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Abstract

E-commerce companies like Amazon, Alibaba and Flip-
kart have an extensive catalogue comprising of billions of
products. Matching customer search queries to plausible
products is challenging due to the size and diversity of the
catalogue. These challenges are compounded in apparel
due to the semantic complexity and a large variation of
fashion styles, product attributes and colours. Providing
aids that can help the customer visualise the styles and
colours matching their “search queries” will provide cus-
tomers with necessary intuition about what can be done
next. This helps the customer buy a product with the styles,
embellishments and colours of their liking. In this work,
we propose a Generative Adversarial Network (GAN) for
generating images from text streams like customer search
queries. Our GAN learns to incrementally generate possi-
ble images complementing the fine-grained style, colour of
the apparel in the query. We incorporate a novel colour
modelling approach enabling the GAN to render a wide
spectrum of colours accurately. We compile a dataset
from an e-commerce website to train our model. The pro-
posed approach outperforms the baselines on qualitative
and quantitative evaluations.

1. Introduction
In large e-commerce companies like Amazon, Alibaba

and Flipkart with extensive catalogues, matching customer
search queries to plausible products is challenging due to
the size and diversity of the catalogue. Customers purchas-
ing products with a personal bias like apparel typically rely
on query results to zone in on products matching personal
preferences. In apparel, there are a large number of prod-
ucts in a myriad of fashion styles and colour. This means
behavioural data is likely to be heavy-tailed. This affects
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Figure 1. Example prediction by our model, ReStGAN vis-à-vis
StackGAN on a text stream of stylistic attributes pertaining to an
apparel.

traditional predictive algorithms which rank products in the
catalogue based on likelihood of click, purchase or other ag-
gregated customer behavioural data. Helping the customer
visualise products with styles and product attributes match-
ing their “search words” will provide customers with nec-
essary intuition about what can be done next. This helps
the customer discover and buy products that match personal
styles.

We leverage a Generative Adversarial Network
(GAN) [2] to transform stylistic attributes of apparels to
images. A GAN is a generative model based on a deep neu-
ral network consisting of two components. The former of
the two, called the generator (G), transforms random noise
to samples mimicking real data. The latter, known as the
discriminator (D), inspects the image samples generated
by the generator to assert whether they are real or fake. The
generator learns to generate samples via feedback from
the discriminator. Given a sequence of customer search
queries: “Black women’s pants” ⇒ “Petite” ⇒ “Capri”,
the task is to generate a sequence of possible images



matching the queries as they are refined. The natural
choice would be to use popular text-to-image GANs to
generate an image for each query in the sequence. However
text-to-image GANs like StackGAN [24] do not explicitly
model sequential data. Fig.1 shows images generated by
our model against those generated by StackGAN for the
said text sequence. StackGAN fails to maintain consistency
of images across the sequence. We overcome this drawback
by training a recurrent text-to-image GAN, thus explicitly
modelling the sequence. In Fig.1 , our model (ReStGAN)
generates images at each step that match the query words
at that step while retaining visual attributes from previous
generations. This helps the customer to envision possible
apparels, which match their evolving queries, and thus
guides them to products matching their preference. Our
main contributions are:

• The first text-to-image GAN that leverages a recurrent
architecture to incrementally synthesise images from a
stream of fine-grained textual attributes.
• Novel and effective colour modelling enabling the

GAN to render a wide spectrum of colours accurately.
• Quantitative evaluation on a dataset compiled by us

from an e-commerce site. ReStGAN achieves a 113%
improvement in Inception score-colour, 28% improve-
ment in Inception score-type, 27% improvement in In-
ception score-gender and 86% reduction in FID score
(lower is better) over the traditional StackGAN.

2. Related Work
The problem of generating images from textual descrip-

tions has garnered significant traction in the research com-
munity. Reliable text-to-image synthesis requires two sub-
problems to be solved in tandem: compelling image syn-
thesis and a robust natural language representation. Recent
strides in image synthesis, building on the family of GAN
models [2], have shown evidence of photo-realistic image
generation. Several works [14, 16, 1, 7, 12] have incorpo-
rated novel optimisation techniques to stabilise the training
process and generate striking synthetic images at higher res-
olutions.

Several extensions to the original GAN formulation have
achieved controllable image synthesis by including condi-
tional attributes or class labels in GANs [9, 12, 23, 21].
Text-to-image GANs belong to the family of conditional
GANs where the conditioning variable encodes a textual
description of the image envisioned. Reed et al. [15] use a
novel deep architecture coupled with the GAN formulation
to generate images from text descriptions. StackGAN [24]
improves on Reed et al. by using multiple stages to progres-
sively generate high resolution images.

Text-to-image GANs like StackGAN [24], and it’s suc-
cessors [26, 25] are predicated on the assumption that the
entire description is present while synthesising the image

conditioned on the text. Motivated by the results of text-to-
image GANs, we build a model to process text streams and
synthesise images incrementally. To the best of our knowl-
edge, our proposed text-to-image GAN bears the distinction
that it is the first to leverage Recurrent Neural Networks’
(RNN) ability to model sequences and incrementally add
fine-grained style details. We enable the training of this
novel architecture by integrating it with multiple learning
strategies [22, 16, 12]. We demonstrate this model’s effec-
tiveness on the case of fine-grained text-to-image synthesis
by focussing on an apparel dataset compiled by us.

Prior work in GANs on generation of sequential data [11,
6] has focussed on time-series data generation. Mogren
et al. use a recurrent generator and discriminator to pro-
duce polyphonic music. Hyland et al. [6] use a recurrent
generator and discriminator to generate medical time series
data. They do perform preliminary experiments on gener-
ating digits by treating rows in the image of a digit as a
sequence while conditioning on the class label of the digit.
However, they perform these experiments in a constrained
setting with just three digit classes. In contrast, we intro-
duce recurrence in a sophisticated GAN architecture capa-
ble of generating photorealistic images from descriptions of
apparels. This poses challenges in scale and necessitates the
use of multiple training strategies and novel modelling of
the conditioning attributes to produce photorealistic images.
Our proposed model also produces a distinct high resolution
image at each step in the sequence. In contrast, Hyland et
al. compose a single low resolution image in multiple steps.

3. Our Model–Recurrent StackGAN (ReSt-
GAN)

We propose a text-to-image GAN, Recurrent Stack-
GAN(ReStGAN), that leverages Recurrent Neural Net-
works (RNN) to model sequences of data and generate
clothing outfits that envision text descriptions as they ap-
pear on the fly. The architecture of ReStGAN is shown
in Fig.2. ReStGAN follows a staged approach similar
to StackGAN [24] and generates high resolution images
through an intermediate low resolution image. The staging
makes the generation of high resolution images tractable.
ReStGAN has two stages:

Stage-I ReStGAN: The Stage-I in ReStGAN comprises
of an LSTM that feeds into a convolutional encoder. The
LSTM encodes fine-grained text attributes describing the
outfit in a hidden representation. The hidden representation
corresponding to each fine-grained text input is fed into the
upsampling block in Stage-I of ReStGAN, along with noise
z and conditioning corresponding to the colour of the item,
c. The Stage-I generator G1 generates a low-resolution im-
age Ilr with the basic contour and colour of the object.

Stage-II ReStGAN: Stage-II generatorG2 in ReStGAN
upsamples the generated image, Ilr and adds finer details



including texture, stylistic details and colour gradients pro-
ducing a more realistic high-resolution image Ihr.

We discuss the architecture of ReStGAN, training tech-
niques, objective modifications and modelling assumptions
we incorporate to train ReStGAN in Sections 3.1–3.5.

3.1. Stage-I ReStGAN
Stage-I is the first of the stages comprising of an LSTM

feeding into a convolutional encoder trained end-to-end.
Let Ir be a real image and y = {y1, y2, y3, . . . , yT } be
a sequence of fine-grained text attributes describing Ir
drawn from the true data distribution pdata. Let z =
{z1, z2, .., zt, .., zT } be a sequence of noise vectors inde-
pendently sampled from a given distribution pz and ϕt be
the sentence embedding of the given fine-grained attribute
yt. ϕt is generated by applying a compositional function
over word embeddings in the phrase. We use SWEM-
concat [18] to generate ϕt. The generated sentence embed-
ding ϕt is fed as an input to the LSTM. For each time step
in the forward pass of the LSTM, we get the output hidden
state of LSTM, say ht . We use the hidden state as em-
bedding for text conditioning as it captures the fine-grained
attribute at time-step t and historical context. The hidden
state ht is stacked with the colour embedding ct (see Sec-
tion 3.4 for details on colour conditioning) at each time-step
t to obtain the conditioning q = {q1, q2, .., qt, .., qT }. Con-
ditioned on q and random noise variable z, Stage-I GAN
trains the discriminator D1 and the generator G1 by alter-
natively maximizing LD1

in Eq. (1) and minimizing LG1
in

Eq. (2).

LD1 = E(Ir,q)∼pdata
[
∑
t∈T

logD1(Ir, qt)]+

Ez∼pz,q∼pdata
[
∑
t∈T

log(1−D1(G1(zt, qt), qt))]

(1)

LG1
= Ez∼pz,q∼pdata

[
∑
t∈T

log(1−D1(G1(z, qt), qt))]

(2)

Model Architecture For the generator G1, the hidden
state ht of the LSTM is stacked with random noise vector zt
and colour embedding ct at each time-step t. The resultant
Ng dimensional conditioning vector qt is convolved with a
series of of up-sampling blocks to get a W1 × H1 image,
Ilr.

For the discriminator D1, the conditioning embedding
consisting of the lstm hidden state ht and the colour em-
bedding ct are stacked to get an embedding of size Nd di-
mensions and replicated spatially to form a Md×Md×Nd

tensor. The generated image is encoded by the discrimina-
tor encoder and stacked along with the spatially replicated
conditioning embedding. The resultant tensor is convolved

with a 1×1 convolutional layer which projects it onto a
lower dimensional space and then a classification layer with
a single neuron outputs a decision score classifying it as real
or fake.

3.2. Stage-II ReStGAN
Low-resolution images generated by Stage-I GAN lack

finer details, texture and rich colour gradients that render an
image photorealistic. We suitably modify the Stage-II GAN
from StackGAN to generate high-resolution images. The
Stage-II GAN uses a learnt projection of the hidden state ht
from a fully-connected layer, ĥt, as conditioning along with
the colour embedding. Let q̂ = {q̂1, q̂2, q̂3, . . . , q̂T } be the
conditioning corresponding to stacked projected embedding
ĥt and colour embedding ct for all time steps t.

Conditioning on the low-resolution result Ilr = G1(z, q)
and q̂, the discriminatorD and generatorG in Stage-II GAN
are trained by alternatively maximizing LD2

in Eq. (3) and
minimizingLG2

in Eq. (4). With bothLD2
andLG2

, we use
an additional auxiliary classification loss LC (Eq. (5)) [12].
LC aids in the generation of high resolution images that
generate class conditional features which wouldn’t be gen-
erated if Ilr was merely upsampled. We model the auxiliary
classification step as a multi-task classification with three
independent label spaces (C) corresponding to the product
type, colour and target gender of the apparel in the image
(see Section 3.3 for details).

LD2
= E(Ir,q̂)∼pdata

[
∑
t∈T

logD2(Ir, q̂t)]

+EIlr∼pG1
,q̂∼pdata

[
∑
t∈T

log(1−D2(G2(Ilr, q̂t), q̂t))]

+λ1LC

(3)

LG2
= EIlr∼pG1

,q̂∼pdata
[
∑
t∈T

log(1−D2(G2(Ilr, q̂t), q̂t))]

−λ2LC

(4)

LC = EIr∼pdata
[
∑
t∈T

logP (C = c | Ir)]

+ EIlr∼pG1
,q̂∼pdata

[
∑
t∈T

logP (C = c | G2(Ilr, q̂t))] ∀C

(5)
Model Architecture We retain the encoder-decoder net-

work architecture with residual blocks [4] for Stage-II gen-
erator from StackGAN [24]. Similar to the previous stage,
the projected hidden state ĥt is stacked along with colour
embedding ct to generate the Ng dimensional conditioning
vector q̂t, which is spatially replicated to form aMg×Mg×
Ng tensor. Meanwhile, the Stage-I result Ilr is encoded us-
ing a convolutional encoder block to generate image fea-
tures. The spatially replicated conditioning is stacked with



these image features. The resultant tensor is then feed-
forwarded through residual blocks and a decoder to gen-
erate a W2 ×H2 high-resolution image, Ihr.

The discriminator structure is identical to the Stage-II
discriminator in StackGAN with the exception of an auxil-
iary multi-task classifier. In addition to a real vs fake im-
age classifier, the discriminator has 3 classification layers
for tasks pertaining to gender, colour and product type clas-
sification . In the form of a regularizer, spectral normali-
sation [10] is imposed on all layers in the discriminator in
Stage-II. In our experiments, we observed this to prevent
the generator G2 from collapsing during the initial training
epochs.

3.3. Tricks for stability and faster convergence
We leverage an auxiliary classifier [12] to stabilise the

training of ReStGAN. The auxiliary classification label set
C spans gender (male, female, unisex), colour (see Section
3.4 for details on colour labels) and product type (jeans,
shorts, pants) of the outfit being generated. Without the
auxiliary classification loss LC , ReStGAN experienced sig-
nificant mode collapse.

One-sided label smoothing [16] has been used to encour-
age the discriminator to estimate soft probabilities and re-
duce the chances of the discriminator producing extremely
confident classifications. While traditionally, only the la-
bels for the real samples undergo smoothing, we smoothen
the labels for the fake samples as well. We empirically ob-
served that smoothing the fake labels aided in stabilising
losses for the negative pairs in the matching-aware discrim-
inators used to train our GANs (see Section 3.5 for more
details on matching-aware discriminator).

3.3.1 Prediction methods for stabilising adversarial
training

During training of GANs, training alternates between min-
imisation and maximisation steps. GAN alternates between
updating discriminator D with a stochastic gradient descent
step, and then updating the Generator, G with a stochastic
gradient ascent step. When simple/classical SGD updates
are used, the steps of this method can be written as in Eq. 6:

Dk+1 = Dk − αkL′D(Dk, Gk) | gradient descent in D

Gk+1 = Gk + βkL′G(Dk+1, Gk) | gradient ascent in G

(6)
Dk+1 = Dk − αkL′D(Dk, Gk) | gradient descent in D

D̄k+1 = Dk+1 + (Dk+1 −Dk) | predict future value of D

Gk+1 = Gk + βkL′G(D̄k+1, Gk) | gradient ascent in G

(7)
Here, {αk} and {βk} are learning rate schedules for the

minimisation and maximisation steps, respectively. The
stochastic gradients of L with respect to D and G are de-
noted by L′D(D,G) and L′G(D,G) respectively. If either of

the steps in Eq. 6 is more powerful than the other, a collapse
of the network is observed as the algorithm becomes unsta-
ble. Prediction steps [22] mitigate this issue and stabilise
the training of adversarial networks by adding a lookahead
step. An estimate of the position of D in the immediate fu-
ture assuming current trajectory, D̄k+1, is computed. This
predicted value of the discriminator is used to obtain Gk+1.
The details are provided in Eq. 7.

We apply prediction steps on both the generator and dis-
criminator networks across both stages. In our experiments
with Recurrent GANs, we find that the prediction steps are
beneficial in stabilising the training. ReStGAN experienced
significant mode collapse without application of prediction
steps.

3.4. Colour modelling
While prior works in text-to-image GANs including

StackGAN [24] feed colour as a part of text conditioning,
we find that the embeddings derived from recurrent lan-
guage models or word embedding spaces like GloVe [13]
and Word2Vec [8] do not respect perceptual similarity in
the colour space. Sequences S.1–2 in Fig.3 show images
generated by a StackGAN model (StackGAN) using text
conditioning derived by applying a compositional function
on word embeddings of the phrase describing the image.
The colour of the fashion item is present in the text phrase.
We see that while the stylistic attributes are generated, the
colour of the generated samples do not seem to respect the
constraint provided by input text conditioning.

To obtain a discriminative representation for colour, we
derive coarse clusters of perceptually similar colours that
can be mapped to descriptions referencing a particular
colour attribute. To generate these clusters for our train-
ing data, we use tagged colour attributes (or inferred colour
from the text description) from the catalogue (if available).
These colour tags/references for products are converted to
LAB space using a colour library and clustered using K-
Means clustering to generate coarse clusters with similar
colours. If a colour tag is absent for a sample, we assign
it to a dummy K + 1 cluster. With labels generated from
this clustering we train a ResNet-50 [3] CNN classifier in
a supervised setting. In addition to utilizing the softmax
output of this colour classifier as the conditioning for all
training examples, we also use it to train the auxiliary clas-
sifier in ReStGAN. We find that this mitigates overall noise
by correctly classifying examples into clusters which were
originally tagged incorrectly in the catalogue.

We find that incorporating colour explicitly as a con-
ditioning improves consistency of colours produced for a
given text conditioning. Sequences S.1–2 in Fig.3 compare
generated examples for a StackGAN model against a variant
of the StackGAN model that explicitly encodes the colour
conditioning (StackGAN-C in Fig.3). We see that the con-
sistency of colour across samples and matching of colour to



Figure 2. The architecture of the proposed recurrent GAN framework, ReStGAN. In the forward pass, the LSTM encodes the text phrase
representation ϕt, and outputs a hidden representation ht, that encodes each fine-grained text attribute envisioning the outfit. The hidden
state corresponding to each fine-grained text input is fed into the Stage-I generator along with noise z and colour conditioning c. The
Stage-I generator G1 generates a low-resolution image Ilr with the basic contour and colour of the object . Conditioned on Ilr , the Stage-II
generator G2 upsamples the generated image and adds finer details including texture, stylistic details and colour gradients producing a
more realistic high-resolution image Ihr .

the textual specification of colour is higher when the pro-
posed colour conditioning is explicitly incorporated.

3.5. Training
ADAM solver is used to train G and D across the two

stages. For training, we iteratively train recurrent genera-
tor G1 and discriminator D1 in Stage-I GAN for 60 epochs
with label smoothing. For training D2 and G2, we freeze
the LSTM and G1 of Stage-I GAN. The discriminator of
Stage-II GAN is trained with the auxiliary multi-task clas-
sifier and label smoothing. Prediction steps are applied
on both generator and discriminator while training stages I
and II. The loss for auxiliary classification tasks for gender,
colour and product type classification are scaled inversely
by the frequency of classes within each task. All networks
were trained with batch size 64 and an initial learning rate of
0.0002. The learning rate is decayed by 1

2 every 20 epochs.
During training of Stage-I/II , input sequences to the LSTM

are randomly shuffled and the sequence length is clipped at
6 to ease memory constraints.

The matching-aware discriminator from Reed et al. [15]
is retained for both stages to explicitly enforce the GAN to
learn better alignment between the image and the condition-
ing. In training a matching-aware discriminator, positive
sample pairs (real images, corresponding conditioning em-
beddings) are complemented by negative sample pairs (real
images, misaligned conditioning embeddings). The posi-
tive and negative pairs are fed as inputs to the discriminator,
along with the pairs output by the generator (generated im-
ages, corresponding conditioning embeddings). Since we
replicate real images (across time-steps) over the input text
sequence to the discriminator in ReStGAN, there is a high
likelihood that negative sample pairs consisting of real im-
ages with misaligned conditioning embeddings may not be
truly misaligned. To choose the set of negative sample pairs
with the least number of correct alignments, we combina-



Figure 3. The first block in the image shows the output for ReStGAN and contrasts it against the baseline models StackGAN and StackGAN-
C for different text sequences. The second block shows the images generated by ReStGAN for additional text sequences where multiple
image sequences are obtained for the same text sequence by jittering the noise z.

torially generate multiple sets of negative sample pairs and
choose the set with the lowest number of aligned pairs.

The ResNet-50 CNN classifier (see 3.4 for details on
classifier) is trained along with auxiliary tasks for gender
and product type classification. The auxiliary tasks help in
incorporating sample data with no colour labels. For data
with absent labels corresponding to one of the tasks, we ig-
nore the loss on the corresponding classification objective.
To generate a train and validation split for the multi-label
data, we use a multi-label stratification technique [17] im-
plemented in scikit-multilearn package to generate a 80-20
train and validation split.

4. Experiments
We compare ReStGAN with baselines including Stack-

GAN and it’s variants that ablate the effect of colour mod-
elling, prediction step and auxiliary classifier. More details
about baselines and dataset are available in Sections 4.1–
4.2.

4.1. Baselines
We describe StackGAN and it’s variants that ablate the

effect of colour modelling, prediction step and auxiliary
classifier to enable quantitative evaluation of ReStGAN be-
low. For fairness of evaluation, all StackGAN variants are
fed text descriptions incrementally to generate sequences as



they do not incorporate explicit sequence modelling.

- StackGAN: We use the StackGAN model from which
ReStGAN is derived as the primary baseline. The
model is trained with all fine-grained text attributes
combined into a single textual description. We do not
use explicit colour modelling in StackGAN. All loss
objectives for training are retained from the original
StackGAN model.

- StackGAN+CM: This is a variant of StackGAN in-
corporating the colour modelling. The training hyper-
parameters and text conditioning is carried over from
StackGAN.

- StackGAN+PM+CM This is a variant of StackGAN
incorporating the colour modelling and prediction
methods applied to both discriminator and generator.
The text conditioning is carried over from StackGAN.
This model is trained with a higher base learning rate
of 0.001 for half the epochs as application of predic-
tion methods enables faster convergence.

- StackGAN+PM+AC+CM: This is a variant of Stack-
GAN incorporating the colour modelling, auxiliary
classifier and prediction methods applied to both dis-
criminator and generator. All hyper-parameters are
carried over from StackGAN+PM+CM.

4.2. Dataset
We mainly use an apparel dataset compiled by us from

an e-commerce website for training our model. For our ex-
periments, we focus on three product types: pants, jeans and
shorts.

Pre-processing We apply the following filters on our
dataset:

• Hard vote on an ensemble of face detectors with a
multi-scale Histogram-of-gradients (HOG) face detec-
tor and a CNN based face detector run at multiple
scales: faces are hard to model in GANs and we ig-
nore samples which contain faces in our training data.
• Ratio of foreground to background: We use threshold

on the foreground to background ratio to remove sam-
ples which have close cropped and multi-pack apparel.
• Word filter is applied on textual descriptions for key-

words synonymous with baby apparel and printed t-
shirts.

Fig.4 shows examples of images that we filter out based on
the above preprocessing. From the filtered set, we subsam-
ple a training set of 32967 images. The training set is sub-
sampled in such a manner that we get a uniform distribution
on the inferred colour. In our final dataset, we have 15372
pants, 12350 shorts and 5245 jeans. All text tokens are gen-
erated on this dataset

Figure 4. Sample images pruned by pre-processing applied to the
initial dataset.

Text sequence generation: Since the dataset we com-
pile is not in the form of sequences of customer search
queries, we simulate such samples by generating a sequence
of fine-grained attributes from an image’s description. We
synthesize sequences of stylistic attributes from top-k n-
grams (1-3 grams) for every apparel type. We filter vi-
sually indistinguishable non-stylistic attributes like texture
and material. The product type is concatenated with the list
of pruned n-grams and this is used as the final sequence
of stylistic attributes describing the image of interest. The
product type is appended to allow better discriminability
among n-grams across product categories which have sim-
ilar stylistics attributes. For eg: ”Cargo” is a stylistic at-
tribute that occurs in both pants and shorts. Some example
text sequences of stylistic attributes can be seen in Fig.3
S.1–6.

4.3. Evaluation metrics

We choose two widely accepted metrics for GAN evalu-
ation, namely, inception score [16] and Fréchet Inception
Distance (FID) [5] to quantify the performance of ReSt-
GAN against its baselines. The two metrics are formally
defined in Eq. 8.



ISt = exp(Ex[DKL(p(yt|x) || p(yt))])
FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2)

(8)

where x is a sample generated by the model. yt is the la-
bel predicted by the inception model for a task t. Task t can
be color, gender or product type classification. µr/µg and
Σr/Σg are the mean and covariance of activations from the
Inception classifier [20] corresponding to the real image xr
and the generated image xg . Since our experiments are pri-
marily focussed on a domain specific fine-grained dataset,
we fine-tune a trained inception model in a multi-task set-
ting to classify the colour, gender and product type for a
given apparel item in our dataset. Computing a score on
each of these tasks would capture different facets of im-
age synthesis in an apparel. We compute the inception and
FID scores on 32000 samples randomly generated for each
model treating each generated image in the sequence to be
independent. Lower FID scores and higher inception scores
are better. The mean FID and inception scores of 10 runs
are reported for every model evaluated.

Model IS-Colour IS-Type IS-Gender FID
StackGAN 4.52 1.89 1.76 129.49

StackGAN+CM 4.25 1.91 1.75 107.84
StackGAN+PM+CM 4.16 1.93 1.72 99.39

StackGAN+PM+AC+CM 4.82 1.99 1.76 104.37
ReStGAN(Ours) 9.65 2.43 2.23 18.71

Table 1. Inception scores of ReStGAN and variants of StackGAN
with colour modelling(CM), prediction method(PM) and auxiliary
classifier(AC). Higher inception scores and lower FID scores are
indicative of better image quality.

Sequence Step(t) t = 1 t = 2 t ≥ 3 t ≥ 4 All
ReStGAN(Ours) 17.70 18.77 20.23 25.57 17.62

Real data – – 1.79 9.15 –

Table 2. FID scores across time steps for ReStGAN and subsets of
real data sampled based on sequence length

4.4. Results

Qualitative results for ReStGAN and baselines have been
compiled in Fig.3. In S.1, ReStGAN is able to capture in-
tricate stylistic details and embellishments in apparel like
“tears in jeans” or the “waist profile” while retaining a
consistent colour across the sequence. On the other hand,
StackGAN fails to incorporate colour in S.2. Incorporat-
ing the colour modelling in StackGAN mitigates this is-
sue. However, both StackGAN and variants incorporating
colour modelling fail to add stylistic details incrementally.
In S.3–6, we see that ReStGAN generates diverse sequences
matching the attributes when we resample noise.

We quantify the performance of ReStGAN against
StackGAN (and it’s variants that incorporate colour mod-

elling, auxiliary classification and prediction methods) us-
ing the inception & FID scores (Table 1). StackGAN with
auxiliary classification has lower FID scores than the corre-
sponding model with prediction methods. We believe this is
due to the AC-GAN’s tendency to regress to the modes [19],
which would reduce the classification loss at the cost of a re-
duction in the variety of the generated images. We also see
that our model improves upon the inception scores (pertain-
ing to colour, gender and type classification) of the base-
lines. This is indicative of ReStGAN’s ability to generate
diverse images at each time step while retaining semantics
of the text conditioning. ReStGAN also gives a significant
improvement in FID scores over the different variants of
StackGAN.

We compute the Fréchet Inception Distance (FID) for
generated samples at each step in the sequence for quan-
tifying ReStGAN’s ability to maintain diversity in samples
generated across a sequence (Table 2). For sequence lengths
greater than two, we collapse generated samples into buck-
ets of step size greater than three and four. This is done
to ensure that sufficient generated examples are present at
each sequence step to compute FID statistics. For FID
score computations of ReStGAN across sequence steps, we
maintain the same real image set. We observe that the FID
scores across steps are of the same order as the FID ob-
tained by considering all sequence steps. We observe a
nominal increase in FID as the sequence progresses. We
attribute this to the increase in specificity of apparel cate-
gories in the larger valued sequence steps. To verify that
this increase in FID is indeed due to specificity of genera-
tions, we also compute FID scores for real examples with
sequence lengths greater than three and four against all real
examples in Table 2. We observe an analogous increase in
FID (indicative of shift in distribution) for the real samples
with larger sequence lengths.

Thirty seven additional generations by ReStGAN along
with further quantitative analysis is available in the supple-
mentary material.

5. Conclusion

We propose ReStGAN for generating images from text
streams like customer search queries. It learns to incre-
mentally generate possible images complementing the fine-
grained style, colour of the apparel in the query. Addi-
tionally, we incorporate a novel colour modelling approach
enabling the GAN to render a wide spectrum of colours
accurately. We also compile a dataset from a popular e-
commerce website’s catalogue to train ReStGAN. The pro-
posed approach outperforms the baselines on qualitative
and quantitative evaluations. In future work, we would like
to expand ReStGAN’s scope to more vivid apparel types.
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