
Topics

Part I: BFAST R package optimizations

Part II: Scalable EO data management with SciDB

Part III: Hands-on with SciDB, Landsat, and BFAST

1. SciDB installation (with Docker)

2. Data ingestion

3. Analysis (practical part)

BFAST on large datasets: bfastSpatial and raster

• works well with out-of-memory data

• supports multicore parallel processing

• difficult to stack data from different tiles due to overlap
and different recording dates

• does not scale beyond multiple machines on its own

SciDB for large EO datasets

• Array-based data management and analytical system [1]

• Runs on single computers as well as on large clusters

• Open-source version available

• Sparse storage

• Basic data representation as multidimensional arrays

• 𝑛 dimensions, 𝑚 attributes (bands) with different data types

ti
m

e

longitude

la
ti

tu
d

e

longitude
ti

m
e

[1] Stonebraker, M., Brown, P., Zhang, D., & Becla, J. (2013). SciDB: A database management system for applications with complex
analytics. Computing in Science & Engineering, 15(3), 54-62.

Distributing arrays by chunking

• arrays are divided into
equally sized chunks

• chunks are distributed
over many SciDB
instances

• instances may run on
the same or different
machines in a shared
nothing cluster

 distributing storage
and computational
load

Query language and functionality

• SciDB query language: Array Functional Language (AFL)

• Native functionality:

– Load / write arrays from / to files

– Arithmetic operations

– Subsetting by dimensions and / or attributes

– Aggregations (window, aggregate)

– Array joins

– Changing array schemas (repartitioning, redimensioning)

– Linear algebra routines: (GEMM, GESVD, basic statistics)

– …

SciDB: extensions for EO data

SciDB

• can load data from CSV and custom-binary files only

• does not understand spatial / temporal reference of
arrays

spacetime extensions [1]:

– scidb4geo (https://github.com/appelmar/scidb4geo)

– scidb4gdal (https://github.com/appelmar/scidb4gdal)

[1] Appel M., Lahn F., Pebesma E., Buytaert W., Moulds S. (2016). Scalable Earth-observation Analytics for Geoscientists: Spacetime
Extensions to the Array Database SciDB. accepted for poster presentation at EGU General Assembly 2016, Vienna, Austria April 17-22,
2016.

scidb4geo

New AFL (Array Functional Language) operators

Operator Description

eo_arrays() Lists geographically referenced arrays

eo_setsrs() Sets the spatial reference of existing arrays

eo_getsrs() Gets the spatial reference of existing arrays

eo_extent() Computes the geographic extent of referenced arrays

eo_settrs() Sets the temporal reference of arrays

eo_gettrs() Gets the temporal reference of arrays

eo_setmd() Sets key value metadata of arrays and array attributes

eo_getmd() Gets key value metadata of arrays and array attributes

eo_over() Overlays two arrays by space and / or time

scidb4gdal

• supports ingestion and download of images to and from
SciDB

• GDAL supports > 100 raster formats

• ingestion automatically combines images by space and
time (mosaicing)

t

Interfacing R

R as a client: packages scidb[1] and scidbst[2] works
with proxy objects and lazy evaluation  starts
computations when you want to read the data

• overwrites R methods, e.g. %*%

• limited to native SciDB functionality

Running R within SciDB: stream[3] and r_exec[4]

• apply arbitrary R functions in parallel on chunks

[1] https://github.com/Paradigm4/SciDBR
[2] https://github.com/flahn/scidbst
[3] https://github.com/Paradigm4/stream
[4] https://github.com/Paradigm4/r_exec

https://github.com/Paradigm4/SciDBR
https://github.com/Paradigm4/SciDBR
https://github.com/flahn/scidbst
https://github.com/flahn/scidbst
https://github.com/Paradigm4/stream
https://github.com/Paradigm4/stream
https://github.com/Paradigm4/r_exec
https://github.com/Paradigm4/r_exec

BFAST within SciDB

• Idea: organize chunk sizes such that one chunk contains the
complete time-series of a small region, e.g. 50x50 pixels

• Use stream or r_exec to run bfast in parallel

• R and the bfast package must be installed on all SciDB servers

scalability with relatively little amount of reimplementation
needed

move computations to the data instead of move the data to
the computations

Study case:
Monitoring changes in NDVI time series of Landsat 7 in south west Ethiopia

• Landsat 7 data from 12 tiles captured between 2003-07-21 and 2014-12-27  1975
scenes

• Derived NDVI product from ESPA
• approx. 325,000 km2

• monitor changes starting with 2010-01-01, with ROC history model

Landsat 7 in SciDB

1. Ingestion:
– For all *_ndvi.tif images:

• extract date from filename
• reproject / warp to the same spatial reference system
• upload to SciDB

2. Repartition the array such that chunks contain complete time
series of 64x64 pixels

3. Preprocessing:
– remove any values <= -9999 or >10000
– unscale to -1, 1

• Ingestion of all scenes took around 4 days
• Repartitioning took around 2 days

Landsat 7 in SciDB

The data is represented in SciDB as a three-dimensional
array with daily temporal resolution and

• 49548 x 47713 x 4177 cells in total

• 64 x 64 x 4177 cells per chunk

• Only 0.5% (54 ⋅ 109) of the cells contain data

• SciDB has sparse storage

Scalability with SciDB instances

• 16 SciDB instances on one machine used (64 CPU cores,
256 GB main memory)

• running bfastmonitor repeatedly with different number
of available CPU cores on a small subset

Study case: results

• Running bfastmonitor on the complete dataset took 8 days

Conclusions

• SciDB is able to make BFAST scalable even in large cluster
environments

• The multidimensional array model, chunking, and sparse
storage are well-suited to represent large EO datasets from
many scenes

• Ingestion and data restructuring time consuming,
alternatives to GDAL needed

• Installation and data ingestion not straightforward

• Analysis from R relatively easy to learn for experienced R
users (see hands-on part)

Thank you

Questions?

