
Amazon Search: The Joy of Ranking Products

Daria Sorokina
A9.com

130 Lytton, Palo Alto, CA, US
dariasor@a9.com

Erick Cantú-Paz
A9.com

130 Lytton, Palo Alto, CA, US
cantupaz@a9.com

ABSTRACT
Amazon is one of the world’s largest e-commerce sites and
Amazon Search powers the majority of Amazon’s sales. As a
consequence, even small improvements in relevance ranking
both positively influence the shopping experience of millions
of customers and significantly impact revenue. In the past,
Amazon’s product search engine consisted of several hand-
tuned ranking functions using a handful of input features.
A lot has changed since then. In this talk we are going
to cover a number of relevance algorithms used in Amazon
Search today. We will describe a general machine learning
framework used for ranking within categories, blending sep-
arate rankings in All Product Search, NLP techniques used
for matching queries and products, and algorithms targeted
at unique tasks of specific categories — books and fashion.

1. RANKING MODELS
Ranking models are responsible for a function that, given

a customer’s query, returns a sorted list of products in a
match set. A single ranking model usually covers a com-
bination of a category and a marketplace, e.g., Books in
Japan.

For training the ranking models we use labels based on
customers actions, such as purchases, add-to-basket, or clicks.

We use the search engine to collect our training sets. Sev-
eral times per day we compute the unique set of keywords
issued for each context of interest. The context can be a
combination of marketplace, category, and some user fea-
tures. Then we re-issue these queries in their context re-
questing feature values for all items in the match set. This
feature collection runs regularly, so that the feature vector
collected is as close as possible to the one observed when the
query was originally issued by customers.

To train ranking models, we construct training, validation,
and test sets by collecting data from several days of cus-
tomer traffic. Test sets are constructed from dates after the
training set dates. We choose impressions that resulted in
either click or purchase as positive examples. There are two

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGIR ’16 July 17-21, 2016, Pisa, Italy
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4069-4/16/07.

DOI: http://dx.doi.org/10.1145/2911451.2926725

types of negative example impressions: seen, corresponding
to items which were displayed to a customer, and unseen,
corresponding to items which matched the query terms but
were never shown due to pagination. To manage the size of
the training set, we sample unseen examples.

Gradient boosted trees[1] are our method of choice in
ranking because they can discover complex feature inter-
actions, can handle categorical and real-valued features, are
robust in the presence of missing values, and work well even
without significant tuning. For ranking problems, we use
models trained with pairwise objectives and nDCG as the
default objective function.

We do feature selection in two stages. First, with fixed
values of tree depth and learning rate, we train a ”kitchen
sink”model allowing all features available. We then discard
the features which end up being ranked lower than random
features and use the remaining features to grow the final
feature set in a forward selection process. Once the feature
set is chosen, we perform a grid search over the pairs of
values for tree depth and learning rate, choosing the model
which has the highest offline score on the validation set.

Finally, the model is evaluated through an A/B test. We
look at a large variety of metrics, including the number of
converting customers, the number of products they purchase
and the overall revenue.

2. BEHAVIORAL FEATURES
When training ranking models we use many features. Some

of them measure intrinsic properties of products (e.g., sales,
reviews). Others reflect properties of the queries or the con-
text in which the query is issued (e.g., query specificity, cus-
tomer status). Other features provide different measures of
textual similarity. However in product search, hundreds of
products might share very similar descriptions and seem to
be equally relevant to a particular query. But some of those
products are more popular than others and should be ranked
higher. That’s why behavioral features drive the rankings
in Amazon Search to a much larger extent than they do in
Web Search. Typically, they account for most of the vari-
ance reduction in gradient-boosted trees.

It is well-known that users tend to click more often on
results on the top of a search result page. To correct for
that, we have tried to use classical versions of click-over-
expected-clicks features[3]. However, since more relevant
documents tend to appear higher in the ranking, the ob-
served click-through rate at a given position captures not
only the position bias, but also the typical relevance at this
position. This problem is more pronounced for a product



search engine, compared to web search or advertising, as
more products on average are relevant to a single query, and
more clicks on average happen at higher position. To cor-
rect for that, we developed a scheme that adapts the bias
correction from day to day.

3. MATCHING PRODUCTS AND QUERIES
A major problem in understanding queries in product

search is determining whether a word or phrase in the query
refers to a product type. For example, recognizing that
”dress” in the query ”casual dress” refers to a product type
and not a modifier as in ”dress shoes” or ”dress socks” al-
lows the systematic exclusion of non-dress products from
the search results.

We treat each query as a noun phrase and consider the
head of the noun phrase to be the core product type and
all other words in the query to be modifiers. This is ex-
pressed as a probabilistic context-free grammar (PCFG),
which is trained in an unsupervised manner using Varia-
tional Bayes. Limited supervision is inserted into the model
by using brands from the Amazon catalog as well as other
common modifiers such as color and gender. The set of
product types observed in the training set under this model
is extended to incorporate multiword expressions which en-
compass the product types (like ”t shirt”), and the model is
retrained with this augmented set of possible product types.

The second part of the task is to assign each product
all the product-type expressions that properly describe it.
For example, if the product is a tshirt, we want to label it
”tshirt”,”shirt”,”clothing”. This problem is naturally framed
as a multilabel classification problem and the predictor can
be trained as a series of logistic regression models. We repre-
sent the multilabel structure by a hypernym-synonym graph
over the various product types and use it to enforce consis-
tency constraints on the final predictions.

We use detected product types in queries and product
descriptions to create powerful features in ranking models.

4. FINDING PREFERRED EDITION
Some of the product categories present unique problems.

For example, books come in a variety of different editions
(e.g. hardcover, paperback, digital, audiobook, etc). In
search results we surface only a single, representative pre-
ferred edition in order to avoid overwhelming the user. Cus-
tomers can then select a specific variation of the product on
the details page. We use a separate combination of gradient
boosted tree models to predict the face out edition for each
book. These models are using only query-independent fea-
tures, such as publication date or binding format, and most
of the score is precalculated offline.

5. RANKING IN FASHION
Ranking in Amazon Fashion presents several unique chal-

lenges due to a large and varied product catalog, users with
diverse fashion preferences, and business requirements to
make the store appear fashionable and fresh.

We found that optimizing for an individual target (such as
click, add-to-cart, or purchase) does not achieve the desired
outcome. For example, while customers tend to purchase
discounted items, they often browse and click on the items
that are high-end fashion. We discovered that optimizing

for a fused target that combines purchases with clicks often
satisfies users’ information need better in the Fashion Store.

An interesting challenge in the Fashion Store is the dis-
crepancy between what the majority of customers actually
buy and what they want to see on top of the page. The
item most commonly bought for the query ”diamond ring”
might be a cheap zirconium ring. However, if we show the
zirconium ring as a first result, our search will be perceived
as broken. Besides, our Fashion Store would look like a flea
market, instead of a classic department store where the lat-
est collections meet you at the entrance.

To approach this problem, we identify strategic categories
of fashionable customers — customers who bought or added
to cart fashion brand products — and significantly amplify
their influence while designing the training set.

6. BLENDING ACROSS CATEGORIES
Ranking models provide rankings within categories, but

customers often use the ”Search All” option on the search
box. One of the biggest challenges in this case is to provide
a blend of results from different categories. For example,
for the query ”game of thrones” customers may be looking
for a book, a DVD, or a board game. The ordering of re-
sults returned by any ranking model is not changed, we only
interleave results from individual categories based on an es-
timate of the probability that a given query is associated
with a particular category. For the most common queries,
this probability is based on observed user actions following
that query. For tail queries, we predict category intent using
an n-gram based language model. We use all queries with
clicks on products from a given category over the last 90
days as text corpus for this category. Then, the affinity for
a given query and a category is the probability of the query
text to be observed in the category corpus. We use trigram
language model with Modified Kneser-Ney smoothing[2] for
this task.

7. ACKNOWLEDGEMENTS
This talk provides description of a number of past and

current projects in Amazon Search. As such, this paper has
a large number of authors, including, but probably not lim-
ited to, Praveen Arasada, William Headden, François

Huet, Anish Nair, Anil Sewani, Sheng Peng, Stefan

Schroedl, Chris Varano, Bing Yin.

8. REFERENCES
[1] J. Friedman. Greedy Function Approximation: a

Gradient Boosting Machine. Annals of Statistics,
29:1189–1232, 2001.

[2] F. James. Modified Kneser-Ney Smoothing of N-gram
Models. Technical report, 2000.

[3] W. V. Zhang and R. Jones. Comparing click logs and
editorial labels for training query rewriting. In
WWW’07 workshops.


