
Learning-based Identification of Coding Best
Practices from Software Documentation

Neela Sawant
AWS AI, Amazon
Bangalore, India

nsawant@amazon.com

Srinivasan H Sengamedu
AWS AI, Amazon

Seattle, USA
sengamed@amazon.com

Abstract—Automatic identification of coding best practices can
scale the development of code and application analyzers. We
present Doc2BP, a deep learning tool to identify coding best
practices in software documentation. Natural language descrip-
tions are mapped to an informative embedding space, optimized
under the dual objectives of binary and few shot classification.
The binary objective powers general classification into known
best practice categories using a deep learning classifier. The few
shot objective facilitates example-based classification into novel
categories by matching embeddings with user-provided examples
at run-time, without having to retrain the underlying model.
We analyze the effects of manually and synthetically labeled
examples, context, and cross-domain information.

We have applied Doc2BP to Java, Python, AWS Java SDK,
and AWS CloudFormation documentations. With respect to prior
works that primarily leverage keyword heuristics and our own
parts of speech pattern baselines, we obtain 3-5% F1 score
improvement for Java and Python, and 15-20% for AWS Java
SDK and AWS CloudFormation. Experiments with four few shot
use-cases show promising results (5-shot accuracy of 99%+ for
Java NullPointerException and AWS Java metrics, 65% for AWS
CloudFormation numerics, and 35% for Python best practices).

Doc2BP has contributed new rules and improved specifications
in Amazon’s code and application analyzers: (a) 500+ new checks
in cfn-lint, an open-source AWS CloudFormation linter, (b) over
97% automated coverage of metrics APIs and related practices
in Amazon DevOps Guru, (c) support for nullable AWS APIs in
Amazon CodeGuru’s Java NullPointerException (NPE) detector,
(d) 200+ new best practices for Java, Python, and respective
AWS SDKs in Amazon CodeGuru, and (e) 2% reduction in false
positives in Amazon CodeGuru’s Java resource leak detector.

Index Terms—natural language understanding, information
extraction, embeddings, deep learning, few shot learning

I. INTRODUCTION

Creating quality software requires an in depth knowledge
of coding best practices on various aspects such as data struc-
tures, error handling, resource management, multiprocessing,
and security. Coding best practices need to be identified before
they can be incorporated in developer code or implemented
as static analyzer checks. However, identification is non-
trivial since best practice descriptions can be fragmented in
documentation and hard to find due to significant differences
in keywords, form, and semantics [1]–[3]. For example,
• “Document.getText Method Now Allows for Partial Re-

turns. For more efficient use, callers should invoke seg-
ment.setPartialReturn(true) and be prepared to receive a
portion at a time” (Java 11 Swing API reference)

• “It is good programming practice to not use mutable
objects as default values. Instead, use None as the default
value and inside the function, check if the parameter
is None and create a new list/ dictionary/ whatever if
it is” (Python 3.7 tutorial)

• “When using the DynamoDBMapper to add or edit
signed (or encrypted and signed) items, configure it to use
a save behavior, such as PUT, that includes all attributes.
Otherwise, you might not be able to decrypt your data”
(AWS Java SDK guide)

• “The minimum maintenance window is 60 minutes”
(AWS CloudFormation user guide).

Our goal is to automate best practice identification from the
documentation on various languages, frameworks, and applica-
tions to help scale the development of related code and appli-
cation analyzers. Identified best practices can be implemented
as new static analysis rules or used to enhance existing rules
by covering more APIs and properties. Our primary use-case
is Amazon CodeGuru (https://aws.amazon.com/codeguru/) [4],
a developer tool that provides intelligent recommendations
to improve code quality and identify an application’s most
expensive lines of code. The first three coding best practices
described above were implemented as new rules in Code-
Guru’s Java, Python, and AWS Java SDK code analyzers,
respectively. The fourth practice was used to update an existing
rule in cfn-lint, a linter for AWS CloudFormation [5].

Prior works in automated best practice identification pri-
marily rely on keyword heuristics curated on case-by-case
basis. For example, extracting warnings and recommendations
by matching keywords such as ‘must’, ‘should’, ‘require’,
‘encourage’, and ‘recommend’ [2], [6], [7]. However, such
heuristics fail to generalize for various reasons.

• Keyword mismatch - Keywords may differ across use-
cases, for example in describing nullable APIs (null in
Java and None in Python) or resources leaks (terminate
or kill in Python and tear down in AWS CloudFormation
instead of shutdown and close in Java and AWS Java).

• Context sensitivity - Best practices may be contextual. For
example, AWS SDK for Java [8] describes over 2000
metrics APIs to monitor the health and behavior of AWS
services. The text is not consistently structured, requiring
the context of each metric to be inferred before extracting



related best practice descriptions. For example, for Ama-
zon Lex1 RuntimeSystemErrors, relevant practices include
“The response code range for a system error is 500 to
599”, “Valid dimension for the PostContent operation
with the Text or Speech InputMode: BotName, BotAlias,
Operation, InputMode”, and “Unit: Count”. For AWS
Lambda2 Errors metric, relevant practices include “Sum
statistic”, “To calculate the error rate, divide the value
of Errors by the value of Invocations”, etc.

• Non-keyword patterns - Best practice descriptions may
not be keyword based. For example, AWS CloudFor-
mation [9] describes value constraints on resources and
properties of AWS cloud services such as a) “TargetValue
range is 8.515920e-109 to 1.174271e+108 (Base 10) or
2e-360 to 2e360 (Base 2)”, (b) “The minimum window is
a 60 minute”, (c) “Up to five VPC security group IDs, of
the form sg-xxxxxxxx”, (d) “The total number of allowed
resources is 250”. These practices are numeric patterns.

Our main contribution is Doc2BP, a deep learning tool to
identify best practice descriptions from software documenta-
tion. The tool is aimed at reducing the overhead in maintaining
multiple heuristics and simplifying new rule creation for
different programming languages and frameworks. The tool
supports two modes, general classification and example-based
classification, powered by a common embedding space for
natural language descriptions and jointly optimized under the
dual objectives of binary and few shot classification respec-
tively. The binary classification objective ensures coverage of
known categories in available training data via a deep learning
classifier, whereas the few shot objective allows classification
into previously unseen categories based on the embedding
similarity with a few user-labeled examples at inference time,
without retraining the underlying deep learning model.

We have extensively applied Doc2BP on Java, Python, AWS
Java SDK, and AWS CloudFormation documentations. The
choice of documentations reflects the domains supported by
Amazon CodeGuru at the time of writing this paper, and offers
a good mix of general-purpose and specialized domains to
study. Section III motivates the learning based approach using
a case study on AWS CloudFormation. Sections IV and V
present the representation learning formulation and overall
Doc2BP system. Section VI covers extensive experiments
with manually and synthetically labeled examples, context,
and cross-domain information. With respect to prior keyword
heuristics and our own parts of speech (POS) pattern base-
lines, we obtain 3-5% F1 score improvement in best practice
detection for Java and Python and 15-20% for AWS Java SDK
and AWS CloudFormation. We experiment with four use-cases
in few shot setting with promising results (5-shot accuracy of
99%+ for Java NullPointerException and AWS Java metrics,
65% for AWS CloudFormation numerics, and 35% for Python
best practices). These results indicate that Doc2BP is an

1https://docs.aws.amazon.com/lex/latest/dg/
monitoring-aws-lex-cloudwatch.html

2https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html

effective solution for both general-purpose and specialized
requirements. Section VII details real-world impact of Doc2BP
on multiple code and application analyzers such as cfn-lint -
an AWS CloudFormation linter [5], Amazon DevOps Guru -
a cloud operations service to improve application availability
[10], and Amazon CodeGuru - an automated code review
tool for multiple programming languages and frameworks
including Java, Python, and respective AWS SDKs [4].

II. RELATED WORK

We now present prior work in extracting information from
software documentation as well as related work in deep learn-
ing, natural language understanding, and few shot learning.

A. Information Extraction from Software Documentation

Monperrus et al. conducted a formal study of the types of
knowledge in software documentation [6]. They proposed a
list of keywords based on a manual review of Java docu-
mentation, RFC2119 - “Keywords for use in RFCs to Indi-
cate Requirement Levels” [11], Oracle technical reports [12],
and research papers [13]. Use-cases include extraction of
method call practices (“Subclasses should not call this internal
method”), subclassing practices (“Subclasses may override
any of the following methods: isLabelProperty, getImage,
getText, dispose”), or synchronization practices (“If multiple
threads access a hash map concurrently, and at least one of
the threads modifies the map structurally, it must be synchro-
nized externally”). This approach has been reused in other
general-purpose studies [2], [3], [14]–[16] and extended for
specialized requirements such as interrupt conditions [17] and
performance concerns [7], [18]. For performance concerns,
keywords can be fast, slow, expensive, cheap, performance,
speedup, efficient, etc. and their inflections (e.g., efficiency,
efficiently) [7], resulting in findings such as “Raising this value
decreases the number of seeds found, which makes mean shift
computationally cheaper”. Table I lists popular prior work.

Few studies have used specialized natural language process-
ing for healthcare [19], resource and method handling [20],
[21], bug report analysis [22], [23] and software categorization
[24]. A recent survey [25] indicates that less than 5% of
research in security patterns uses natural language processing,
for example, to extract access control requirements [26],
[27], privacy policy visualization and summarization [28],
inconsistent security requirements detection [29], and mining
cyber threats from online documents [30], [31], and logs [32].

B. Related Work in Machine Learning

We now discuss concepts related to Doc2BP formulation.
1) Deep Learning and Natural Language Understanding:

Deep learning has achieved a major breakthrough in many
fields [33]–[36]. The seminal survey by Allamanis et al.
[37] covers many applications such as code search, code
completion, code generation, and documentation improvement.
Subsequently many powerful neural models such as Code-
BERT [38], PLBART [39], and CodeT5 [40] have been applied



TABLE I
KEYWORD HEURISTICS IN POPULAR SOFTWARE DOCUMENTATION MINING LITERATURE

Reference Use-Case Keyword Pattern

Monperrus et al. [6]

ControlFlow:Conditional ”(assum— only— debug— restrict— never— condition— strict—necessar— portab— strong)”
ControlFlow:Temporal ”(call— invo— before — after — between — once — prior)”
Recommend:Warning ”(warn—aware—error—note)”
Recommend:Affirmative ”(must— mandat— require— shall— should— encourage— recommend— may )”
Recommend:Alternative ”(desir—alternativ—addition)”
Performance:Performance ”(performan—efficien—fast—quick—better—best)”
Concurrency:Concurrency ”(concurren—synchron—lock—thread—simultaneous)”
Subclassing:Subclassing ”(extend—overrid—overload—overwrit—re.?implement—sub.?class—super—inherit)”

Li et al. [2]

ControlFlow:Conditional ”(under the condition—whether— if —when—assume that)”
ControlFlow:Temporal ”(before—after)”
Recommend:Warning ”(insecure —susceptible — error— null— exception— susceptible— unavailable— not thread safe— illegal— inappropriate— insecure)”
Recommend:Affirmative ”(must—should—have to—need to)”
Recommend:Alternative ”(instead of—rather than—otherwise)”
Recommend:Recommendation ”(deprecate—better to—best to—recommended—less desirable—discourage)”
Recommend:Negative ”(do not—be not—never)”
Recommend:Emphasis ”(none—only—always)”
Recommend:Note ”(note that—notably—caution)”

Tao 2020 [7] Performance:Performance ”(fast—slow—expensive—cheap—performan—speedup—computation—accelerat—intensi—scalable—efficien)”

to problems of bug detection [41], code review generation [42],
and code and documentation synthesis [43], [44].

Detecting best practices, recommendations, and warnings
is related to traditional natural language understanding tasks
such as sentiment analysis [45]–[48] and suggestion mining
[49]–[51]. In general literature, these tasks have been modeled
using classical approaches such as parts of speech [52]–[54]
and deep learning [35], [36], [55].

We have not seen any prior work generally applying deep
learning or advanced natural language understanding for best
practice identification from software documentation. Section
5.6 of the Allamanis survey [37] states ‘Also out-of-scope is
work that combines natural language information with APIs’
and refers readers to investigate work already discussed above.

2) Few Shot Learning: Few-shot learning classifies new
data having seen only a few training examples [56]. Few shot
learning can be made tractable by incorporating in pre-training
[57] knowledge from similar tasks, useful parameters, or
data [58]–[60]. Similarity based algorithms such as matching
networks [61] or prototypical networks [62] learn embeddings
from training tasks that allow classification of unseen classes
with few examples. Our approach is inspired by matching
networks [61] and weakly supervised training [58].

III. FROM KEYWORDS TO LEARNING SYNTAX PATTERNS

We conducted a case study with AWS CloudFormation (a
specialized framework for 200+ AWS services) to motivate
learning based approaches for detecting non-keyword patterns
given a few examples. Based on a manual documentation
review of two AWS services - CloudTrail3 and CodeCom-
mit4, we extracted about 50 best practice examples ranging
from general recommendations (e.g, “You can only use this
property to add code when creating a repository with a AWS
CloudFormation template at creation time”; “This property
cannot be used for updating code to an existing repository”),
to alpha-numeric value constraints (e.g., “Be between 3 and
128 characters”; “Start with a letter or number, and end

3https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
aws-resource-cloudtrail-trail.html

4https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
aws-resource-codecommit-repository.html

Fig. 1. POS patterns learned from documentation of two AWS services.

with a letter or number”). We chose parts of speech (POS)
representations, mapping each word to its POS tag according
to its syntactic role in the sentence (noun, pronoun, adjective,
determiner, verb) [63]. We then applied PrefixSpan [64], a
rule induction algorithm to infer frequent POS subsequence
patterns. Given two sequences x = (x1, x2, . . . , xm) and
y = (y1, y2, . . . , yn), x is called a subsequence of y, denoted
as x ⊆ y if there exist integers 1 ≤ a1 ≤ a2 ≤ . . . ≤ am ≤ n
such that x1 ⊆ ya1 , x2 ⊆ ya2 , xm ⊆ yam . Figure 1 shows the
frequent POS subsequence patterns learned from the selected
examples. We observed the following:

1) Ability to Replace Keyword-based Solutions: POS sub-
sequences [‘MD’, ‘VB’] and [‘MD’, ‘RB’] occur in sentences
whose POS sequence matches the following regular expression
{[MD] >< .∗ > ∗ < [V B]|[RB] >}. MD, VB, and RB
are POS tags representing modal structure, base verbs and
adverbs respectively. The pattern triggers on all imperative
sentences, for example, “The value must be no more than 255
characters”. Comparing the detections from imperative POS
pattern with keyword heuristics in Table I, we find a significant
overlap as seen in Figure 2. We find that the imperative pattern
detects about 50% of all detections in the affirmative category
and over 40% detections by the conditional category.

2) Ability to Capture Non-Keyword Information: The sub-
sequence [‘DT’, ‘NN’, ‘CD’] (in regular expression format



Fig. 2. Cooccurrence analysis between imperative POS pattern and multiple
keyword heuristics shows that a single learned rule can significantly replace
detections from multiple heuristics. The imperative pattern detects about 50%
of all detections in the affirmative category and over 40% detections in the
conditional category. Diagonal is suppressed to improve visual contrast.

{[DT ] >< .∗ > ∗ < [NN ] >< .∗ > ∗ < [CD] >}
is a pattern containing CD, e.g. cardinal digit. It matches a
wide variety of numeric value constraints. For example, (a)
“The maximum length is 200 characters”, (b) “The number of
resources cannot exceed 250 across events”, (c) “The count of
allowed data resources is 250”, and (d) “This can be a number
from 1 - 1024”. The ability to detect the non-keyword patterns
is an additional benefit of learning based approach.

To summarize, learning based algorithms can infer useful
patterns from few examples, replace or augment keyword
heuristics, and capture non-keyword requirements. This is
possible because the natural language constructs as well as
software documentation exhibit reasonably consistent struc-
tures. This insight has led to our detailed deep learning
formulation, described below.

IV. REPRESENTATION LEARNING FRAMEWORK

We are given a training dataset S containing M labeled
examples, S = {(x1, y1), . . . , (xM , yM )} where xi ∈ RD, is a
D-dimensional feature vector and yi ∈ {0, 1} is a best practice
label. For a subset Sc containing Mc known best practices
e.g., Sc ⊂ S = {(xj , yj) | yj = 1}Mc

j=1, we are also given
an additional label zj ∈ {1, . . . , N} to denote the category of
best practice from N categories known at training time, for
example, related to performance, security, subclassing, etc. For
simplicity, we denote it as Sc = {(xj , zj)}Mc

j=1.
The core idea is to learn a metric space where each example

can be encoded into a smaller L-dimensional dense represen-
tation (e.g., embedding) with function fφ : RD → RL, L ≤ D
and φ representing learnable embeddings. We optimize the
embedding space under the dual objectives of binary and few
shot classification. The binary classification objective ensures

coverage of known categories in the available training data, by
training a deep learning classifier for general classification. By
default, such classifier cannot adapt to categories not included
in the training set. To avoid model retraining for emerging
requirements, we introduce a few shot learning capability
that performs example-based classification, e.g. predicting new
classes based on embedding similarity with few user-labeled
examples at run time, without modifying model parameters.
This objective encourages examples belonging to the same
category to be co-located in the embedding space, thereby
facilitating similarity based, non-parametric classification.

A. Binary Classification
Let g be any binary classifier parameterized via θ. If g is a

logistic regression parameterized by θ = {w, b}, label y can be
modeled as a function of input embedding fφ(x) as follows:

ŷ = P (y = 1|x;φ, θ) = σ(wᵀfφ(x) + b) (1)

where σ(a) = 1/(1 + e−a) is the logistic sigmoid function.
Loss between the predicted and actual probability distribu-

tions (ŷ and y) is quantified using binary cross entropy (BCE).

LBCE = −
M∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (2)

B. Few Shot Classification
Our formulation of example-based classification is founded

on two ideas. First, for the model to generalize to the test
environment given a small number of new labeled examples
(few shot), it should be trained under a similar setting. Sec-
ondly, the model should classify new test examples without
any changes to the model parameters. For these purposes, we
adopt the following episodic training strategy.

We create an n-way-k-shot episodic training, where the
labeled dataset Sc = {(xj , zj)}Mc

j=1 is converted into several
training episodes (e.g., mini-batches) by subsampling n train-
ing classes as well as k examples within each class. Each
episode consists of n × k labeled examples (support set B)
and an additional t examples (test set), also sampled from
the same n classes. Test label z is modeled based on the
embedding similarity of the test and the support examples.
The similarity function between two embeddings, say a(., .)
can be any attention kernel like a kernel density estimator or
k-nearest neighbor that produces a similarity score. Similar to
matching network [61], we model a as a soft-max over the
cosine similarity c(., .) of embeddings, e.g.

a(x, x’;φ) =
ec(fφ(x),fφ(x’))∑
x” e

c(fφ(x),fφ(x”)) (3)

The label distribution ẑ is a function of class similarities.

ẑ = P (z|x;φ) =
∑

(x′,z′)∈B

a(x, x’;φ)z′ (4)

Loss between the predicted and actual probability distribu-
tions (ẑ and z) is quantified using general cross entropy (CE).

LCE = −
Mc∑
i=1

zilog(ẑi) (5)



C. Overall Optimization

As the encoder function fφ, we use BERT - Bi-directional
Encoder Representations from Transformers [57]. The input to
the BERT encoder (f) are natural language statements, each
tokenized into word sequences and augmented with special
tokens [CLS] and [SEP] to mark the start and the end of
the statement. Context can be incorporated by augmenting
the input representation with sentences preceding or following
the candidate text. The input sequences are transformed into
numeric sequences, followed by BERT processing to generate
contextual embeddings. We use the average pooled output
from BERT hidden states as the input embedding.

For binary classification, the embedding generated by BERT
is passed through dropout and linear layers with soft-max
output transformation. This is essentially the form of a feed-
forward deep neural network for classification. Parameters
φ and θ are optimized using stochastic gradient descent to
minimize the combined loss L = LBCE + LCE . Figure 3
illustrates the combined machine learning architecture.

V. Doc2BP SYSTEM OVERVIEW

Figure 4 presents an overview of Doc2BP with document
parsing, best practice detection, and retriever modules.

The Document Parsing module loads diverse documentation
formats and represents them as hypertext using BeautifulSoup
[65]. Text is segmented based on line breaks and enclosing
tag memberships (such as description lists and table rows)
into semantically related components. Figure 5 shows a sam-
ple Python document, its HTML source, and the generated
components that are subsequently input to best practice detec-
tion. Each component maintains a list of sentences, metadata
(code tags, keywords, file name, headers, etc), and component
relationships for navigating related best practices.

The best practice identification module supports keyword
patterns (prior work), parts of speech (POS) patterns, and deep
learning classifiers. The detectors can be used independently or
collectively. Findings are labeled with detector metadata (e.g.,
alphanumeric value, imperative, allowed pattern, security) and
stored in an index. In Figure 5(c), one best practice is detected
from the first component - “The named constructors are much
faster than new() and should be preferred”.

The retriever module supports user interaction. Users can
input new test documentation and few-shot best practice
examples, view findings, and provide feedback.

VI. EXPERIMENTS

We experimented with four public software documentations:
Java 11 API Reference [66], Python 3.7 Reference [67], AWS
Java SDK API Reference [8], and AWS CloudFormation User
Guide [9]. The choices reflect the domains supported by
Amazon CodeGuru at the time of writing this paper, and offers
a good mix of general and specialized domains to study.

Datasets: Deep learning models are data hungry. We syn-
thesized a weakly labeled dataset for pre-training and a small
manually curated ground truth for fine-tuning and evaluation.
The pre-training dataset is created by applying the keyword

TABLE II
DOCUMENTATION CORPUS USED IN EXPERIMENTS

Documentation Corpus Size (MB) Documents Sentences #Positives in 1K
Ground Truth

Java [66] 97 13,386 537,277 451
Python [67] 13 509 71,928 698
AWS Java SDK [8] 177 31,355 820,001 441
AWS CloudFormation [9] 2 93 14,851 632

heuristics in Table I and the POS patterns in Section III.
Sentences detected by these techniques are labeled as positive
(y = 1). A subset of sentences where none of the detectors
triggered are labeled as negative. We expect the labels to have
some noise, hence termed weakly labeled. To simplify few
shot training, examples that mapped to multiple categories in a
batch were removed. We curated the ground truth by manually
labeling 1000 sentences per documentation, split 70%-30% for
fine-tuning and evaluation. Table II shows dataset properties.

Model Training: We used HuggingFace implementation of
BERT (BERT-base-case) previously pre-trained on BookCor-
pus, a dataset consisting of 11,038 unpublished books and En-
glish Wikipedia. We further pre-trained and fine-tuned BERT
using above datasets, and experimented with the following:
• Incorporating context: We used non-contextual and con-

textual representations. For context, we further evaluated
the difference between using preceding context (preced-
ing sentences) and surrounding context (both preceding
and following sentences) in the paragraph.

• Combining training corpora: We used three schemes
(a) Self - Each documentation corpus is maintained
separate and used to train language-specific models; (b)
Java + Python - A combined corpus of general purpose
programming language documentation, and (c) All - A
combined corpus of all four documentation types. This
helps evaluate if patterns are transferable across domains.

All experiments were run on a p3.16xlarge EC2 machine
with hyper-parameter tuning (sequence length, the number of
training shots, batch size, and learning rates). Since deep learn-
ing optimization can be sensitive to initialization, experiments
were replicated with 10 random seeds. For few shot fine-
tuning, we achieve the best validation performance with N=4,
K=3 episodes for 128-dimensional representations.

A. Pre-training Results

Table III shows pre-training results. We observe that pre-
training with the weakly labeled data is effective by itself.
Without using any ground truth labels, we can achieve accu-
racy of 64% for AWS Java SDK, 67% for AWS CloudForma-
tion, 54% for Java, and 73% for Python. Secondly, combining
training data across documentation provides impressive gains
for specialized frameworks - AWS Java SDK (+7%) and
AWS CloudFormation (+20%) and small but significant gains
for Java (+1.5%) and Python (+2.5%) respectively. Finally,
contextual representations lead to better performance than
non-contextual representations when using combined training



(a) BERT-based representation learning under dual objectives (b) Few shot classification for example-based identification

Fig. 3. Doc2BP representation learning and inference framework

Fig. 4. Doc2BP System Overview

corpora. For AWS All strategy, about 20% accuracy gain is
observed, with others at a moderate gain of 5-8%.

B. Fine-tuning Results

We next experimented with fine-tuning the encoder by
adding small amounts of ground truth examples. We sampled
175, 350, and 525 (corresponding to 25%, 50%, and 75%)
examples from the ground truth training partition and tuned
the performance for 175 validation examples. From the fine-
tuning performance in Table IV and comparing it with the pre-
training performance in Table III, we observe the following:
(a) CloudFormation records a significant improvement (67%
in pre-training versus 83% for fine-tuning) with just 175
examples. This may be attributed to the high regularity of its
documentation and best practice descriptions; (b) Fine-tuning
using domain-specific data helps specialized languages as
noted by the best performance on AWS Java SDK and Cloud-
Formation from the “Self” training mode; (c) For general
purpose programming languages, fine-tuning with combined
corpora leads to slightly better results.

C. Comparison with Baselines

Table V compares the best practice classification perfor-
mance of Doc2BP with various strategies: (a) popular keyword
heuristics shown in Table I by Li et al. [2] and Monperrus
et al. [6] and (b) imperative and numeric parts of speech
(POS) patterns from Section III. For better visualization of
this large table, we have bold-faced highest values in each col-
umn. We observe that (a) Doc2BP significantly out-performs

other baselines in recall and F1 classification metrics, with
F1-score improvement of 15-20% for AWS Java SDK and
CloudFormation and 3-5% for Java and Python. Doc2BP
captures over 75% of ground truth examples across all cases.
(b) Some keyword detectors (Recommendation, Note, and
Affirmative) are extremely precise, but also narrow e.g., having
a very small recall, hence also a small F1 score. Some Java-
specific curated keyword patterns (Alternative and Negative)
have lower generalization on specialized frameworks. (c) The
recall and F1 of POS patterns are comparable to the collection
of multiple curated keywords in case of AWS Java SDK and
CloudFormation. They under-perform for the more general
use-cases of Java and Python. Gaps are expected to reduce
if more POS patterns are included, e.g. from Figure 1.

Doc2BP assigns a probabilistic score to each detection,
helping generate a ranked list of best practices for a more
efficient manual review compared to other non-probabilistic
baselines. Figure 6 shows the ROC curves and the area under
the curve (AUC) for Doc2BP on different documentations.

D. Few Shot: Example based identification

We tested four increasingly complex scenarios from key-
word contexts, parts of speech, to higher order semantics.
• Null Pointer Exception (NPE) - An important use-

case in Java is to determine if an API can return
null values. Nullable APIs can be detected from doc-
umentation using ‘null’ keyword. For example, S3 get-
CachedResponseMetadata API is described to “return the
response metadata for the specified request, or null if



TABLE III
PRE-TRAINING EXPERIMENTS WITH CROSS-DOMAIN INFORMATION AND CONTEXT: RESULTS ON GROUND TRUTH TEST DATA

Pre-training Data Input Format AWS Java SDK AWS CloudFormation Java Python
Self Non-contextual 57.4% ± 0.6% 46.7% ± 0.4% 50.5% ± 0.3% 70.8% ± 0.1%
Self Preceding context 44.1% ± 0.9% 46.1% ± 0.8% 52.3% ± 0.2% 65.6% ± 0.3%
Self Surrounding context 44.0% ± 0.5% 45.2% ± 0.2% 47.0% ± 0.3% 68.1% ± 0.1%
Java + Python Non-contextual 51.5% ± 0.8% 59.5% ± 0.6% 50.6% ± 0.2% 66.3% ± 0.5%
Java + Python Preceding context 63.5% ± 0.9% 67.4% ± 0.3% 54.2% ± 0.4% 72.9% ± 0.5%
Java + Python Surrounding context 63.4% ± 0.2% 67.5% ± 0.0% 53.8% ± 0.3% 73.1% ± 0.2%
All Non-contextual 45.6% ± 0.2% 62.2% ± 0.2% 45.3% ± 0.2% 68.8% ± 0.1%
All Preceding context 57.9% ± 0.8% 63.0% ± 0.4% 49.5% ± 0.4% 67.5% ± 0.5%
All Surrounding context 64.1% ± 0.0% 67.2% ± 0.3% 53.2% ± 0.3% 73.2% ± 0.7%

TABLE IV
FINE-TUNING EXPERIMENTS WITH CROSS-DOMAIN INFORMATION AND TRAINING SIZE: RESULTS ON GROUND TRUTH TEST DATA

Finetuning Data Training Size AWS Java SDK AWS CloudFormation Java Python
Self 175 69.6% ± 0.05% 83.0% ± 0.01% 73.4% ± 0.08% 53.2% ± 0.05%
Self 350 76.9% ± 0.09% 82.3% ± 0.08% 73.4% ± 0.09% 68.8% ± 0.11%
Self 525 78.9% ± 0.11% 83.3% ± 0.06% 82.4% ± 0.02% 72.9% ± 0.18%
Java + Python 175 69.2% ± 0.06% 66.6% ± 0.14% 76.7% ± 0.10% 70.2% ± 0.20%
Java + Python 350 72.9% ± 0.07% 72.8% ± 0.16% 77.7% ± 0.12% 72.2% ± 0.19%
Java + Python 525 71.2% ± 0.07% 67.5% ± 0.15% 84.4% ± 0.11% 74.9% ± 0.19%
All 175 71.6% ± 0.07% 67.5% ± 0.15% 68.1% ± 0.06% 57.6% ± 0.13%
All 350 77.9% ± 0.08% 77.0% ± 0.14% 77.7% ± 0.09% 71.2% ± 0.15%
All 525 78.9% ± 0.10% 79.0% ± 0.20% 83.1% ± 0.11% 72.9% ± 0.18%

TABLE V
COMPARING BEST PRACTICE DETECTION PERFORMANCE OF BASELINES ON GROUND TRUTH TEST DATA

Detector Precision Recall F1
AWS Java CloudFormation Java Python AWS Java CloudFormation Java Python AWS Java CloudFormation Java Python

Li et al. [2]: Affirmative 84.0% 86.2% 73.7% 93.3% 15.9% 25.9% 10.3% 13.6% 26.8% 39.8% 18.1% 23.7%
Li et al. [2]: Alternative 25.0% 100.0% 60.0% 94.1% 0.8% 1.6% 2.2% 7.8% 1.5% 3.1% 4.3% 14.3%
Li et al. [2]: Conditional 46.2% 52.3% 66.1% 94.1% 13.6% 11.9% 30.1% 15.5% 21.1% 19.4% 4.1% 2.7%
Li et al. [2]: Emphasis 68.8% 78.8% 56.3% 79.2% 8.3% 13.5% 6.6% 9.2% 1.5% 2.3% 1.2% 1.7%
Li et al. [2]: Negative 66.7% 20.0% 80.0% 75.0% 3.0% 0.5% 2.9% 1.5% 5.8% 1.0% 5.7% 2.9%
Li et al. [2]: Note 0.0% 100.0% 100.0% 100.0% 0.0% 0.5% 3.7% 1.9% 0.0% 1.0% 7.1% 3.8%
Li et al. [2]: Performance 33.3% 0.0% 0.0% 100.0% 2.3% 0.0% 0.0% 1.9% 4.3% 0.0% 0.0% 3.8%
Li et al. [2]: Recommendation 100.0% 100.0% 50.0% 100.0% 0.8% 0.5% 1.5% 3.9% 1.5% 1.0% 2.9% 7.5%
Li et al. [2]: Temporal 61.5% 35.3% 57.1% 84.6% 6.1% 3.1% 2.9% 5.3% 11.0% 5.7% 5.6% 1.0%
Li et al. [2]: Warning 45.5% 50.0% 53.7% 64.7% 3.8% 1.6% 32.4% 10.7% 7.0% 3.0% 40.4% 18.3%
Li et al. [2]: All 58.1% 66.7% 61.2% 85.5% 55.0% 59.0% 82.0% 71.0% 56.3% 62.6% 69.9% 77.8%
Monperrus et al. [6]: Affirmative 76.5% 84.4% 69.4% 92.5% 19.7% 33.7% 18.4% 18.0% 31.3% 4.8% 29.1% 30.1%
Monperrus et al. [6]: Alternative 33.3% 20.0% 100.0% 83.3% 3.0% 0.5% 3.7% 2.4% 5.6% 1.0% 7.1% 4.7%
Monperrus et al. [6]: Concurrency 28.6% 30.8% 50.0% 70.0% 1.5% 2.1% 8.8% 3.4% 2.9% 3.9% 15.0% 6.5%
Monperrus et al. [6]: Conditional 59.1% 78.4% 57.1% 82.4% 9.8% 15.0% 5.9% 6.8% 16.9% 25.2% 10.7% 12.6%
Monperrus et al. [6]: Performance 44.4% 50.0% 100.0% 100.0% 3.0% 0.5% 0.7% 1.9% 5.7% 1.0% 1.5% 3.8%
Monperrus et al. [6]: Subclassing 25.0% 75.0% 24.0% 76.2% 0.8% 1.6% 4.4% 7.8% 1.5% 3.0% 7.5% 14.1%
Monperrus et al. [6]: Temporal 38.6% 40.0% 52.8% 62.8% 12.9% 6.2% 20.6% 13.1% 19.3% 10.8% 29.6% 21.7%
Monperrus et al. [6]: Warning 63.6% 62.5% 61.9% 69.2% 10.6% 2.6% 9.6% 13.1% 18.2% 5.0% 16.6% 22.0%
Monperrus et al. [6]: All 52.6% 68.2% 54.7% 76.1% 61.0% 62.0% 72.0% 67.0% 56.6% 65.0% 62.2% 71.0%
Imperative POS Patterns (Ours) 66.7% 76.1% 63.6% 81.0% 53.0% 56.0% 36.0% 39.3% 59.1% 64.5% 46.0% 52.9%
Numeric POS Patterns (Ours) 31.4% 65.6% 44.4% 60.0% 24.2% 30.6% 23.5% 26.2% 27.4% 41.7% 30.8% 36.5%
Doc2BP (Ours) 64.1% 76.1% 66.2% 87.2% 81.1% 89.1% 76.5% 76.2% 71.6% 82.1% 71.0% 81.3%

none is available”. However, keyword patterns can also
falsely trigger on null-safe APIs. For example, the Dy-
namoDBV2 GetItemOutcome API is described to “return
the (non-null) result of item retrieval”. We use nullable
API descriptions as a new user-defined class and include
null-safe sentences into a generic negative class.

• AWS Java Metrics - We use the AWS Java metrics con-
texts as a new user-defined class. For example, (a) “Use
with the Sum statistic to measure throughput and with
the Samples statistic to measure IOPS”; (b) “moving to a
larger instance type when this value reaches 85 percent”.
These descriptions are likely to use measurement related
terms such as statistic, quantity, minimum, maximum.

• AWS CloudFormation numerics - We use the CloudFor-
mation value constraints as another user-defined class. As
noted earlier, numeric constraints map to part of speech

patterns (using POS tag CD e.g., cardinal digit), a higher-
order linguistic feature compared to keywords. We expect
this category to be more complex than the previous two.

• Python best practices - Finally, we create a class for
Python best practice considerations such as “do not use
mutable objects as default values”, or “Use datetime
instead of time for local clocks”. These sentences are the
most diverse and semantic sensitive, thus most difficult
to learn from a similar few shot setting.

We created a 5-way-K-shot dataset using 20 examples from
above classes. For 10 rounds each with a different random
seed, we sampled K examples to be the support set and the re-
maining examples as the test set. From the results in Figure VI,
we observe that: (a) Java NPE and AWS Java metric classes
with local, keyword-type patterns enjoy high performance with
a few examples (over 95% accuracy for Java NPE class and



(a) Python document snippet

(b) HTML Source of the input snippet

(c) Document Segmentation

Fig. 5. When a document is input to the Document Parsing module, its HTML
source is analyzed and segmented into cohesive components with metadata.

Fig. 6. Doc2BP ROC Curves and AUC by Documentation Type

TABLE VI
K-SHOT RETRIEVAL ACCURACY

Task K=1 K=3 K=5
Java Null Pointer Exception 95.5% ± 0.8% 99.3.% ± 0.7% 99.8% ± 0.4%
AWS Java Metrics 90.0% ± 1.2% 98.0% ± 1.1% 99.5% ± 0.9%
CloudFormation Numerics 55.0% ± 1.2% 60.0% ± 0.7% 65.0% ± 0.8%
Python Best Practices 15.0% ± 2.3% 20.0% ± 1.8% 35.0% ± 1.9%

over 90% performance for AWS Java Metrics). (b) Classes
with more variations have low to moderate performance in 1-
shot setting and it can be subsequently improved by providing
more examples, (e.g. from 55% to 65% for CloudFormation
numerics and from 15% to 35% or Python best practices).

VII. REAL-WORLD APPLICATIONS

Doc2BP has powered several real-world use-cases such as:
• Improving Coverage of Existing Analyzers:

– The cfn-lint [5] is an open-source linter for AWS
CloudFormation. Mining from documentation, we
contributed 500+ new rules in various categories
(number of rules in bracket): allowed patterns (158),
string constraints (104), numeric range (89), valid
values (83), non-compatible value pairs (32), single-
ton constraints (21), and container limits (23).

– Amazon DevOps Guru [10] is an ML-powered cloud
operations service, tracking metrics related to differ-
ent AWS services. At the time of writing, metrics
extraction had been automated with Doc2BP cover-
ing over 97%+ metrics of over 200+ services.

– We also identified nullable APIs across all AWS ser-
vices to support AWS APIs in Amazon CodeGuru’s
Java NullPointerException (NPE) detector. This is a
customized version of Infer’s biabduction detector.

• Prioritizing New Analyzers: We sourced hundreds of rules
for Java, Python, and their AWS SDKs, and implemented
200+ new rules in Amazon CodeGuru. These rules cover
standard library, scientific operations, security, resource
management, concurrency, error handling, logging, etc.

• Reducing False Positives: In Java, objects of classes that
implement Closeable or AutoCloseable interface need
to be closed after use, with certain exceptions such as
java.io.ByteArrayInputStream whose close() method is
a no-op. Flagging missing close() operations on such
APIs will be considered as false positives. By identifying
such resources from description (e.g., containing phrase
‘close has no effect’), we reduced the false positives in
CodeGuru Java resource leak detector [68] by 2%.

VIII. CONCLUSION AND FUTURE WORK

We present Doc2BP, a novel deep learning tool to identify
coding best practice descriptions in software documentation.
It supports general classification to identify best practices
of known categories and an example-based classification to
handle novel categories by matching embeddings with user-
provided examples at run-time, without retraining the un-
derlying model. The core idea is to train an informative



embedding space for natural language descriptions under the
dual objectives of binary and few shot classification.

We have extensively applied Doc2BP on Java, Python, AWS
Java SDK, and AWS CloudFormation documentations. We
have analyzed the effects of manually and synthetically labeled
examples, and incorporating context and cross-domain infor-
mation. The detection performance significantly outperforms
known keyword heuristics as well as parts of speech pattern
baselines. Doc2BP obtains 3-5% F1 score improvement in
best practice detection for Java and Python and 15-20% for
AWS Java SDK and AWS CloudFormation. Our experiments
with four few shot use-cases show promising results (5-shot
accuracy of 99%+ for Java NullPointerException and AWS
Java metrics, 65% for AWS CloudFormation numerics, and
35% for Python best practices). Doc2BP is used in Amazon
and has successfully contributed to many code and application
analyzers including Amazon CodeGuru.

We hope our contributions will advance the state of the art
in automated software engineering. We continue to explore
related research questions such as How to handle obsolete
documentations and best practices? How to extract non-
contiguous or non-local metadata for a best practice? How
to fuse knowledge from multiple descriptions of the same best
practice? How to detect and resolve conflicting or ambiguous
descriptions? In the near term, we do expect some level of
manual curation to address above questions. We believe further
research in representations and modeling architectures can
help especially for emerging and unfamiliar domains.

IX. ACKNOWLEDGEMENT

Many colleagues have contributed to reviewing findings
and their integration with various analyzers: Kevin DeJong,
Anton Emelyanov, Ran Fu, Pranav Garg, Rajdeep Mukherjee,
Thomas Cottenier, Ben Liblit, Omer Tripp, and Rahul Tongia.

REFERENCES

[1] A. Marques, N. C. Bradley, and G. C. Murphy, “Characterizing task-
relevant information in natural language software artifacts,” in 2020
IEEE International Conference on Software Maintenance and Evolution,
2020, pp. 476–487.

[2] H. Li, S. Li, J. Sun, Z. Xing, X. Peng, M. Liu, and X. Zhao, “Improving
api caveats accessibility by mining api caveats knowledge graph,” in
2018 IEEE International Conference on Software Maintenance and
Evolution, 2018, pp. 183–193.

[3] W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264–1282, 2013.

[4] Amazon Web Services, Amazon CodeGuru: Automate code reviews and
optimize application performance with ML-powered recommendations,
2021, https://aws.amazon.com/codeguru/.

[5] K. DeJong, AWS CloudFormation Linter, 2020, https://github.com/
aws-cloudformation/cfn-python-lint.

[6] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should
developers be aware of? an empirical study on the directives of api
documentation,” Empirical Software Engineering, vol. 17, no. 6, p.
703–737, Dec. 2012.

[7] Y. Tao, J. Jiang, Y. Liu, Z. Xu, and S. Qin, “Understanding
performance concerns in the api documentation of data science
libraries,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, New York, NY, USA:
Association for Computing Machinery, 2020, p. 895–906.

[8] Amazon Web Services, AWS SDK for Java API Reference - 1.12.86,
2021, https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/.

[9] Amazon Web Services, AWS CloudFormation User Guide, 2021,
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
Welcome.html, Accessed 2020.

[10] Amazon Web Services, Amazon DevOps Guru: ML-powered cloud
operations service to improve application availability, 2021, https:
//aws.amazon.com/devops-guru/.

[11] S. O. Bradner, Key words for use in RFCs to Indicate Requirement
Levels, RFC 2119, Mar. 1997, https://rfc-editor.org/rfc/rfc2119.txt.

[12] K. Smith and D. Kramer, Requirements for writing java API specifi-
cations, January 2003, https://www.oracle.com/java/technologies/javase/
api-specifications.html.

[13] U. Dekel and J. D. Herbsleb, “Improving api documentation usability
with knowledge pushing,” in 2009 IEEE 31st International Conference
on Software Engineering, 2009, pp. 320–330.

[14] X. Zhao, Z. Xing, M. A. Kabir, N. Sawada, J. Li, and S.-W. Lin,
“Hdskg: Harvesting domain specific knowledge graph from content of
webpages,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2017, pp. 56–67.

[15] X. Ren, J. Sun, Z. Xing, X. Xia, and J. Sun, “Demystify official api
usage directives with crowdsourced api misuse scenarios, erroneous
code examples and patches,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, New York, USA:
Association for Computing Machinery, 2020, p. 925–936.

[16] M. P. Robillard and Y. B. Chhetri, “Recommending reference api
documentation,” Empirical Software Engineering, vol. 20, no. 6, p.
1558–1586, Dec. 2015.

[17] L. Tan, Y. Zhou, and Y. Padioleau, “acomment: mining annotations from
comments and code to detect interrupt related concurrency bugs,” in
Proc. 33rd International Conference on Software Engineering, 2011,
pp. 11–20.

[18] M. Selakovic and M. Pradel, “Performance issues and optimizations in
javascript: An empirical study,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering, 2016, pp. 61–72.

[19] S. Ezami, “Extracting non-functional requirements from unstructured
text,” https://uwspace.uwaterloo.ca/handle/10012/12889, 2018.

[20] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring specifications
for resources from natural language api documentation,” Automated
Software Engineering, vol. 18, no. 03, pp. 227–261, may 2011.

[21] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language api descriptions,”
in Proceedings of the 34th International Conference on Software Engi-
neering, ser. ICSE 12. IEEE Press, 2012, p. 815–825.

[22] P. Mazrae, M. Izadi, and A. Heydarnoori, “Automated recovery of
issue-commit links leveraging both textual and non-textual data,” in
2021 IEEE International Conference on Software Maintenance and
Evolution. Los Alamitos, CA, USA: IEEE Computer Society, oct
2021, pp. 263–273.

[23] C. Mills, J. Pantiuchina, E. Parra, G. Bavota, and S. Haiduc, “Are bug
reports enough for text retrieval-based bug localization?” in 2018 IEEE
International Conference on Software Maintenance and Evolution, 2018,
pp. 381–392.

[24] A. LeClair, Z. Eberhart, and C. McMillan, “Adapting neural text classifi-
cation for improved software categorization,” in 2018 IEEE International
Conference on Software Maintenance and Evolution, 2018, pp. 461–472.

[25] H. Washizaki, T. Xia, N. Kamata, Y. Fukazawa, H. Kanuka, T. Kato,
M. Yoshino, T. Okubo, S. Ogata, H. Kaiya, A. Hazeyama, T. Tanaka,
N. Yoshioka, and G. Priyalakshmi, “Systematic literature review of
security pattern research,” Information, vol. 12, p. 36, 01 2021.

[26] M. Riaz, J. King, J. Slankas, and L. Williams, “Hidden in plain sight:
Automatically identifying security requirements from natural language
artifacts,” in 2014 IEEE 22nd International Requirements Engineering
Conference, vol. 1. Karlskrona, Sweden: IEEE, 2014, pp. 183–192.

[27] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated
extraction of security policies from natural-language software
documents,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE ’12.
New York, NY, USA: Association for Computing Machinery, 2012.

[28] H. Harkous, K. Fawaz, R. Lebret, F. Schaub, K. G. Shin, and K. Aberer,
“Polisis: Automated analysis and presentation of privacy policies using
deep learning,” in 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, Aug. 2018, pp. 531–548.

[29] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves,
K. Singh, and T. Xie, “Policylint: Investigating internal privacy policy



contradictions on google play,” in 28th USENIX Security Symposium.
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 585–602.

[30] D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A survey
of deep learning methods for cyber security,” Information, vol. 10,
no. 4, p. 8, 2019.

[31] M. R. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A literature
review on mining cyberthreat intelligence from unstructured texts,” in
2020 International Conference on Data Mining Workshops (ICDMW),
vol. 1. Sorrento, Italy: ACM, 2020, pp. 516–525.

[32] C. Suh-Lee, J.-Y. Jo, and Y. Kim, “Text mining for security threat
detection discovering hidden information in unstructured log messages,”
2016 IEEE Conference on Communications and Network Security,
vol. 2, pp. 252–260, 2016.

[33] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its
applications,” Computer Science Review, vol. 40, pp. 300–379, 2021.

[34] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L.
Shyu, S.-C. Chen, and S. S. Iyengar, “A survey on deep learning:
Algorithms, techniques, and applications,” ACM Computing Survey,
vol. 51, no. 5, sep 2018.

[35] L. J. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis:
A survey,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, 2018.

[36] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu,
and J. Gao, “Deep learning–based text classification: A comprehensive
review,” ACM Computing Survey, vol. 54, no. 3, Apr. 2021.

[37] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” in International Conference on
Learning Representations. Vancouver, Canada: OpenReview.net, 2018.

[38] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model
for programming and natural languages,” In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages 1536–1547.

[39] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified
pre-training for program understanding and generation,” in Proc. 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Jun. 2021,
pp. 2655–2668.

[40] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5:
Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation,” in Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, Cana,
Dominican Republic, 2021,

[41] A. Habib and M. Pradel, “Neural bug finding: A study of opportunities
and challenges,” CoRR, vol. abs/1906.00307, 2019.

[42] J. K. Siow, C. Gao, L. Fan, S. Chen, and Y. Liu, “CORE:
automating review recommendation for code changes,” in IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2020 , 284-295.

[43] T. H. M. Le, H. Chen, and M. A. Babar, “Deep learning for source
code modeling and generation: Models, applications, and challenges,”
ACM Computing Survey, vol. 53, no. 3, Jun. 2020.

[44] A. T. Nguyen, P. C. Rigby, T. Nguyen, D. Palani, M. Karanfil, and T. N.
Nguyen, “Statistical translation of english texts to api code templates,”
in 2018 IEEE International Conference on Software Maintenance and
Evolution, 2018, pp. 194–205.

[45] C. Bhadane, H. Dalal, and H. Doshi, “Sentiment analysis: Measuring
opinions,” Procedia Computer Science, vol. 45, pp. 808–814, 2015.

[46] S. M. Rezaeinia, R. Rahmani, A. Ghodsi, and H. Veisi, “Sentiment
analysis based on improved pre-trained word embeddings,” Expert
Systems with Applications, vol. 117, pp. 139–147, 2019.

[47] F. Luo, P. Li, P. Yang, J. Zhou, Y. Tan, B. Chang, Z. Sui, and X. Sun,
“Towards fine-grained text sentiment transfer,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 2013–2022.

[48] J. Li, R. Jia, H. He, and P. Liang, “Delete, retrieve, generate: A
simple approach to sentiment and style transfer,” in Proceedings of the
2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 1865–1874, 2019. New Orleans, Louisiana.
Association for Computational Linguistics.

[49] S. Negi, M. de Rijke, and P. Buitelaar, “Open domain suggestion
mining: Problem definition and datasets,” CoRR, vol. abs/1806.02179,
2018.

[50] G. Zingle, B. Radhakrishnan, Y. Xiao, E. F. Gehringer, Z. Xiao, F. Pra-
mudianto, G. Khurana, and A. Arnav, “Detecting suggestions in peer
assessments,” in Proceedings of the the 12th International Conference
on Educational Data Mining, 2019.

[51] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza, “Pattern-
based mining of opinions in q&a websites,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering, 2019, pp. 548–559.

[52] W.-H. Khong, L.-K. Soon, H.-N. Goh, and S.-C. Haw, “Leveraging part-
of-speech tagging for sentiment analysis in short texts and regular texts,”
in Semantic Technology, R. Ichise, F. Lecue, T. Kawamura, D. Zhao,
S. Muggleton, and K. Kozaki, Eds. Cham: Springer International
Publishing, 2018, pp. 182–197.

[53] C. Nicholls and F. Song, “Improving sentiment analysis with part-
of-speech weighting,” in 2009 International Conference on Machine
Learning and Cybernetics, vol. 3, 2009, pp. 1592–1597.

[54] N. Silva, D. Ribeiro, and L. Ferreira, “Information extraction from
unstructured recipe data,” in Proceedings of the 2019 5th International
Conference on Computer and Technology Applications. NY, USA:
Association for Computing Machinery, 2019, p. 165–168.

[55] K. Kalaivani, S. Uma, and C. Kanimozhiselvi, “A review on feature
extraction techniques for sentiment classification,” in 2020 Fourth Inter-
national Conference on Computing Methodologies and Communication,
2020, pp. 679–683.

[56] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Computing Survey,
vol. 53, no. 3, jun 2020.

[57] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proc. 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1. Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186.

[58] H. Edwards and A. J. Storkey, “Towards a neural statistician,”
in Proceedings of the 5th International Conference on Learning
Representations. OpenReview.net, 2017.

[59] B. Hariharan and R. B. Girshick, “Low-shot visual object recognition,”
CoRR, vol. abs/1606.02819, 2016.

[60] Z. Ji, X. Zou, T. Huang, and S. Wu, “Unsupervised few-shot learning
via self-supervised training,” CoRR, vol. abs/1912.12178, 2019.

[61] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems,
ser. NIPS’16. Red Hook, NY, USA: Curran Associates Inc., 2016,
p. 3637–3645.

[62] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA:
Curran Associates Inc., 2017, p. 4080–4090.

[63] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. O’Reilly Media, 2009.

[64] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu, “Prefixspan,: mining sequential patterns efficiently by prefix-
projected pattern growth,” in Proceedings 17th International Conference
on Data Engineering, 2001, pp. 215–224.

[65] L. Richardson, Beautiful Soup Documentation, 2022, https://www.
crummy.com/software/BeautifulSoup/bs4/doc/.

[66] Oracle, Java SE Development Kit 11 Documentation, 2021, https://www.
oracle.com/java/technologies/javase-jdk11-doc-downloads.html.

[67] Python Software Foundation, Python 3.7.12 Documentation, 2021, https:
//docs.python.org/3.7/.

[68] P. Garg and S. H. Sengamedu, Resource leak detection in Ama-
zon CodeGuru Reviewer, 2021, https://aws.amazon.com/blogs/devops/
resource-leak-detection-in-amazon-codeguru/.


