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Abstract

A matroid is a notion of independence in combi-
natorial optimization which is closely related to
computational efficiency. In particular, it is well
known that the maximum of a constrained mod-
ular function can be found greedily if and only if
the constraints are associated with a matroid. In
this paper, we bring together the ideas of bandits
and matroids, and propose a new class of combi-
natorial bandits, matroid bandits. The objective
in these problems is to learn how to maximize a
modular function on a matroid. This function is
stochastic and initially unknown. We propose a
practical algorithm for solving our problem, Op-
timistic Matroid Maximization (OMM); and prove
two upper bounds, gap-dependent and gap-free,
on its regret. Both bounds are sublinear in time
and at most linear in all other quantities of inter-
est. The gap-dependent upper bound is tight and
we prove a matching lower bound on a partition
matroid bandit. Finally, we evaluate our method
on three real-world problems and show that it is
practical.

1 Introduction

Combinatorial optimization is a well-established field that
has many practical applications, ranging from resource al-
location [14] to designing network routing protocols [20].
Modern combinatorial optimization problems are often so
massive that even low-order polynomial-time solutions are
not practical. Fortunately, many important problems, such
as finding a minimum spanning tree, can be solved greed-
ily. Such problems can be often viewed as optimization on
a matroid [25], a notion of independence in combinatorial
optimization which is closely related to computational ef-
ficiency. In particular, it is well known that the maximum
of a constrained modular function can be found greedily if
and only if all feasible solutions to the problem are the in-

dependent sets of a matroid [8]. Matroids are common in
practice because they generalize many notions of indepen-
dence, such as linear independence and forests in graphs.

In this paper, we propose an algorithm for learning how to
maximize a stochastic modular function on a matroid. The
modular function is represented as the sum of the weights
of up to K items, which are chosen from the ground set £/
of a matroid, which has L items. The weights of the items
are stochastic and represented as a vector w € [0, 1]¥. The
vector w is drawn i.i.d. from a probability distribution P.
The distribution P is initially unknown and we learn it by
interacting repeatedly with the environment.

Many real-world optimization problems can be formulated
in our setting, such as building a spanning tree for network
routing [20]. When the delays on the links of the network
are stochastic and their distribution is known, this problem
can be solved by finding a minimum spanning tree. When
the distribution is unknown, it must be learned, perhaps by
exploring routing networks that seem initially suboptimal.
We return to this problem in our experiments.

This paper makes three main contributions. First, we bring
together the concepts of matroids [25] and bandits [15, 3],
and propose a new class of combinatorial bandits, matroid
bandits. On one hand, matroid bandits can be viewed as a
new learning framework for a broad and important class of
combinatorial optimization problems. On the other hand,
matroid bandits are a class of K -step bandit problems that
can be solved both computationally and sample efficiently.

Second, we propose a simple greedy algorithm for solving
our problem, which explores based on the optimism in the
face of uncertainty. We refer to our approach as Optimistic
Matroid Maximization (OMM). OMM is both computationally
and sample efficient. In particular, the time complexity of
OMM is O(Llog L) per episode, comparable to that of sort-
ing L numbers. Moreover, the expected cumulative regret
of OMM is sublinear in the number of episodes, and at most
linear in the number of items L and the maximum number
of chosen items K.

Finally, we evaluate OMM on three real-world problems. In



the first problem, we learn routing networks. In the second
problem, we learn a policy for assigning loans in a micro-
finance network that maximizes chances that the loans are
repaid. In the third problem, we learn a movie recommen-
dation policy. All three problems can be solved efficiently
in our framework. This demonstrates that OMM is practical
and can solve a wide range of real-world problems.

We adopt the following notation. We write A + e instead
of AU {e}, and A + B instead of A U B. We also write
A — e instead of A\ {e}, and A — B instead of A \ B.

2 Matroids

A matroid is apair M = (E,Z), where E = {1,..., L} is
a set of L items, called the ground set, and Z is a family of
subsets of F, called the independent sets. The family Z is
defined by the following properties. First, ) € Z. Second,
every subset of an independent set is independent. Finally,
forany X € Zand Y € T such that | X| = |Y| + 1, there
must exist an item e € X — Y such that Y 4+ e € Z. This
is known as the augmentation property. We denote by:

EX)={e:ecE-X, X+ecI} (1)

the set of items that can be added to set X such that the set
remains independent.

A set is a basis of a matroid if it is a maximal independent
set. All bases of a matroid have the same cardinality [25],
which is known as the rank of a matroid. In this work, we
denote the rank by K.

A weighted matroid is a matroid associated with a vector
of non-negative weights w € (R*)%. The e-th entry of w,
w(e), is the weight of item e. We denote by:

FA,w) = wie) )

e€cA

the sum of the weights of all items in set A. The problem
of finding a maximum-weight basis of a matroid:

A* = argmax f(A,w) = arg max Zw(e) 3)
A€T AeT I

is a well-known combinatorial optimization problem. This
problem can be solved greedily (Algorithm 1). The greedy
algorithm has two main stages. First, A* is initialized to (.
Second, all items in the ground set are sorted according to
their weights, from the highest to the lowest, and greedily
added to A* in this order. The item is added to the set A*
only if it does not make the set dependent.

3 Matroid Bandits

A minimum spanning tree is a maximum-weight basis of a
matroid. The ground set E of this matroid are the edges of

Algorithm 1 The greedy method for finding a maximum-
weight basis of a matroid [8].

Input: Matroid M = (E,Z), weights w

A* 0
Letey,...,er be an ordering of items such that:
w(er) >...>w(er)
foralli=1,...,Ldo
if (e; € E(A*)) then
A* — A* + €;
end if
end for

a graph. A set of edges is considered to be independent if
it does not contain a cycle. Each edge e is associated with
a weight w(e) = umax — u(e), where umax = max. u(e)
and u(e) is the weight of edge e in the original graph.

The minimum spanning tree cannot be computed when the
weights w(e) of the edges are unknown. This may happen
in practice. For instance, consider the problem of building
a routing network, which is represented as a spanning tree,
where the expected delays on the links of the network are
initially unknown. In this work, we study a variant of max-
imizing a modular function on a matroid that can address
this kind of problems.

3.1 Model

We formalize our learning problem as a matroid bandit. A
matroid bandit is a pair (M, P), where M is a matroid and
P is a probability distribution over the weights w € R* of
items E in M. The e-th entry of w, w(e), is the weight of
item e. The weights w are stochastic and drawn i.i.d. from
the distribution P. We denote the expected weights of the
items by w = E[w] and assume that each of these weights
is non-negative, w(e) > O foralle € F.

Each item e is associated with an arm and we assume that
multiple arms can be pulled. A subset of arms A C FE can
be pulled if and only if A is an independent set. The return
for pulling arms A is f(A, w) (Equation 2), the sum of the
weights of all items in A. After the arms A are pulled, we
observe the weight of each item in A, w(e) for all e € A.
This model of feedback is known as semi-bandit [2].

We assume that the matroid M is known and that the dis-
tribution P is unknown. Without loss of generality, we as-
sume that the support of P is a bounded subset of [0, 1]%.
We would like to stress that we do not make any structural
assumptions on P.

The optimal solution to our problem is a maximum-weight
basis in expectation:

A* = argmax Ew[f(A, w)] = arg max Z w(e). (4)
AeT AeT I



Algorithm 2 OMM: Optimistic matroid maximization.
Input: Matroid M = (F,Z)

// Initialization
Observe wg ~ P

’Li)eﬁl < Wo(e) Vee E
T.(0) + 1 Vee E
forallt=1,...,ndo

/I Compute UCBs

Ui(e) + 121677“6(75_1) +ct-1,1.(t-1) Veec E

// Find a maximum-weight basis with respect to Uy
At 0
Lete!,..., e, be an ordering of items such that:
Ut(ei) Z e Z Uf(ei)
foralli=1,...,Ldo
if (e! € E(A")) then
At At + €l
end if
end for
Observe {w;(e) : e € A'}, where w; ~ P

/I Update statistics

T.(t) « Te(t—1) Vee E

To(t) « To(t) +1 Ve € At

. Te(t — D) 1, (t—1) + We(e)

We, T, (t) < e;((tt) D ! Ve € At
end for

The above optimization problem is equivalent to the prob-
lem in Equation 3. Therefore, it can be solved greedily by
Algorithm 1 when the expected weights w are known.

Our learning problem is episodic. In episode ¢, we choose
a basis A! and gain f(A?, w;), where w; is the realization
of the stochastic weights in episode ¢. Our goal is to learn
a policy, a sequence of bases, that minimizes the expected
cumulative regret in n episodes:

R(n) = Ewl,...,wn

> Rt(wt)] : )
t=1

where Ry(w;) = f(A*, wy) — f(A', w;) is the regret in
episode ¢.

3.2 Algorithm

Our solution is designed based on the optimism in the face
of uncertainty principle [17]. In particular, it is a variant of
the greedy method for finding a maximum-weight basis of
a matroid where the expected weight w(e) of each item e
is substituted with its optimistic estimate U, (e). Therefore,
we refer to our approach as Optimistic Matroid Maximiza-
tion (OMM).

The pseudocode of our algorithm is given in Algorithm 2.
The algorithm can be summarized as follows. First, at the
beginning of each episode ¢, we compute the upper confi-
dence bound (UCB) on the weight of each item e:

Ui(e) = We,r,(t-1) + Ct—1,1.(t—1)5 (6)

where . 1, (;—1) is our estimate of w(e) at the beginning
of episode ¢, ¢;_1 1, (t—1) represents the radius of the con-
fidence interval around this estimate, and T, (¢t — 1) is the
number of times that OMM chooses item e before episode ?.
Second, we order all items e by their UCBs (Equation 6),
from the highest to the lowest, and then add them greedily
to At in this order. The item is added to the set A? only if
it does not make the set dependent. Finally, we choose the
basis A?, observe the weights of all items in the basis, and
update our model w of the world.

The radius:

21og(1)/s )

is defined such that each upper confidence bound Uy (e) is
with high probability an upper bound on the weight w(e).
The role of the UCBs is to encourage exploration of items
that are not chosen very often. As the number of episodes
increases, the estimates of the weights w improve and OMM
starts exploiting best items. The log(¢) term increases with
time ¢ and enforces exploration, to avoid linear regret.

Ct,s =

OMM is a greedy algorithm and therefore is extremely com-
putationally efficient. In particular, let the time complexity
of checking for independence, e! € E(A"), be O(g(]A])).
Then the time complexity of OMM is O(L(log L + g(K)))
per episode, comparable to that of sorting L numbers. The
design of our algorithm is not surprising and is motivated
by prior work [12]. The main challenge is to derive a tight
upper bound on the regret of OMM, which would reflect the
structure of our problem.

4 Analysis

In this section, we analyze the regret of OMM. Our analysis
is organized as follows. First, we introduce basic concepts
and notation. Second, we show how to decompose the re-
gret of OMM in a single episode. In particular, we partition
the regret of a suboptimal basis into the sum of the regrets
of individual items. This part of the analysis relies heavily
on the structure of a matroid and is the most novel. Third,
we derive two upper bounds, gap-dependent and gap-free,
on the regret of OMM. Fourth, we prove a lower bound that
matches the gap-dependent upper bound. Finally, we sum-
marize the results of our analysis.

4.1 Notation

Before we present our results, we introduce notation used
in our analysis. The optimal basis is A* = {a],...,a%}.



We assume that the items in A* are ordered such that a} is
the k-th item with the highest expected weight. In episode
t, OMM chooses a basis A* = {a!, ..., a% }, where a, is the
k-th item chosen by OMM. We say that item e is suboptimal
if it belongs to A* = E — A*, the set of suboptimal items.
For any pair of suboptimal and optimal items, e € A* and
ay,, we define a gap:

Ac = w(ay) — w(e) ®)

and use it as a measure of how difficult it is to discriminate
the items. For every item e € A*, we define a set:

Oc = {k: Acy > 0}, ©)

the indices of items in A* whose expected weight is higher
than that of item e. The cardinality of O, is K, = |O,]|.

4.2 Regret Decomposition

Our decomposition is motivated by the observation that all
bases of a matroid are of the same cardinality. As a result,
the difference in the expected values of any two bases can
be always written as the sum of differences in the weights
of their items. In particular:

K
Ew [f(A*a W) - f(At = Z Aa;‘c,ﬂ(k)v (10)
k=1

where 7 : {1,..., K} — {1,..., K} is an arbitrary bijec-
tion from A’ to A* such that 7 (k) is the index of the item
in A* that is paired with the k-th item in A’. In this work,
we focus on one particular bijection.

Lemma 1. For any two matroid bases A* and At there
exists a bijectionw : {1,..., K} — {1,..., K} such that:

{aﬁ,...,a;,l,a;(k)} €T Vk=1,...,K.
In addition, w(k) = i when af, = a for some i.
Proof. The lemma is proved in Appendix. m

The bijection 7 in Lemma 1 has two important properties.
a};_l, aj‘r(k)} € 7 for all k. In other words,
OMM can choose item o k) at step k. However, OMM selects

First, {a17 ey

item af. By the design of OMM, this can happen only when
the UCB of item af, is larger or equal to that of item a;( k)"
As a result, we know that Uy (al) > Ui(ay, ) in all steps
k. Second, Lemma 1 guarantees that every optimal item in
A is paired with the same item in A*.

In the rest of the paper, we represent the bijection 7 using
an indicator function. The indicator function:

Lei(t) =1{3i:a; =e, 7(i) =k} (11)

indicates the event that item e is chosen instead of item a},
in episode ¢. Based on our new representation, we rewrite
Equation 10 as:

Z Z Ae,kﬂe,k(t)

D Aupr =
k=1 ecA* k=1

K.
<D Akt (12)

ecA* k=1
and then bound it from above. The last inequality is due to
neglecting the negative gaps.

The above analysis applies to any basis A* in any episode
t. The results of our analysis are summarized below.

Theorem 1. The expected regret of choosing any basis A
in episode t is bounded as:

K.
ZZ ek llek(t
« k=1

The indicator function 1. i (t) indicates the event that item
e is chosen instead of item aj, in episode t. When the event
1. 1 (t) happens, U(e) > U,(a},). Moreover:

> ine,k(t) <K VWVt

ecA* k=1

e

Ter(t) <1 Vt,e € A*.

x>
Il
—_

The last two inequalities follow from the fact that 1. ()
is a bijection from A! to A*, every item in the suboptimal
basis A? is matched with one unique item in A*.

One remarkable aspect of our regret decomposition is that
the exact form of the bijection is not required in the rest of
our analysis. We only rely on the properties of 1 j(t) that
are stated in Theorem 1.

4.3 Upper Bounds

Our first result is a gap-dependent bound.

Theorem 2 (gap-dependent bound). The expected cumula-
tive regret of OMM is bounded as:

A logn—i—ZZAek 72

ecA* ec A* k=1

Proof. First, we bound the expected regret in episode ¢ us-



ing Theorem 1:

t=1

<Z:Ew17 Z ZAek]lek

ecA* k=1

Z ZAekEwl, W, [Z]lek ] (13)

ecAx k=1

Second, we bound the expected cumulative regret associ-
ated with each item e € A*. The key idea of this step is to
decompose the indicator 1. x(t) as

]le,k:(t) = ]le,k(t)]l{Te(t - 1) < ée,k} + (14)
Tep(O)W{Te(t—1) > Lo}

and choose /. ;, appropriately. By Lemma 2, the regret as-
sociated with T (¢t — 1) > ¢, ;, is bounded as:

K. n
ZAe,k]Ewl,...,wn [Z ]le,k(t)]l{Te(t - 1) > ge,k}‘|
k=1 t=1

=

. 4
< Ack 37T2 (15)
k=1
when £ , = L log nJ For the same value of /., the
regret associated w1th Te(t — 1) < L. is bounded as:

n

Z (14T, t—1)<fek}]

§ Ae,k]Ewl,...,w
k=1 =

n A
= Ac e (t 16
—wf???svn[ZZ wlen(t) x (16)

t=1 k=1

8
T (t—1) < logn p |.
{ Al H

The next step of our proof is based on three observations.
First, the gaps are ordered such that A, 1 > ... > A, k..
Second, by the design of OMM, the counter T, () increases
when the event 1 ;(t) happens, for any k. Finally, by The-
orem 1, Zf:el 1. x(t) < 1for any given e and ¢. Based on
these facts, we bound Equation 16 from above by:

K
1 = 1 1
Aci-5 + E Ack| —=——-——]|8logn. (17)
[ Ag,l k=2 <A3,k Ag,k—l )]

By Lemma 3, the above term is bounded by

log n.
e, K.
Finally, we combine all of the above inequalities and get:

K. n
ZAe,kEwl,...,wn Zﬂe,k(t)]
k=1 t=1

K
<. 4
1ogn+ZAe,k§7r2. (18)

<
Ae,K

e

Our main claim is obtained by summing over all subopti-
mal items e € A*. m

We also prove a gap-free bound.

Theorem 3 (gap-free bound). The expected cumulative re-
gret of OMM is bounded as:

4
R(n) < 8y KLnlogn + §7T2KL.

Proof. The key idea is to decompose the expected cumula-
tive regret of OMM into two parts, where the gaps are larger
than ¢ and at most €. We analyze each part separately and
then set ¢ to get the desired result.

Let K. . be the number of optimal items whose expected
weight is higher than that of item e by more than ¢ and:

Zek(n) =By v [Z ]le7k(t)] : (19)
t=1

Then, based on Equation 13, the regret of OMM is bounded
for any € as:

K

Z Z AckZep(n (20)
* k=1

Z Zg Ae’kZeyk(TL).

ecA

€A* k=K., +1

The first term can be bounded similarly to Equation 18:

Ke,e
Z Z Aenge,k(n)

eEA* k=1

logn + Z ZAek w2

AeKH Pyt

ec A*
16 4
< —Llogn+ -7?KL. 21)
€ 3
The second term is bounded trivially as:

Ke
S ) AckZex(n) <eKn (22)

e€A* k=K c+1

because all gaps A, ; are bounded by ¢ and the maximum
number of suboptimally chosen items in n episodes is Kn
(Theorem 1). Based on our upper bounds, we get:

16 4
R(n) < ?Llogn +eKn+ §7r2KL (23)

[ L1
and then set e = 4 I?g " This concludes our proof. m
n




4.4 Lower Bounds

We derive an asymptotic lower bound on the expected cu-
mulative regret R(n) that has the same dependence on the
gap and n as the upper bound in Theorem 2. This bound is
proved on a class of matroid bandits that are equivalent to
K Bernoulli bandits.

Specifically, we prove the lower bound on a partition ma-
troid bandit, which is defined as follows. Let £ be a set of
L items and By, ..., By be a partition of this set. Let the
family of independent sets be defined as:

I={ICE:(Vk:|INnBy <1)}. (24)

Then M = (FE,I) is a partition matroid of rank K. Let P
be a probability distribution over the weights of the items,
where the weight of each item is distributed independently
of the other items. Let the weight of item e be drawn i.i.d.
from a Bernoulli distribution with mean:

_ _J 0.5 e = min;ep, ¢
w(e) = { 0.5 — A otherwise, (25)
where A > 0. Then B = (M, P) is our partition matroid
bandit. The key property of B is that it is equivalent to K
independent Bernoulli bandits, one for each partition. The
optimal item in each partition is the item with the smallest
index, min;e p, 7. All gaps are A.

To formalize our result, we need to introduce the notion of
consistent algorithms. We say that the algorithm is consis-
tent if for any matroid bandit, any suboptimal e € A*, and
any « > 0, E[T,(n)] = o(n®), where T, (n) is the number
of times that item e is chosen in n episodes. In the rest of
our analysis, we focus only on consistent algorithms. This
is without loss of generality. In particular, by definition, an
inconsistent algorithm performs poorly on some problems,
and therefore extremely well on others. Because of this, it
is difficult to prove good problem-dependent lower bounds
for inconsistent algorithms. Our main claim is below.

Theorem 4. For any partition matroid bandit B that is de-
fined in Equations 24 and 25, and parameterized by L, K,
and 0 < A < 0.5; the regret of any consistent algorithm is
bounded from below as:

L-K
lim inf R(n) > .

Proof. The theorem is proved as follows:

. R <
i 5230 3

k=1ecBp—A*

A
k1(0.5 — A, 0.5)

_ (L-K)A
k(0.5 — A,0.5)
L-K
>
Z A (26)

where k1(0.5 — A, 0.5) is the KL divergence between two
Bernoulli variables with means 0.5 — A and 0.5. The first
inequality is due to Theorem 2.2 [4], which is applied sep-
arately to each partition Bjy. The second inequality is due

to kl(p, q) < g’(’;_q();, where p=0.5—Aandg=0.5.m

4.5 Summary of Theoretical Results

We prove two upper bounds on the regret of OMM, one gap-
dependent and one gap-free. These bounds can be summa-
rized as:

Theorem 2 O(L(1/A)logn) @n
Theorem 3 O(v/KLnlogn),

where A = min min A, ;. Both bounds are sublinear in
e keO. ’

the number of episodes n, and at most linear in the rank K
of the matroid and the number of items L. In other words,
they scale favorably with all quantities of interest and as a
result we expect them to be practical.

Our upper bounds are reasonably tight. More specifically,
the gap-dependent upper bound in Theorem 2 matches the
lower bound in Theorem 4, which is proved on a partition
matroid bandit. Furthermore, the gap-free upper bound in
Theorem 3 matches the lower bound of Audibert et al. [2]
in adversarial combinatorial semi-bandits, up to a factor of

vl]ogn.

Our gap-dependent upper bound has the same form as the
bound of Auer et al. [3] for multi-armed bandits. This ob-
servation suggests that the sample complexity of learning a
maximum-weight basis of a matroid is comparable to that
of the multi-armed bandit. The only major difference is in
the definitions of the gaps. We conclude that learning with
matroids is extremely sample efficient.

5 Experiments

Our algorithm is evaluated on three matroid bandit prob-
lems: graphic (Section 5.1), transversal (Section 5.2), and
linear (Section 5.3).

All experiments are episodic. In each episode, OMM selects
a basis A?, observes the weights of the individual items in
that basis, and then updates its model of the environment.
The performance of OMM is measured by the expected per-
step return in n episodes:

1 n
By, [Z F(A, wt)] : (28)
t=1

the expected cumulative return in n episodes divided by n.
OMM is compared to two baselines. The first baseline is the
maximum-weight basis A* in expectation. The basis A* is
computed as in Equation 4 and is our notion of optimality.
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Figure 1: The expected per-step cost of building three minimum spanning trees in up to 10 episodes.

ISP Number Number | Minimum Maximum Average | Optimal e-greedy
network | of nodes of edges latency latency latency policy policy 0MM
1221 108 153 1 17 2.78 305.00 307.424+0.08 305.49 4+0.10
1239 315 972 1 64 3.20 629.88 676.74 +=2.03 641.17+0.18
1755 87 161 1 31 291 192.81 199.494+0.16 194.88+0.11
3257 161 328 1 47 4.30 550.85 570.35 +0.63 559.80 + 0.10
3967 79 147 1 44 5.19 306.80 320.30 +=0.52 308.54 4 0.08
6461 141 374 1 45 6.32 376.27 424.78 =1.54 381.48 4+ 0.07

Table 1: The description of six ISP networks from our experiments and the expected per-step cost of building minimum
spanning trees on these networks in 102 episodes. All latencies and costs are in milliseconds.

The second baseline is an e-greedy policy, where € = 0.1.
This setting of € is common in practice and corresponds to
10% exploration.

5.1 Graphic Matroid

In the first experiment, we evaluate OMM on the problem of
learning a routing network for an Internet service provider
(ISP). We make the assumption that the routing network is
a spanning tree. Our objective is to learn a tree that has the
lowest expected latency on its edges.

Our problem can be formulated as a graphic matroid ban-
dit. The ground set E are the edges of a graph, which rep-
resents the topology of a network. We experiment with six
networks from the RocketFuel dataset [23], which contain
up to 300 nodes and 10 edges (Table 1). A set of edges is
considered independent if it does not contain a cycle. The
latency of edge e is w(e) = w(e) — 1 + ¢, where w(e) is
the expected latency, which is recorded in our dataset; and
e ~ Exp(1) is exponential noise. The latency w(e) ranges
from one to 64 milliseconds. Our noise model is motivated
by the following observation. The latency in ISP networks
can be mostly explained by geographical distances [7], the
expected latency w(e). The noise tends to be small, on the
order of a few hundred microseconds, and it is unlikely to
cause high latency.

In Figure 1, we report our results from three ISP networks.

‘We observe the same trends on all networks. First, the ex-
pected cost of OMM approaches that of the optimal solution
A* as the number of episodes increases. Second, OMM out-
performs the e-greedy policy in less than 10 episodes. The
expected costs of all policies on all networks are reported
in Table 1. We observe again that OMM consistently outper-
forms the e-greedy policy, often by a large margin.

OMM learns quickly because all of our networks are sparse.
In particular, the number of edges in each network is never
more than four times larger than the number of edges in its
spanning tree. Therefore, at least in theory, each edge can
be observed at least once in four episodes and our method
can learn quickly the mean latency of each edge.

5.2 Transversal Matroid

In the second experiment, we study the assignment of lend-
ing institutions (known as partners) to lenders in a micro-
finance setting, such as Kiva [1]. This problem can be for-
mulated under a family of matroids, called fransversal ma-
troids [9]. The ground set F of a transversal matroid is the
set of left vertices of the corresponding bipartite graph, and
the independence set Z consists of the sets of left vertices
that belong to all possible matchings in the graph such that
no two edges in a matching share an endpoint. The weight
w(e) is the weight associated with the left vertices of the
bipartite graph. The goal is to learn a transversal of the bi-
partite graph that maximizes the overall weight of selected
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Figure 2: (a) The Kiva dataset can be modeled as a bipartite graph connecting lenders to field partners, which, in turn, fund
several loans in the region. (b) The expected per-step return of finding maximum weight transversal in up to 15k episodes.
(c) Top 12 selected partners assigned based on their mean success rate in the optimal solution A*. The optimal solution

involves 46 partner/lender assignments.

left vertices.

We used a sample of 194, 876 loans from the Kiva microfi-
nance dataset [1], and created a bipartite graph. Every loan
is handled by a partner (Figure 2-a). There are a total of
232 partners in the dataset that represent the left vertices
of the bipartite graph and therefore the ground set E of
the matroid. There are 286, 874 lenders in the dataset. We
grouped these lenders into 51 clusters according to the their
location: 50 representing each individual state in United
States, and 1 representing all foreign lenders. These 51
lender clusters constitute the right vertices of the bipartite
graph. There is an edge between a partner and a lender if
the lender is among the top 50% supporters of the partner,
resulting in approximately 5k edges in the bipartite graph.
The weight w(e) is the probability that a loan handled by
partner e will be paid back. We estimate it from the dataset
asw(e) = n% ' w;(e), where n; is the number of loans
handled by this partner. We assume w; (e) is 0.7 if the loan
1 is in repayment, 1 if it is paid, and O otherwise. At the
beginning of each episode, we choose the loan ¢ at random.

The optimal solution A* is a transversal in the graph that
maximizes the overall success rate of the selected partners.
Top twelve partners selected based on their mean success
rate in the optimal solution are shown in Figure 2-c. For
each partner, the id of the lender to which this partner was
assigned along with the number of eligible partners of the
lender and their average success rate are listed in the Table.
The objective of OMM and e-greedy policies is similar to the
optimal policy with the difference that success rates (i.e.
w(e)) are not known beforehand, and they must be learned
by interacting repeatedly with the environment. Compari-
son results of the three policies are reported in Figure 2-b.
Similar to the previous experiment, we observe the follow-
ing trends. First, the expected return of OMM approaches

that of the optimal solution A* as the number of episodes
increases. Second, OMM outperforms the e-greedy policy.

5.3 Linear Matroid

In the last experiment, we evaluate OMM on the problem of
learning a set of diverse and popular movies. This kind of
movies is typically recommended by existing content rec-
ommender systems. The movies are popular, and therefore
the user is likely to choose them. The movies are diverse,
and therefore cover many potential interests of the user.

Our problem can be formulated as a linear matroid bandit.
The ground set ' are movies from the MovieLens dataset
[16], a dataset of 6 thousand people who rated one million
movies. We restrict our attention to 25 most rated movies
and 75 movies that are not well known. So the cardinality
of E is 100. For each movie e, we define a feature vector
u, € {0,1}'%, where u,(j) indicates that movie e belongs
to genre j. A set of movies X is considered independent if
for any movie e € X, the vector u, cannot be written as a
linear combination of the feature vectors of the remaining
movies in X. This is our notion of diversity. The expected
weight w(e) is the probability that movie e is chosen. We
estimate it as w(e) = % S, wi(e), where w(e) is the
indicator that person ¢ rated movie e and n,, is the number
of people in our dataset. At the beginning of each episode,
we choose the person ¢ at random.

Twelve most popular movies from the optimal solution A*
are listed in Figure 3. These movies cover a wide range of
movie genres and appear to be diverse. This validates our
assumption that linear independence is suitable for model-
ing diversity. The expected return of OMM is reported in the
same figure. We observe the same trends as in the previous
experiments. More specifically, the expected return of OMM
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Figure 3: Left. Twelve most popular movies in the optimal solution A*. The optimal solution involves 17 movies. Right.
The expected per-step return of three movie recommendation policies in up to 50k episodes.

approaches that of A* as the number of episodes increases
and OMM outperforms the e-greedy policy in 10k episodes.

6 Related Work

Our problem can be viewed as a stochastic combinatorial
semi-bandit [12], where all feasible solutions are the inde-
pendent sets of a matroid. Stochastic combinatorial semi-
bandits were pioneered by Gai et al. [12], who proposed a
UCB algorithm for solving these problems. Chen et al. [6]
proved that the expected cumulative regret of this method
is O(K2L(1/A)logn). Our gap-dependent regret bound
is O(L(1/A)logn), a factor of K? tighter than the bound
of Chen et al. [6]. Our analysis relies heavily on the prop-
erties of our problem and therefore we can derive a much
tighter bound.

COMBAND [5], OSMD [2], and FPL [19] are algorithms
for adversarial combinatorial semi-bandits. The main limi-
tation of COMBAND and OSMD is that they are not guar-
anteed to be computationally efficient. More specifically,
COMBAND needs to sample from a distribution over ex-
ponentially many solutions and OSMD needs to project to
the convex hull of these solutions. FPL is computationally
efficient but not very practical because its time complexity
increases with time. On the other hand, OMM is guaranteed
to be computationally efficient but can only solve a special
class of combinatorial bandits, matroid bandits.

Matroids are a broad and important class of combinatorial
optimization problems [21], which has been an active area
of research for the past 80 years. This is the first paper that
studies a well-known matroid problem in the bandit setting
and proposes a learning algorithm for solving it.

Our work is also related to submodularity [18]. In particu-
lar, let:
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be the maximum weight of an independent set in X. Then

it is easy to show that g(X) is submodular and monotonic
in X, and that the maximum-weight basis of a matroid is a
solution to A* = argmax 4, 4=k g(A). Many algorithms
for learning how to maximize a submodular function have
been proposed recently [13, 26, 10, 24, 11]. None of these
algorithms are suitable for solving our problem. There are
two reasons. First, each algorithm is designed to maximize
a specific submodular function and our function g may not
be of that type. Second, the algorithms are only near opti-
mal, learn a set A such that g(A) > (1 — 1/e)g(A*). Note
that our method is guaranteed to be optimal and learn A*.

7 Conclusions

This is the first work that studies the problem of learning a
maximum-weight basis of a matroid, where the weights of
the items are initially unknown, and have to be learned by
interacting repeatedly with the environment. We propose a
practical algorithm for solving this problem and bound its
regret. The regret is sublinear in time and at most linear in
all other quantities of interest. We evaluate our method on
three real-world problems and show that it is practical.

Our regret bounds are Q(\/E) Therefore, OMM is not prac-
tical when the number of items L is large. We believe that
these kinds of problems can be solved efficiently by intro-
ducing additional structure, such as linear generalization.
In this case, the weight of each item would be modeled as
a linear function of its features and the goal is to learn the
parameters of this function.

Many combinatorial optimization problems can be viewed
as optimization on a matroid or its generalizations, such as
maximum-weight matching on a bipartite graph and mini-
mum cost flows. In a sense, these are the hardest problems
in combinatorial optimization that can be solved optimally
in polynomial time [22]. In this work, we show that one of
these problems is efficiently learnable. We believe that the
key ideas in our work are quite general and can be applied
to other problems that involve matroids.
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