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Abstract. Manifold of product attributes such as dimensions, weight,
fragility and liquid content determine the package type used by e-commerce
companies to ship products. Sub-optimal package types lead to damaged
shipments, incurring huge damage related costs and adversely impacting
the company's reputation for safe delivery. Items can be shipped in more
protective packages to reduce damage costs, however this increases the
shipment costs due to expensive packaging and higher transportation
costs. In this work, we propose a multi-stage approach that trades-o�
between shipment and damage costs for each product, and accurately
assigns the optimal package type using a scalable, computationally e�-
cient linear time algorithm. A simple binary search algorithm is presented
to determine the hyper-parameter that balances between the shipment
and damage costs. Our approach when applied to choosing package type
for Amazon shipments, leads to signi�cant cost savings of tens of mil-
lions of dollars in emerging marketplaces, by decreasing both the overall
shipment cost and the number of in-transit damages. Our algorithm is
live and deployed in the production system, where package types for
more than 130, 000 products have been modi�ed based on the model's
recommendation, realizing a reduction in damage rate of 24%. Overall,
the proposed approach has also helped reduce the carbon footprint.

Keywords: Package type selection · Ordinal enforcement · Discrete op-
timization · Constrained-Unconstrained formulation equivalence · Trade
o� parameter selection

1 Introduction

E-commerce companies like Amazon uses several di�erent package types to ship
products from warehouses to the customer's doorstep. These package types vary
in the extent of protection o�ered to the product during transit. Generally, robust
package types that provide more protection to the product, resulting in reduced
number of package related damages, cost more at the time of shipping due to high
material and transportation costs, and vice versa. For instance as shown in Fig. 1,
Amazon has the following di�erent package type options listed in increasing order
of protection a�orded to the product: (i) No Additional Packaging (NAP), (ii)
Polybags: polythene bags small (PS) and special (PL), (iii) Ji�y mailer (JM), (iv)
Custom pack (CP), (v) Corrugated T-folder box (T), (vi) Corrugated box with
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variable height (V), (vii) Corrugated carton box (C). Each package type comes
in multiple sizes like small, medium, large and extra-large. The combination of
packaging type and size is assigned a barcode, e.g. PS6 to PS9 for small polybags.
When an item is ready to be packed, the chosen packaging material and size are
used to ship the product.

Fig. 1. Di�erent package types

Packaging related damages can happen during transit or handling by an
associate during shipment from the warehouse to the customer. As damages
result in degraded customer experience, an extra compensatory amount is often
paid to the customer over and above the product's price. As these damaged
products need to be sent back to the warehouse, there is an additional return
shipment cost. Such damages adversely a�ect the customer relationship since the
company's reputation for reliable delivery is impacted. For instance, customers
who are dissatis�ed with time-critical purchases (e.g., during festivities), may
hesitate to buy products in the future. Even the company's relationship with
the sellers get impacted, particularly if new products su�er repeated damages
over multiple shipments, since the �rst few customer experiences are critical
to the seller's long term success on the platform. The sum of all these costs
associated with damages including the product price, reshipment cost, customer
compensation cost etc. will henceforth be referred to as damage cost Cdamage.

To reduce the cost of damages, items can be packed in more protective pack-
aging. However, more protective packaging (e.g. corrugated box (C)) costs more
in terms of packaging materials and transportation costs, which could increase
the shipping cost that customers have to pay, or costs that the company bears
in case of free shipping. It also generates packaging waste at the customer's end
which needs to be disposed o� additionally. Hence the problem that needs to be
addressed is: "What is the right package type say, between polybag, ji�y mailer
or di�erent corrugated boxes that should be used for shipping a product with the
best trade o� between shipping cost and damage cost ?" Once the package type
is chosen, the smallest container (size) of that package type that could �t the
product snugly would be used for actual shipment. This reduces the shipment
volume and hence the shipping cost Cship.
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1.1 Contributions

Below, we list our main contributions in this work:
(i) We propose a two-stage approach to recommend the correct package type
for products resulting in signi�cant savings, primarily from decreased packaging
related transit damages. Interestingly, our model's recommendation also leads
to decreased shipping cost compared to the current selection of package types,
the reason for which is explained in Section 4.2.
(ii) Our framework naturally provides a scalable mechanism for the package type
recommendation, circumventing manual intervention at every stage and depre-
cating the existing keyword based approach of mapping package type explained
in Section 2.1, which is slow, reactive and often subjective.
(iii) We establish novel theoretical connections between the constrained (Ivanov)
and unconstrained (Tikhonov) formulations for our unique setting where the op-
timization variable is discrete, and show that while the constrained formulation
is NP− complete, the unconstrained formulation enjoys a linear time solution.
Though such connections based on the Lagrange dual formulation are known
when the optimization variable is continuous [13], the proof methodology em-
ployed in our work to derive similar equivalences when the optimization variable
is discrete requires fundamentally new insights into the solution space. To the
best of our knowledge, this connection is unknown and not exploited before.
(iv) Our understanding of the solution space further enables us to consistently
choose the hyper-parameter for the unconstrained formulation using a simple
binary search type algorithm, which optimally provides the trade-o� between
the di�erent cost parameters.
To summarize, we provide a scalable approach for choosing the best package type
for products and also present an e�cient algorithm to select the hyper-parameter
involved in the optimization.

2 Related work

2.1 Existing packaging selection process

The decision to choose the package type for a product is currently based on
a Keyword Based Approach (KBA), where the products are mapped to pack-
age types based on whether their title contains a prede�ned set of positive and
negative keywords. Positive keywords work as enablers to ship products in infe-
rior packaging types like polybags or NAP. Examples for positive keywords are
helmet, diapers, mosquito net, bag pack, laptop sleeve, bedsheet, cushion, etc.
with the assumption being that such products will have low in-transit damages
due to inferior packaging. Negative keywords on the other hand prohibit opting
for polybag. Examples for negative keywords are bone-china, detergent, harpic,
protein supplements, etc. After manually analyzing the product titles, a suitable
package type is identi�ed. Another approach that is closely followed is the se-
lection of package types using the historical data on damages. Here, the damage
rates of products are collected on a monthly basis and based on set guardrails,
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the packaging rules are modi�ed for products with high damages. In addition to
being a slow, manual process, this is a reactive approach which does not work for
many new products or products whose attributes have been modi�ed recently.

2.2 Why not ordinal regression?

As the di�erent packaging options can be graded in terms of their robustness, the
package type forms an ordinal variable with implicit relative ordering between
them. This observation naturally surfaces the following question: �Is predicting
the optimal package type for a product just an instance of ordinal regression?�.
Though the answer appears to be a yes, the problem lies in the lack of training
data. The current assignment of package type to a product is known to be sub-
optimal for most of the products w.r.t. trade o� between shipping and damage
costs. The ideal setting would demand that we have enough samples for every
<product, package type> pair, so that one could assign true package type as
the target label and perform ordinal regression on product features. This model
could then be leveraged to predict package type for new products. Such an
exercise would incur signi�cant cost especially at the scale at which e-commerce
company like Amazon operates and hence is practically infeasible. The lack of
such ground truth data precludes us from performing ordinal regression analysis.
We allude to this fact in Section 4.2.

2.3 Comparison with standard machine learning approaches for

package planning

The work in [8] shows the adoption of machine learning (ML) in the manufac-
turing industry for automated package planning. Given a training data with well
de�ned labels of package type to be used for product parts, the goal in these
applications is to train a supervised ML model based on product characteristics,
which are later used to predict package type for unseen products. Our current
work di�ers from these approaches on the following factors:
(i) As described above, we do not have any ground truth data to learn a su-
pervised ML model that directly predicts the package type given the product
features. We have training label only at the shipment level that informs whether
a product shipped in particular package type was damaged (1) or not (0).
(ii) There is natural ordering between the package types that should be enforced
in any learning algorithm.
Given the above two constraints, we are not aware of any learning based frame-
work that automatically chooses the best package type in linear time and is
scalable to millions of products.

A majority of the work in logistics is around space optimization, which is
broadly related to bin packing algorithms [12], [11], not to be confused with the
packaging type selection problem. The aim of the former is to identify those
set of products, each of a speci�c volume, that should be loaded together in
a container, in a speci�c orientation, so that the number of container used is
minimum. The bin packing problem has no notion of choosing the best package
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type for each product. Our work also has very little connection with the box
size optimization problem [18], where the goal is to determine the best box sizes
that should be used to ship the products, so that the total shipment volume
across all product is minimum. We do not optimize for the di�erent sizes of the
packages in the current work, but rather determine which package type is best
suited for a product. Likewise, we do not forecast packaging demand like the
methods developed in [1].

3 Two-stage approach for optimal package selection

3.1 Stage 1: Estimating the transit damage probability of a product

given a package type

In this stage, we build a model to solve the following problem, �Given a product
and a package type, what is the probability that a shipment of the product with that
package type is likely incur costs due to damages?�. These damage probabilities
are computed for every <product, package type> pair as a product may never
have been shipped using a particular (say hitherto unknown optimal) package
type to directly retrieve it from the shipment data. In short, our model predicts
p(d|i, j) where i refers the product, j refers to the package type and d is a
variable indicating damage in transit, with d = 0 denoting no damage and d = 1
specifying a damage in transit.

For modeling, we considered historical shipment data where for every ship-
ment we have a binary �ag a.k.a. the target label indicating whether the ship-
ment resulted in package related damage. We built this model using various
metadata associated with the product as predictor variables. The following enu-
merate a sample set of attributes: product title, category, subcategory, product
dimensions, weight, hazardous �ag (indicating if product pertains to hazardous
materials), fragile �ag (denoting whether the product is fragile), liquid �ag (rep-
resenting if the product contains liquids), % air in shipment computed as the
di�erence between the package volume and the product volume, etc. Based on
the above set of features we trained a model to predict the probability that the
shipment using the particular package type will incur a damage.

Maintaining ordinal relationship between di�erent package types The
notion of graded robustness between package types correlates with the cost of
the packaging material where the cost of packaging goes up if we opt for a more
robust package type and vice versa. As there exists an ordinal relationship among
the various package types, i.e. they can be ordered in terms of their associated
robustness, we need to impart this notion to our model while estimating the
damage probabilities. Let m and n be the number of products and package type
respectively and without loss of generality let the package type jk be inferior
to jk+1 represented by the ordinal relationship j1 ≤ j2 ≤ · · · ≤ jn. During
modeling we need to ensure that p(d|i, jk+1) ≤ p(d|i, jk) for all products i.
In other words, the prediction function needs to be rank monotonic [9] where
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the rank denotes the robustness of the package type. Note that we require the
predictions to satisfy the ranking relationship only between the di�erent package
types associated for a given product and not across two di�erent products. We
achieve rank monotonicity by two means: (a)Augmenting the training data, and
(b)Proper representation of the package type feature and imposing lower bound
constraints on the corresponding model coe�cients.
Firstly, we append the modeling data as follows:
(i) For every damaged shipment, we create additional shipments with the same
product and other inferior (less robust) package types and consider them to
be damaged as well. This is to incorporate the notion that if a shipment of a
product gets damaged with a particular package type, it is likely to get damaged
in package types which are inferior in terms of robustness.
(ii) Likewise, for every shipment without any packaging related damages, we
arti�cially introduce more shipments with the same product and other superior
(more robust) package types and consider them to be not damaged as well. This
is to incorporate the notion that if a shipment of a product does not get damaged
with a particular package type, it is unlikely to get damaged in superior package
types.

Appending the data set has an added advantage of creating many more
samples for the positive damaged class (label = 1), as typically very few ship-
ments, less than 0.6%, incur packaging related damages. This in turn reduces
the model variance as even the positive class is well represented. Secondly, ex-
pressing the damage probability values in terms of the sigmoid function, namely
p(d|i, j) = 1

1+exp(−f(zi,j))
where zi denote the rest of input features barring the

package type, we represent f(.) as f(zi, j) = g(zi) + βj . Here {βj}nj=1 are the
n model coe�cients corresponding to each package type. Ensuring rank mono-
tonicity is equivalent to constraining βk ≥ βk+1. Expressing βk = βk+1 + εk,
we enforce that εk ≥ 0,∀k ∈ {1, 2, . . . , n − 1}. In the event that g(.) is lin-
ear, i.e., g(zi) = wT zi as the case with Logistic Regression classi�er, then for
each package type jk, we append the feature vector zi to create z̃ik = [zi,pk]
where pk = [0, 0, . . . , 0︸ ︷︷ ︸

k−1

, 1, . . . , 1︸ ︷︷ ︸
n−k+1

], augment the model coe�cient vector w to

w̃ = [w, ε1, . . . , εn−1, βn], and express f(zi, jk) = w̃T z̃ik. The vector w̃ is deter-
mined as part of the model training process under the constraint that εk ≥ 0,∀k.

3.2 Stage 2: Identifying the optimal package type for each product

Optimally assigning the packaging type for each product involves �nding the
right balance between adopting a robust packaging and incurring more material
and transport costs, and settling for an inferior option with a higher proba-
bility of in-transit damages leading to increased damage costs. We formulate
this trade-o� as an optimization problem. Given a packaging type assignment
j for a product i, the packing material cost m(i, j) and the transportation cost
s(i, j) are known and readily available. The quantity s(i, j) is known as the
bill weight and is proportional to the package volume. The net shipping cost,
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Cship(i, j) = m(i, j) + s(i, j). The total shipment cost, Tship, computed over all
the products equals: Tship =

∑
i

Cship(i, j) ∗ svel(i), where svel(i) is the sales

velocity �number of units sold in a speci�ed period� of the product i. Further,
if a product i associated with the package type j is damaged in transit, we incur
a net damage cost Cdamage(i). This damaged cost depends only on the product
and independent of the package type used in the shipment. Using the in-transit
damage probability p(d|i, j) determined in stage 1 (Section 3.1), we estimate the
damage cost as: Tdamage =

∑
i p(d|i, j) ∗ svel(i) ∗ Cdamage(i).

Let us denote the current package type assignment of product i by jcur.
According to the current package type assignment, the total cost due to in-transit
damages is: T curdamage =

∑
i

p(d|i, jcur) ∗ svel(i) ∗ Cdamage(i). The objective of the

optimization is to determine the package types such that Tship is minimized and
at the same time Tdamage is not largely di�erent from T curdamage i.e., Tdamage ≤
γ ∗ T curdamage, where γ ≥ 0 sets the allowable tolerance w.r.t. T curdamage and is
determined by business requirements.

Mathematical formulation Let the variable xij indicating whether a product
i is to be shipped using the package type j, be the < i, j > entry of the binary
matrix X. These variables have to satisfy the following constraints, namely:
xij ∈ {0, 1}, ∀i, j and

∑
j xij = 1, ∀i. The �rst constraint states that a product

is either shipped in a particular type (xij = 1) or not (xij = 0). The second
constraint specify that a product should be shipped using one and only one
package type. In additional to the aforesaid binary constraints, we also need to
specify infeasible conditions that preclude certain products to be shipped via
certain modes of packaging. For instance, liquid, fragile and hazardous products
can neither be recommended polybags nor be shipped without any packaging
if they are not currently shipped in these package options. We enforce these
infeasibility constraints by creating a mask matrix M where we set Mij = 1
if product i cannot be shipped in package type j and Mij = 0 otherwise. By
imposing the constraint

∑
i,j

Mij ∗ xij = 0, the optimization algorithm will be

coerced to set xij = 0 whenever Mij = 1, thereby meeting our infeasibility
requirements. Letting Sij = Cship(i, j)∗svel(i) to be the net shipment cost when
product i is sent in package j, Dij = p(d|i, j) ∗ svel(i) ∗ Cdamage(i, j) as the net
damage cost when the shipment experiences an in-transit damage due to the
packaging, T = γ ∗ T curdamage, our objective can be mathematically expressed as:

min
X

∑
i,j

Sij ∗ xij s.t.
∑
i,j

Dij ∗ xij ≤ T (3.1)

where, xij ∈ {0, 1},
∑
j

xij = 1, ∀i and
∑
i,j

Mij ∗ xij = 0.

However, computing the optimal solution for X based on the Integer Pro-
gramming (IP) formulation in eq.(3.1) is computationally expensive as it is a
known NP -complete problem [14]. The IP formulation is de�nitely not scalable
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and is of very limited use for our setting. Hence, we do not compute the solu-
tion for X by solving eq.(3.1). We present the IP objective with the only intent
of mathematically formulating and motivating our optimization problem. The
direct minimization of the shipping cost, while enforcing that overall damage
cost does not exceed the constant T , makes the setting easier to understand. We
abstain from solving for X based on this IP objective.

A closer look into the constraints on X reveals that, the constraints are
only intra-product, i.e., across di�erent packaging options for a given product
and there are no inter-product constraints. This insight enables us to derive an
equivalent formulation for eq.(3.1) whose solution, as we demonstrate, can be
obtained via a simple linear time algorithm in O(mn). To this end, let S(X) =∑
i,j

Sij ∗ xij , D(X) =
∑
i,j

Dij ∗ xij , and consider the formulation:

min
X

E(X) = S(X) + λD(X) s.t., (3.2)

xij ∈ {0, 1},
∑
j

xij = 1, ∀i and
∑
i,j

Mij ∗ xij = 0,

where the hyper-parameter λ is a single globally speci�ed constant independent
of the products and the package types. The constrained formulation in eq.(3.1) is
known as the Ivanov formulation [6] and the objective in eq.(3.2) is referred to as
the Tikhonov formulation [17]. The equivalences between the two are speci�cally
known for Support Vector Machines [13], [3] where the optimization variable, the
weight vector w, is continuous and is based on the Lagrange dual formulation.
This approach does not work in our discrete setting where X is binary valued.
We need to establish this equivalence without invoking the Lagrange formulation
and hence our proof methodology is substantially di�erent.

Let Xλ and XT be the optimal solutions for the hyper-parameters λ and
T in Tikhonov and Ivanov formulations respectively. Under mild conditions on
the shipment and damage cost values, we prove that these two formulations are
equivalent in the sense that for every T in Ivanov, ∃ a value of λ in Tikhonov
such that both the formulations have the exact same optimal solution in X. To
this end, we have the following lemmas:

Lemma 1. The value of the objective function E (Xλ) at the optimal solution
Xλ strictly increases with λ.

Lemma 2. The overall damage cost D (Xλ) [shipment cost S (Xλ)] at the opti-
mal solution Xλ is a non-increasing [non-decreasing] function of λ, i.e., if λ1 ≤
λ2 then D (Xλ1

) ≥ D (Xλ2
) [S (Xλ1

) ≤ S (Xλ2
)]. Further, if Xλ1

6= Xλ2
then

we get the strict inequality, namely D (Xλ1) > D (Xλ2) [S (Xλ1) < S (Xλ2)].

Lemma 2 states that D (Xλ) is a piece-wise constant function of λ whose
value decreases when the optimal solution changes. The length of the constant
portion equals the range of λ having the same optimal solution. Further, D (Xλ)
is discontinuous and points of discontinuity occurs at those values of λ for which
there are two di�erent optimal solutions in Xλ. Lack of space precludes us from
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giving the details of the proof. We establish the equivalence through the following
theorems.

Theorem 3. For every λ in eq.(3.2), ∃ T (γ) in eq.(3.1) such that Xλ = XT .

We de�ne a quantity ∆ to equal the largest change between the two val-
ues of D (Xλ) at the points of discontinuity. For our speci�c D matrix, ∆ ≤

max
i

[
max

j,Mij=0
Dij − min

j,Mij=0
Dij

]
. Armed with this de�nition, we now prove a

mildly weaker equivalence in the opposite direction.

Theorem 4. For every T = γ ∗ T curdamage in eq.(3.1) for which the optimal solu-
tion XT exists, one can �nd a T ∗ ∈ [T, T +∆) such that for this value of T ∗,
∃λ in eq.(3.2) satisfying Xλ = XT∗ .

Linear time algorithm The primary advantage of this equivalence is that
the Tikhonov formulation in eq.(3.2) enjoys a linear time algorithm compared
to the Ivanov problem in eq.(3.1) which is NP -complete. To see this, note that
the constraints in the variables xij are only across the di�erent package types j
given a product i and there are no interaction terms between any two di�erent
products. Hence the optimization problem can be decoupled between the prod-
ucts and reduced to �nding the optimal solution independently for each product
agnostic to others. For each product i, de�ne the vector xi = [xi1, xi2, . . . , xin]
and consider the optimization problem:

min
xi

∑
j

[Sij + λDij ]xij s.t., xij ∈ {0, 1},
∑
j

xij = 1 and
∑
j

Mij ∗ xij = 0.

(3.3)

Among all the package types where Mij = 0, the minimum occurs at that value
of j = j∗i where the quantity Sij∗i + λDij∗i

takes the least value. In other words,
de�ne j∗i = argmin

j,Mij=0
[Sij+λDij ]. Then xij∗i = 1 and xik = 0, ∀k 6= j∗i is the optimal

solution. As it only involves a search over the n values, its time complexity is
O(n) for each product. Hence the optimal solution Xλ across all the m products
can be determined in O(mn).

Selection of the hyper-parameter λ It is often easier to specify a bound on
the overall damage cost D(Xλ) via the tolerance constraint T = γ ∗ T curdamage in
the Ivanov formulation in eq.(3.1), as it is driven by business requirements such
as customer satisfaction, impact of damages on downstream purchase behavior,
etc. However, knowledge of γ alone is of little value as the Ivanov formulation
being NP -complete, is computationally expensive to solve and we rightly refrain
from doing so. Instead, we determine the corresponding λ through an e�cient
algorithm and then solve the Tikhonov formulation in eq.(3.2) in linear time as
explained in Section 3.2. Although no closed form expression exists relating the
two, the non-increasing characteristic of D (Xλ) in Lemma 2 can be leveraged
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Algorithm 1 Algorithm to determine λ given T and stopping criteria ρ

function DetermineLambda(T , ρ)
Set: λmin = 0, λmax = chosen high value, λmid = λmin+λmax

2
, stoppingCriteria

= False
do

Set: λ = λmid
Determine: Optimal solution Xλ using the linear time algorithm.
if D (Xλ) < T then

λmax = λmid
else

λmin = λmid
end if
Recompute: λmid = λmin+λmax

2

if (|λmid − λ| ≤ ρ) or (D (Xλ) == T ) then
Set: stoppingCriteria = True

end if
while (stoppingCriteria==False)
return λ

end function

to design a binary search algorithm for λ, as described in Algo. 1. The crux of
our method is to repeatedly bisect the interval for the search space of λ and
then choose the subinterval containing the λ. The technique is very similar to
the bisection method used to �nd the roots of continuous functions [4]. The user
input ρ in Algo. 1 is the stopping criteria on the minimum required change in
λ values between successive iterations for the while loop to be executed. The
number of iterations is inversely proportional to the magnitude of ρ.

Package prediction for new products The de�nition of the net shipping and
damage cost matrices includes the sales velocity term svel(i), as the total ship-
ment and damage costs across all products explicitly depend on the individual
quantities of products sold. Hence the optimization problem in eq.(3.1) deliber-
ately makes use of the sales velocity term folded into the Sij and Dij matrix
entries. However, for new products, the sales velocity is unknown and needs to
be forecasted; which is generally very di�cult and at most times noisy [10]. The
lack of this term seems to preclude the new products from being part of the op-
timization in eq.(3.1). However, the equivalent Tikhonov formulation in eq.(3.2)
comes to our rescue. Closely looking into the product-wise optimization problem
in eq.(3.3), note that svel(i) appears in the same form (linearly) in both the Sij
and Dij quantities and also does not depend on the package type j. Hence it can
be factored out and dropped from the optimization altogether. The equivalent
formulation has revealed a key insight that once λ is appropriately chosen, the
optimal solution is independent of the sales velocity. Hence for all new products
l, we only need to compute quantities {Slj , Dlj}nj=1 without factoring in svel(i)
and choose that package type j∗l with the least value of Slj∗l + λDlj∗l

among the
package types where Mlj = 0.
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4 Experimental results

Our training data for stage 1, where we predict the damage probabilities, con-
sists of shipments during a 3 month period in 2019. We augmented the data
with arti�cially induced inferior and superior packaging types and their corre-
sponding 1 and 0 target values. We opted for the Logistic Regression classi�er to
learn and predict the damage probabilities p(d|i, j), as it enables us to interpret
and explain the predictions. Importantly, its linearity (post the link function)
endows the model with the notion of ordinal relationship between packages by
appending the sample features zi with the package related features pk as elab-
orated in Section 3.1. Though our classi�er is linear in the feature space, we in-
troduced non-linearity through various polynomial transformations of the input
features and having interactions between the product and the package features
to create new (non-linear) features. In more than 100 million augmented train-
ing shipments, only 0.7% shipments belonging to class 1 incurred damages due
to packaging related issues. We counter this huge class imbalance by specifying
class speci�c weight values of 1− τ and τ to classes 1 and 0 respectively to the
cross-entropy loss function where we set τ = 0.007. We assessed the performance
of our model on a test data consisting of 8 million shipments for about 600, 000
products, out of which only 0.6% shipments incurred packaging related damages.
The shipments in the test data occurred in a di�erent time period w.r.t. train-
ing data. After augmenting the test data with arti�cially induced inferior and
superior packaging types, the models performance on the area under the curve
(AUC) metric was 0.902.

4.1 Calibration

Since we are interested in estimating the actual probability of damage rather
than binary classi�cation, the estimated raw damage probabilities p(d|i, j) need
to be calibrated to re�ect the true damage probabilities in the shipment data.
This is more so, as we introduced class speci�c weights during training. We used
Isotonic Regression [2] to learn the calibration function. It yielded the small-
est average log-loss (log-loss = 0.0347) compared to the implicit calibration via
the closed form expression derived in [7] (eq.(28)) for binary Logistic Regres-
sion models (log-loss = 0.0379), and Platt Scaling [15] (log-loss = 0.0349). The
log-loss for each shipment equals:−y log (pcal)− (1− y) log (1− pcal), where y is
the actual label and pcal is the calibrated damage probability. All these calibra-
tion methods signi�cantly reduces the uncalibrated average log loss of 0.4763.
To assess the correctness of post-calibrated values, for each package type we
bucketed its shipments into 20 quantiles based on their calibrated values. For
each quantile, we computed the absolute di�erence between the actual damage
rate and the average of the calibrated values, weighted these absolute di�erences
proportional to the number of shipments in each quantile, and then summed
them. Fig. 2 shows the summed, weighted absolute di�erences for each package
type, for di�erent calibration methods. Observe that Isotonic Regression has the
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lowest values across multiple package types. Such low di�erence values highlight
the estimation accuracy of our post-calibrated damage probability values.

Fig. 2. Weighted absolute di�erence between estimated and true damage rates

4.2 Package type recommendation

For a dataset of about 250, 000 products in more than 10 categories with ac-
tive purchase history in Amazon, we determined their raw damage probability
for all possible package type options and then calibrated them using Isotonic
Regression. Table 1 shows the relative average damage probabilities computed
across the products for each package type. The damage probability for shipment
without packaging (NAP) is set to 1 and the values for other package types are
scaled relatively. The business sensitive nature of these damage probabilities pre-
cludes us from disclosing their actual estimated values. Observe that our model
has indeed learned the implicit ordering between the package types, where the
superior package types like C and V have the lowest values and inferior package
types like PS and PL have the highest. The predicted damage probabilities are
then fed into our optimization algorithm that proposes optimal packaging type
for all the products.

For each <product, package type> tuple, we identi�ed the smallest size of
that package type that could �t the product snugly. This reduces the shipment
volume and also the shipment cost. Recall that by setting entries Mij = 1 in
the mask matrixM , we can prevent the optimization from choosing the package
type j for product i. We set Mij = 1 for the following cases based on business
rules: (i) products which due to its large size and volume cannot be shipped
even in the largest container of certain package types, equivalent to setting the
corresponding Sij = ∞, (ii) liquid products from being shipped in JM, PS, PL
or NAP; restricting fragile products from being sent in T, CP, JM, PS, PL or
NAP; disallowing hazardous products to be shipped in PS, PL or NAP if these
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products are not currently shipped in these package types (the latter condition
is required as these �ags can sometimes be erroneously set), (iii) inferior package
types compared to the current selection i.e., j < jcur for products (with active
purchase history) having high damages in the current package type, (iv) superior
package types j > jcur if Sij > Sijcur for products with very low damages in their
current packaging type, (v) sensitive products belonging to certain categories
from being sent in NAP without any packaging etc.

To corroborate our theoretical results in Lemmas 1 and 2, we ran the Tikhonov
formulation in eq.(3.2) for di�erent values of λ, each in linear-time, and plot the
results in Fig. 3. The values of S(Xλ) and D(Xλ) are scaled relative to the
total shipment and damage costs from using the current package type, respec-
tively. A value greater (lesser) than 1 indicates that these costs will be higher
(lower) compared to the current levels when the products are shipped based
on the model recommended package types. Similarly, E(Xλ) is scaled relative
to the sum of current shipment and damage costs. Observe that the trends of
E(Xλ), D(Xλ) and S(Xλ) as we increase λ are in accordance with the claims
made in Lemmas 1 and 2. To verify the equivalence relations between the Ivanov
and Tikhovov formulations stated in Theorems 3 and 4, we implemented the In-
teger Programming for Ivanov by setting γ = 1.0 using the CVXPY package
[5]. We then determined the value of corresponding λ by executing our binary
search method (Algo. 1) for ρ = 0.001 and λmax = 1000. The algorithm met
the stopping criteria in 19 iterations and returned with λ = 0.13387. The iden-
tical results for (λ = 0.13387, γ = 1.0) in columns VII and VIII of Table 1 is
a testimony to this equivalence relationship. We validated this equivalence for
other values of γ using our binary search algorithm and obtained similar results.
In Fig. 3, note that though the net damage cost D(Xλ) for λ = 0.13387 (and
for γ = 1.0) exactly matches the cost value computed from using the current
package types (ratio = 1 marked in horizontal red dotted line), the shipping
cost S(Xλ) is smaller than the current shipment cost (ratio = 0.843 marked in
horizontal green dotted line). In other words, we are able to reduce the shipping
cost from the current value without further increasing the damage cost. This
again points to the fact that the existing product to package type mappings
are sub-optimal, preventing us from pursuing the path of ordinal regression as
explained in Section 2.2.

For each package type in Table 1, we show the ratio of number of products
mapped to that package type by our algorithm and the number of products
currently assigned to the package type, for di�erent λ values. For instance if 100
products are currently shipped in package type C and our model recommends
using C for 120 products, the ratio will equal 1.2. A number greater (lesser) than
1 denotes higher (lesser) recommendation of that package type compared to the
current usage. Note that as we increase λ giving more importance to damage
cost, the ratio for superior package types such as C and V steadily increases,
and this trend is reversed for inferior packaging options such as PL and NAP.
This shift is as expected since the damage rate and the damage cost decrease at
higher λ values. In Table 2 we show the ratio between the number of products
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recommended to be sent in a particular package type computed at λ = 1.5 and
the number of products currently shipped in these package types for di�erent
product categories. The value 0/0 means no product of that category is currently
shipped in the speci�c package type and our model does not recommend it either.
The true counts are con�dential and cannot be disclosed. Observe that for liquid,
fragile and hazardous products, the ratio is less than 1 for inferior package types
such as JM, PS, PL and NAP, indicating that our method recommends lesser
usage of these options for these kinds of products. Notably, many electronics
products in column VI with high damage probability are moved to the most
superior C package type, further contributing to the decreased damage rate of
24% as observed in Section 4.3, and cost savings of tens of millions of dollars
even in emerging marketplaces.

Table 1. Relative avg. calibrated damage probabilities and change in product map-
pings for package types

I II III IV V VI VII VIII

Package type Relative avg. Ratio Ratio Ratio Ratio Ratio

damage for for for for for

probability λ = 0.5 λ = 1 λ = 1.5 λ = 0.13387 γ = 1

Superior Carton box(C) 0.022 0.915 1.176 1.314 0.499 0.499
package type Variable height(V) 0.027 0.566 0.676 0.740 0.392 0.392

↓

T-folder(T) 0.043 1.227 1.282 1.298 0.898 0.898
Custom pack(CP) 0.112 2.420 2.438 2.418 2.174 2.174
Ji�y mailer(JM) 0.174 0.408 0.503 0.539 0.236 0.236
Small polybag(PS) 0.447 1.586 1.360 1.238 1.955 1.955

Inferior Special polybag(PL) 0.448 1.043 0.906 0.798 0.973 0.973
package type No packaging(NAP) 1.0 1.748 1.144 0.940 3.635 3.635

Fig. 3. Variation of relative cost values with λ
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4.3 Impact analysis from actual shipment data

The numbers quoted below are excerpts from the actual shipment data, where for
130, 000 products contributing to 21% shipments, their current package type was
changed to the model's recommendation. We used the proposed package type
obtained for λ = 1.5 (γ = 0.69), thus giving higher weight to reducing damage
costs. The rationale being that receiving damage products negatively a�ects
the customer trust in e-commerce companies and could a�ect their downstream
purchase behavior. When these shipments were compared against those where
the original package type was used, we observed the following signi�cant positive
impacts: (i) Decrease in damage rate by 24%, (ii) Decrease in transportation cost
per shipment by 5%, (iii) Salability of products undelivered to customer because
of transit damages improved by 3.5%. The only negative impact was that the
material cost of the shipping supplies increased by 2%, as many products were
moved to superior package types to reduce damages.

Table 2. Relative change in product mappings across di�erent categories

I II III IV V VI VII VIII

Package type Liquid Fragile Hazardous Electronics Kitchen Beauty

products products products category category category

Superior Carton box(C) 0.929 1.794 1.975 9.525 1.214 0.927
package type Variable height(V) 0.754 1.047 0.915 1.017 0.859 0.478

↓

T-folder(T) 1.496 1.286 1.281 2.302 1.427 1.221
Custom pack(CP) 0/0 1.383 1.081 1.873 2.855 0.818
Ji�y mailer(JM) 0.519 0.486 0.488 0.392 0.695 0.928
Small polybag(PS) 0.000 0.821 0.843 1.203 1.263 1.720

Inferior Special polybag(PL) 0/0 0.541 0.500 0.863 1.124 4.000
package type No packaging(NAP) 0/0 0.598 0.806 0.737 0.701 2.000

5 Conclusion and future work

We presented a two-stage approach to recommend optimal packaging type for
products, where we �rst estimated the calibrated damage probabilities for every
<product, package type> tuple and then fed them into our linear-time optimiza-
tion algorithm to select the best type. The binary search algorithm e�ciently
computes the trade-o� parameter λ given the value γ in the Ivanov formulation.

In many scenarios, the extent of damages depend on the distance shipped, the
air/ground mode of transportation used, the quality of roads along the route, the
handling by the courier partners, the location of the warehouses or even the time
of year as during monsoon seasons, more protection against water or moisture
may be needed for some products. In addition, protective packaging could be
recommended for speci�c customers who are highly valued or who had negative
delivery experiences in the past. Going forward, we would like to lay emphasis on
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predicting the optimal packaging type based not only on the product, but using
several aforementioned additional factors relating to a speci�c shipment of an
item to a customer. Additionally, we would like to estimate the causal impact [16]
of receiving damage products on customer's spend patterns and factor it into
our optimization algorithm.
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