
With a Little Help from My Friends

Arnab Nandi #, Stelios Paparizos, John C. Shafer, Rakesh Agrawal
#The Ohio State University, 2015 Neil Avenue, Columbus, OH USA (work done while at Microsoft)

Search Labs, Microsoft Research, 1065 La Avenida Street, Mountain View, CA USA

arnab@cse.osu.edu, {steliosp, jshafer, rakesha}@microsoft.com

Abstract—A typical person has numerous online friends that,
according to studies, the person often consults for opinions and
advice. However, public broadcasting a question to all friends
risks social capital when repeated too often, is not tolerant to topic
sensitivity, and can result in no response, as the message is lost
in a myriad of status updates. Direct messaging is more personal
and avoids these pitfalls, but requires manual selection of friends
to contact, which can be time consuming and challenging. A
user may have difficulty guessing which of their numerous online
friends can provide a high quality and timely response.

We demonstrate a working system that addresses these issues
by returning an ordered subset of friends predicting (a) near-term
availability, (b) willingness to respond and (c) topical knowledge,
given a query. The combination of these three aspects are unique
to our solution, and all are critical to the problem of obtaining
timely and relevant responses. Our system acts as a decision aid
– we give insight into why each friend was recommended and let
the user decide whom to contact.

I. INTRODUCTION AND MOTIVATION

People often turn to their social networks, such as Facebook,

Twitter, Skype, to fulfill their information needs [1]. The

questions asked vary from subjective recommendations and

opinions to objective factual information requests [2].

Although a search engine can be used to retrieve informa-

tion, people often prefer the answers of their friends. Besides

being personable, subjective and trusted, an answer from a

friend can act as a time-saving shortcut to a lengthy search

engine task. For example, suppose a person notices a wasp’s

nest in her house and would like to quickly eliminate it without

using harsh chemicals. This problem is not serious enough

to call a professional, and a search engine will return a ton

of conflicting information, whereas a home remedy solution

from a friend would suffice. In a similar vein, suppose that a

person bought a new fitness device that measures how many

steps they take during the day. Going through the manual and

specifications is a good way to figure out how the device

works, and a search engine can give useful information along

the same lines. But when looking for creative ways to use

this device, one could discover pleasantly surprising ideas by

discussing with friends. We cover this scenario in more detail

as part of our demonstration description in Section II. There

are many similar tasks where an opinion or subjective advice

would be preferred over impersonal information that a search

engine returns.

Smartphones and tablets have become ubiquitous as they

are easy to use and easy to carry around almost anywhere.

These devices all have a GPS sensor and internet connection,

which means they also provide access to a user’s online social

network. As a result, there are new mobile scenarios that

become possible. For example, a person is visiting Brisbane

for a conference and decides to stroll around the town. As

dinner time approaches, he decides to find a good place to

eat that also offers great dessert choices. Given the mobile

device, one could look for restaurants in a search engine or

visit specialized tools like Yelp. However, not all tasks fit

the specialized tools. Yelp does not rate the dessert part of

a restaurant separately, and even if they did, the user would

still have to read the reviews and calibrate for the ones that

have a similar taste in desserts. On the flip side, a quick call

or message to the right friend could provide an efficient and

trusted solution to this task.

When reaching out to friends in a social network, people

often publicly post questions to the entire network At first

this seems to allow a user to reach a broader audience, thus

increasing the chances of getting a good and timely response.

However, only a low percentage of online questions receive a

response [1]. Such an undirected request is easily lost amongst

many other postings, or can lead to content-free responses

by friends who are eager or feel compelled to respond, yet

have little time to compose more than a cursory message.

Furthermore, public broadcasting runs the danger of irritating

friends when done too often on off-topic questions; and it is

not suitable for some people if the topic is sensitive (e.g.,

advice on a medical condition).

Direct messaging avoids those pitfalls, but presents its own

set of problems. The average user has hundreds of online

friends, so it is difficult and time-consuming to figure out who

would be best to engage for relevant and timely responses.

Users may not have good insight into who is knowledgeable

about a topic, especially if they have never discussed this

particular topic in the past. Furthermore, even if someone is

an expert, there is always the problem of catching them when

they are available to respond or eager to interact.

In this paper, we present a system that aid its users in

finding the ranked subset of friends whom they can interact

with on a given topic. We mine existing social network data

focusing on a novel set of criteria: availability, willingness

and knowledge. Our system captures (a) how likely it is that

a friend is online in the near future based on past activity

patterns, (b) the likelihood that a friend will respond based

on the strength and nature of the interpersonal connection

and past interaction behavior and (c) a friend’s knowledge

and expertise on a topic and their potential for providing an

informed response based on the past message content. We do

not initiate any conversations on the user’s behalf, but provide

insight and guidance to allow for informed choices on whom

to engage.

While finding friends for a discussion may not have been

studied in depth yet, expert finding [3], [4], [5], for question

answering in the enterprise space, has a lot of similarities to

this problem setting. Such approaches establish expertise by

utilizing implicit information based on emails sent to mailing

lists in conjunction with explicit information provided by the

users in a company directory. Enterprise solutions for the most

part use calendar or internal messaging tools to establish who

is currently online to respond and are not usually limited to

friends, but rather includes all the employees. In that sense,

the knowledge is established in a similar way as our work, but

with different data sources. Where we differentiate is in trying

to predict a friend’s availability and willingness to respond in

a time-bounded ceiling.

The now defunct Aardvark [6] was an approach to this

problem for the web. The system would consider both the

social graph and message content, initiating 1:1 conversations

on behalf of the user with prospective responders. They placed

a lot of emphasis on finding who is the best person to answer

by considering textual topics and workload of contributors,

aspects similar to our work. However, they relied on users

signing up for their service to be available as responders, since

their system reached out directly to responders. Instead, we

take advantage of existing networks and aid the user decision

in reaching out to their friends on top of what infrastructure

already exists, without requiring new memberships. Further-

more, the concept of mobile time-bound interactions and using

location were not studied in depth by the authors. So the notion

of predicting availability and willingness in the mobile-social

era were not applicable in that system.

Last but not least, we are sensitive to the fact that mining

friend information could potentially raise privacy concerns. It

is a fundamental principle in our system to respect the privacy

rules of the underlying social network and not allow access

to restricted information. Our goal is to provide value by only

aggregating friends’ data already visible to the user.

In the rest of the paper, we present in Section II, a

demonstration scenario that runs on our fully-implemented

system. We discuss our system design choices, data model

and algorithmic sketches in Section III.

II. THE DEMONSTRATION SCENARIO

As a motivating scenario, consider a user, Jess, who has

just come across a good deal on a FitBit, a wearable sensor

device for measuring exercise activity. She is tempted to buy

one, but knowing very little about it, she would like to see

if her friends can offer her any perspective. While still in the

store, she pulls out her phone and enters the query “fitbit” into

our app. She is presented with a ranked list of friends that the

system thinks would be most helpful (Figure 1a).

The initial ranking is based on a combination of the 3 key

factors: availability, willingness and knowledge. We visualize

the individual scores for each returned friend via colored

bars, where longer bars indicate a higher score (e.g., more

likely to be available). This list can also be resorted along the

component scores by changing the sort selector.

Jess selects the suggested friend Maarten, who is ranked

fairly high. This yields further detail as to how the system

scored this friend against the three key criteria. The goal is to

explain to users why a person was suggested, so that they can

make an informed decision about whom to contact.

The first screen (Figure 1b) provides detail about the friend’s

expected availability based on past social-network activity. A

series of three bar graphs illustrates the friend’s predicted

activity based on day of the week, hour of the day, and current

location. For the first two graphs, the bars corresponding to the

current day and time are highlighted in red. For the third graph,

the highlighted bar is the one corresponding to the friend’s

predicted location. Taken together, this friend is likely to be

available if Jess wishes to contact him, although hourly activity

suggest he will be off-line a bit later on.

Users can then pan over to see how the system estimates

the friend’s Willingness (Figure 1c). As the system points out,

Jess knows Maarten, as they have had direct interactions in the

past. If he had not been an immediate friend, the system can

show through which other friends they are connected. From

the point of view of both the user and the suggested friend, we

also show the fraction of all interactions that were directed at

the other person. The stronger the connection and the greater

the number of interactions, the greater the probability that a

friend will be willing to respond. Physical distance also plays

into responsiveness, and we show this both numerically, as

well as plotting both the user and the suggested friend on

a map. While perhaps not as relevant to this scenario, close

proximity may even encourage face-to-face interactions (e.g.,

for a question on finding a good cafe)

On the third screen (Figure 1d), we present the user with

evidence as to how knowledgeable the suggested friend is

about the topic at hand. In addition to reporting the overall

knowledge score, we show recent posts from the suggested

friend that are relevant to the query. This not only helps to

explain why the suggested friend was deemed knowledgable,

but may also give deeper insight into what sort of knowledge

and perspective they may have. In this case, the friend not

only has first-hand experience with the FitBit, but has recently

tweeted tips on how to best make use of the device.

The last screen that the user sees (not shown) is a contact

page that includes any available profile information for the

suggested friend. From here, the user can initiate contact with

the friend, whether through phone, email or text. We provide

the user with multiple means of contact, as it may depend

not only on the urgency of the question, but also the friend’s

predicted availability. For example, if the friend is currently

not active, but likely to be online later, the user may decide to

send an email rather than text or call. For our user Jess, she

may do better to call Maarten immediately, as he is expected

to go off-line in a few hours and may not see an email before

then. We do not automatically contact friends on a user’s

behalf, we suggests friends and provide supporting detail so

(a) Search Results (b) Availability (c) Willingness (d) Knowledge

Fig. 1: Application Screen Captures

users can decide for themselves whom best to contact.

III. OUR SYSTEM DESIGN CHOICES

For our demonstration, we obtained three months of public

social data from the Twitter firehose. This data was filtered

based on the availability of location information, from either

GPS-stamped tweets or a user’s self-identified location, and

further restricted to users having interactions with at least

10 and at most 1000 other Twitter users. The resulting data

set consists of 4.2 million users with 81 million interaction

edges. An interaction is either a reply, retweet or a message

containing a user handle and it is directional. Furthermore, we

only consider users to be friends when they have exchanged

at least one message with each other in both directions.

We built a scalable offline pipeline (shown in Figure 2) that

mines the social data and computes the scoring probabilities

and indexes. We created a Windows Phone 7 front-end app

(screenshots shown in Figure 1) that we use to demonstrate

our system and illustrate how users find friends for a given

information need.

Fig. 2: System Architecture

A. Computing Utility Scores

The main insight in finding friends is encapsulated in our

work on availability, willingness and knowledge. For this

demonstration paper, we make the simplifying assumption of

independence to focus on communicating our key features.

More complex models can be applicable but their advantages

and disadvantages is outside the scope of this paper.

Definition 1 (Availability): Availability A(φ|t) is the likeli-

hood that a friend φ will be active in the social network and

able to interact in the near future, given current time t.

In most social networks, availability is represented as a

status, where a friend is either available to interact (online) or

can only be reached via indirect messaging (offline). However,

such an approach has its set of issues. In some cases, a friend

logs onto a website like Twitter periodically to check their

messages, making it challenging to catch them because the

intersection of common time could be minimal. In other cases,

a friend is logged-in for a long period of time on the system,

like Skype, and is shown as available. But, the online status

in this case is not necessarily representative of the real life

situation, as they might be away from the computer, occupied

with other tasks or on a mobile device that constantly appears

online. Therefore, it is important to predict when a friend will

actually be available and have time to interact.

The availability A(φ|t) computation for each friend φ

relies on mining past activity patterns broken into three sub-

computations (a) hour-of-day (hod), (b) day-of-week (dow)

and (c) friend location (loc). Computation for (a) and (b) are

intuitively similar. For each friend φ, compute the distribution

of the number of messages m on each hour or day bucket.

The current hour and day indicates which bucket to select

in the histogram. To figure out the location probability, we

first compute for each friend φ, the distribution of messages

sent from each location ever. We do not care to find the

actual location, but rather the distribution. Then we use the

friend’s most likely location on that hour / day of the week

to find the corresponding bucket in the location histogram.

So, assuming independence for simplicity, availability is:

A(φ|t) = hod(φ|t) ∗ dow(φ|t) ∗ loc(φ|t)

Availability can potentially be zero which means the friend

should not be contacted at all. However, typically it has a

continuity from more to less available.

Definition 2 (Willingness): Willingness W (φ|u, q, t, l) is

the likelihood a friend φ of a user u will respond to a message

request q, given the user’s current time t and location l.

Even if a friend knows about a topic or is available, it

does not guarantee that they will be eager to discuss this

topic with the user. Sometimes they are not that interested

in a conversation or they have been ‘annoyed’ by multiple

past requests and would rather avoid the user. Furthermore,

perhaps they are not that close friends with the user or have

different views and avoid interaction. Social affinity can be

thought of as a good approximation to capture such eagerness.

Furthermore, we have found from analyzing past interactions

that physical location proximity also increases the likelihood

users will interact with each other. We attribute this to physical

proximity being another form of social affinity, as users who

live close together interact more frequently in the real world

as well as online.

The willingness W (φ|u, q, t, l) computation relies on so-

cial affinity as well as geospatial proximity. Our experi-

mentation has shown that the degree of reciprocal com-

munication amongst friends when considered as a fraction

of messages sent and received is a good indicator for the

likelihood people will interact on a topic. Social affinity

is then measured as soc(φ|u) =
|mu⇒φ|
|mu|

∗
|mφ⇒u|
|mφ|

. This

is extendable to cover query topics qt by only considering

the messages exchanged on the same topic as the query

q and thus computing soc(φ|u, q). Furthermore, we found

experimentally that physical proximity tends to act as a proxy

for face-to-face interactions, further strengthening the social

affinity and also providing a form of homophily. We compute

the distribution of the distances amongst all messages sent

and received and use this to estimate the friend distance.

So loc(φ|u, t, l) = |l−loc(hod(t),dow(t))|
|mu|

. Again, the overall

willingness computation assumes independence for simplicity:

W (φ|u, q, t, l) = soc(φ|u, q) ∗ loc(φ|u, t, l)

Overall, willingness is generally above zero, as, in a social

environment, friends always find some opportunity to interact.

Definition 3 (Knowledge): Topical expertise or knowledge

K(φ|q) is the likelihood that a friend φ will produce a high

quality response, given a message request q.

In a social environment, it is very common that eager friends

respond with an ‘opinion’. However, the value of such a

response can only be useful if the friend knows what they are

talking about. It is also very rare for a user to know all aspects

of a friend’s life. Therefore it is essential to compute this for

all friends. We are not looking for experts or authorities on

a given topic – who knows more is a very subjective notion.

We focus on friends that are familiar with a topic so the user

can interact with them.

To capture knowledge, we rely mostly on message content,

as we found the bio and interest information in the user profile

to be incomplete. We concatenate all message and profile

content into one document for each user and index them in

an inverted text index. We use Okapi BM25 [7] to score them

for each query. Scores are then normalized to probabilities

and are comparable across friends for the same query. Text

ranking and scoring is well-understood in the IR community,

and a detailed discussion is outside the scope of this paper.

Alternatively, knowledge can also be mapped to a set of

topics qt ∈ T . This can be specified in a profile or learned.

Knowledge then becomes: K(φ|q) =
∑

qt∈T p(φ|qt)p(qt|q),
given a classifier mapping a query q to all topics qt. We chose

to go with the simpler and more flexible definition that allows

for alternative implementations to compute topical expertise.

Query-topic knowledge can be zero, effectively filtering out

friends unable to contribute something useful.

Definition 4 (Friend Utility): Given a user u, current time

t, location l and query message q, the utility of a friend φ is:

Uφ(u, q, t, l) = f(A(φ|t),W (φ|u, q, t, l),K(φ|q))
Friend utility is a combination of the availability, willing-

ness and knowledge main features described above. Continu-

ing with the simplified independence assumption we compute:

Uφ(u, q, t, l) = A(φ|t) ∗W (φ|u, q, t, l) ∗K(φ|q)
Problem 1 (Friend Selection): Given a user u, time t, loca-

tion l, query q and parameter k > 0, return an ordering Lk(Φ)
of friends φi ∈ Φ, such that

∑
i Uφi(u, q, t, l) is maximized.

Our goal is to find a subset of friends filtered and ordered

by this utility function, such that we maximize the likelihood

the user will receive a timely and good quality response. We

note that the output can be the empty set, as no friend may

be available or have the expertise to respond. Furthermore,

although we mention friends, it is possible to extend the same

formulation to friends-of-friends or n-degree of separation in

a social network. This extension can be used where data is

available and visible to the user, while also respecting the

privacy policies of the social network and its members. Finally,

although this is an optimization problem, an at-most-k solution

can be used instead to approximate the same behavior while

still providing a good user experience.

IV. CONCLUSION AND FUTURE WORK

We presented a system that returns a filtered and ordered

subset of a user’s friends, by predicting availability, willing-

ness and knowledge as proxies for estimating who is a good

candidate to provide a judicious and time bound response to a

query. The importance of these three dimensions is an insight

that is unique to our system, as within a social context, expert-

finding alone is insufficient. To truly evaluate the utility of

such a system, an extended user study (or feedback from the

application deployment) is needed to measure the satisfaction

of the system in real-world scenarios. This is outside the scope

of this demonstration paper; we leave it as future work, along

with evaluating the various methods used by the individual

components in our system.

REFERENCES

[1] S. A. Paul, L. Hong, and E. H. Chi, “Is twitter a good place for asking
questions? a characterization study,” in Proc. ICWSM Conf., 2011.

[2] M. R. Morris, J. Teevan, and K. Panovich, “What do people ask their
social networks, and why?: a survey study of status message q&a
behavior,” in Proc. CHI Conf., 2010, pp. 1739–1748.

[3] C.-Y. Lin, N. Cao, S. Liu, S. Papadimitriou, J. Sun, and X. Yan,
“Smallblue: Social network analysis for expertise search and collective
intelligence,” in ICDE, 2009, pp. 1483–1486.

[4] R. W. White, M. Richardson, and Y. Liu, “Effects of community size and
contact rate in synchronous social q&a,” in Proc. CHI Conf., 2011, pp.
2837–2846.

[5] D. Yimam-Seid and A. Kobsa, “Expert-finding systems for organizations:
Problem and domain analysis and the demoir approach,” Journal of Org.

Computing and Elec. Commerce, vol. 13, no. 1, pp. 1–24, 2003.
[6] D. Horowitz and S. D. Kamvar, “The anatomy of a large-scale social

search engine,” in Proc. WWW Conf., 2010, pp. 431–440.
[7] K. Jones, S. Walker, and S. Robertson, “A probabilistic model of infor-

mation retrieval: development and comparative experiments,” Information

Processing and Management, vol. 36, no. 6, pp. 779–840, 2000.

