
LIQUIDITY MATH IN UNISWAP V3

TECHNICAL NOTE

Atis Elsts
atis.elsts@edi.lv

September 30, 2021

ABSTRACT

Uniswap is the largest decentralized exchange (DEX) and one of cornerstones of Decentralized
Finance (DeFi). Uniswap uses liquidity pools to provide Automated Market Making (AMM) func-
tionality. Uniswap v3 is the most recent version of the protocol that introduces a number of new
features, notably the concentrated liquidity feature, which allows the liquidity providers to concen-
trate their liquidity in a specific price range, leading to an increased capital efficiency. However, the
mathematical relationship between the liquidity of a position, the amount of assets in that position,
and its price range becomes somewhat complex. This technical note shows how derive some of the
results from the Uniswap v3 whitepaper, as well as presents several other equations not discussed in
the whitepaper, and shows how to apply these equations.

1 Introduction

The core concepts of liquidity math are defined in the Uniswap v3 whitepaper [1], which has already attracted significant
attention from the research community [2–4]. However, the whitepaper is quite terse and many aspects are not fully
worked out. There is a gap between the information that the whitepaper provides, and the questions Uniswap users and
developers have, such as:

• Given the total liquidity and price range of a position, how much of asset X and asset Y does this position
have at a specific price P ?

• Given a price range, current price P , and the amount x of asset X , how much of asset Y should one supply to
cover that price range?

• Given x amount of asset X and y amount of asset Y that are to be deposited in a liquidity pool, as well as the
current price P and lower bound of the expected price range, what value should be used as the upper bound?

This technical note aims to bridge this gap and to provide basic intuition about the Uniswap v3 liquidity math1

2 Calculations

2.1 Calculating liquidity and the amounts of assets

The Equations 6.5 and 6.6 in the whitepaper [1] appear to give an easy way to calculate L, x, and y:

L = xvirtual ·
√
P =

yvirtual√
P

1For the accompanying example code, see https://github.com/atiselsts/uniswap-v3-liquidity-math/blob/
master/uniswap-v3-liquidity-math.py. Note that the code is meant to illustrate the math: it’s not directly suitable for
use in real projects!

https://github.com/atiselsts/uniswap-v3-liquidity-math/blob/master/uniswap-v3-liquidity-math.py
https://github.com/atiselsts/uniswap-v3-liquidity-math/blob/master/uniswap-v3-liquidity-math.py
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Table 1: Symbols used

Symbol name Whitepaper Uniswap code Notes

Price P sqrtRatioX96 Code tracks
√
P

for efficiency reasons
Lower bound of a price range pa sqrtRatioAX96 Code tracks

√
pa

Upper bound of a price range pb sqrtRatioBX96 Code tracks
√
pb

The first asset X token0
The second asset Y token1
Amount of the first asset x amount0
Amount of the second asset y amount1
Virtual liquidity L liquidity,

amount

However, x and y here are the virtual amounts of tokens, not the real amounts! The math to calculate the real amounts
is of x and y is given at the very end of the whitepaper, in Eqs. 6.29 and 6.30. The implementation of this math can be
found in the file LiquidityAmounts.sol2.

These equations can be derived from the key Equation 2.2 in the whitepaper:

(xreal +
L
√
pb

)(yreal + L
√
pa) = L2

Trying to solve Eq. 2.2 for L directly gives a very messy result. Instead, we can notice that outside the price range the
liquidity is fully provided by a single asset, either X or Y depending on which side of the price range the current price
is. We have three options:

1. Assuming P ≤ pa, the position is fully in X , so y = 0:

(x +
L
√
pb

)L
√
pa = L2 (1)

x
√
pa + L

√
pa√
pb

= L (2)

x =
L
√
pa
− L
√
pb

(3)

x = L

√
pb −

√
pa√

pa ·
√
pb

(4)

The liquidity of the position is:

L = x

√
pa ·
√
pb√

pb −
√
pa

(5)

2. Assuming P ≥ pb, the position is fully in Y , so x = 0:

L
√
pb

(y + L
√
pa) = L2 (6)

y
√
pb

+ L

√
pa√
pb

= L (7)

y = L(
√
pb −

√
pa) (8)

The liquidity of the position is:

L =
y

√
pb −

√
pa

(9)

2https://github.com/Uniswap/uniswap-v3-periphery/blob/main/contracts/libraries/LiquidityAmounts.
sol#L120

2

https://github.com/Uniswap/uniswap-v3-periphery/blob/main/contracts/libraries/LiquidityAmounts.sol#L120
https://github.com/Uniswap/uniswap-v3-periphery/blob/main/contracts/libraries/LiquidityAmounts.sol#L120
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3. The current price is in the range: pa < P < pb. I believe the way to think about it is to consider that in an optimal
position both assets are going to contribute to the liquidity equally. That is, the liquidity Lx provided by asset x in one
side of the range (P, pb) must be equal to the liquidity Ly provided by the asset y in the other side of the range (pa, P )3.

From Eqs. 5 and 9 we know how to calculate the liquidity of a single-asset range. When P is in the range (pa, pb),
we can think of (P, pb) as the sub-range where X provides liquidity and (pa, P ) as the sub-range where Y provides
liquidity. Plugging this in the Eqs. 5 and 9 and asking that Lx(P, pb) = Ly(pa, P ) we get:

x

√
P · √pb

√
pb −

√
P

=
y√

P −√pa
(10)

The equation Eq. 10 is important because can be solved for either of the five terms x, y, P, pa, pb without any reference
to liquidity. However, for x and y this is not necessary; a simple modification of Eqs. 4 and 8 is sufficient:

x = L

√
pb −

√
P

√
P · √pb

(11)

y = L(
√
P −√pa) (12)

To sum up:

• If P ≤ pa, y = 0 and x can be calculated by Eq. 4.

• If P ≥ pb, x = 0 and y can be calculated by Eq. 8.

• Otherwise pa < P < pb and x and y can be calculated by Eqs. 11 and 12 respectively.

Conceptually, this result is just a restatement of the Eqs. 6.29 and 6.30 from the whitepaper in a slightly different form.
However, use of the ∆ in the whitepaper can be confusing to new users – a delta from what, exactly? What if it is a
completely new position? The equations 4–12 above avoid any mention of deltas for this reason, aiming for simplicity.
Of course, on a deeper look it is clear that the whitepaper Eqs. 6.29 and 6.30 can be still applied even for a new position:
in that case we simply need to take ∆L = L.

2.2 Calculating the price range from the amounts of assets

2.2.1 Price range boundaries

It is not possible to infer both boundaries pa and pb at once, given the amount of assets and the current price P within
these boundaries. There is just a single equation (Eq. 10), so the result is under-determined when there are two unknown
variables. Infinitely many ranges correspond to any given proportion of assets.

Instead, it is possible solve these problems:

• P , x, y and pa are known; what is the value of pb?

• P , x, y and pb are known; what is the value of pa?

• P , x and y are known. The price would reach pb if if increased z % from the current price. What % drop in
the price does pa correspond to? In other words, what is the ratio pa

P given the ratio pb

P ?

One way to compute these answers is to start by calculating the liquidity on one side of the price. Here and further we
assume that the price is within a nonempty range and not equal to the endpoints of the range; formally, pa < P < pb.

Once L is known, pa and pb can be calculated from Eqs. 12 and 11 respectively. It’s more convenient to work with
square roots, because it simplifies the solutions a lot:

√
pa =

√
P − y

L
(13)

√
pb = L

√
P

L−
√
P · x

(14)

3The Uniswap source code calculates both Lx and Ly and returns the minimum of them: L = min(Lx, Ly). Essentially, this
forces the position to be balanced, if it was unbalanced for whatever reasons – either because the user provided an incorrect amount
of x or y, or because of rounding errors that are likely if the current price is close to one of the boundaries of the range.

3
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Alternatively, it is possible to skip the liquidity calculation and solve Eq. 10 for the square roots of pa ans pa directly:
√
pa =

y
√
pb · x

+
√
P − y√

P · x
(15)

√
pb =

√
Py

√
pa
√
Px− Px + y

(16)

2.2.2 Price range proportions

The user may also think about price range in terms of increase or decrease in the current price. Let us introduce new
symbols c and d for that, such that c2P is equal to the upper bound of the range and d2P is equal to the lower bound:

c
def
=

√
pb
P

(17)

d
def
=

√
pa
P

(18)

Clearly the following is true:
√
P =

√
pb

c
(19)

√
P =

√
pa

d
(20)

√
pb = c ·

√
P (21)

√
pa = d ·

√
P (22)

Now its possible to use Eq. 10 to express them in terms of each another:

c =
y

(d− 1) · P · x + y
(23)

d = 1 +
(1− c) · y
c · P · x

(24)

Now if it is known that for example pa corresponds to 70 % of the current price (c2 is equal 70 % = 0.7), the % of the
current price corresponding to pb can be calculated by computing d2 using Eq. 24.

3 Applications

3.1 Implementation details

When applying this math in source code, be aware of the following aspects [1]:

• Ticks. Price ranges in Uniswap have discrete boundaries called ticks. The price of the i-th tick defined to
be p(i) = 1.0001i. Only specific price-points, corresponding to initialized ticks, can serve as price range
boundaries.

• Tick spacing. Not all ticks can be initialized. The exact tick indexes that can be indexed depends of the fee
levels of the pools. 1 % pools have the widest tick spacing of 200 ticks, 0.3 % pools intermediate of 60 ticks,
and 0.05 % pools the smallest one: 10 ticks.

• Fixed point math. Uniswap v3 uses fixed point math. This is because Solidity has no support for floating point
numbers, and because fixed point math helps to minimize rounding errors4 The math adds new challenges, e.g.
need to multiply or divide numbers with the fix-point base to keep their range correct.

• Decimals. ERC20 tokens define a field called “decimals”. Internally in the Ethereum ecosystem, the amounts
of cryptocurrencies operated on are expressed as integers. To convert the amount of an ERC20 token from
this internal representation to a human readable value, division by 10decimals is necessary. Different ERC20
contracts define a different number of decimals for their token; for example, DAI has 18 decimals while
USDC has 6. The human-readable price of 1 USDC is around 1 DAI; but from the perspective of liquidity
calculations, the price of 1 USDC in terms of DAI is approximately 1018−6 = 1012.

4In your code that interfaces with Uniswap, you should also use fixed point math – even if your language does support floating
point! In JavaScript, use a library such as JSBI. Python has support for large integers and (since version 3.8) integer square roots out
of the box.

4
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3.2 Examples without implementation details

In this example subsection, we ignore the implementation details mentioned above in order to increase the clarity of the
explanations. Note that this may lead to small numerical errors compared with the results obtained from the Uniswap
code and UI.

3.2.1 Example 1: Amount of assets from a range

Problem: A user has x = 2 ETH and wants to set up a liquidity position in an ETH/USDC pool. The current price of
ETH is P =2000 USDC and target price range is from pa = 1500 to pb = 2500 USDC. How much USDC (y) do they
need?

Solution: First, calculate the liquidity of the top half of the range by using Eq. 5 (replace pa with P to get the top half):

Lx = x

√
P · √pb

√
pb −

√
P

Then, use the value of L to calculate y using Eq. 8:

y = Lx(
√
P −√pa)

The answer is y = 5076.10 USDC.

3.2.2 Example 2: Range from amounts of assets

Problem: A user has x = 2 ETH and y = 4000 USDC, and wants to use pb = 3000 USDC per ETH as the top of the
price range. What is the bottom of the range (pa) that ensures the opened position uses the full amount of their funds?

Solution: It is possible to calculate the liquidity of the position using the same half-range trick as in the Example 1
above, and then calculate the lower bound of the range of that. However, pa can also be calculated directly by Eq. 15:

pa = (
y

√
pb · x

+
√
P − y√

P · x
)2

The answer is pa = 1333.33 USDC. The lower price is two thirds of the current price, and the current price is two
thirds of the upper price: this happens because the initial values of USDC and ETH are equal.

3.2.3 Example 3: Assets after a price change

Problem: Using the liquidity position created in Example 2, what are asset balances when the price changes to P = 2500
USDC per ETH?

Solution: First, calculate the liquidity of the position, using the previously calculated pa = 1333.33:

Lx = x

√
P · √pb

√
pb −

√
P

Ly =
y√

P −√pa

Using 64-bit floating point math, the values are Lx = 487.41718030204123 and Ly = 487.4144693682443 respec-
tively. L is the minimum of these two: L = min(Lx, Ly), corresponding to Lx in this case.

Now, setting P ′ = 2500 we can find x′ and y′ using Eqs. 4 and 8:

x′ = L

√
pb −

√
P ′

√
P ′ · √pb

y′ = L(
√
P ′ −√pa)

The answer is x = 0.85 ETH and y = 6572.89 USDC. Impermanent loss can be easily computed from this.

5
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We can alternatively compute this answer using the delta math provided in the whitepaper, Eqs. 6.14 and 6.16:

∆
√
P =

√
P ′ −

√
P

∆
1√
P

=
1√
P ′
− 1√

P

∆x = ∆
1√
P
· L

∆y = ∆
√
P · L

x′ = x + ∆x

y′ = y + ∆y

The values of the deltas are: ∆x = −1.15 ETH and ∆y = +2572.89 USDC.

3.3 Examples that include tick math and price conversions

3.3.1 Uniswap v3 tick math

Tick math is required to interpret both the values provided by the Uniswap v3 API and the data indexed in the Uniswap
v3 subgraph5. First, let briefly recap the tick math from the whitepaper [1]. Uniswap v3 maps the continuous space of
all possible prices to a discrete subset indexed by ticks. A tick has unique relation with price, defined by the tick base
parameter, which is equal to 1.0001 in Uniswap. The price corresponding to the i-th tick is:

p(i) = 1.0001i

This implies:

i = log1.0001 p(i)

When working with square roots of prices: √
p(i) = 1.0001i/2

i = 2 · log1.0001

√
p(i)

3.3.2 Converting prices to a human-readable form

Internally, the price is just the relation between y and x. However, in order to show it in a UI, it must be scaled taking
into account the number of decimals of the assets X and Y .

Let’s analyze an Uniswap v3 NFT to demonstrate this, and let’s take the NFT with ID 600006 as an example. As shown
in Fig. 1, this NFT has “Min Tick” equal to 200240 and “Max Tick” equal to 200700. Converting these tick numbers to
prices we get this price range:

pa = 496452748.01

pb = 519821773.17

The problem is that USDC (the first assert, X) has just decimalsx = 6 decimals while wrapped ETH (the second asset,
Y ) as decimalsy = 18 decimals. Since price is y

x , the price without the decimals is equal to:

padjusted =
y

10decimalsy
/

x

10decimalsx
=

y

x
· 10decimalsx

10decimalsy
=

y

x
· 10x−y = p · 10x−y

In the example pool:

padjusteda
= 496452748.01 · 106−18 =

496452748.01

1012
= 0.00049645274801

padjustedb
= 519821773.17 · 106−18 =

519821773.17

1012
= 0.00051982177317

5https://thegraph.com/legacy-explorer/subgraph/uniswap/uniswap-v3
6https://app.uniswap.org/#/pool/60000

6
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Figure 1: A sample Uniswap position NFT.

These express the price of USDC in terms of ETH. To get ETH in terms of USDC, invert the prices:

1

padjusteda

= 2014.29

1

padjustedb

= 1923.74

Note that the last range is inverted, with inverted price at the top tick being lower than the inverted price at the bottom
tick.

3.3.3 The amount of assets in the current tick range

In order to learn the amount of the assets in a price range, first we must obtain the liquidity of the pool. A pool variable
tracks the liquidity of the current tick range in particular. Unlike in Uniswap v2, where the liquidity of a pool remains
constant as long as assets are not added or removed to the pool, the pool liquidity in Uniswap v3 may change when
the price crosses a tick range boundary. In particular, it changes when crossing the boundary of a tick with non-zero
liquidityNet value.

The liquidity of a pool can be queried either from The Graph, or directly from a blockchain node. Let’s assume that The
Graph is used, and look at the USDC/ETH pool with 0.3 % fee rate with the following query7:

query pools {
pools (where: {id: "0x8ad599c3a0ff1de082011efddc58f1908eb6e6d8"}){

tick
liquidity

}
}

At the time of writing this, the query returns L = 22402462192838616433 and tick = 195574, corresponding to price
of 3211.84 USDC/ETH.

7The full code of this example can be found at https://github.com/atiselsts/uniswap-v3-liquidity-math/blob/
master/subgraph-liquidity-query-example.py

7
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The tick spacing of a pool is determined by its fee rate. For 0.3 % pools, the tick spacing is equal to 60. This means that
only ticks divisible by 60 can be initialized. The ticks nearest to the returned value that have this property are:

tickbottom = 195540

ticktop = 195600

As a result, the price range is:

pa = 1.0001tickbottom = 1.0001195540

pb = 1.0001ticktop = 1.0001195600

Let us use Eq. 11 and 12 to calculate the maximum amount of USDC or ETH that can be obtained from the liquidity in
the current tick range:

x = L

√
pb −

√
P

√
P · √pb

= 1649346952148

y = L(
√
P −√pa) = 671393300975203516416

When adjusted for the decimals of the respective tokens:

xadjusted =
x

106
≈ 1 649 347

yadjusted =
y

1018
≈ 671.39

Approximately 1.65 million USDC and 671 ETH are locked in the current tick range in this pool. This means that
someone buying 1.65 million USDC would move the current price to one end of the current price range. If some was
buying 671 ETH instead, that would move the price to the other end of the range.
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