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22.1 Comparing time-dependent spatial fields of
data

We often would like to isolate spatial patterns which covary in multiple fields of
data. There are several strategies for doing this:

Regression We make an index time series isolating an important mode of
variability in one field of interest (e. g. its first principal component).
Then we regress the other spatially-varying fields on this to get regression
maps. See USTA regress.html for an example.

Combined PCA We standardize all fields at all locations and concatenate
them into a single time-dependent vector, on which we perform PCA. The
spatial patterns can then be partitioned into maps associated with each of
the fields, and the PCs give their common time variability. See Bretherton
et al. (1992, J. Climate)

MCA Maximum covariance analysis (MCA) looks for patterns in two space-
time datasets which explain a maximum fraction of the covariance between
them. See below.

CCA Canonical correlation analysis (CCA) loots for patterns in two space-
time datasets with maximum temporal correlation coefficient. CCA does
not necessarily pick patterns which explain much covariance and can be
severely affected by random sampling fluctuations. To minimize these
issues, the two fields should be prefiltered by projection onto a subset of
their leading EOFs sufficient to explain most (e. g. 90%) of their variance.
See Bretherton et al. (1992).

Regression is easy to implement and understand, but can only describe that part
of the covariability between the fields that is related to the index time series.
Combined PCA works best if the leading EOFs of the two fields encompass most
of their mutual correlation. MCA and preconditioned CCA give similar results,
and are best if the patterns of covariability are not well known a priori. Here
we describe MCA, since it is simpler than CCA.
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22.2 Mathematical setup of MCA

Mathematically we consider two data matrices X [m× n] and Y [q × n], where
n is the number of samples (times) and m and q are respectively the number of
x and y measurements at each time. We let u be an arbitrary unit column m-
vector representing a pattern in the x field and v be an arbitrary unit column
m-vector representing a pattern in the y field. Let the time series of their
projection onto the data be the 1 × n row vectors,

a = uTX,

b = vTY.

Then MCA seeks optimal patterns u and v that maximize their covariance

c = cov[a,b]

= cov[uTX,vTY]

=
1

n− 1
[uTX(vTY)T ]

= uTCxyv, (22.2.1)

where

Cxy =
1

n− 1
XYT

is the covariance matrix between x and y, whose ij’th element is the covariance
of xi(t) with yj(t).

The maximum c is obtained from the leading mode of the SVD of Cxy, with
x pattern u1 (the first left singular vector), y pattern v1 (the first right singular
vector), and c = σ1, the first singular value. Succeeding SVD modes maximize
c subject to the additional constraint that the patterns be spatially orthogonal
to the previous modes.

Each SVD mode explains an amount σ2
k of the overall squared covariance in

Cxy. Thus, it is useful to think of the importance of the SVD modes in MCA
in terms of their squared covariance fraction

fk =
σ2
k∑r

k=1 σ
2
k

22.3 Proof of optimality of leading SVD mode

The proof works analogously to the proof in Lect. 20 for the optimality of PCA
in explaining a maximum fraction of the variance of a field. We write the SVD:

Cxy = UΣVT

We express u in the basis of left singular vectors, in which it has coordinates

û = UTu
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Because U is a rotation matrix and u is a arbitrary unit vector, û is also some
other arbitrary unit vector. We expand v in the basis of right singular vectors,
in which it has coordinates

v̂ = VTv

Again, v̂ is an arbitrary unit vector.
We substitute into (22.2.1). Letting r be the rank of the covariance matrix,

c = uTCxyv

= uTUΣVTv

= ûT Σv̂

=

r∑
k=1

ûkσkv̂k

≤

(
r∑

k=1

σ2
kû

2
k

)1/2 ( r∑
k=1

v̂2k

)1/2

≤

(
r∑

k=1

σ2
kû

2

k

)1/2

≤ σ1

(
r∑

k=1

û2k

)1/2

≤ σ1

The maximum is achieved by taking û1 = 1 and ûk = 0, k > 1, i. e. for u = u1.
Similarly, from the fourth line in the above equation we see that we must take
v̂1 = 1 and other coordinates zero, i. e. v = v1.

Similarly, mode k = N + 1 explains the maximum fraction of the covariance
that is in spatial patterns orthogonal to the first N modes.

22.4 Time series of the MCA patterns

We can define time series of the patterns associated with the k’th SVD mode,
which are 1 × n row vectors with covariance σk:

ak = uT
k X

bk = vT
k Y

There is a separate time series for each of the two datasets, and the time series
associated with different SVD modes are not guaranteed to be uncorrelated.

22.5 MCA example

Matlab script MCA PSSTA USTA demonstrates the implementation of MCA
on the datasets we have previously been using, finding the patterns of maximum
covariance between monthly tropical Pacific sea-surface temperature anomalies
and U.S. surface temperature anomalies over the period 1970-2002.


