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3.4 Méray and Stieltjes: The Probability Integral 64

3.5 Euler: Series and Continued Fractions 67

3.6 Euler: Riccati’s Equation and Continued Fractions 72

3.7 Exercises 75

3.8 Notes on the Literature 76

4 The Binomial Theorem 77

4.1 Preliminary Remarks 77

4.2 Landen’s Derivation of the Binomial Theorem 89

4.3 Euler: Binomial Theorem for Rational Exponents 90

4.4 Cauchy: Proof of the Binomial Theorem for Real Exponents 94

4.5 Abel’s Theorem on Continuity 96

4.6 Harkness and Morley’s Proof of the Binomial Theorem 100

4.7 Exercises 101

4.8 Notes on the Literature 103

5 The Rectification of Curves 105

5.1 Preliminary Remarks 105

5.2 Descartes’s Method of Finding the Normal 107

5.3 Hudde’s Rule for a Double Root 109

5.4 Van Heuraet’s Letter on Rectification 110

5.5 Newton’s Rectification of a Curve 112

5.6 Leibniz’s Derivation of the Arc Length 113

5.7 Exercises 113

5.8 Notes on the Literature 114

6 Inequalities 116

6.1 Preliminary Remarks 116

6.2 Harriot’s Proof of the Arithmetic and Geometric Means Inequality 122

6.3 Maclaurin’s Inequalities 124

6.4 Comments on Newton’s and Maclaurin’s Inequalities 125

6.5 Rogers 127
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Preface

Sources in the Development of Mathematics: Series and Products from the Fifteenth to

the Twenty-first Century, my book of 2011, was intended for an audience of graduate

students or beyond. However, since much of its mathematics lies at the foundations of

the undergraduate mathematics curriculum, I decided to use portions of my book as the

text for an advanced undergraduate course. I was very pleased to find that my curious

and diligent students, of varied levels of mathematical talent, could understand a good

bit of the material and get insight into mathematics they had already studied as well

as topics with which they were unfamiliar. Of course, the students could profitably

study such topics from good textbooks. But I observed that when they read original

proofs, perhaps with gaps or with slightly opaque arguments, students gained very

valuable insight into the process of mathematical thinking and intuition. Moreover, the

study of the steps, often over long periods of time, by which earlier mathematicians

refined and clarified their arguments revealed to my students the essential points at the

crux of those results, points that may be more difficult to discern in later streamlined

presentations. As they worked to understand the material, my students witnessed the

difficulty and beauty of original mathematical work, and this was a source of great

enjoyment to many of them. I have now thrice taught this course, with extremely

positive student response.

In order for my students to follow the foundational mathematical arguments

in Sources, I was often required to provide additional material, material actually

contained in the original works of the mathematicians being studied. I therefore

decided to expand my book, as a second edition in two volumes, to make it more

accessible to readers, from novices to accomplished mathematicians. This second

edition contains about 250 pages of new material, including more details within the

original proofs, elaborations and further developments of results, and additional results

that may give the reader a better perspective. Furthermore, to give the material greater

focus, I have limited this second edition to the topics of series and products, areas that

today permeate both applied and pure mathematics; the second edition is thus entitled

Series and Products in the Development of Mathematics.
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xviii Preface

This first volume of my work discusses the development of the fundamental though

powerful and essential methods in series and products that do not employ complex

analytic methods or sophisticated machinery such as Fourier transforms. Much of

this material would be accessible, perhaps with guidance, to advanced undergraduate

students. The second volume deals with more recent work and requires considerable

mathematical background. For example, in volume 2, I discuss Weil’s 1949 paper on

solutions of equations in finite fields and de Branges’s conquest of the Bieberbach

conjecture. Each volume contains the same complete bibliography.

The exercises at the end of the chapters present many additional original results and

may be studied simply for the supplementary theorems they contain. The exercises

are accompanied by references to the original works, as an aid to further research.

Readers may attempt to prove the results in the problems and, by use of the references,

compare their own solutions with the originals. Moreover, many of the exercises can

be tackled by methods similar to those given in the text, so that some exercises can be

realistically assigned to a class as homework. I assigned many exercises to my classes,

and found that the students enjoyed and benefited from their efforts to find solutions.

Thus, the exercises may be useful as problems to be solved, and also for the results

they present.

Detailed study of original mathematical works provides a point of entry into the

minds of the creators of powerful theories, and thus into the theories themselves.

But tracing the discovery and evolution of mathematical ideas and theorems entails

the examination of many, many papers, letters, notes, and monographs. For example,

in this work I have discussed the work of more than three hundred mathematicians,

including arguments and theorems contained in approximately one hundred works and

letters of Euler alone. Locating, studying, and grasping the interconnections among

such original works and results is a ponderous, complex, and rewarding effort. In this

second edition, I have added numerous footnotes and almost five hundred works to the

bibliography. My hope is that the detailed footnotes and the expanded bibliography,

containing both original works and works of distinguished expositors and historians

of mathematics, may encourage and facilitate the efforts of those who wish to search

out and study the original sources of our inherited mathematical wealth.

I first wish to thank my wife, who typeset and edited this work, made innumerable

corrections and refinements to the text, and devotedly assisted me with translations and

locating references. I am also very grateful to NFN Kalyan for his encouragement and

for creating the eloquent artwork for the cover of these volumes. I greatly appreciate

Maitreyi Lagunas’s unflagging support and interest. I thank Bruce Atwood who

cheerfully constructed the nice diagrams contained in this work, and Paul Campbell

who generously provided expert technical support and advice. I am grateful to

my student Shambhavi Upadhyaya, who has an unusual ability to proofread very

accurately, for spending so much time giving useful suggestions for improvement. I

am indebted to my students whose questions and enthusiasm helped me refine this

second edition. I also thank the very capable librarians at Beloit College, especially

Chris Nelson and Cindy Cooley. Finally, I wish to acknowledge the inspiration

provided me by my friend, the late Dick Askey.
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