
Abstract—This paper presents information about Anomaly-
Detection – a Snort-based network traffic monitoring tool. The
article concerns use of based on Holt-Winters forecasting
method in real-time behavioral analysis of network traffic.

I. INTRODUCTION

N MODERN computer networks and high-loaded busi-

ness or industrial systems there is a need of continuous

availability of services and hosts (see e.g. [28][29] [30]

[34]). Inaccessibility of some mission critical can cause

large impact to business processing continuity and this as a

result would generate looses. Solution for such potential

problems could be permanent and uninterrupted supervision

on network health. This in turn can be achieved by imple-

mentation of some monitoring solution. Efficient monitoring

method helps achieve high service availability and it will be

a good idea to extend network security by tools such as In-

trusion Detection System, Intrusion Prevention System and

Unified Thread Managers (see e.g. [32] [33]). IDS is a tool

which monitors and analyses in real time every aspect of in-

bound and outbound traffic of the network. Based on the

analysis and based on one of the mechanisms responsible for

threat detection creates reports of the abnormalities of net-

work traffic. Most common mechanisms which detect

threats used in IDS are misuse detection and anomaly detec-

tion, they are two different approaches to threat detection,

first one relays on determination abnormal parameters and

network traffic behavior, everything which we do not know

is treated as normal, second one is a reverse of the first one,

it treats everything which deviates from the standard is

treated as potential threat. IDS on its own only reports and

logs the abnormalities and does not take any further actions

and his role is to report to administrator which is whom de-

cides what action should be taken to prevent imminent dan-

ger which can be a cumbersome for the administrator with a

large number of notifications. In order to relieve the amount

of work of administrator, ideas of IDS have been extended

I

by possibility to take defined actions immediately in case of

detection of typical and schematic threats for the network, as

a result IPS was created which is a variety of IDS which is

compatible with tools such as firewalls and control its set-

tings in order to counter the threat.

A typical representative of the above-described tool is

Snort (see e.g. [2] [3] [31]), a software type of IDS / IPS

based on mechanism which detects attack signatures origi-

nally intended only for the Unix platform, but now also

transferred to the Windows operating system, developed on

the principles of open source software licenses. Large capac-

ity and performance are characteristics that gained snort

popularity among users. Its modular design makes the soft-

ware very flexible and thus can be easily adapted to the re-

quirements of the currently analyzed network environments,

and expand its functionality.

This article demonstrates the capabilities of the tool cre-

ated for network monitoring and future network traffic fore-

casting Snort-based applications using the flexibility and

easy extensibility (the ability to create own preprocessors

and postprocessors) of this program. The preprocessor was

developed to extends Snorts possibilities of network traffic

analysis by anomaly detection mechanism [4]. Combination

of the two mechanisms (i.e., misuse detection and anomaly

detection) provides more comprehensive protection against

all types of threats, even those partially abstract, such as the

malice of employees. Tools included in the Anomaly Detec-

tion 3.0 allows analysis of movement, its forecasting with

help of its advanced statistical algorithms, evaluation of cre-

ated forecasts, real-time monitoring and verifying that the

individual volumes of network traffic parameters do not ex-

ceed the forecasted value and in case of exceeding the norms

to generate the appropriate messages for the administrator

who should check each alarm for potential threats.

Current (3.0) version (see e.g. [5] [6]) of Anomaly Detec-

tion provides monitoring of following network traffic pa-

rameters: total number of TCP, UDP, and ICMP packets,

Implementation of Brutlag's algorithm in Anomaly Detection 3.0

Maciej Szmit
Technical University of Łódź, Computer Engineering

Department, 18/22 Stefanowskiego Street, 90-924
Łódź, Poland

Orange Labs Poland, 7 Obrzeżna Street, 02-691
Warsaw, Poland

Email: maciej.szmit@gmail.com

Anna Szmit
Technical University of Łódź, Department of
Management, 266 Piotrkowska Street, 90-924

Łódź, Poland
Email: agorecka@p.lodz.pl

Sławomir Adamus
Technical University of Lodz, Computer Engineering

Department, 18/22 Stefanowskiego Street, 90-924
Łódź, Poland

AMG.lab, 11 Łąkowa Street, 90-562 Łódź, Poland
Email: slawomir.adamus@hotmail.com

Sebastian Bugała
Technical University of Lodz, Computer

Engineering Department, 18/22 Stefanowskiego
Street, 90-924 Łódź, Poland

Email: sebastian.bugala@hotmail.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 685–691

ISBN 978-83-60810-51-4

978-83-60810-51-4/$25.00 c© 2012 IEEE 685

number of outgoing TCP, UDP, and ICMP packets, number

of incoming TCP, UDP, and ICMP packets, number of TCP,

UDP, and ICMP packets from current subnet, number of

TCP packets with SYN/ACK flags, number of outgoing and

incoming WWW packets – TCP on port 80, number of out-

going and incoming DNS packets – UDP outgoing on port

53, number of ARP-request and ARP-reply packets, number

of non TCP/IP stacks packets, total number of packets, TCP,

WWW, UDP, and DNS upload and download speed [kBps].

Whole Anomaly Detection application consists of three

parts: Snorts preprocessor, Profile Generator and Profile

Evaluator. Data exchange between these parts is realized by

CSV (Comma Separated Values) files. Fig 1 shows data

flow diagram for AD.

Black solid arrows means saving to file and gray dotted –

reading from file. Particular files stands for:

• Log file – this file gathers all network traffic data

collected with AD Snort preprocessor. Data from

this file is next used by Profile Generator for net-

work traffic forecasting.

• Profile file – this file stores network profile com-

puted with Profile Generator. This file is generated

by Profile Generator and used by AD preprocessor

for detecting anomalies and generating alerts. After

every passed time period preprocessor reads profile

file and looks for data corresponding to current pe-

riod. If value for some counter exceeds minimum

(MIN) to maximum (MAX) range then alert is gen-

erated.

• Predicted pattern file – predicted pattern file con-

tains predicted future data for network – in fact this

is the same file as profile file, but with single value

for each counter. This is necessary for evaluating

profile in AD Evaluator script. Structure of pattern

file is the same as log file.

• Pattern file – this file is created like predicted pat-

tern file, but network traffic profile stored in this

file is historical data.

• Parameters file – this file stores information for

method of profile generation and method parame-

ters values. This file has different structure for ev-

ery algorithm of profile generation.

Structures of log and profile files can be found in [15].

Anomaly Detection have two main modes:

• data acquisition mode – only network traffic statis-

tics are saved into log file. Only log file is created

in this mode.

• alerting mode – instead of data acquisition there is

also created profile file and current traffic statistics

are compared to values stored in profile file. In this

mode log and profile file are required.

Pattern, predicted pattern and parameters files are always

optional and they're useful for future research.

Anomaly Detection 3.0 can be downloaded from

http://anomalydetection.info [24]. Preprocessor is available

as source or RPM package. Both Profile Generator and

Evaluator are available as R scripts – additional R CRAN

(free) software is required for use R scripts.

II. PREPROCESSOR

The main part of the Anomaly Detection system is a pre-

processor written in C programming language, designed to

enhance Snort possibilities to monitor, analyze and detect

network traffic anomalies using NBAD (Network Behav-

ioral Anomaly Detection) approach. The first version of

Anomaly Detection preprocessor [6] for Snort version 2.4x

was published in a Master’s Thesis [25] in 2006. Next the

project has been developed (see e.g. [5] [7] [8] [9] [17]) till

the current version 3.0 designed for Snort 2.9.x

The next function of the preprocessor is generating alerts.

Preprocessor reads a predicted pattern of the network traffic

(of all parameters) from the ‘profile’ file and generates alert

when the current value exceeds ‘minimum’ to ‘maximum’

range for the current moment (the moment is given by day

of the week, hour, minute and second corresponding to the

intervals from the log file) from the profile file.

The profile can be generated ‘manually’ or by a Profile

Generator using appropriate model, based on historic values

from the log file. The architecture affords easy implementa-

tion of different statistical models of the traffic and usage of

different tools (i.e. statistical packets) for building profiles.

Data from the profile is read in intervals defined by the user,

there is only one lane read into the structure at a time, this

gives possibility to dynamically alter the profile file, whose

forecast length (amount of lines) can by any. In case of fail-

ure to find the correct entry in the profile, anomaly report

module is automatically disabled to prevent generation of

false positive alerts.

III. PROFILE GENERATOR

The current version of Profile Generator (see e.g. [7] [8]

[9]) is based on R language / environment (The R Project for

Statistical Computing) (see e.g. [10] [11] [12] [13] [14]). R-

project is an free, open source packet for statistical comput-

ing and graphics. In this implementation optional packages

for R: tseries, quadprog, zoo and getopt are used.

The whole implementation of Profile Generator is divided

into few parts. First part prepares data from log file for fur-

Fig 1. Anomaly Detection data flow diagram. Source: [15]

686 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

ther calculations and other parts – depending on the given

parameters – calculates future network traffic forecasts.

To use all functions of Profile Generator local R-project

installation must contain listed above additional packages.

They can be installed in R with commands:

Profile Generator is controlled with parameters passed for

script execution – all script parameters are handled with

getopt() function.

Particular columns of specification matrix contains re-

spectively:

• long flag name

• short flag

• parameters arguments

• arguments type

• description

Profile Generator actually implements five methods of

profile file generation: moving average, naive method, au-

toregressive time series model, Holt-Winters model and

Brutlags version of HW model (see e.g. [1] [17]). The value

of dependent variable is given as follows:

Moving average:

ŷ t=
∑

i=t−k

t−1

y i

k

(1)

Naive method:

ŷ t= y t−T (2)

where T is day or week period

or

ŷ t= y t−1
(3)

Autoregressive time series model:

ŷ t=a
0
+a

1
y t−1

+a
2
y t−2

+ ...+ak y t− k
(4)

Holt-Winters model:

ŷ t=Lt−1
+Pt−1

+St−T
(5)

where:

L is level component given by:

Lt=α(y t−St−T)+(1−α)(Lt−1+Pt−1) (6)

P is trend component given by:

Pt=β(Lt−Lt−1)+(1−β)P t−1
(7)

S is seasonal component given by:

S t=γ(y t−Lt)+(1−γ)S t−T (8)

Brutlag method:

ŷmaxt
=Lt−1

+Pt−1
+St−T+m⋅dt−T (9)

ŷmint
=Lt−1

+Pt−1
+St−T−m⋅d t−T (10)

where:

L , P and S are the same as in Holt-Winters

model

d is predicted deviation given by:

d t=γ∣yt− ŷ t∣+(1−γ)d t−T (11)

where:

k is number of measurements in time series

t is moment in time

ŷ t is predicted value of variable in moment t

y t is real (measured) value of variable in

moment t

T is time series period

α is data smoothing factor

β is trend smoothing factor
γ is the seasonal change smoothing factor

m is the scaling factor for Brutlags confidence bands

IV. IMPLEMENTATION OF HOLT-WINTERS MODEL

The Holt-Winters model, called also the triple exponential

smoothing model, is a well-known adaptive model used to

modeling time series characterized by trend and seasonality

(see e.g. [20], [19] p. 248, [18], [21], [22]). The model is

sometimes used to modeling and prediction of network traf-

fic (see e.g. [23],[7], [8]).

For computing an Holt-Winters model Profile Generator

must be launched with parameter '-m HW'. Optional param-

eter '--hw' can be set for defining model periodicity and sub-

set of data used to build model.

Implementation of Holt-Winters prediction method in

Profile Generator is based on function HoltWinters()

from package stats. HoltWinters() functions requires

time series data as object of class 'ts' (time-series object).

Object 'ts' is created as follows:
ts_obj<-ts(log.data[,column.log], frequ

ency=profile.config.frequency, start=c(a

s.numeric(log.first.date),log.first.samp

le.no))

Function 'ts' gets in this implementation 3 parameters:

MACIEJ SZMIT, SŁAWOMIR ADAMUS ET AL.: IMPLEMENTATION OF BRUTLAG’S ALGORITHM 687

• data – a numeric vector of the observed time-series

values

• frequency – the number of observations per unit of

time

• start – the number of observations per unit of time.

This parameter can be a single number or a vector

of two integers – because of this in our implemen-

tation human-readable date from log file is con-

verted into numeric value and second value is num-

ber of sample of first observation in the day.

Next HoltWinters() function computes Holt-Winters

filtering of a given time series. Function tries to find the op-

timal values of α and/or β and/or γ by mini-

mizing the squared one-step prediction error with optim()

function. Start values for L , P and S are in-

ferred by performing a simple decomposition in trend and

seasonal component using moving averages – it is realized

with decompose() function.

For testing purposes total number of TCP packets from

one exemplary network was used. Testing data were gath-

ered for few weeks (between January 1st and March 11th).

Illustration Fig 2 shows one weekly period (from January

1st to January 7th) of testing data.

Decompose() function decomposes a time series into

seasonal, trend and irregular components using moving av-

erages. For testing data decompose() function returns

values with trend, seasonal and random component. Fig 3

shows those decomposed data.

HoltWinters() function estimates HW model

smoothing parameters (alpha, beta and gamma), which were

for testing data as follows:

alpha: 0.8140128

beta : 0

gamma: 1

 Fig 4 shows fitted time-series of Holt-Winters model.

Fitted values compared to observed values for given test-

ing data:

Black line stands for observed data and gray line stands

for fitted model (in most range black line covers gray).

When Holt-Winters model is computed, then future pre-

diction can be calculated simple with

predict.HoltWinters() function. Predict()

function takes in this case two arguments:

• HoltWinters object with fitted model parameters

• number of future periods to predict

Function returns a time series of the predicted values for

given future periods. For testing data values returned from

predict() function are shown on illustration Fig 6.

Fig 2. One period of testing data.

Fig 3. Decomposed time series.

Fig 5. Holt-Winters fitted to observed comparison.

Fig 4. Fitted Holt-Winters.

688 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

V. BRUTLAG METHOD

Holt-Winters method was used to detect network traffic

anomalies as described in the article [1]. In that paper,

the concept of “confidence bands” was introduced. As de-

scribed in the article, confidence bands measure deviation

for each time point in the seasonal cycle and this mechanism

bases on expected seasonal variability.

Illustration Fig 7 shows computed confidence bands for

HW time series prediction. Confidence band is computed by

comparing last period of collected network traffic values

with fitted Holt-Winters values for the same period. Subtract

of real and predicted values is next scaled with γ esti-

mated by Holt-Winters function – obtained value is finally

multiplied by scaling factor. Confidence band width is con-

trolled with '--scale' parameter – above example is computed

with scale parameter value of '2'. Brutlag proposes sensible

values of '--scale' parameter are between 2 and 3. Particular

lines stands for:

• black – observed values of time series

• medium gray – computed prediction of time series

with Holt-Winters model

• light gray – upper bound of Brutlags confidence

band

• gray – lower bound of Brutlags confidence band

VI. USAGE OF PROFILE GENERATOR

Profile Generator can be launched like any script in CLI

(Command Line Interface) of operating system with R soft-

ware and necessary packages installed. Scripts available at

[24] were tested on few GNU / Linux distributions: Fedora,

Debian, and Ubuntu. Parameters for Profile Generator script

are validated against bellow BNF notation grammar:
ad_profilegenerator.r <mode>
<mode> ::= <m_help> | <m_generate>
<m_help> ::= -(-help|h)
<m_generate> ::= <log> <profile> <evaluator>

<pattern> <model_param> <method> <ahead> <scale>
<verbose>

<log> ::= -(-log|l) <<log_file_path>>
<profile> ::= -(-profile|p)

<<profile_file_path>> | <<empty>>
<evaluator> ::= -(-evaluator|e)

<<predicted_pattern_file_path>> | <<empty>>
<pattern> ::= -(-pattern|P)

<<pattern_file_path>> | <<empty>>
<model_param> ::= -(-save|s)

<<model_parameters_file_path>> | <<empty>>
<verbose> ::= -(-verbose|v) | <<empty>>
<ahead> ::= -(-ahead|a) <ahead_val> |

<<empty>>
<ahead_val> ::= WEEK|MONTH|<number>
<scale> ::= -(-scale|d) <<scale_parameter>> |

<<empty>>
<method> ::= -(-method|m) <pred_method> |

<<empty>>
<pred_method> ::= AVG <avg_param> | NAIVE

<naive_param> | AR <ar_param> | HW <hw_param> |
BRUTLAG <brutlag_param>

<avg_param> ::= --avg <avg_value> | <<empty>>
<naive_param> ::= --naive <naive_value> |

<<empty>>
<ar_param> ::= --ar <ar_value> | <<empty>>
<hw_param> ::= --hw <hw_value> | <<empty>>
<brutlag_param>::= --brutlag <brutlag_value> |

<<empty>>
<avg_value> ::= (LAST|DAILY|WEEKLY),<number>
<naive_value>::= (LAST|DAILY|WEEKLY)
<ar_value> ::= (DAILY|WEEKLY),(YW|BURG|MLE|OLE)
<hw_value> ::= (DAILY|WEEKLY)
<brutlag_value> ::= (DAILY|WEEKLY)
<number> ::= <number><number>|0|1|2|3|4|5|6|7|8|9

Sense of each parameter impact is clarified under '--help' pa-

rameter. At least one of <profile>,<evaluator>,<pattern>, or

<model_param> parameter should be set for any sense of

running script.

For example the simplest naïve prediction for real data

stored in 'log.csv' file with saving profile data to 'profile.csv'

file can be launched with:
./ad_profilegenerator.r -l log.csv -p

profile.csv -m NAIVE --naive LAST

Prediction for one week for the same file based on Holt-

Winters algorithm with daily periodicity and with 'verbose'

mode can be calculated with:
./ad_profilegenerator.r -l log.csv -p

profile.csv -m HW --hw DAILY –ahead WEEK

-v

VII. PROFILE EVALUATOR

Profile Evaluator is the third part of Anomaly Detection

project. This script is designed for fast evaluation of profile

file compared to log file. This script calculates simple statis-

Fig 6. Holt-Winters prediction.

Fig 7. Brutlags confidence bands.

MACIEJ SZMIT, SŁAWOMIR ADAMUS ET AL.: IMPLEMENTATION OF BRUTLAG’S ALGORITHM 689

tic
MAE

M
for two files. Main application of Evaluator is

to check fit between pattern and current logged values (with

log and pattern file) or between model and historical data

(log and predicted pattern file).

MAE means Mean Absolute Error and M means Mean.

MAE=
1

n
∑
t=1

n

∣y t− ŷ t∣=
1

n
∑
t=1

n

∣et∣ (12)

M=
1

n
∑
t=1

n

yt
(13)

where:

y t is real (current) value of counter in moment t

ŷ t is predicted (estimated) value of counter in

moment t

e t is prediction error in moment t

VIII. USAGE OF PROFILE EVALUATOR

Profile Evaluator script is launched likewise Profile Gen-

erator script. Profile Evaluator script parameters grammar

looks as follows:
ad_evaluator.r <mode>
<mode> ::= <m_help> | <m_evaluate>
<m_help> ::= -(-help|h)
<m_evaluate> ::= <log> <pattern> <save> <skip>

<verbose>
<log> ::= -(-log|l) <<log_file_path>>
<pattern>::= -(-pattern|p) <<pattern_file_path>>
<save> ::= -(-save|s) <<save_maem_file_path>>

<<empty>>
<skip> ::= -(-skip|S) <number> | <<empty>>
<verbose> ::= -(-verbose|v) | <<empty>>

Evaluation of pattern stored in 'pattern.csv' file compared with log data

stored in 'log.csv' file can be done with:

./ad_evaluator.r -l log.csv -p

pattern.csv --verbose

IX. CONCLUSION

At the moment the most needed improvement to out pro-

gram is to use a database for logging network traffic param-

eters instead of flat comma separated values file. For short

logging time interval log file would grow rapidly and in the

course of time access to log data will raise. Usage of data-

base would have one other more major advantage – obtain-

ing a needed sub-collection of log data will be easier and

faster. Moreover by not using file for log data there should

be lower memory and disk usage consumption – actually all

data from log file are loaded into memory during forecasts

calculations. With simple SQL queries there would be no

need to do this – only data for current counter (time series)

are necessary.

Second awaited development is use of NetFlow / IPFIX

standard in storing and calculating network data. By this it

would be simple to collect network data from many observa-

tion points. Afterwards device which support IPFIX proto-

col can filter and aggregate data and send it to Anomaly De-

tection server for further analysis. Implementation of IPFIX

protocol would be good starting point for further improve-

ments such as flow or route analysis (see e.g. [26] [27]).

REFERENCES

[1] J. D. Brutlag, “Aberrant Behavior Detection in Time Series for
Network Monitoring” 14th System Administration Conference
Processdings, New Orleans 2000, pp. 139-146, Available:
http://www.usenix.org/events/lisa00/full_papers/brutlag/brutlag_html/

[2] J. Koziol, “Intrusion Detection with Snort”, Sams Publishing,
Indianapolis, 2003

[3] R. Rehman, “Intruder Detection with Snort”, New Jersey 2003
[4] M. Skowroński, R. Wężyk, M. Szmit, “Preprocesory detekcji

anomalii dla programu Snort” [inw:] Sieci komputerowe. T. 2.
Aplikacje i zastosowania, Wydawnictwa Komunikacji i Łączności,
Gliwice 2007, pp. 333-338

[5] M. Szmit, R. Wężyk, M. Skowroński, A. Szmit, “Traffic Anomaly
Detection with Snort” [in:] Information Systems Architecture and
Technology. Information Systems and Computer Communication
Networks, Wydawnictwo Politechniki Wrocławskiej, Wrocław 2007,
pp. 181-187

[6] M. Skowroński, R. Wężyk, M. Szmit, “Detekcja anomalii ruchu
sieciowego w programie Snort,” „Hakin9” Nr 3/2007, pp. 64-68

[7] M. Szmit, A. Szmit, “Usage of Modified Holt-Winters Method in The
Anomaly Detection of Network Traffic. Case Studies.” (Article in
press [in:] Journal of Computer Networks and Communication)
Available at:
http://www.hindawi.com/journals/jcnc/aip/192913/

[8] M. Szmit, A. Szmit, “Use of Holt-Winters method in the analysis of
network traffic. Case study”, Springer Communications in Computer
and Information Science vol. 160, pp. 224-231. Available at:
http://www.springerlink.com/content/w332871210136544/

[9] M. Szmit, “Využití nula-jedničkových modelů pro behaviorální
analýzu síťového provozu”, [in:] Internet, competitiveness and
organizational security, TBU, Zlín 2011

[10] The R Project for Statistical Computing Homepage
http://www.r-project.org/

[11] P. Biecek, “Przewodnik po pakiecie R”, Gewert i Skoczylas, 2011,
Partly available:http://www.biecek.pl/R/Rwydanie2.pdf

[12] Ł. Komsta, “Wprowadzenie do środowiska R ”, 2004, Available:
http://cran.r-project.org/doc/contrib/Komsta-Wprowadzenie.pdf

[13] P. Teetor, “R Cookbook”, O'Reilly Media, 2011
[14] P. Teetor, “25 Recipes for Getting Started with R”, O'Reilly Media,

2011
[15] M. Szmit, S. Adamus, S. Bugała, A. Szmit, “AnomalyDetection 3.0

for Snort” [in:] Conference Proceedings of SECURITATEA
INFORMATIONALA 2012, Chisinau, Moldova. To be published.̧ ̆ ̧ ̆

[16] M. Szmit, A. Szmit, “Usage of Pseudo-estimator LAD and SARIMA
Models for Network Traffic Prediction. Case Studies.” (accepted for
publication in Springer Communications in Computer and Information
Science; Conference Computer Networks, 2012)

[17] M. Szmit, Modelování, simulace a behaviorální analýza procesů
síťového provozu jako výzkumné metody plánování efektivního
využití síťového provozu, [in:] Internet, competitiveness and
organizational security, pp. 139-144, Tomas Bata University, Zlín
2012

[18] S. Gelper, R. Fried, C. Croux, “Robust forecasting with exponential
and Holt–Winters smoothing” [in]: Journal of Forecasting, Volume
29, Issue 3, pp. 285–300, April 2010

[19] B. Guzik, D. Appenzeller, W. Jurek, Prognozowanie i symulacje.
Wybrane zagadnienia, Wydawnictwo AE w Poznaniu, Poznań 2004

[20] P. Goodwin, “The Holt-Winters Approach to Exponential Smoothing:
50 Years Old and Going Strong”, FORESIGHT Fall 2010 pp. 30-
34,Available:http://www.forecasters.org/pdfs/foresight/free/Issue19_g
oodwin.pdf

[21] E.S. Gardner, Jr., Exponential Smoothing: The state of the art – Part
II, International Journal of Forecasting, 22/2006, pp. 637-666.

[22] R. J. Hyndman, A. B. Koehler, J.K. Ord, R. D. Snyder, Forecasting
with Exponential Smoothing: The State Space Approach, Springer,
Berlin 2008

[23] P. Cortez, M. Rio, M. Rocha, P. Sousa: Multi-scale Internet traffic
forecasting using neural networks and time series methods, Expert

690 PROCEEDINGS OF THE FEDCSIS. WROCŁAW, 2012

Systems: The Journal of Knowledge Engineering, (accepted paper, in
press),http://onlinelibrary.wiley.com/doi/10.1111/j.14680394.2010.00
568.x/abstract

[24] AnomalyDetection Homepage http://www.anomalygetection.info
[25] M. Skowroński, R. Wężyk, "Systemy detekcji intruzów i aktywnej

odpowiedzi", Master Thesis, Politechnika Łódzka, 2004
[26] Byungjoon Lee, Hyeongu Son, Seunghyun Yoon, Youngseok Lee,

“End-to-End Flow Monitoring with IPFIX” [in:] Lecture Notes in
Computer Science, 2007, Volume 4773/2007, pp. 225-234, Available
at: http://www.springerlink.com/content/l868g0x635324129/

[27] Youngseok Lee, Seongho Shin, Taeck-geun Kwon, “Signature-Aware
Traffic Monitoring with IPFIX” [in:] Lecture Notes in Computer
Science, 2006, Volume 4238/2006, pp. 82-91. Available at:
http://www.springerlink.com/content/w312715821374007/

[28] James W. Hong, Sung-Uk Park, Young-Min Kang, Jong-Tae Park,
“Enterprise Network Traffic Monitoring, Analysis, and Reporting
Using Web Technology” [in:] Journal of Network and Systems
Management Volume 9, Number 1 (2001), pp. 89-111. Available at:
http://www.springerlink.com/content/k4917220vxpw1765/

[29] Miroslaw Malek, Bratislav Milic, Nikola Milanovic, "Analytical
Availability Assessment of IT Services" [in:] Lecture Notes in

Computer Science, 2008, Volume 5017/2008, pp. 207-224. Available
at: http://www.springerlink.com/content/u415087711752925/

[30] A. N. Nazarov, M. M. Klimanov, "Estimating the informational
security level of a typical corporate network". Available at:
http://www.springerlink.com/content/2646q516161xp66v/

[31] J. Gómez, C. Gil, N. Padilla, R. Baños, C. Jiménez, "Design of a
Snort-Based Hybrid Intrusion Detection System" [in:] Lecture Notes
in Computer Science, 2009, Volume 5518/2009, pp. 515-522. Avai-
lable at: http://www.springerlink.com/content/83h7164gn7q240j6/

[32] Joshua Ojo Nehinbe, "A Simple Method for Improving Intrusion
Detections in Corporate Networks" [in:] Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering, 2010, Volume 41, pp. 111-122. Available at:
http://www.springerlink.com/content/h644301061760174/

[33] Nathalie Dagorn, "Cooperative Intrusion Detection for Web
Applications" [in:] Lecture Notes in Computer Science, 2006, Volume
4301/2006, pp. 286-302. Available at:
http://www.springerlink.com/content/b4mt420gk1077617/

[34] Kulesh Shanmugasundaram, Nasir Memon, "Network Monitoring for
Security and Forensics" [in:] Lecture Notes in Computer Science,
2006, Volume 4332/2006, pp. 56-70. Available at:
http://www.springerlink.com/content/jv1250p116480708/

MACIEJ SZMIT, SŁAWOMIR ADAMUS ET AL.: IMPLEMENTATION OF BRUTLAG’S ALGORITHM 691

