log 2

δt

ν0

∑t
s=1 wsMs

,

where in (a) we used the definition of f , in (b) we substi-
tuted the definition of V̂ 2

t and used the facts that Rt ≥ 1

and ν0 ≤ νt−1 and we also used a naive bound. The proof
is completed by proving 2/δt ≤ 2/δ̃. Indeed, by Lemma 6,
1 ≤ Rt ≤ 1

εt−1ν0
≤ 1

εtν0
. We also have V̂ 2

t ≤ tR2
t . Thus,

2

δt
=

6(Rt + 1)2(V̂ 2
t + 1)2

δ
≤ 6

δ

(
16t2

(εtν0)
4

)
(a)

≤ 2

δ̃
,

where in (a) we used Lemma 6(3).

Proof of Theorem 4. By Lemma 7,

εt ≤
6Rt log 2

δ̃∑t
s=1 wsMs

+

√
8

ν0

∑t
s=1 wsMs

log
2

δ̃
. (3)

We proceed by induction. Assume that εs−1 ≤
c1

ν0(T (s−1)+1) , which is trivial for s = 1. By Lemma 6(1),

t∑
s=1

wsMs ≥
T (t)∑
s=1

sν0

c1
=
ν0T (t)(T (t) + 1)

2c1
. (4)

Therefore,√
8

ν0

∑t
s=1 wsMs

log
2

δ̃

(a)

≤ 1

ν0T (t)

√
4c1 log

2

δ̃
. (5)

Now we work on the first term in (3). If εt−1 ≤ c1
ν0(T (t)+1) ,

then we are done, since εs is non-increasing. Otherwise, we
use Lemma 6(2) to obtain,

6Rt∑t
s=1 wsMs

log
2

δ̃
≤ 6

ν0εt−1

∑t
s=1 wsMs

log
2

δ̃

(a)

≤ 3

ν0T (t)
log

2

δ̃
, (6)

where in (a) we used (4) and the lower bound on εt−1. Sub-
stituting (5) and (6) into (3) we have

εt ≤
1

ν0T (t)

√
4c1 log

2

δ̃
+

3

ν0T (t)
log

2

δ̃
.

Choosing c1 = 27 log 2
δ̃

leads to

εt ≤
1

ν0T (t)

√
4 · 27 log2 2

δ̃
+

3

ν0T (t)
log

2

δ̃

≤ 27

ν0(T (t) + 1)
log

2

δ̃
=

c1
ν0(T (t) + 1)

,

which completes the induction and proof.

Proof of Theorem 5. Firstly, by Lemma 7,

εt ≤
6Rt∑t

s=1 wsMs

log
2

δ̃
+

√
8

ν0

∑t
s=1 wsMs

log
2

δ̃
.

The second term is easily bounded by using the fact that
ws ≥ 1 and the definition of Uα(t),√

8

ν0

∑t
s=1 wsMs

log
2

δ̃
≤

√
8

ν0Uα(t)α
log

2

δ̃
.

For the first term we assume εt−1 ≥
√

c2
ν0Uα(t)α , since

otherwise we can apply monotonicity of εt. Therefore

6Rt∑t
s=1 wsMs

log
2

δ̃
≤ 6

ν0εt−1

∑t
s=1 wsMs

log
2

δ̃

≤

√
Uα(t)αν0

c2
·

6 log 2
δ̃

ν0Uα(t)α
≤ 6

√
1

c2αν0Uα(t)
log

2

δ̃
.

Now choose c2 = 6 log 2
δ̃

to complete the result.

6 PROOF OF THEOREM 2

We are now ready to use the results of Section 5 to bound
the regret of Algorithm 1. The first step is to decompose
the regret into two cases depending on whether or not the
confidence intervals contain the truth. The probability that
they do not is low, so this contributes negligibly to the re-
gret. When the confidence intervals are valid we break
the problem into two components. The first is the selec-
tion of the processes to fully allocation, which leads to
the O(log2 n) part of the bound. The second component
involves analysing the selection of the overflow process,
where the approach is reminiscent of the analysis for the
UCB algorithm for stochastic bandits [Auer et al., 2002].

Let Fk,t denote the event when none of the confidence in-
tervals underlying job k fail up to time t:

Fk,t = {∀s ≤ t : ν ∈ [νk,s, ν̄k,s]} .

The algorithm uses δ = (nK)−2, which is sufficient by a
union bound and Theorem 3 to ensure that,

P {Gc} ≤ 1

nK
, where G =

K⋂
k=1

Fk,n . (7)

The regret can be decomposed into two cases depending on
whether G holds:

Rn = E
n∑
t=1

rt
(a)
= E1{Gc}

n∑
t=1

rt + E1{G}
n∑
t=1

rt (8)

(b)

≤ E1{Gc}nK + E1{G}
n∑
t=1

rt
(c)

≤ 1 + E1{G}
n∑
t=1

rt,

where (a) follows from the definition of expectation, (b) is
true by bounding rt ≤ K for all t, and (c) follows from (7).
For the remainder we assume G holds and use Theorems 4

and 5 combined with the definition of the algorithm to con-
trol the second term in (8). The first step is to decompose
the regret in round t:

rt = `∗ +
S∗

ν`+1
−

K∑
k=1

β

(
Mk,t

νk

)
.

By the assumption that G holds we know for all t ≤ n and
k that ν̄−1

k,t ≤ ν−1
k ≤ ν−1

k,t . Therefore Mk,t ≤ νk,t−1 ≤ νk,
which means that β(Mk,t/νk) = Mk,t/νk. Define πt(i) ∈
{1, . . . ,K} such that νπt(i),t−1 ≤ νπt(i+1),t−1. Also let

At = {k : Mk,t = νk,t−1} ,

A≤jt = At ∩ {πi(t) : 1 ≤ i ≤ j} ,

Tk(t) =

t∑
s=1

1{k ∈ At} and Bt = πt(`+ 1).

Informally, At is the set of jobs that are fully allocated at
time-step t, A≤jt is a subset of At containing the j jobs
believed to be easiest, Tk(t) is the number of times job k
has been fully allocated at time-step t, and Bt is the (` +
1)th easiest job at time-step t (this is only defined if ` < K
and will only be used in that case).

Lemma 8. For all t, |At| ≥ ` and if |At| = `, then
MBt,t ≥ S∗.

Proof. |At| = max
{
j :
∑j
i=1 νπt(i),t−1 ≤ 1

}
. But

νk,t−1 ≤ νk for all k and t, so
∑`
i=1 νπt(i),t−1 ≤∑`

k=1 νk,t−1 ≤
∑`
k=1 νk ≤ 1. Therefore |At| ≥ `.

If |At| = `, then Bt /∈ At is the overflow job and so
MBt,t = 1 −

∑
k∈At νk,t−1 ≥ 1 −

∑
k∈A∗ νk,t−1 ≥

1−
∑
k∈A∗ νk ≡ S∗

We now decompose the regret, while still assuming that G
holds:

n∑
t=1

rt =

n∑
t=1

(
`+

S∗

ν`+1
−

K∑
k=1

Mk,t

νk

)

≤
n∑
t=1

∑
k∈A≤`

t

(
1− Mk,t

νk

)
(9)

+ 1{` < K}
n∑
t=1

(
S∗

ν`+1
− MBt,t

νBt

)
. (10)

Let us bound the first sum:

n∑
t=1

∑
k∈A≤`

t

(
1− Mk,t

νk

)

=

n∑
t=1

K∑
k=1

1
{
k ∈ A≤`t

}(
1− νk,t−1

νk

)

(a)

≤
n∑
t=1

K∑
k=1

1
{
k ∈ A≤`t

}
νk,t−1εk,t−1

(b)

≤
n∑
t=1

K∑
k=1

1
{
k ∈ A≤`t

} ck,1νk,t−1

νk,0Tk(t)
, (11)

where (a) follows by Lemma 6 and (b) by Theorem 4.

Lemma 9. If k > j, then

n∑
t=1

1
{
k ∈ A≤jt

}
≤ ck,1
νk,0∆j,k

=: uj,k.

Proof. Assume k ∈ A≤jt . Therefore νk,t−1 ≤ νj . But if
uj,k <

∑t
s=1 1

{
k ∈ A≤js

}
≤ Tk(t− 1) + 1, then

1

νk,t−1
≤ 1

νk
+ εk,t−1 =

1

νj
+ εk,t−1 −∆j,k

(a)

≤ 1

νj
+

ck,1
νk,0(Tk(t− 1) + 1)

−∆j,k <
1

νj
,

where (a) follows from Theorem 4. Therefore k ∈
A≤jt implies that

∑t
s=1 1

{
k ∈ A≤js

}
≤ uj,k and so∑n

t=1 1
{
k ∈ A≤jt

}
≤ uj,k as required.

Continuing (11) by applying Lemma 9 with j = `:

n∑
t=1

K∑
k=1

1
{
k ∈ A≤`t

} ck,1νk,t−1

νk,0Tk(t)

=

n∑
t=1

∑
k∈A∗

1
{
k ∈ A≤`t

} ck,1νk,t−1

νk,0Tk(t)

+

n∑
t=1

∑
k/∈A∗

1
{
k ∈ A≤`t

} ck,1νk,t−1

νk,0Tk(t)
(12)

(a)

≤
∑
k∈A∗

n∑
t=1

ck,1ηk
t

+
∑
k/∈A∗

u`,k∑
t=1

ck,1ηk
t

≤
∑̀
k=1

ck,1ηk(1 + log n) +

K∑
k=`+1

ck,1ηk(1 + log u`,k),

where (a) follows by Lemma 9 and the fact that k ∈ A≤`t
implies that νk,t−1

νk,0
≤ ηk. Now if ` = K, then the second

term in (9) is zero and the proof is completed by substitut-
ing the above result into (9) and then into (8). So now we
assume ` > K and bound the second term in (9) as follows:

n∑
t=1

(
S∗

ν`+1
− MBt,t

νBt

)
≤

n∑
t=1

1{Bt ∈ At}
(

1− νBt,t−1

νBt

)

+

n∑
t=1

1{Bt /∈ At}
(
S∗

ν`+1
− S∗

νBt

)
, (13)

where we used Lemma 8 and S∗ ≤ 1 and that if Bt ∈ At,
then MBt,t = νBt,t−1. Bounding each term separately:

n∑
t=1

1{Bt ∈ At}
(

1− νBt,t−1

νBt

)
(a)

≤
K∑
k=1

n∑
t=1

1
{
k ∈ A≤`+1

t

}(
1− νk,t−1

νk

)
(b)

≤
K∑
k=1

n∑
t=1

1
{
k ∈ A≤`+1

t

}
νk,t−1εk,t−1 (14)

(c)

≤
K∑
k=1

n∑
t=1

1
{
k ∈ A≤`+1

t

} ck,1νk,t−1

νk,0Tk(t)

(d)

≤
`+1∑
k=1

ck,1ηk(1 + log n) +

K∑
k=`+2

ck,1ηk(1 + log u`+1,k),

where (a) follows since Bt ∈ At implies that Bt ∈ A≤`+1
t ,

(b) follows from Lemma 6(4), (c) by Theorem 4, and (d)
follows from Lemma 9 and the same analysis as (12).
For the second term we need the following lemma, which
uses Theorem 5 and a reasoning analogues to that of Auer
et al. [2002] to bound the regret of the UCB algorithm for
stochastic bandits:

Lemma 10. Let Uk(t) =
∑t
s=1 1{Mk,s ≥ S∗} and k >

`+ 1. If Uk(t) ≥ ck,2
S∗νk,0∆2

`+1,k
=: vk, then k 6= Bt.

Proof. If νk,t−1 > ν`+1, then k 6= Bt. Furthermore, if
Uk(t) > vk, then

1

νk,t−1
≤ 1

νk
+ εk,t−1 =

1

ν`+1
−∆`+1,k + εk,t−1

(a)

≤ 1

ν`+1
−∆`+1,k +

√
ck,2

νk,0S∗Uk(t)
<

1

ν`+1
,

where (a) follows from Theorem 5.

Therefore

n∑
t=1

1{Bt /∈ At}
(
S∗

ν`+1
− S∗

νBt

)
(a)

≤ S∗
K∑
k=1

n∑
t=1

1{k = Bt /∈ At}∆`+1,k

(b)

≤ S∗
K∑

k=`+2

n∑
t=1

1{k = Bt /∈ At}∆`+1,k

(c)

≤ S∗
K∑

k=`+2

n∑
t=1

1{k = Bt ∧Mk,t ≥ S∗}∆`+1,k

(d)

≤
K∑

k=`+2

S∗∆`+1,kvk
(e)
=

K∑
k=`+2

ck,2
νk,0∆`+1,k

, (15)

where (a) follows from the definition of ∆`+1,k and the fact
that if Bt /∈ At, then |At| = `, (b) follows since ∆`+1,k is
negative for k ≤ `+ 1, (c) by Lemma 8, (d) by Lemma 10,
and (e) by the definition of vk. Substituting (14) and (15)
into (13) we have

n∑
t=1

(
S∗

ν`+1
− MBt,t

νBt

)
≤

`+1∑
k=1

ck,1ηk(1 + log n)

+

K∑
k=`+2

ck,1ηk(1 + log u`+1,k) +

K∑
k=`+2

ck,2
νk,0∆`+1,k

.

We then substitute this along with (12) into (9) and then (8)
to obtain

Rn ≤ 1 +
∑̀
k=1

ck,1ηk(1 + log n)

+ 1{` < K}

[
K∑

k=`+2

ck,2
νk,0∆`+1,k

+

`+1∑
k=1

ck,1ηk(1 + log n)

+

K∑
k=`+2

ck,1ηk(1 + log u`+1,k) +

K∑
k=`+1

ck,1ηk(1 + log u`,k)

]
.

7 INITIALISATION

Previously we assumed a known lower bound νk,0 ≤ νk for
each k. In this section we show that these bounds are easily
obtained using a halving trick. In particular, the following
algorithm computes a lower bound ν0 ≤ ν for a single job
with unknown parameter ν.

Algorithm 2 Initialisation of ν0

1: for t ∈ 1, . . . ,∞ do
2: Allocate Mt = 2−t and observe Xt

3: if Xt = 0 then return ν0 ← 2−t.
4: end for

A naive way to eliminate the need for the lower bounds
(νk,0)k is simply to run Algorithm 2 for each job sequen-
tially. Then the following proposition (proven in supple-
mentary material) shows that η ∈ O(1) is reasonable,
which justifies the claim made in (1) that the ηk terms ap-
pearing in Theorem 2 are O(1).

Proposition 11. If η = min{1,ν}
ν0

, then Eη ≤ 4.

The problem with the naive method is that the expected
running time of Algorithm 2 is O(log 1

ν), which may be
arbitrary large for small ν and lead to a high regret during
the initialisation period. Fortunately, the situation when ν
is small is easy to handle, since the amount of resources
required to complete such a job is also small. The trick is
to run K offset instances of Algorithm 2 alongside a mod-
ified version of Algorithm 1. First we describe the parallel

implementations of Algorithm 2. For job k, start Algo-
rithm 2 in time-step k, which means that the total amount
of resources used by the parallel copies of Algorithm 2 in
time-step t is bounded by
K∑
k=1

1{t ≥ k} 2k−t−1

≤ min
{

1, 2K−t
}
. (16)

Job Mk,1 Mk,2 Mk,3 Mk,4

1 1/2 1/4 1/8 1/16

2 0 1/2 1/4 1/8

3 0 0 1/2 1/4
K∑
k=1

Mk,t 1/2 3/4 7/8 7/16

Algorithm 1 is implemented starting from time-step 1, but
only allocates resources to jobs for which the initialisa-
tion process has completed. Estimates are computed using
only the samples for which Algorithm 1 chose the alloca-
tion, which ensures that they are based on allocations with
Mk,t ≤ νk. Note that the analysis of the modified algo-
rithm does not depend on the order in which the parallel
processes are initialised. The regret incurred by the modi-
fied algorithm is given in order notation in (1). The proof
is omitted, but relies on two observations. First, that the
expected number of time-steps that a job is not (at least)
fully allocated while it is being initialised is 2. The second
is that the resources available to Algorithm 1 at time-step t
converges exponentially fast to 1 by (16).

8 MINIMAX LOWER BOUNDS
Despite the continuous action space, the techniques used
when proving minimax lower bounds for standard stochas-
tic bandits [Auer et al., 1995] can be adapted to our setting.
The proof is included in the supplementary material.

Theorem 12. Given fixed n and 8n ≥ K ≥ 2 and an
arbitrary algorithm, there exists an allocation problem for
which the expected regret satisfies Rn ≥

√
nK

16
√

2
.

9 EXPERIMENTS
All code and data is available in the supplementary mate-
rial. Data points were generated using the modified algo-
rithm described in Section 7 and by taking the mean of 300
samples. With this many samples the standard error is rel-
atively low (and omitted for readability). We should note
that the variance in the regret of the modified algorithm
is reasonably large, because the regret depends linearly on
the random ηk. For known lower bounds the variance is ex-
tremely low. To illustrate the behaviour of the algorithm we
performed four experiments on synthetic data with K = 2,
which are plotted below as TL (top left), TR, BL, BR (bot-
tom right) respectively. In TL we fixed n = 104, ν1 = 2
and plotted the regret as a function of ν2 ∈ [2, 10]. The
experiment shows the usual bandit-like dependence on the
gap 1/∆1,2. In TR we fixed ν1 = 4/10, ν2 = 6/10 and
plotted Rn/ log2 n as a function of n. The experiment lies
within case 2 described in Section 4 and shows that the
algorithm suffers regret Rn ≈ 45 log2 n as predicted by
Theorem 2. In BL we fixed n = 105, ν1 = 4/10 and plotted
the regret as a function of ν2 ∈ [4/10, 1]. The results show

the algorithm suffering O(log2 n) regret for both processes
until the critical point when ν2 > 6/10 when the second
process can no longer be fully allocated, which is quickly
learned and the algorithm suffers O(log2 n) regret for only
one process. In BR we fixed ν1 = 4/10 and ν2 = 6/10 and
plotted the regret as a function of n for two algorithms. The
first algorithm (solid blue) is the modified version of Algo-
rithm 1 as described in Section 7. The second (dotted red)
is the same, but uses the unweighted estimator wk,t = 1
for all k and t. The result shows that both algorithms suf-
fer sub-linear regret, but that the weighted estimator is a
significant improvement over the unweighted one.

2 3 4 5 6

140

160

180

ν2

R
n

0 1e6

20

40

n

R
n

lo
g
2
n

0.4 0.6 0.8 1

2e3

5e3

ν2
R
n

0 1e5
0

1e4

n

R
n

10 CONCLUSIONS
We introduced the linear stochastic resource allocation
problem and a new optimistic algorithm for this setting.
Our main result shows that the new algorithm enjoys a
(squared) logarithmic problem-dependent regret. We also
presented a minimax lower bound of Ω(

√
nK), which is

consistent with the problem-dependent upper bound. The
simulations confirm the theory and highlight the practical
behaviour of the new algorithm. There are many open
questions and possibilities for future research. Most impor-
tant is whether the log2 n can be reduced to log n. Problem-
dependent lower bounds would be interesting. The algo-
rithm is not anytime (although a doubling trick presumably
works in theory). Developing and analysing algorithms
when the horizon it not known, and have high-probability
bounds are both of interest. We also wonder if Thompson
sampling can be efficiently implemented for some reason-
able prior, and if it enjoys the same practical and theoretical
guarantees in this domain as it does for bandits. Other inter-
esting extensions are when resources are not replenished,
or the state of the jobs follow a Markov process. Finally,
we want to emphasise that we have made just the first steps
towards developing this new and interesting setting. We
hope to see significant activity extending and modifying the
model/algorithm for specific problems.
Acknowledgements This work was supported by the
Alberta Innovates Technology Futures, NSERC, by EU
Framework 7 Project No. 248828 (ADVANCE), and by
Israeli Science Foundation grant ISF- 1567/10. Part of this
work was done while Csaba Szepesvári was visiting Tech-
nion.

References
Rajeev Agrawal, Demosthenis Teneketzis, and Venkat-

achalam Anantharam. Asymptotically efficient adaptive
allocation schemes for controlled i.i.d. processes: Finite
parameter space. IEEE Transaction on Automatic Con-
trol, 34:258–267, 1989.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In Foundations
of Computer Science, 1995. Proceedings., 36th Annual
Symposium on, pages 322–331. IEEE, 1995.

Peter Auer, Nicoló Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47:235–256, 2002.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Alek-
sandrs Slivkins. Bandits with knapsacks. In FOCS,
pages 207–216, 2013.

Gábor Bartók. A near-optimal algorithm for finite partial-
monitoring games against adversarial opponents. In
COLT, pages 696–710, 2013.

Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Minimax
regret of finite partial-monitoring games in stochastic en-
vironments. In COLT 2011, pages 133–154, 2011.

Sergei Bernstein. The Theory of Probabilities (Russian).
Moscow, 1946.

Ramazan Bitirgen, Engin Ipek, and Jose F Martinez. Coor-
dinated management of multiple interacting resources in
chip multiprocessors: A machine learning approach. In
Proceedings of the 41st annual IEEE/ACM International
Symposium on Microarchitecture, pages 318–329. IEEE
Computer Society, 2008.

Josef Broder and Paat Rusmevichientong. Dynamic pricing
under a general parametric choice model. Operations
Research, 60(4):965–980, 2012.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret Anal-
ysis of Stochastic and Nonstochastic Multi-armed Ban-
dit Problems. Foundations and Trends in Machine
Learning. Now Publishers Incorporated, 2012. ISBN
9781601986269.

Wenkui Ding, Tao Qin, Xu-Dong Zhang, and Tie-Yan Liu.
Multi-armed bandit with budget constraint and variable
costs. In AAAI, 2013.

Sarah Filippi, Olivier Cappé, Aurélien Garivier, and Csaba
Szepesvári. Parametric bandits: The generalized linear
case. In NIPS, pages 586–594, December 2010.

Dean P. Foster and Alexander Rakhlin. No internal regret
via neighborhood watch. Journal of Machine Learning
Research - Proceedings Track (AISTATS), 22:382–390,
2012.

David A. Freedman. On tail probabilities for martingales.
The Annals of Probability, 3(1):100–118, 02 1975.

András György, Levente Kocsis, Ivett Szabó, and Csaba
Szepesvári. Continuous time associative bandit prob-
lems. In IJCAI-07, pages 830–835, 2007.

Engin Ipek, Onur Mutlu, José F. Martı́nez, and Rich Caru-
ana. Self-optimizing memory controllers: A reinforce-
ment learning approach. SIGARCH Comput. Archit.
News, 36(3):39–50, June 2008. ISSN 0163-5964.

Tor Lattimore, Koby Crammer, and Csaba Szepesvári.
Optimal resource allocation with semi-bandit feedback.
arXiv preprint arXiv:????.????, 2014.

Chun Liu, Anand Sivasubramaniam, and Mahmut Kan-
demir. Organizing the last line of defense before hit-
ting the memory wall for cmps. In Software, IEE
Proceedings-, pages 176–185. IEEE, 2004.

Daniel Russo and Benjamin Van Roy. Eluder dimension
and the sample complexity of optimistic exploration. In
NIPS, pages 2256–2264, 2013.

Aldo Rustichini. Minimizing regret: The general
case. Games and Economic Behavior, 29(1–2):224–243,
1999.

G Edward Suh, Srinivas Devadas, and Larry Rudolph.
A new memory monitoring scheme for memory-aware
scheduling and partitioning. In High-Performance Com-
puter Architecture, 2002. Proceedings. Eighth Interna-
tional Symposium on, pages 117–128. IEEE, 2002.

Long Tran-Thanh, Archie C. Chapman, Alex Rogers, and
Nicholas R. Jennings. Knapsack based optimal policies
for budget-limited multi-armed bandits. In AAAI, 2012.

	INTRODUCTION
	PRELIMINARIES
	OVERVIEW OF ALGORITHM
	UPPER BOUNDS ON THE REGRET
	ESTIMATION
	PROOF OF THEOREM 2
	INITIALISATION
	MINIMAX LOWER BOUNDS
	EXPERIMENTS
	CONCLUSIONS

