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Abstract

Data poisoning has become a major security threat for

deep neural networks, where the attacker injects mali-

ciously crafted poisoning samples into the training set to

mislead the model prediction. Numerous poisoning attack

strategies have been proposed recently, which are mostly

able to alter the model behavior or embed backdoors with

a small number of poisoning samples. Current defenses for

these attacks either do not generalize to diverse threat mod-

els or suffer from a huge computational cost. In this work,

we propose ReScaler, a parameter-efficient defense that

adapts the residual blocks at the test time. Specifically,

ReScaler learns a scalar for each residual connection

to downweight potentially redundant non-linear transfor-

mations, in favor of the features propagated through the

skip connections. Our evaluation on several state-of-the-

art poisoning attacks and different residual networks shows

that ReScaler effectively defends against different attack

algorithms, without introducing significant computational

overhead. Our test-time adaptation scheme introduces a

novel way of approaching defenses for poisoning and back-

door attacks, and also brings up broader questions about

the connection between the architectural design and the vul-

nerability against attacks.
1

1. Introduction

In data poisoning, an attacker can inject poisoning sam-
ples in such a way as to degrade model performance or em-
bed a backdoor [1, 9, 22]. Typically, these training-time at-
tacks can be successfully launched with a small number of
poisoning samples. Furthermore, recent works on clean-
label data poisoning demonstrate that the poisoning sam-
ples can be hardly recognized even with manual investiga-

1We will release the code upon publication.

tion [20]. As a result, these vulnerabilities can be espe-
cially severe for models deployed into safety-critical envi-
ronments, such as auto-driving or facial recognition.

Existing defenses for data poisoning [4, 6, 8, 17, 23, 26,
29] largely suffer from limited generalization to different
attack algorithms, large computational costs, or consider-
able drop in the prediction performance [15]. Facing these
limitations, we aim to propose an effective defense for data
poisoning and backdoor attacks that can effectively balance
these concerns of generalization, model performance, and
computational expenses.

In this work, we propose ReScaler, a test-time adap-
tation of the residual block to defend against poisoning and
backdoor attacks. Our defense is motivated by prior stud-
ies of residual networks, which discuss how different resid-
ual blocks in the model architecture contribute to its predic-
tions. Specifically, Veit et al. [25] and Greff et. al. [10]
demonstrate that residual networks can be interpreted as
stacked ensembles consisting of multiple residual pathways,
and as a result are surprisingly resilient to subtle modifica-
tions at the test time. Zhang et al. [31] further show the
existence of critical layers in residual networks, and demon-
strate how test-time changes like re-initialization or re-
ordering of residual blocks can moderately defend against
some adversarial attacks.

Based on this work by Veit et al. and Zhang et al.,
we hypothesize that in a poisoned model, there are par-
ticular pathways that are strongly responsible for the ulti-
mate prediction of a target image. In order to counteract
this, ReScaler learns to downweight the features of cer-
tain residual blocks during test-time. Specifically, we in-
troduce trainable scalar parameters to control the weight of
features through each convolution layer in a residual block,
and count more on features propagated through the skip
connection whenever appropriate. Given the small number
of additional parameters introduced in the ReScaler, we
can efficiently update these scalar parameters at test time,



without modifying other model parameters. Therefore, our
defense can be directly applied to any pre-trained residual
network to reverse the effect of attacks.

We evaluate ReScaler on a number of poisoning
and backdoor attacks, especially the clean-label attacks on
which most prior defenses fail [17]. ReScaler effectively
defends against the attacks at the inference time, while
maintaining a high accuracy on clean samples. Moreover,
ReScaler is computationally efficient, enables us to iden-
tify the critical features for learning poisoning samples, and
provides a different view to understand the transferability of
different attack schemes.

2. Poisoning and Backdoor Attacks

In poisoning and backdoor attacks [1, 9, 14, 20, 22, 24],
the attacker injects a small fraction of poisoning samples
into the (clean) training data and thus induces some ab-
normal model behavior, revealing the model vulnerability
in the training phase. Data poisoning aims to induce one
model to give wrong predictions on some specific target
images (without any trigger) during test time. When em-
bedding with a backdoor attack, attackers further manipu-
late the model during test-time by applying specific triggers
onto input samples.

Notations. For data poisoning, the specific target images
during inference are denoted as xt, whose ground truth la-
bels are dubbed as the target class yt and the (poisoning)
predictive labels are dubbed as poison/adversarial class

yadv . For backdoor attacks, the target images xt added with
the specific triggers � will be misled at the test time. We
briefly introduce a series of poisoning and backdoor attacks
adopted in this paper.

Feature Collision (FC). Shafahi et al. [22] optimize the
poisoning samples by restricting their feature representa-
tions to lie close to that of target image while maintaining
the visual similarity with correspondingly base images.

Convex/Bullseye Polytope (CP/BP). Zhu et al. [33] (CP)
propose to surround target images in feature space. They
express the feature of target image as a convex combina-
tion of features extracted from poisoning samples. Then
Aghakhani et al. [1] (BP) step further by forcing the feature
of target image to locate at the mean/center of such convex
poisoning features.

Clean-label Backdoors. Turner et al. [24] generate poison-
ing samples by only adding the adversarial perturbations as
triggers, dubbed as Clean Label Backdoor Attack (CLBD).
Inspired by Feature Collision (FC), Saha et al. [20] propose
the Hidden Trigger Backdoor Attack (HTBD) by optimiz-
ing and hiding the patch-wise triggers in feature-level to
make them invisible.

3. ReScaler: Test-time Adaptation of Resid-

ual Blocks

In this section, we present ReScaler as a method to
defend against poisoning and backdoor attacks and describe
the test-time adaptation algorithm.

3.1. ReScaler Formulation

Deep neural networks have shown a strong learning ca-
pability with a huge number of parameters. In order to al-
leviate the vanishing gradients with the increase of the net-
work depth, the residual module was proposed and has been
widely applied, which uses an identity shortcut to improve
the information flow during forward and backward propaga-
tion [12]. Since then, the skip-connection structure has be-
come an important component for state-of-the-art models,
including ResNet [12], DenseNet [13] and ResNeXt [28].
Specifically, given an input xi for the i-th residual block fi,
the output of the block xi+1 is

xi+1 = xi + fi(xi). (1)

In ReScaler, for each convolution operation fij in the
i-th block, we learn a scalar parameter wij to downweight
its output as follows:

xi+1 = xi +
X

j

(1� wij) · fij(xi), (2)

where the learnable scalar parameters wij 2 [0, 1]. When
wij = 0, the output of the residual block remains the same.
When wij = 1, the output of the convolution operations are
ignored, equivalently becoming the identity function. Mo-
tivated by prior work that discusses the existence of critical
residual blocks that cannot be altered during test time [31],
we do not learn scalar parameters for the first block of each
residual layer, which are found to be critical to ensure the
high prediction performance.

When we apply ReScaler to the ResNet-34 architec-
ture, there are 24 learnable scalar parameters wij in total.
The detailed structure of ReScaler applied onto residual
blocks for ResNet-34 is shown in Figure 1.

Figure 1. An example of ReScaler design. Left: the residual
block in the first layer of ResNet-34. Right: ReScaler applied
onto ResNet-34.



3.2. Test-time Adaptation

The lightweight parameterization of ReScaler allows
us to efficiently learn the scalar parameters at test time. Be-
fore the test-time adaptation, we first initialize all parame-
ters ReScalerwij to be 0, thus each ReScaler is equiv-
alent to its corresponding original residual block. Given the
full parameters of a potentially poisoned model F✓, an input
image x with its predicted output score F✓(x) and predicted
label yp(x), we employ a 1-gradient step update as follows:

wij = wij + ↵ ⇤ rwijL✓(F✓(x), yp(x)), (3)

where ↵ is the step size, and L✓(F✓(x), yp(x)) is the cross
entropy loss between predicted output score F✓(x) and pre-
dicted label yp(x).

We apply this gradient update for each input image x at
test time. To prevent the benign images from being wrongly
classified, we introduce an upper bound ✏ on each wij , so
that wij 2 [0, ✏].

4. Experiments

In this section, we present the evaluation of ReScaler
on various poisoning and backdoor attacks. We first de-
scribe our experimental setup, then we discuss the results.

4.1. Experimental Setup

Datasets. We use the CIFAR-10 dataset [16] for evaluation,
where many poisoning and backdoor attacks have been suc-
cessfully launched. For all attacks, poisoning samples are
sourced from the training set, and target images are from
the validation set. When calculating the validation accuracy
of poisoned models, target images are excluded.
Model Architectures. We apply ReScaler onto a num-
ber of residual networks, i.e., ResNet-34, ResNet-50, and
ResNeXt-29.
Attacks. We evaluate ReScaler against several poison-
ing and backdoor attacks, specifically FC, CP, and BP,
and clean-label backdoor attacks, in particular CLBD and
HTBD. We use the same set of attack goals for all clean-
label poisoning attacks as evaluated in [21], where each
attack goal consists of a pair of randomly sampled target
image, target class and poison class. We generate a set of
poisoning samples using the attack algorithm under consid-
eration for each attack goal, and we generate 100 poisoning
sample sets for each clean-label poisoning attack. We con-
sider an attack to be successful if the model predicts the
poison class for the target image. For evaluation of our de-
fense, we only include the successfully poisoned models,
thereby the initial attack success rate (ASR) across all mod-
els is 100% for each attack.
Metrics. We compute the following metrics to evaluate the
effectiveness of the defense:

• Defended attack success rate: The percentage of success-
ful attacks after applying the defense. As stated above,
the initial attack success rates across all models are 100%
for each attack. The lower the defended attack success
rate, the better the defense.

• Put back rate: The percentage of defended models with
their predicted labels of the target images returning to the
intended ground-truth labels. The higher the put back
rate, the better the defense.

• Poison confidence: the average prediction confidence of
the target image in the poison class. The lower the poison
confidence, the better the defense.

• Target confidence: the average confidence of the target
image in its ground truth class. The higher the target con-
fidence, the better the defense.
Besides the above metrics, which measure the trade-off

between the defense effectiveness and the model perfor-
mance on clean data, we also measure the average valida-
tion accuracy of successfully poisoned models before and
after applying the defense.

4.2. Experimental Results

We evaluate ReScaler against various poisoning and
backdoor attacks in Table 1. Overall, for all attack strate-
gies, ReScaler significantly reduces the initial attack suc-
cess rate, and sends the vast majority of target images back
to their ground truth classes. Meanwhile, the defense does
not significantly impact the validation accuracy.

Specifically speaking, data poisoning methods (e.g., FC
and BP attacks) show a strong attack capacity with a rel-
atively high attack success rate without the defense. For
example, the number of successfully attacked models is
93 among 100 models for ResNet-34 using the FC attack.
When applied with ReScaler, the (average) attack suc-
cess rate decreases significantly to 18.27% (from 100%), as
defined in Section 4.1. ReScaler also achieves an overall
high put-back rate of above 96%. With such strong defense
capacity, we also show that ReScaler does not cause a
large decrease on the clean validation accuracy. The re-
sults demonstrate that downweighting residual blocks us-
ing ReScaler does not hurt the model capacity to learn
a mapping of clean images with their clean labels, but still
effectively prevents the model from learning the poisoning
mapping. The results further confirm our exploration on
residual modules of poisoning and backdoor attacks.

Moreover, for clean-label backdoor attack methods, i.e.,
CLBD and HTBD, they already have a lower attack suc-
cess rate without any defense. For example, for ResNet-34
with HTBD attack, the attack success rate without defense
is only 10%, i.e., only 10 models are successfully attacked
among 100 models trained with poisoning samples. Then
with ReScaler, all of them are defended successfully, i.e.,
the defended attack success rate becomes 0%, while the de-



Attack Model SA Def. ASR Put-back Rate Target Conf Poison Conf Undef. Val Acc Def. Val Acc

FC
ResNet-34 93 18.27 ± 4.00 96.68 ± 1.30 73.90 ± 3.42 24.42 ± 3.23 93.27 ± 0.08 89.55 ± 0.26
ResNet-50 68 14.71 ± 4.29 98.27 ± 1.71 74.26 ± 3.29 22.94 ± 2.72 93.09 ± 0.06 90.26 ± 0.13

ResNeXt-29 82 17.07 ± 4.15 100.0 ± 0.00 70.63 ± 2.89 27.24 ± 2.46 91.19 ± 0.12 86.08 ± 0.15

BP ResNet-34 78 29.48 ± 5.16 96.36 ± 2.52 63.67 ± 4.28 33.76 ± 4.15 92.7 ± 0.11 88.12 ± 0.30
ResNet-50 31 29.03 ± 8.15 95.45 ± 4.44 60.34 ± 6.08 33.49 ± 5.27 93.10 ± 0.04 90.01 ± 0.13

ResNeXt-29 41 43.90 ± 7.75 100.0 ± 0.00 47.48 ± 5.24 51.72 ± 5.20 91.21 ± 0.04 85.77 ± 0.11

CP ResNet-34 13 15.38 ± 10.0 81.81 ± 11.6 65.98 ± 10.61 12.22 ± 6.71 93.35 ± 0.05 90.39 ± 1.46

CLBD
ResNet-34 4 25.00±21.65 66.67±27.22 51.36±21.99 28.39±14.97 92.80±0.12 86.80±0.27
ResNet-50 2 0.00±0.00 100.00±0.00 58.26±9.12 12.13±8.23 92.84±0.06 88.85±0.21

ResNeXt-29 6 0.00±0.00 100.00±0.00 84.93±9.88 13.07±8.03 89.15±0.16 83.73±0.13

HTBD
ResNet-34 10 0.00±0.00 66.67±19.25 43.31±13.48 23.39±8.61 93.50±0.07 89.47±0.23
ResNet-50 2 0.00±0.00 100.00±0.00 41.31±11.31 10.23±10.49 92.51±0.09 87.74±0.27

ResNeXt-29 11 0.00±0.00 100.00±0.00 82.27±10.99 17.70±10.99 91.42±0.04 83.23±0.21

Table 1. Results of ReScaler applied to the Poison Frog (FC), BP, CP, CLBD and HTBD attacks. ‘Attack’ and ‘Model’ indicate the
attack methods and the model architectures respectively. ‘SA’ indicates the number of successful attacks among 100 poisoned models.
‘Def. ASR’, ‘Put-back Rate’, ‘Target Conf’ and ‘Poison Conf’ indicate the defended attack success rate, put back rate, target confidence
and poison confidence. ‘Undef. Val Acc’ and ‘Def. Val Acc’ indicate the validation accuracies before or after ReScaler defense.

fended validation accuracies do not decrease much. These
results further demonstrate that our proposed ReScaler
can easily generalize to different attack strategies, includ-
ing both poisoning and backdoor attacks.

Sensitivity of Epsilon (✏) Values. In Figure 2, we explore
how ✏ affects the trade-off between the attack success rate
and validation error for defended models (against both the
FC and BP attacks). Validation error is measured using the
benign test set. We measure the defense effectiveness by
analyzing the trade-off between attack success rate and val-
idation accuracy, which is controlled by the ✏ parameter. In
general, by increasing epsilon, we can get attack success
rates on the order of 15-30% by incurring a 3% increase in
clean validation error. Further, we observe that this trade-
off seems to be more favorable for deeper ResNets such as
ResNet-50 (when compared to ResNet-34 and ResNeXt-29)
on attacks such as FC and BP. This is evidenced by our ex-
periments in Table 1 which show ResNet-50 achieving the
lowest ASR and highest validation accuracy combination in
both the FC and BP cases. As a result, we believe a practi-
tioner can adjust ✏ and the choice of architecture to achieve
a desired level of validation accuracy with our defense.

Comparison with Other Defenses. We evaluated STRIP
[7], Activation Clustering (AC) [4], and Spectral Signatures
(SS) [23], which are SOTA defenses. For STRIP, it fails to
detect any target images during test-time for FC, CP and BP.
It is because STRIP was designed for backdoor attacks with
a trigger, thus it does not support the clean-label poison-
ing attacks in our evaluation. For AC and SS, they require
access to the full training set in order to flag potential poi-
soning samples, remove them and re-train the model on the

remaining samples. On the other hand, ReScaler does
not rely on the knowledge of the training set.

Figure 2. Effect of varying epsilon on attack success rate and
validation error for FC and BP attacks. We can observe a trade-
off in the figure: when ✏ increases, the ASR will decrease but the
validation error will increase. More details are in the appendix.

5. Conclusion

Poisoning and backdoor attacks pose a great threat along
with the enormous data requirement for training DNN mod-
els. Meanwhile, larger DNNs tend to require expensive
training costs and adopt some special modules to improve
gradient propagation, amongst which residual modules are
the most common. In this paper, we propose ReScaler as
a defense strategy by adjusting the gradient flow in residual
modules via a simple test-time adaptation. Although it in-
creases the inference time, there is no extra training costs,
suggesting that ReScaler is still much faster than those
training-based defense methods.
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