Order of Convergence

The 'Big-O' notation is used to give an idea of the rate of convergence, but is often insufficient to convey how fast fast convergence can be. For quickly converging sequences, the *order of convergence* does a much better job. $\{p_n\} \to p$ of order α if there is a $\lambda > 0$ such that

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda.$$

The number λ is called the asymptotic error constant.

In the context of numerical methods, we usually think of $e_n \equiv p_n - p$ as an error $(\{e_n\} \to 0)$, and we might write the definition above as

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}} = \lambda,$$

and for large enough n we should expect

$$|e_{n+1}| \approx \lambda |e_n|^{\alpha}$$
.

It should be clear that if $p_n \to p$, then $e_n \to 0$, and thus $\alpha \ge 1$. The case $\alpha = 1$, $\lambda < 1$ corresponds to a exponential *rate* of convergence given by $\beta_n = \lambda^n = 1/(1/\lambda)^n$. This is a convergence rate that we thought was fast $(|p_n - p| = O(\lambda^n))$, but we call it a *linear order* of convergence).

If $\alpha > 1$ or $\alpha = 1$ with $\lambda = 0$, the order of convergence is called *superlinear*. Superlinear convergence is exhibited by some very important methods, and we study it here a bit. The general definition of superlinear convergence of $\{p_n\} \to p$ is

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = 0.$$

This definition includes all cases where $\alpha > 1$ and also the case $\alpha = 1, \lambda = 0$.

If $\alpha=2$ and $\lambda=1$, then for large $n, |e_{n+1}|\approx |e_n|^2$. For example, if $e_3=0.01$, then $e_4\approx 0.0001, \, e_5\approx 10^{-8}$, and $e_6\approx 10^{-16}$. This is called a *quadratic* ($\alpha=2$) order of convergence, and in this case the number of correct digits approximately doubles at each iteration. What about the number of correct digits in a cubically ($\alpha=3$) convergent sequence?

Now superlinear convergence guarantees

$$\lim_{n \to \infty} \frac{|p_{n+1} - p_n|}{|p_n - p|} = \lim_{n \to \infty} \left| \frac{p_{n+1} - p + p - p_n}{p_n - p} \right| = \lim_{n \to \infty} \left| \frac{p_{n+1} - p}{p_n - p} + \frac{p - p_n}{p_n - p} \right| = 1.$$

Which says that for large enough n, we get a *computable* error estimate

$$|e_n| = |p_n - p| \approx |p_{n+1} - p_n|$$