
Abstract—This paper presents information about  Anomaly-
Detection – a Snort-based network traffic monitoring tool. The 
article  concerns  use  of  based  on  Holt-Winters  forecasting 
method in real-time behavioral analysis of network traffic.

I. INTRODUCTION

N MODERN computer  networks  and high-loaded busi-

ness or industrial  systems there is a need of continuous 

availability  of  services  and  hosts (see  e.g.  [28][29]  [30] 

[34]).  Inaccessibility  of  some  mission  critical  can  cause 

large impact to business processing continuity and this as a 

result  would  generate  looses.  Solution  for  such  potential 

problems could be permanent and uninterrupted supervision 

on network health. This in turn can be achieved by imple-

mentation of some monitoring solution. Efficient monitoring 

method helps achieve high service availability and it will be 

a good idea to extend network security by tools such as In-

trusion Detection System, Intrusion Prevention System and 

Unified Thread Managers (see e.g. [32] [33]). IDS is a tool 

which monitors and analyses in real time every aspect of in-

bound and outbound traffic  of  the network.  Based on the 

analysis and based on one of the mechanisms responsible for 

threat detection creates reports of the abnormalities of net-

work  traffic.  Most  common  mechanisms  which  detect 

threats used in IDS are misuse detection and anomaly detec-

tion, they are two different approaches to threat  detection, 

first one relays on determination abnormal parameters and 

network traffic behavior, everything which we do not know 

is treated as normal, second one is a reverse of the first one, 

it  treats  everything  which  deviates  from  the  standard  is 

treated as potential threat. IDS on its own only reports and 

logs the abnormalities and does not take any further actions 

and his role is to report to administrator which is whom de-

cides what action should be taken to prevent imminent dan-

ger which can be a cumbersome for the administrator with a 

large number of notifications. In order to relieve the amount 

of work of administrator, ideas of IDS have been extended 
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by possibility to take defined actions immediately in case of 

detection of typical and schematic threats for the network, as 

a result IPS was created which is a variety of IDS which is 

compatible with tools such as firewalls and control its set-

tings in order to counter the threat.

A  typical  representative  of  the  above-described  tool  is 

Snort (see e.g. [2] [3] [31]), a software type of IDS / IPS 

based on mechanism which detects attack signatures origi-

nally  intended  only  for  the  Unix  platform,  but  now  also 

transferred to the Windows operating system, developed on 

the principles of open source software licenses. Large capac-

ity  and  performance  are  characteristics  that  gained  snort 

popularity among users. Its modular design makes the soft-

ware very flexible and thus can be easily adapted to the re-

quirements of the currently analyzed network environments, 

and expand its functionality.

This article demonstrates the capabilities of the tool cre-

ated for network monitoring and future network traffic fore-

casting  Snort-based  applications  using  the  flexibility  and 

easy extensibility (the  ability to  create  own  preprocessors 

and postprocessors) of this program. The preprocessor was 

developed to extends Snorts possibilities of network traffic 

analysis by anomaly detection mechanism [4]. Combination 

of the two mechanisms (i.e., misuse detection and anomaly 

detection) provides more comprehensive protection against 

all types of threats, even those partially abstract, such as the 

malice of employees. Tools included in the Anomaly Detec-

tion 3.0 allows analysis  of movement, its forecasting with 

help of its advanced statistical algorithms, evaluation of cre-

ated forecasts,  real-time monitoring and verifying  that  the 

individual volumes of network traffic parameters do not ex-

ceed the forecasted value and in case of exceeding the norms 

to generate the appropriate messages for  the administrator 

who should check each alarm for potential threats. 

Current (3.0) version (see e.g. [5] [6]) of Anomaly Detec-

tion provides  monitoring  of  following network  traffic  pa-

rameters:  total  number  of  TCP, UDP, and  ICMP packets, 
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number of outgoing TCP, UDP, and ICMP packets, number 

of incoming TCP, UDP, and ICMP packets, number of TCP, 

UDP,  and  ICMP packets  from current  subnet,  number  of 

TCP packets with SYN/ACK flags, number of outgoing and 

incoming WWW packets – TCP on port 80, number of out-

going and incoming DNS packets –  UDP outgoing on port 

53, number of ARP-request and ARP-reply packets, number 

of non TCP/IP stacks packets, total number of packets, TCP, 

WWW, UDP, and DNS upload and download speed [kBps].

Whole  Anomaly Detection  application  consists  of  three 

parts:  Snorts  preprocessor,  Profile  Generator  and  Profile 

Evaluator. Data exchange between these parts is realized by 

CSV (Comma Separated  Values)  files.  Fig  1 shows  data 

flow diagram for AD.

Black solid arrows means saving to file and gray dotted – 

reading from file. Particular files stands for:

• Log file – this file gathers all network traffic data 

collected with AD Snort  preprocessor.  Data from 

this file is next used by Profile Generator for net-

work traffic forecasting.

• Profile file – this file stores network profile com-

puted with Profile Generator. This file is generated 

by Profile Generator and used by AD preprocessor 

for detecting anomalies and generating alerts. After 

every passed time period preprocessor reads profile 

file and looks for data corresponding to current pe-

riod. If  value for some counter exceeds minimum 

(MIN) to maximum (MAX) range then alert is gen-

erated. 

• Predicted pattern file – predicted pattern file con-

tains predicted future data for network – in fact this 

is the same file as profile file, but with single value 

for  each counter.  This is necessary for  evaluating 

profile in AD Evaluator script. Structure of pattern 

file is the same as log file.

• Pattern file – this file is created like predicted pat-

tern file, but network traffic profile stored in this 

file is historical data.

• Parameters  file  –  this  file  stores  information  for 

method of profile generation and method parame-

ters values. This file has different structure for ev-

ery algorithm of profile generation.

Structures  of  log  and  profile  files  can  be  found  in  [15]. 

Anomaly Detection have two main modes:

• data acquisition mode – only network traffic statis-

tics are saved into log file. Only log file is created 

in this mode.

• alerting mode – instead of data acquisition there is 

also created profile file and current traffic statistics 

are compared to values stored in profile file. In this 

mode log and profile file are required.

Pattern, predicted pattern and parameters files are always 

optional and they're useful for future research.

Anomaly  Detection  3.0  can  be  downloaded  from 

http://anomalydetection.info [24].  Preprocessor is  available 

as  source  or  RPM  package.  Both  Profile  Generator  and 

Evaluator are available as R scripts – additional R CRAN 

(free) software is required for use R scripts.

II. PREPROCESSOR

The main part of the Anomaly Detection system is a pre-

processor written in C programming language, designed to 

enhance Snort  possibilities  to  monitor,  analyze  and detect 

network  traffic  anomalies  using  NBAD  (Network  Behav-

ioral  Anomaly  Detection)  approach.  The  first  version  of 

Anomaly Detection preprocessor [6] for Snort version 2.4x 

was published in a Master’s Thesis [25] in 2006. Next the 

project has been developed (see e.g. [5] [7] [8] [9] [17]) till 

the current version 3.0 designed for Snort 2.9.x 

The next function of the preprocessor is generating alerts. 

Preprocessor reads a predicted pattern of the network traffic 

(of all parameters) from the ‘profile’ file and generates alert 

when the current value exceeds ‘minimum’ to ‘maximum’ 

range for the current moment (the moment is given by day 

of the week, hour, minute and second corresponding to the 

intervals from the log file) from the profile file.

The profile can be generated ‘manually’  or by a Profile 

Generator using appropriate model, based on historic values 

from the log file. The architecture affords easy implementa-

tion of different statistical models of the traffic and usage of 

different tools (i.e. statistical packets) for building profiles. 

Data from the profile is read in intervals defined by the user, 

there is only one lane read into the structure at a time, this 

gives possibility to dynamically alter the profile file, whose 

forecast length (amount of lines) can by any. In case of fail-

ure to find the correct entry in the profile, anomaly report 

module is  automatically disabled  to  prevent  generation  of 

false positive alerts.

III. PROFILE GENERATOR

The current version of Profile Generator (see e.g. [7] [8] 

[9]) is based on R language / environment (The R Project for 

Statistical Computing)  (see e.g. [10] [11] [12] [13] [14]). R-

project is an free, open source packet for statistical comput-

ing and graphics. In this implementation optional packages 

for R: tseries, quadprog, zoo and getopt are used.

The whole implementation of Profile Generator is divided 

into few parts. First part prepares data from log file for fur-

Fig 1. Anomaly Detection data flow diagram. Source: [15]
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ther calculations and other parts –  depending on the given 

parameters – calculates future network traffic forecasts.

To use all functions of Profile Generator local R-project 

installation must contain listed above additional  packages. 

They can be installed in R with commands:

Profile Generator is controlled with parameters passed for 

script  execution  –  all  script  parameters  are  handled  with 

getopt() function.

Particular  columns  of  specification  matrix  contains  re-

spectively:

• long flag name

• short flag

• parameters arguments

• arguments type

• description

Profile  Generator  actually  implements  five  methods  of 

profile file generation: moving average,  naive method, au-

toregressive  time  series  model,  Holt-Winters  model  and 

Brutlags version of HW model (see e.g. [1] [17]). The value 

of dependent variable is given as follows:

Moving average:

ŷ t=
∑

i=t−k

t−1

y i

k

(1)

Naive method:

ŷ t= y t−T (2)

where T is day or week period

or

ŷ t= y t−1
(3)

Autoregressive time series model:

ŷ t=a
0
+a

1
y t−1

+a
2
y t−2

+ ...+ak y t− k
(4)

Holt-Winters model:

ŷ t=Lt−1
+Pt−1

+St−T
(5)

where:

L is level component given by:

Lt=α( y t−St−T )+(1−α)(Lt−1+Pt−1) (6)

P is trend component given by:

Pt=β(Lt−Lt−1)+(1−β)P t−1
(7)

S is seasonal component given by:

S t=γ( y t−Lt)+(1−γ)S t−T (8)

Brutlag method:

ŷmaxt
=Lt−1

+Pt−1
+St−T+m⋅dt−T (9)

ŷmint
=Lt−1

+Pt−1
+St−T−m⋅d t−T (10)

where:

L , P and S are the same as in Holt-Winters 

model

d is predicted deviation given by:

d t=γ∣yt− ŷ t∣+(1−γ)d t−T (11)

where:

k is number of measurements in time series

t is moment in time

ŷ t is predicted value of variable in moment t

y t is real (measured) value of variable in 

moment t

T is time series period

α is data smoothing factor

β is trend smoothing factor
γ is the seasonal change smoothing factor

m is the scaling factor for Brutlags confidence bands

IV. IMPLEMENTATION OF HOLT-WINTERS MODEL

The Holt-Winters model, called also the triple exponential 

smoothing model, is a well-known adaptive model used to 

modeling time series characterized by trend and seasonality 

(see e.g.  [20], [19] p. 248, [18], [21], [22]). The model is 

sometimes used to modeling and prediction of network traf-

fic (see e.g. [23],[7], [8]).

For computing an Holt-Winters model Profile Generator 

must be launched with parameter '-m HW'. Optional param-

eter '--hw' can be set for defining model periodicity and sub-

set of data used to build model.

Implementation  of  Holt-Winters  prediction  method  in 

Profile  Generator  is  based  on function  HoltWinters() 

from package  stats.  HoltWinters() functions  requires 

time series  data as object  of  class  'ts'  (time-series  object). 

Object 'ts' is created as follows:
ts_obj<-ts(log.data[,column.log], frequ

ency=profile.config.frequency, start=c(a

s.numeric(log.first.date),log.first.samp

le.no))

Function 'ts' gets in this implementation 3 parameters:
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• data – a numeric vector of the observed time-series 

values

• frequency – the number of observations per unit of 

time

• start – the number of observations per unit of time. 

This parameter can be a single number or a vector 

of two integers – because of this in our implemen-

tation  human-readable  date  from  log  file  is  con-

verted into numeric value and second value is num-

ber of sample of first observation in the day.

Next HoltWinters() function computes Holt-Winters 

filtering of a given time series. Function tries to find the op-

timal values of  α  and/or  β  and/or  γ  by mini-

mizing the squared one-step prediction error with optim() 

function.  Start  values  for  L ,  P and  S are  in-

ferred by performing a simple decomposition in trend and 

seasonal component using moving averages –  it is realized 

with decompose() function.

For testing purposes total number of TCP packets from 

one exemplary network was used. Testing data were gath-

ered for few weeks (between January 1st and March 11th). 

Illustration  Fig 2 shows one weekly period (from January 

1st to January 7th) of testing data.

Decompose() function decomposes a time series into 

seasonal, trend and irregular components using moving av-

erages.  For  testing  data  decompose() function  returns 

values with trend,  seasonal and random component.  Fig 3 

shows those decomposed data. 

HoltWinters() function  estimates  HW  model 

smoothing parameters (alpha, beta and gamma), which were 

for testing data as follows:

alpha:  0.8140128

beta :  0 

gamma:  1 

 Fig 4 shows fitted time-series of Holt-Winters model.

Fitted values compared to observed values for given test-

ing data:

Black line stands for observed data and gray line stands 

for fitted model (in most range black line covers gray).

When Holt-Winters model is computed, then future pre-

diction  can  be  calculated  simple  with 

predict.HoltWinters() function.  Predict() 

function takes in this case two arguments:

• HoltWinters object with fitted model parameters

• number of future periods to predict

Function returns a time series of the predicted values for 

given future periods. For testing data values returned from 

predict() function are shown on illustration Fig 6.

Fig 2. One period of testing data.

Fig 3. Decomposed time series.

Fig 5. Holt-Winters fitted to observed comparison.

Fig 4. Fitted Holt-Winters.
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V. BRUTLAG METHOD

Holt-Winters method was used to detect  network traffic 

anomalies  as  described  in  the  article  [1].  In  that  paper, 

the concept of “confidence bands” was introduced. As de-

scribed in the article,  confidence bands measure deviation 

for each time point in the seasonal cycle and this mechanism 

bases on expected seasonal variability.

Illustration  Fig 7 shows computed confidence bands for 

HW time series prediction. Confidence band is computed by 

comparing  last  period  of  collected  network  traffic  values 

with fitted Holt-Winters values for the same period. Subtract 

of real and predicted values is next scaled with γ  esti-

mated  by Holt-Winters function – obtained value is finally 

multiplied by scaling factor. Confidence band width is con-

trolled with '--scale' parameter – above example is computed 

with scale parameter value of '2'. Brutlag proposes sensible 

values of '--scale' parameter are between 2 and 3. Particular 

lines stands for:

• black – observed values of time series

• medium gray – computed prediction of time series 

with Holt-Winters model

• light  gray –  upper  bound  of  Brutlags  confidence 

band

• gray – lower bound of Brutlags confidence band

VI. USAGE OF PROFILE GENERATOR

Profile Generator can be launched like any script in CLI 

(Command Line Interface) of operating system with R soft-

ware and necessary packages installed. Scripts available at 

[24] were tested on few GNU / Linux distributions: Fedora, 

Debian, and Ubuntu. Parameters for Profile Generator script 

are validated against bellow BNF notation grammar:
ad_profilegenerator.r <mode> 
<mode> ::= <m_help> | <m_generate> 
<m_help> ::= -(-help|h) 
<m_generate> ::=  <log>  <profile>  <evaluator> 

<pattern>  <model_param>  <method>  <ahead>  <scale> 
<verbose>  

<log> ::= -(-log|l) <<log_file_path>> 
<profile> ::= -(-profile|p) 

<<profile_file_path>> | <<empty>> 
<evaluator> ::= -(-evaluator|e) 

<<predicted_pattern_file_path>> | <<empty>> 
<pattern> ::= -(-pattern|P) 

<<pattern_file_path>> | <<empty>> 
<model_param> ::= -(-save|s) 

<<model_parameters_file_path>> | <<empty>> 
<verbose> ::= -(-verbose|v) | <<empty>> 
<ahead> ::= -(-ahead|a)  <ahead_val>  | 

<<empty>> 
<ahead_val> ::= WEEK|MONTH|<number> 
<scale> ::= -(-scale|d) <<scale_parameter>> | 

<<empty>> 
<method> ::= -(-method|m)  <pred_method>  | 

<<empty>> 
<pred_method> ::=  AVG  <avg_param>  |  NAIVE 

<naive_param> | AR <ar_param> | HW <hw_param> | 
BRUTLAG <brutlag_param> 

<avg_param> ::= --avg <avg_value> | <<empty>> 
<naive_param> ::=  --naive  <naive_value>  | 

<<empty>> 
<ar_param> ::= --ar <ar_value> | <<empty>> 
<hw_param> ::= --hw <hw_value> | <<empty>> 
<brutlag_param>::=  --brutlag  <brutlag_value>  | 

<<empty>> 
<avg_value> ::= (LAST|DAILY|WEEKLY),<number> 
<naive_value>::= (LAST|DAILY|WEEKLY) 
<ar_value> ::= (DAILY|WEEKLY),(YW|BURG|MLE|OLE) 
<hw_value> ::= (DAILY|WEEKLY) 
<brutlag_value> ::= (DAILY|WEEKLY) 
<number> ::= <number><number>|0|1|2|3|4|5|6|7|8|9

Sense of each parameter impact is clarified under '--help' pa-

rameter. At least one of <profile>,<evaluator>,<pattern>, or 

<model_param> parameter  should be set  for  any sense of 

running script.

For  example  the  simplest  naïve  prediction  for  real  data 

stored in 'log.csv' file with saving profile data to 'profile.csv' 

file can be launched with: 
./ad_profilegenerator.r  -l  log.csv  -p 

profile.csv -m NAIVE --naive LAST

Prediction  for  one  week for  the same file  based  on  Holt-

Winters algorithm with daily periodicity and with 'verbose' 

mode can be calculated with:
./ad_profilegenerator.r  -l  log.csv  -p 

profile.csv -m HW --hw DAILY –ahead WEEK 

-v

VII. PROFILE EVALUATOR

Profile Evaluator is the third part of Anomaly Detection 

project. This script is designed for fast evaluation of profile 

file compared to log file. This script calculates simple statis-

Fig 6. Holt-Winters prediction.

Fig 7. Brutlags confidence bands.
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tic 
MAE

M
for two files. Main application of Evaluator is 

to check fit between pattern and current logged values (with 

log and pattern file) or between model and historical  data 

(log and predicted pattern file).

MAE means Mean Absolute Error and M means Mean.

MAE=
1

n
∑
t=1

n

∣y t− ŷ t∣=
1

n
∑
t=1

n

∣et∣ (12)

M=
1

n
∑
t=1

n

yt
(13)

where:

y t is real (current) value of counter in moment t

ŷ t is predicted (estimated) value of counter in 

moment t

e t is prediction error in moment t

VIII. USAGE OF PROFILE EVALUATOR

Profile Evaluator script is launched likewise Profile Gen-

erator  script.  Profile  Evaluator  script  parameters  grammar 

looks as follows:
ad_evaluator.r <mode> 
<mode> ::= <m_help> | <m_evaluate> 
<m_help> ::= -(-help|h) 
<m_evaluate> ::=  <log>  <pattern>  <save>  <skip> 

<verbose> 
<log>  ::= -(-log|l) <<log_file_path>> 
<pattern>::= -(-pattern|p) <<pattern_file_path>> 
<save> ::= -(-save|s) <<save_maem_file_path>> 

<<empty>> 
<skip> ::= -(-skip|S) <number> | <<empty>> 
<verbose> ::= -(-verbose|v) | <<empty>>

Evaluation  of  pattern stored  in  'pattern.csv'  file  compared  with  log  data  

stored in 'log.csv' file can be done with:

./ad_evaluator.r  -l  log.csv  -p 

pattern.csv --verbose

IX. CONCLUSION

At the moment the most needed improvement to out pro-

gram is to use a database for logging network traffic param-

eters instead of flat comma separated values file. For short 

logging time interval log file would grow rapidly and in the 

course of time access to log data will raise. Usage of data-

base would have one other more major advantage – obtain-

ing a needed sub-collection of log data will be easier and 

faster. Moreover by not using file for log data there should 

be lower memory and disk usage consumption – actually all 

data from log file are loaded into memory during forecasts 

calculations.  With simple SQL queries  there  would  be no 

need to do this – only data for current counter (time series) 

are necessary. 

Second awaited development is use of NetFlow / IPFIX 

standard in storing and calculating network data. By this it 

would be simple to collect network data from many observa-

tion points. Afterwards device which support IPFIX proto-

col can filter and aggregate data and send it to Anomaly De-

tection server for further analysis. Implementation of IPFIX 

protocol would be good starting point for further improve-

ments such as flow or route analysis (see e.g. [26] [27]).
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