
QUEEN: NeuralQuery Rewriting in E-commerce
Yaxuan Wang∗

yaxuanw@amazon.com
Amazon.com Inc.

Seattle, Washington, USA

Hanqing Lu∗
luhanqin@amazon.com

Amazon.com Inc.
Palo Alto, California, USA

Yunwen Xu
yunwenx@amazon.com

Amazon.com Inc.
Palo Alto, California, USA

Rahul Goutam
rgoutam@amazon.com

Amazon.com Inc.
Palo Alto, California, USA

Yiwei Song
ywsong@amazon.com

Amazon.com Inc.
Palo Alto, California, USA

Bing Yin
alexbyin@amazon.com

Amazon.com Inc.
Palo Alto, California, USA

ABSTRACT
Query rewriting (QR), which aims to improve the shopping expe-
rience by reformulating ambiguous customer input queries into
well-formed queries, is a critical component of modern e-commerce
search engines. In this work, we present a practical deep learning
solution, named as Query Understanding EnhancEd mechaNism
(QUEEN), to the large-scale query rewriting problem in e-commerce
search engines. QUEEN incorporates query annotations, the by-
product of query processing pipelines in most e-commerce search
engines, to model ambiguous product search queries. The empirical
study is based on 38.5 million anonymous product search queries.
Compared to other SOTA baselines, QUEEN improves the sentence-
level recall by 6% (relatively).

CCS CONCEPTS
• Computing methodologies→ Information extraction.
KEYWORDS
product search, query processing, information retrieval

ACM Reference Format:
YaxuanWang, Hanqing Lu, YunwenXu, Rahul Goutam, Yiwei Song, and Bing
Yin. 2021. QUEEN: Neural Query Rewriting in E-commerce. In Proceedings
of ACM The Web Conference Workshop on Knowledge Management in e-
Commerce (WWW KMEcommerce’21). ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
Product search comes with fewer feedback signals than general
web search because actions are much sparser. Although the rich
customer feedback can help understand queries that are frequently
searched, the feedback data of infrequent queries is relatively lim-
ited. Due to the context shortage or vocabulary gap between the
query and its targeted product document, an infrequent query usu-
ally yields less relevant search results.

∗Both authors contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW KMEcommerce’21, April 2021, Virtual Event
© 2021 Association for Computing Machinery.

In this work, we try to answer the question: can we train a deep
learning model to reformulate ambiguous and infrequent queries
which derive unsatisfying results? Following this motivation, we an-
alyzed one month of anonymous product search logs from a leading
e-commerce marketplace. We found that, in many sessions, cus-
tomers iteratively clarify their shopping intents by reformulating
search queries. For instance, a customer comes to an e-commerce
site and enters a query “4xlt big and tall," the back-end system does
not understand it and does not return any results. Then s/he refor-
mulates the query into “xxxxl tshirt big," which is more expressive.
This solution allows the back-end system to find plenty of related
products. Then the customer begins to engage with the search re-
sults by clicking on or purchasing them. This series of behaviors
can be extracted as a reformulation pair (source: 4xlt big and tall,
target: xxxxl tshirt big, action: purchase), and a deep learning model
can be trained to mimic this behavior and automatically do the
reformulation.

In this paper, we propose QUEEN, a transformer-based model
that is trained on reformulation pairs, as a solution to the query
rewriting problem in e-commerce. To overcome the limitations of
context shortage and erroneous semantics, we use query annota-
tions, a by-product of the query understanding pipeline in most
e-commerce search engines, to guide the learning process. Query
annotations demonstrate the functional role of each token, which
introduces important domain knowledge to the model. Since the
query annotation is one output of the query understanding pipeline,
it does not generate any additional cost. Beyond that, introducing
the annotation actually reduces its number of parameters when
comparing to the baseline deep learning models.

The rest of the paper is organized as follows: in Section 2, we
introduce some related works, in Section 3, we describe the model
architecture of QUEEN, in Section 4, we show the empirical results
on anonymous product search logs, and we present our conclusion
in Section 5.

2 RELATEDWORKS
Query rewriting (QR) is a conventional topic in Information Re-
trieval (IR) area. Some research studies are based on the idea of
utilizing the relevance between queries and documents. For ex-
ample, [14] presents a solution to combine the word-level context
features of queries and documents, but the retrieval phase is too
expensive to be applied in the large scale e-commerce search engine.
On the other hand, some researchers focus on the query information.



WWW KMEcommerce’21, April 2021, Virtual Event Wang and Lu, et al.

For instance, [2] presents the first probabilistic query expansion
method based on query click rate, and [1, 3] are developed based on
the relevance of queries such as co-click similarity. Given limited
context and customer behavior, either more advanced technologies
or domain knowledge is required.

Embedding approaches which enhance the representation of
queries have shown strong power in the query rewriting task. [10]
aims to generate semantic representation for queries and phrases by
embedding both query and document into specific matrices. In [4],
the authors propose a context-aware embedding approach that con-
siders all the queries in a specific session. Recently, seq2seq models
show remarkable reliability and flexibility in the query rewriting
task In [5], a 2-step query rewriting framework is presented. To help
preserve important keywords of the original query, [7] introduces
additional decoders. Besides, [13] integrates the user search log,
an important information source, with basic seq2seq model. In our
paper, we collect training data from the anonymous user search
log, which contains positive feedback such as clicks or purchases.
Moreover, our method adopts domain knowledge to tackle common
issues in tail queries, such as insufficiency of query context and
customer feedback.

3 METHODOLOGY
In this section, we present QUEEN, a novel embedding mechanism
that aims to provide a query-to-query reformulation solution by
integrating the keyword annotation from domain knowledge. It
is applicable to most seq2seq and transformer models that have
encoder-decoder structures.

3.1 Notations and Problem Definition
Given the source query S and its target queryT , we can pre-process
S andT into two sub-word sequences, denoted by {s1,s2, ...,sn } and
{t1,t2, ...,tm }, where n andm are the length of S and T after word
segmentation [9]. Meanwhile, we denote the annotation aligning
the source query as {a1,a2, ...,an }. The annotation is generated
by the our query understanding pipeline, and the details of this
pipeline are beyond the scope of our paper. Our query-to-query
generation model θ generates query candidate set C where each
candidate Ci = {c1,c2, ...,cl } and c j is a sub-word.

Formally, we define the problem of annotation integrated query
rewriting as follows: given an input query S with its annotation
A, our model θ predicts a set of query candidatesC = {C1, ...,Ck }
and each candidate Ci is generated by maximizing the conditional
probability distribution as follows:

argmax
θ

l∏
i=1

P (ci |ci−1,ci−2, ...,c1,S ,A;θ ) (1)

3.2 Model Architecture
In general, our model consists of two parts: a hybrid encoder and a
decoder.

Hybrid encoder. Given an input query token and its annota-
tion, the hybrid encoder integrates the semantics and annotations.
It comprises two parts: one embedding layer and a stack of en-
coding layers. The embedding layer maps discrete words into con-
tinuous word embedding {w⃗1,w⃗2, ...,w⃗n }. Similarly with original

Self-Attention

cmp cmp

+ + +

x x
+

FFNN FFNN FFNN

Feed-forward

red nike shaes

+/C +/C

<color> <brand> <unknown>

a⃗1

p⃗1

e⃗1 e⃗2 e⃗3

a⃗2 a⃗3

w⃗1 w⃗2 w⃗3 

+/C

Softmax

p⃗2 p⃗3

Figure 1:Hybrid transformer encoderwhich integratesword
embeddingwi , positional embedding pi , and annotation em-
bedding ai . In this example, “shaes" which can not be anno-
tated by domain knowledge is a spelling error of “shoes".

transformer model[12], the hybrid encoder generates positional
embedding which has the same number of dimension dmodel with
the word embedding. Then, the encoder generates continuous anno-
tation embedding {a⃗1, a⃗2, ..., a⃗n } given input annotation sequence.
Different from knowledge graph based studies that focus on recog-
nizing the query entity, our method analyzes the role of each token
based on the query context.The roles of a token can be something
like <brand>, <color>, and <unknown>. Finally, the embedding
layer combines the word embedding, positional embedding, and
annotation embedding. There are two ways to combine those em-
beddings: Addition and Concatenation. The details are as follows:
• Addition: the final embedding is derived by adding word,
positional, and annotation embedding :

{e⃗1, e⃗2, ..., e⃗n } = {[w⃗1 + p⃗1 + a⃗1], ...,

[w⃗n + p⃗n + a⃗n]},ei ∈ Rdi ,di = dw = da
• Concatenation: the final embedding is derived by concate-
nating the annotation embedding with the addition of word
and positional embedding:

{e⃗1, e⃗2, ..., e⃗n } = {[(w⃗1 + p⃗1) ⊕ a⃗1], ...,

[(w⃗n + p⃗n ) ⊕ a⃗n]},ei ∈ Rdi ,di = dw + da
The extensive experiments show that concatenating the annotation
may achieve higher accuracy but sufficient parameter tuning (such
as howmany dimensions of annotation/word embedding is optimal)
is inevitable. In this work, we chose Concatenation-based model.

Decoder. Since predicted candidates are not required to have
annotations, our model employs normal decoder structures.



QUEEN: Neural Query Rewriting in E-commerce WWW KMEcommerce’21, April 2021, Virtual Event

4 EXPERIMENTS
We evaluate the impact of QUEEN by comparing the prediction
performance of different models. In Section 4.1, we explain how
to collect experimental data from anonymous e-commerce search
logs. Then we introduce baseline models and parameter settings in
Section 4.2. Next, we introduced evaluation metrics in Section 4.3.
In Section 4.4 and 4.5, we analyze overall experimental results and
the impact of different combination methods. Finally, we discuss
the model complexity in Section 4.6.

4.1 Dataset Creation
We collect an empirical dataset from the anonymous search logs of
a large e-commerce site during April 2019. When a customer comes
to this site and starts a new search session, search queries will
be collected if the customer’s behavior within one search session
matches the pattern as below:

(1) Start a product search session by searching with a query.
(2) No action is taken on the current search result.
(3) Start a second product search with a rewritten query.
(4) Click/purchase on the search result of the rewritten query.

The original and rewritten query are marked as the source and the
target query. To reduce noise in the scratch data, we remove fol-
lowing queries: 1) empty queries; 2) non-English queries; 3) queries
which contain an ISBN number or an URL; 4) irrelevant query pairs
which has no overlap tokens between source and target query; 5)
wordy queries with the number of token greater than 10. In total,
we collect 38.5 million pairs of queries, where more than 90% of the
source queries have less than or equal to 6 tokens. We split them
into training set (37.9 million pairs), validation set (315 thousand
pairs), and test set (315 thousand pairs).

4.2 Compared Methods and Parameter Settings
Theoretically, QUEEN is compatiblewith lots ofmodels with encoder-
decoder structures. Without loss of generality, we adopt two widely
usedmodels, long short-termmemory (LSTM) [11], and transformer[12],
to create two variants in our experiments. Here are the details and
the parameter settings of them:

QUEEN-L: QUEEN-L is generated by integrating QUEEN with
a 6-layer LSTM model with 512 hidden units on both the encoder
and decoder.

QUEEN-T: QUEEN-T is generated by integrating QUEEN with
a 6-layer encoder/decoder transformer model. Each layer has a
multi-head attention layer which contains eight heads. We used
Adam optimizer with β1 = 0.9 and β2 = 0.998.

In both QUEEN-T and QUEEN-L, the annotation embedding is
concatenated with the addition of word embedding and positional
embedding, and we set the dimension of annotation embedding to
be 16.

Our implementation is based on OpenNMT[6], an open-source
Neural Machine Translation framework. Both source and target
queries are preprocessed using byte-pair encoding [9] with shared
vocabulary that contains about 32,000 tokens. We set the dropout
rate to 0.1 and the embedding dimension to 512 for all models. We
train each model on an NVIDIA Tesla V100 GPU. All models are
trained for a total of 800,000 iterations. We compare the perfor-
mance of QUEEN-T and QUEEN-L to their baseline models:

LSTM [11]: a 6-layer LSTM model with 512 hidden units
Transformer [12]: a 6-layer transformer model with 512 units.

4.3 Evaluation Metrics
We use following evaluation metrics:

Recall@8: The sentence-level Recall@8 is the proportion of test
query pairs that the target query matches one of the top-8 predicted
candidates.

Jaccard@8: The word-level Jaccard similarity quantifies order-
insensitive query similarity. For each test query pair, Jaccard@8 is
the highest Jaccard similarity between the top-8 predicted candi-
dates and the target query.

BLEU@8: BLEU score[8] is widely adopted for evaluating n-
grams overlap. For each test query pair, BLEU@8 is the highest
BLEU score between the top-8 predicted candidates and the target
query.

4.4 Evaluation Results

Table 1: The performance of QUEEN-T and QUEEN-L com-
pared to their baseline models

Algorithm Relative Gain
Our method Baseline Recall@8 Jaccard@8 BLEU@8
QUEEN-L LSTM +6.60% +6.94% +23.33%
QUEEN-T Transformer +4.55% +1.97% +2.94%

Table 1 shows the prediction performance of all models on the
testing data. From Table 1, we can observe that both QUEEN-L and
QUEEN-T outperforms their baseline versions, which indicates that
involving query annotation further improves deep-learning models’
performance. Compared to plain LSTM and Transformer model,
QUEEN-L and QUEEN-T have higher Recall@8, Jaccard@8, and
BLEU@8.

Figure 2: Analysis of different models by query length. For
each metric, the x-axis is the length of source query. The y-
axis is the relative gain of Recall@8.



WWW KMEcommerce’21, April 2021, Virtual Event Wang and Lu, et al.

To demonstrate the impact of QUEEN on different models, we
analyze the incremental improvement of QUEEN-T and QUEEN-L
by the length of source query. In Figure 2, we plot the relative gain
of recall@8 of QUEEN-T and QUEEN-L compared to Transformer
and LSTM model under different query lengths. From this figure,
we observe that QUEEN-T performs well for long queries than
Transformer, which demonstrates the ability of capturing the long-
term dependency. For short queries (length < 4), QUEEN-L shows
obvious improvement comparing to the baseline LSTM model.

4.5 Model Complexity
In this subsection, we would like to study the annotation embed-
ding’s impact to the model complexity We vary the dimension of
annotation embedding between 256, 128, 64, 32, and 16, while we
keep the dimension of final input embedding as 512. The dimen-
sions of the addition of word embedding are 256, 384, 448, 480, and
496, respectively. We plot the results in Figure 3, and it shows that
the model complexity is reducing as the dimension of annotation
embedding is increasing. The reason is: annotation has a much
smaller vocabulary than normal language, so keep the same dimen-
sion of the final embedding while assign more dimension to the
annotation embedding reduces complexity of the model.

85

87

89

91

93

95

0 16 32 64 128 256N
um

be
ro

fp
ar
am

et
er
s M
ill
io
ns Model Complexity

Figure 3: Number of parameters under different dimensions
of the annotation embedding.

5 CONCLUSION
In this paper, we formulate the query rewriting task as a query-to-
query generation problem. Specifically, we present a practical deep
learning solution for the query rewriting problem. By integrating
the query annotations, which is the by-product of the current pro-
duction system, our model improve the prediction accuracy and
enhanced the overall search experience. Empirical results built on
38.5 million anonymous customer search logs demonstrates that our
proposed model not only achieves better prediction performance
but also reduces the complexity of baseline deep learning models.

REFERENCES
[1] Ioannis Antonellis, Hector Garcia Molina, and Chi Chao Chang. 2008. Simrank++:

query rewriting through link analysis of the click graph. Proceedings of the VLDB
Endowment 1, 1 (2008), 408–421.

[2] Hang Cui, Ji-RongWen, Jian-Yun Nie, and Wei-Ying Ma. 2002. Probabilistic query
expansion using query logs. In Proceedings of the 11th international conference on
World Wide Web. ACM, 325–332.

[3] Bruno M Fonseca, Paulo Golgher, Bruno Pôssas, Berthier Ribeiro-Neto, and Nivio
Ziviani. 2005. Concept-based interactive query expansion. In Proceedings of the

14th ACM international conference on Information and knowledge management.
ACM, 696–703.

[4] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri, and
Narayan Bhamidipati. 2015. Context-and content-aware embeddings for query
rewriting in sponsored search. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval. ACM, 383–392.

[5] Yunlong He, Jiliang Tang, Hua Ouyang, Changsung Kang, Dawei Yin, and Yi
Chang. 2016. Learning to rewrite queries. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge Management. ACM,
1443–1452.

[6] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M.
Rush. 2017. OpenNMT: Open-Source Toolkit for Neural Machine Translation. In
Proc. ACL. https://doi.org/10.18653/v1/P17-4012

[7] Xiaoyu Liu, Shunda Pan, Qi Zhang, Yu-Gang Jiang, and Xuanjing Huang. 2018.
Generating Keyword Queries for Natural Language Queries to Alleviate Lexical
Chasm Problem. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. ACM, 1163–1172.

[8] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[9] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
(2016). https://doi.org/10.18653/v1/p16-1162

[10] Alessandro Sordoni, Yoshua Bengio, and Jian-Yun Nie. 2014. Learning concept
embeddings for query expansion by quantum entropy minimization. In Twenty-
Eighth AAAI Conference on Artificial Intelligence.

[11] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. arXiv:cs.CL/1409.3215

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[13] Jingang Wang, Junfeng Tian, Long Qiu, Sheng Li, Jun Lang, Luo Si, and Man Lan.
2018. A Multi-task Learning Approach for Improving Product Title Compression
with User Search Log Data. arXiv:cs.CL/1801.01725

[14] Jinxi Xu and W Bruce Croft. 2017. Quary expansion using local and global
document analysis. In Acm sigir forum, Vol. 51. ACM, 168–175.

https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/p16-1162
http://arxiv.org/abs/cs.CL/1409.3215
http://arxiv.org/abs/cs.CL/1801.01725

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Notations and Problem Definition
	3.2 Model Architecture

	4 Experiments
	4.1 Dataset Creation
	4.2 Compared Methods and Parameter Settings
	4.3 Evaluation Metrics
	4.4 Evaluation Results
	4.5 Model Complexity

	5 Conclusion
	References

