Hyperbolic Representations of Source Code

Raiyan Khan'*, Thanh V. Nguyen’, Sengamedu H. Srinivasan‘

T Columbia University, {AWS Al

Abstract

Learning effective representations of data is an important task
in machine learning. Existing methods typically compute rep-
resentations or embeddings in Euclidean space, which has
shortcomings in representing hierarchical structures of the
underlying data. Alternatively, hyperbolic geometry offers a
representation scheme that is suited for robust, high-fidelity
representations of tree-structured data. In this paper, we ex-
plore hyperbolic graph convolutional models for learning hy-
perbolic representations of source code, which exhibit natural
hierarchies. We leverage the abstract syntax tree (AST) of
source code and learn its graph-based representation to pre-
dict the function name from its body. We compare Lorentz
and Poincaré Disk models of hyperbolic geometry with Eu-
clidean geometry. We also propose several readout schemes
to compute the graph-level representations and apply them
to the method name prediction task. Using a Lorentz hyper-
bolic model, we establish a new state-of-the-art result on the
ogbg-code?2 benchmark for the task.

Introduction

Representation learning is an important building block of
deep learning. For program understanding, learning effective
representations or embeddings of source code is crucial to be
successful in code-related tasks such as bug detection, code
generation or code summarization. Existing work typically
focuses on two underlying representations of programs: the
textual surface of source code as a sequence of tokens and
its abstract syntax representations (Allamanis, Brockschmidt;
and Khademi|[2018;|Alon et al.|[2020).

In contrast to the textual representation, an AST encodes
rich syntactic structures of source code and hierarchies of pro-
gram elements. Recently, graph neural networks have become
more and more effective in representing graph-structured data.
As such, a series of work leverages the structural informa-
tion in ASTs for learning vector representations of the nodes
and the AST by recursively incorporating information from
neighboring nodes and capturing the graph structure.

Conventional source code embeddings are learned in Eu-
clidean spaces, which face challenges in representing hierar-
chical data with high fidelity. Exponential growth in branch-

“This work was done when Raiyan Khan interned at AWS Al
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Hyperbolic Space

.......... N \
Log
Map /. ©
Feature Message
Transform Passing

Tangent Space Tx M

Figure 1: An overview of hyperbolic graph neural network
models. Points in hyperbolic space are mapped to an Eu-
clidean tangent space, after which the feature transformation
and neighborhood aggregation steps take place, and points
are mapped back to hyperbolic space.

ing structures of hierarchical graphs leads to exhibit crowd-
ing effects, and true distances between nodes are difficult
to preserve. Hyperbolic space offers a potential solution to
overcome these drawbacks. Properties such as constant nega-
tive curvature and exponential scaling allow hyperbolic space
to map tree structures with low distortion. Inspired by the
recent development of hyperbolic neural network architec-
tures (Ganea, Becigneul, and Hofmann|2018}; [Liu, Nickel|
and Kiela/[2019; |Chami et al|[2019), we propose to learn
hyperbolic representations of source code atop the abstract
syntax tree. We explore a number of model architecture com-
ponents, including readout layers for the task of concise yet
expressive graph compression for method name prediction.
In this work, we make three main contributions.

1. We show that hyperbolic graph convolutional networks
provide improvements for the method name prediction
task compared to their Euclidean counterparts. More
specifically, we show that Lorentz model achieves a new
state-of-the-art performance on the ogbg—-code? task.

2. We provide a comparison of a number of graph pooling
methods for non-Euclidean space, in addition to proposing
a novel pooling method.

3. We propose an alternate approach to introducing nonlin-
earities into our graph neural network by simply relying
on the tangent space projections, which reduces the com-

putational and model complexity.

Background

We adopt the framework in (Chami et al.|2019) for learn-
ing hyperbolic representations on graphs and propose a new
component to compute graph embeddings. At a high level,
the problem of learning graph representations is to find a
mapping f from the graph G = (V, £) with the vertex set V
and edge set £ to a set of node and graph embedding vectors:

O EAXY P iey) = Z e RIVIFD XA,

where {x?’E}iev are dy-dimensional initial node features in
an Euclidean space. We are interested in an inductive, graph-
level prediction task where f is expected to generalize to
unseen graphs. Note that the extra dimension in [V|+1 is due
to the embedding of the whole graph based on a READOUT
function described below.

Graph Convolutional Networks (GCNs) are a popular neu-
ral architecture for this purpose. A GCN can be thought of as
a message passing algorithm that computes the following for
node ¢ € V and layer ¢:

hi" = Wix{™hF 4 bt

X = ol 4 Y wyht®)
JEN (1)

where N'(i) = {j : (i,j) € €}, {W* b'}e(r) denote
weight and bias parameters, and o(-) is a non-linear acti-
vation function. The weight w;; can be computed in different
ways such as attention (Kipf and Welling 2016} |Velickovic
et al.|2018)). Finally, the graph embedding is computed by
ght = READOUT({xiL’E}) for some readout function of
the last layer node embeddings, such as sum or max.

To encode hierarchical graph structures and benefit from
expressive hyperbolic embeddings, (Chami et al.|2019) gen-
eralizes GCNs to hyperbolic geometry, leading to Hyperbolic
Graph Convolutional Networks (HGCNs). The main diffi-
culty of such a generalization is that natural operations such
as vector addition and matrix-vector multiplication in Eu-
clidean vector space do not carry over into hyperbolic space.
For a hyperbolic manifold with curvature —1/K (K > 1),
HGCN forward propagation is defined as

hy' = (W ex; ") &b
v = AGG(h");
x; M=oy

where @ denotes Mobius gyro vector addition and ®
denotes Mobius gyro matrix multiplication. (Note that
@, ®,0(-), AGG depend on K. We ignore this to simplify
the notation.) The exact formulation of each hyperbolic oper-
ation depends on the hyperbolic model on which the neural
network operates. The authors in (Ganea, Becigneul, and Hof{
mann|2018) lays out the mathematical foundations, which
represent corresponding operations in hyperbolic space, for
building hyperbolic neural networks with the Poincaré Ball
model, whereas (Chami et al.|2019) extends that work to the

hyperboloid or Lorentz model. In essence, the underlying
intuition is to perform fundamental operations of neural net-
works in tangent spaces, which are first-order, local Euclidean
approximations of the hyperbolic manifold. We illustrate the
idea in Figure Formally, these operations are realized
by the exponential map exp, (-) that projects a vector in the
tangent space of x back on the manifold and the reverse
logarithmic map log, () such that

W @ x = exp, (Wlog, (x))

xT @ b = exp,u(Py_xr (b))
where P,_,,# (-) is the parallel transport from the tangent
space of the origin o to another of x/ (here again the map-
pings depend on K, which we omit for notational simplicity.)
We define the maps and the parallel transport explicitly in the

appendix for Poincaré Ball and Lorentz models. Similarly,
one can define hyperbolic non-linear activation as

7y = expl(o(logh*— (x7))). (1)

A hyperbolic aggregation to average the nodes’ represen-
tations:

AGGH (x); = eXpiiH(Z wijlogf{f (X}H)>~ 2
JEN(3)

o®(x

Lorentz, Poincaré Ball and Klein Models of Hyperbolic
Geometry. There are multiple models for hyperbolic space,
see (Peng et al.[2021)). We primarily experiment with Lorentz
Hyperboloid and Poincaré Ball models, and the logarithmic
and exponential maps are derived independently for each of
them (Ganea, Becigneul, and Hofmann|[2018; |Chami et al.
2019). Along with the aggregation via the tangent space
formulation defined in Eq. (Z), we explore a direct computa-
tion of weighted sum using the Einstein midpoint approach.
Since Einstein midpoint is defined in a Klein model, we trans-
form coordinates in a certain hyperbolic model (e.g., Lorentz
model) to the corresponding Klein model, compute the Ein-
stein midpoint and transform the midpoint to the original
space again. See Appendix for more details.

Hyperbolic Representation for Code

We build our model on the HGCN architecture to learn hyper-
bolic embeddings of source code with several modifications.
First, the above non-linear activation scheme often causes
the hyperbolic points to fall out of the manifold and leads to
the numerical instability. Therefore, we omit the nonlinearity
activation in our model since the exponential and logarithmic
maps already involve nonlinear mappings, as noted by |Ganea|
Becigneul, and Hofmann| (2018)).

Previous hyperbolic models (Chami et al.|2019) have fo-
cused on node or link prediction tasks and not on graph-level
learning, with the exception of (Liu, Nickel, and Kiela2019)
who implement a centroid-based approach for graph level pre-
dictions. This method involves learning a list of hyperbolic
centroids during training and is computationally expensive,
especially when performed on many graphs. We therefore ex-
plore a number of different readout layers for our hyperbolic
models. The readout layer pools the final node embeddings

across the graph into a summarizing representation that is
used for graph-level prediction tasks. Additionally, we in-
troduce a hyperbolic readout step in our model in order to
compute the graph-level embedding. We leverage a wide va-
riety of general graph-based readout strategies and certain
hyperbolic variants thereof described below. Note that we
attempted to adapt a differentiable Fréchet mean implemen-
tation (Lou et al.[2020), however we were unable to run the
code on our data due to its runtime instability.

READOUT functions

We propose a number of readout schemes for hyperbolic
features. Specifically, after mapping node representations to
the Euclidean tangent space, we apply the pooling step and
then map points back to hyperbolic space:

gl — exp, (READOUT (log, ({x-11})), (3)

with one of the standard sum, mean or max pooling func-
tions. The sum and mean operations follow the principle laid
out in Eq. (2) while the max pooling can be seen as perform-
ing a non-linear transformation on hyperbolic objects.

We also implement the Einstein midpoint according to a
previous approach (Dai et al.|2021} [Li, Cai, and He|2017).
This allows us to perform mean graph aggregation using the
Lorentz (also called Hyperboloid) model of hyperbolic space.
Node representations are mapped to and from the Lorentz
manifold. Einstein midpoint can also be used to aggregate
messages across the neighbors of a node. Therefore, we use
this technique for message passing in addition to readout.

Finally, we add a simple graph augmentation technique in
which a “virtual node” is added to the graph that shares a
connection with all nodes in the original graph, to bypass the
need of a readout layer (Gilmer et al.|2017)). At each message-
passing layer, messages are passed between the virtual node
and all graph nodes. Instead of reducing the original graph,
we use the virtual node to perform method name prediction
in our downstream task.

Experimental Results

To demonstrate the utility of hyperbolic representations for
source code, we evaluate our approach on a downstream task
of predicting the function name given a function body. The
task is widely known as code summarization (Alon et al.
2019; |Allamanis, Peng, and Sutton|2016; |Ziigner et al.|2021))
where the name of a given function can be considered the
semantic label or summarization of the function logic in
the body. The semantic labeling of code snippets involves
understanding the content of the method body and usually
requires aggregation of a variety of different expressions and
statements, so it is important to learn a succinct code embed-
ding. We focus on the abstract syntax representations of code
snippets to leverage the hierarchical structures and construct
bi-directional edges between parent and child nodes.
Dataset. We use the ogbg—code?2 dataset available in
the Open Graph Benchmark (Hu et al.|[2020). ogbg—code?2
consists of 452,741 Python functions, which were extracted
from GitHub (Husain et al.|2019). Since this is a graph
dataset, the functions are represented as abstract syntax trees.

For code summarization, the name node of each input AST
is masked before being used to predict the target function
name. The whole dataset is split into train/validation/test sets
to avoid duplication of code and labels, as well as to prevent
trivial memorization of naming conventions. The hyperbolic-
ity of a graph can be quantified using Gromov’s 9, (Chami
et al.[2019) a measurement in which tree represent the graph
structure with maximum hyperbolicity. Since our data con-
sists of all trees, each graph in our dataset has maximum
hyperbolicity (6 = 0).

Model. We compute the graph embedding of the AST us-
ing GNN variants (GIN, vanilla GCN, and hyperbolic GCN)
and various choices of the readout function. The final pre-
diction layer consists of a decoder comprised of five linear
classifiers used to predict the sub-token at the first five posi-
tions of the method name. We use cross-entropy loss between
the set of predictions and the set of reference sub-tokens.

Training details. To ensure a fair comparison, we fix the
training procedures and model architecture components that
are not being investigated across runs of each subsequent
experiment. Since dropout cannot be directly applied in hy-
perbolic space, we do not use dropout in any of our analyses.
Since our model’s parameters lie in Euclidean space, we use
the standard Adam optimizer for training.

Metrics. We conduct a series of experiments to establish
the utility of hyperbolic representations using two hyperbolic
geometries (Poincaré Ball and Lorentz), in comparison to
conventional Euclidean models. For each experiment, we
report precision, recall and F1 score on the test set. We also
report the average Jaccard similarity at the sub-token level as
well as the number of exact matches between predictions and
references. The metrics are computed using the set union of
predicted sub-tokens and reference sub-tokens.

Variations. In conjunction with these experiments, we
explore several downsampling approaches in our comparison
with various readout layer formulations, as well as different
methods for message passing.

Comparing Euclidean and hyperbolic representations.
Table [shows the performance of top-performing HGCN
models based on Lorentz, Poincaré Ball, and Euclidean
frameworks. It can be seen that hyperbolic frameworks out-
perform the Euclidean framework for the method name
prediction task, with the Lorentz model outperforming the
Poincaré Ball model. The following are some specific obser-
vations.

Vocabulary. Vocabulary size of 5K has a coverage of 90.3%
while vocabulary size of 25K has coverage of 98.0%.
Larger vocabulary size tends to boost the performance of
hyperbolic models while the performance of the Euclidean
model does not improve.

Embedding dimension. The performance of hyperbolic
models increase as the embedding dimension increases
from 300 to 550 while that of Euclidean model decreases.

Curvature. The best results for the Lorentz model are ob-
tained when K is greater than 1. Note that curvature is
given by —1/K where K is typically in the range 3-5.
Figure [2| capture the variation of F1 score with curva-

Geo | V[d|L]C Fl AT | #EM M
L [25K | 550 | 4 | 4 | 0.1814 | 0.140 | 1273 | 303M
L | 25K | 550 | 4| 3]0.1802 | 0.139 | 1251 | 303M
L [25K | 600 | 3| 401795 | 0.138 | 1234 | 329M
L | 25K | 600 | 3| 3]0.1795 | 0.139 | 1241 | 329M
L [25K | 500 | 4| 301774 | 0.136 | 1204 | 275M
L [25K | 400 | 4| 401767 | 0.138 | 1227 | 219M
L | 25K [300 | 4| 4 [0.1737 | 0.135 | 1236 | 164M
P | 5K [600| 5| 101627 | 0.118 | 1097 | 92M
P | 25K [300 | 5| 1]0.1609 | 0.125 | 1081 | 165M
P | 5K [500| 5| 101599 | 0.118 | 1109 | 75M
P | 5K [400 | 5| 1[01572 | 0.117 | 1069 | 60M
P | 5K [300| 5| 101557 |0.116 | 1075 | 44M
L | 5K [300| 5| 1/[01517 | 0.113 | 1026 | 44M
E | 5K (300 | 5| 101291 | 0095 | 812 | 44M
E [25K|300 | 5| 10129 | 0.101 | 818 | 165M
E | 5K |400 | 5| 101240 | 0092 | 802 | 60M
E | 5K (500 | 5| 101230 | 0091 | 808 | 75M
E | 5K|600| 5| 101150 | 0086 | 728 | 92m

Table 1: Performance of models under different settings of
the vocabulary size and the latent dimension. The results are
ranked by F1 score. The total number of examples in the
test set is 21948. "Geo" is the geometry (Lorentz, Poincaré,
Euclidean) |V| is the vocabulary size, d is the embedding
dimension, L is the number of layers, C'is the curvature, AJ
is the average Jaccard score, #EM is the number of exact
matches, and | M| is the model size (in megabytes).

ture for Lorentz and Poincaré Ball. We can see that the
curvature greater than 1 helps.

Layers. The best results for the Lorentz model are obtained
for with 3 to 4 layers, in which the network propagates
information between nodes from 3 to 4 hops away.

Metrics correlation. The metrics F1, average Jaccard sim-
ilarity, and the number of exact matches are highly cor-
related. The correlation between F1 score and average
Jaccard similarity of entries shown in Table[I]is 0.9927
and that between F1 score and number of exact matches
is 0.9959.

Some examples of method names generated from each
model are compared to the reference method name in Table[Z]
with samples selected to be representative of each model’s
predictive strengths and weaknesses.

In particular, the Open Graph Benchmark (Hu et al.|[2020)
has a public leaderboard for model performance on the ogbg
—-code2 dataselﬂ We observe that the Lorentz model out-
performs the best performing model using GMAN+bag of

tricks with F1 score of 0.1770 4 0.0012 (as of Novem-
ber 10th, 2021). Note that the leaderboard models benefit
from standard regularization and stability techniques such
as dropout and batch normalization. In contrast, these opera-
tions are not hyperbolic-friendly, so we do not include them
in our hyperbolic implementation.

Additional Experiments

Readout layer. Using the Lorentz model with fixed hyper-
parameters, we sought to investigate the impact of the readout

"https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-code2

L600
L500

L400
L300
o ./\

0.180

REER’

0.175
0.170 4

0.165

0.160 "’/\

T T T T T T T T T
1.0 15 2.0 25 30 35 4.0 4.5 5.0

Figure 2: F1 vs Curvature for Lorentz (‘L") and Poincaré Ball
(‘P’) models for the embedding dimensions indicated. The
vocabulary size is 25K.

layer on the model performance. The results of our analy-
ses are summarized in Table @l Variance across different
graph pooling methods was relatively small. Tangent space
pooling methods and the Einstein mean pooling approach
(Einstein midpoint calculated across all nodes in a single
graph) achieved the highest performances. While max pool-
ing reached performed relatively well, we observed training
instabilities with the presence of the max operator in the
model, both in max pooling and in using ReLU in the hy-
perbolic activation layer. Note that since the centroid-based
model is extremely memory-consuming and computationally
more expensive than other approaches, we used a relatively
simpler model for this experiment (Lorentz model with acti-
vation and dimensionality of 50) across all runs to enable a
fair comparison. Our exploration of readout layers suggests
that max pooling and Einstein mean pooling offer the greatest
increase in model performance and training stability.

Tangent Space versus Einstein midpoint for message
passing. We also tested the performance of the Einstein mid-
point approach for message passing, since it is originally
used to circumvent the tangent space projection step for hy-
perbolic message passing (Dai et al.|2021). The results of
this approach are benchmarked against the tangent space
aggregation used in the other models in our study. The Ein-
stein approach is more computationally efficient than tangent
space message passing, since it does not need to learn param-
eter weights during the message passing step. We applied the
approaches to the best performing models in Lorentz space
(vocabulary of 25K and embedding dimension of 550) and
Poincaré Ball (vocabulary of 5K and embedding dimension
of 600 From Table |3} we observe that Einstein midpoint
is helpful for Lorentz model and tangent space aggregation
works better for Poincaré Ball model.

Removing activation layer. Finally, we observed the ef-
fect of removing the activation layer in our hyperbolic models,
instead using the nonlinearities present in projection steps

These are the best settings for these models from Table

https://ogb.stanford.edu/docs/leader_graphprop/#ogbg-code2

Table 2: Representative method name predictions for each model.

Reference Lorentz Poincaré Ball Euclidean

run_migrations_offline run_migrations_offline main_migrations_offline main

render_to_response render_to_response render_to_response render_email
process_result_value process_bind_value convert_value get
query_yes_no confirm_yes_no yes_yes_no query_yes_no
remove_temporary_source delete_temporary remove_temporary_source reset

Table 3: The effect of activation layers and message passing approaches in hyperbolic models

Manifold
Activation = Message Passing Metric Lorentz-V25K-D550 Poincaré-V5K-D600
No Tangent Space F1 0.161 0.163
No Einstein Midpoint F1 0.180 0.148
Yes Tangent Space F1 0.132 0.163
Yes Einstein Midpoint F1 0.181 0.147

Table 4: Hyperbolic model performance with various readout functions.

Centroid Einstein Virtual

Precision 0.165 0.161 0.162 0.148 0.163 0.149
Recall 0.106 0.104 0.104 0.096 0.105 0.088
F1 0.122 0.119 0.120 0.112 0.121 0.105

Metric Max Mean Sum

from hyperbolic space to tangent space. Ultimately, as is
shown in Table 3} the inclusion of the activation layer did
not appear to change the outcome of the model performance,
for either Lorentz or Poincaré Ball implementations. This
finding suggests that the projection step does indeed play a
role of non-linear activation layers via non-linear mappings
to the model. Additionally, we observed that removing the
activation from our hyperbolic models improves the stability
during training time. While we only used ReLU activation in
our models, exploration of different activation functions in a
hyperbolic setting may be useful.

Conclusion

We demonstrate the utility of HGCNs on the graph-level
method name prediction task for source code. Additionally,
we explore a number of architectural improvements for train-
ing hyperbolic neural networks involving message passing,
activation, and readout layers. We establish a new state-of-
the-art result on the ogbg—code?2 benchmark for the task
using a graph convolutional neural network and a Lorentz
hyperbolic model.

References

Allamanis, M.; Brockschmidt, M.; and Khademi, M. 2018.
Learning to represent programs with graphs. International
Conference on Learning Representations.

Allamanis, M.; Peng, H.; and Sutton, C. 2016. A convolu-
tional attention network for extreme summarization of source

code. In International conference on machine learning, 2091-
2100. PMLR.

Alon, U.; Sadaka, R.; Levy, O.; and Yahav, E. 2020. Struc-
tural Language Models of Code. In International Conference
on Machine Learning.

Alon, U.; Zilberstein, M.; Levy, O.; and Yahav, E. 2019.
Code2vec: Learning Distributed Representations of Code.
Proc. ACM Program. Lang., 3(POPL).

Chami, I.; Ying, Z.; Ré, C.; and Leskovec, J. 2019. Hyper-
bolic Graph Convolutional Neural Networks. In Wallach,
H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox,
E.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.

Dai, J.; Wu, Y.; Gao, Z.; and Jia, Y. 2021. A Hyperbolic-to-
Hyperbolic Graph Convolutional Network. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 154—163.

Ganea, O.; Becigneul, G.; and Hofmann, T. 2018. Hyperbolic
Neural Networks. In Bengio, S.; Wallach, H.; Larochelle,
H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems, vol-
ume 31.

Gilmer, J.; Schoenholz, S. S.; Riley, P. E.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. Proceedings of the 34th International Conference
on Machine Learning, 1263-1272.

Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;

Catasta, M.; and Leskovec, J. 2020. Open Graph Benchmark:
Datasets for Machine Learning on Graphs. In Advances in
Neural Information Processing Systems, 2020.

Husain, H.; Wu, H.-H.; Gazit, T.; Allamanis, M.; and
Brockschmidt, M. 2019. Codesearchnet challenge: Eval-
uating the state of semantic code search. arXiv preprint
arXiv:1909.09436.

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classifi-
cation with graph convolutional networks. In International
Conference on Learning Representations.

Li, J.; Cai, D.; and He, X. 2017. Learning Graph-Level
Representation for Drug Discovery. CoRR.

Liu, Q.; Nickel, M.; and Kiela, D. 2019. Hyperbolic Graph
Neural Networks. In Wallach, H.; Larochelle, H.; Beygelz-
imer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems, vol-
ume 32.

Lou, A.; Katsman, L.; Jiang, Q.; Belongie, S.; Lim, S.-N.; and
De Sa, C. 2020. Differentiating through the Fréchet Mean.
In I, H. D.; and Singh, A., eds., Proceedings of the 37th
International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, 6393-6403.
PMLR.

Peng, W.; Varanka, T.; Mostafa, A.; Shi, H.; and Zhao,
G. 2021. Hyperbolic Deep Neural Networks: A Survey.
arXiv:2101.04562.

Velickovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P; and Bengio, Y. 2018. Graph attention networks. In Inter-
national Conference on Learning Representations.

Ziigner, D.; Kirschstein, T.; Catasta, M.; Leskovec, J.; and
Giinnemann, S. 2021. Language-agnostic representation
learning of source code from structure and context. arXiv
preprint arXiv:2103.11318.

Appendix

Hyperbolic Geometry

Riemannian Metric

In order to understand the tangent space operations for
HGCN, we start by defining a Riemannian metric, which
is a set of smoothly varying inner products on tangent spaces
gx : TxM X TxM — R. Riemannian metrics have been
used to measure distances on Riemannian manifolds, which
are defined by a smooth manifold and Riemannian metric
pair.

Lorentz (Hyperboloid) Model
First, the Minkowski inner product between (d + 1)-
dimensional vectors x and y is:

(X,¥)c == —2oYo + T1Y1 + ... + Ya

Then, we define the d-dimensional Lorentz model of hyper-
bolic space with unit imaginary radius and constant negative
curvature of -1 as a Riemannian manifold in which:

H! = {x e R¥ . (x,%x) = —1,20 > 0}

and

1

Next, we establish projections to and from the Lorentz man-
ifold and its tangent spaces. For a point x = (zg,X1.p) €
R?*1, we can transport it to the Lorentz manifold with the
following projection:

Mgars sron (x = (/1 + [x0.all3 X1.0)

For the reverse projection, a point y € R4+ can be projected
onto its corresponding Lorentz manifold with the following
transformation:

H]RdJrl—ﬂ—de’l (y) =y + <X7 y>£x

From here, we can define the exponential and logarithmic
maps as follows. Given points x and y in our hyperbolic
space H® X with dimension d and of constant negative cur-
vature 1/K, the Euclidean tangent space centered at x is
denoted as T H%¥ . Then, we can have a tangent vector
v € T H%K such that v # 0. Assuming that x # y, we
can define the exponential and logarithmic maps under the
hyperboloid model as:

|[v]|2 . vz Vv
expy(v) = cosh | —== x + VK sinh
pe(v) = cosh (1725 AU
Y+ 7 (X, ¥)cx
logx (y) = df (x,y) i~
Iy + % (% ¥y)ex|lc
Further details can be found in (Chami et al.|[2019).

Poincaré Ball Model

The Poincaré ball model with unit radius and constant nega-
tive curvature —1 in d dimensions is defined as the Rieman-
nian manifold:

D= {x e R?: ||x]|? < 1}
Ix =)\,Q(Id
where)\, 1= ﬁ and I is the identity matrix.
2

The exponential and logarithmic maps for the Poincaré
Ball model can be defined in Poincaré Ball space B for x € B,
the tangent vector v # 0 and the point y # O:

exp, (V) =X @ <tanh()\gi|)||Z|l>

2 —XPy
log, (y) = t—arctanh (|| - x ® y||) 7————
Ax | —x®yl|
where @ represents Mobius addition for any x,y € B:
(1 +2065,y) + llyl*)x + (1 —[[x]|*)y

14+ 2(x,y) + [IxIP[ly]

XDy =

Hyperbolic Message Passing

Einstein midpoint is a method of calculating the midpoint
(or mean) of points in hyperbolic space. It can be used as
a message passing scheme and it is defined in the Lorentz
model of hyperbolic space, therefore we will start by defining
the projections from Lorentz space to Lorentz space.

Klein Model

The projection from Lorentz space, £ to Klein space £ are
defined as follows. Given a point X = [z, 1, ..., Z,] € L
and its corresponding point k = [kq, k1, ..., kn—1] € K, we
can define the projection from Lorentz space to Klein space
as:
o

Next, we can define the projection from Klein space back to
Lorentz space as:

Pr—r (X) =

1
pr—c(k) = W[L k]

Einstein Midpoint
Given a set of node representations h; and the indices of

its neighbors j € N (i), we can now define the Einstein
midpoint aggregation as the following set of transformations:

b} = prox(hf)

wE= Y Y
JEN(D) JEN(D)
m; = pic_c(m])

where 7y; = is the Lorentz factor. Further details

1
/1=]2
can be found in (Dai et al.|[2021)).

	Introduction
	Background
	Hyperbolic Representation for Code
	READOUT functions

	Experimental Results
	Additional Experiments

	Conclusion
	Hyperbolic Geometry
	Riemannian Metric
	Lorentz (Hyperboloid) Model
	Poincaré Ball Model

	Hyperbolic Message Passing
	Klein Model
	Einstein Midpoint

