CBMS Conference on Fast Direct Solvers

Dartmouth College

June 23 – June 27, 2014

Lecture 9: Direct Solvers for Integral Equations

Gunnar Martinsson The University of Colorado at Boulder

Research support by:

In this lecture, we develop a direct solver for an integral equations such as

(1)
$$\alpha q(\mathbf{x}) + \int_{\Gamma} k(\mathbf{x}, \mathbf{y}) q(\mathbf{y}) dS(\mathbf{y}) = f(\mathbf{x}), \quad \mathbf{x} \in \Gamma,$$

where Γ is a contour in \mathbb{R}^2 or a surface in \mathbb{R}^3 . We'll do 2D first, and will then generalize.

Upon Nyström discretization (see Lecture 7), the BIE (1) turns into the linear system

$$\begin{array}{lll} \mathbf{A} & \mathbf{q} & = & \mathbf{f}, \\ \mathbf{N} \times \mathbf{N} & \mathbf{N} \times \mathbf{1} & \mathbf{N} \times \mathbf{1} \end{array}$$

where **A** is a dense $N \times N$ matrix.

Standard approach: Use an iterative solver (e.g. GMRES, CG), combined with an O(N) method for evaluating $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ such as the Fast Multipole Method (FMM) or panel clustering. When convergence is fast, optimal O(N) complexity results.

New approach: We seek to construct a direct solver which in a single sweep constructs a data-sparse representation of an operator **B** such that $\mathbf{B} \approx \mathbf{A}^{-1}$. Why?

- Can solve problems for which iterative methods converge slowly or not at all.
- Very fast when solving a sequence of equations with the same operator.
- Well suited for modern computers (low communication, memory and flops are cheap).

Key observation: The off-diagonal blocks of **A** tend to have low numerical rank. (Note that for high-frequency problems, other structure in **A** is used.)

The direct solvers are (like the FMM, panel clustering, \mathcal{H} -matrices, ...) based on hierarchical partitioning of the physical domain.

Example: Consider a BIE defined on a contour $\Gamma \subset \mathbb{R}^2$.

Let $\Gamma = \Gamma_1$ denote the root of a tree.

Partition Γ_1 into two pieces $\Gamma_1 = \Gamma_2 \cup \Gamma_3$.

Further partition $\Gamma_2 = \Gamma_4 \cup \Gamma_5$ and $\Gamma_3 = \Gamma_6 \cup \Gamma_7$.

The tree partitioning corresponds to a partitioning of the index vector I = [1, 2, 3, ..., N].

For instance, if N = 400, and we use a tree with 4 levels, and split the index vector by halves each time, we get:

Note: This simplistic illustration would be accurate for a simple curve. For complicated curves, for surfaces/volumes, etc, the index vectors are not contiguous. The key is to subdivide based on locations $\{\mathbf{x}_i\}_{i=1}^N$ in physical space.

Claim: The matrix **A** resulting upon discretization of a BIE on a curve can often be represented as an "S-matrix" with low or moderate ranks.

Example 1: Laplace problem discretized with Kolm-Rokhlin quadrature, n = 400.

Ranks of off-diagonal blocks.

Example 1: Laplace problem discretized with Kolm-Rokhlin quadrature, n = 400.

(top right quadrant of A)

Example 2: Helmholtz problem discretized with Kolm-Rokhlin quadrature, n = 400.

Ranks of off-diagonal blocks.

Example 2: Helmholtz problem discretized with Kolm-Rokhlin quadrature, n = 400.

(the weights might be off...)

Singular values of A_{2,3} (top right quadrant of A)

Example 3: *medium-frequency* Helmholtz, Kolm-Rokhlin quadrature, *n* = 400.

Ranks of off-diagonal blocks.

Example 3: *medium-frequency* Helmholtz, Kolm-Rokhlin quadrature, *n* = 400.

(the weights might be off...)

Singular values of A_{2,3} (top right quadrant of A)

The "simple" *S*-matrix format can be used for to build direct solvers for BIEs, but we will use a more efficient format called the *Hierarchically Block Separable (HBS)* format (sometimes called "Hierarchically Semi Separable (HSS)" format).

First we introduce *block separable* matrices. Consider a linear system

 $\mathbf{A}\mathbf{q}=\mathbf{f},$

where **A** is a "block-separable" matrix consisting of $p \times p$ blocks of size $n \times n$:

$$\mathbf{A} = \begin{bmatrix} \mathbf{D}_{4} & \mathbf{A}_{45} & \mathbf{A}_{46} & \mathbf{A}_{47} \\ \mathbf{A}_{54} & \mathbf{D}_{5} & \mathbf{A}_{56} & \mathbf{A}_{57} \\ \mathbf{A}_{64} & \mathbf{A}_{65} & \mathbf{D}_{6} & \mathbf{A}_{67} \\ \mathbf{A}_{74} & \mathbf{A}_{75} & \mathbf{A}_{76} & \mathbf{D}_{7} \end{bmatrix} .$$
(Shown for $p = 4$.)

Core assumption: Each off-diagonal block A_{ij} admits the factorization

$$egin{array}{rcl} \mathbf{A}_{ij} &= \mathbf{U}_i & ilde{\mathbf{A}}_{ij} & \mathbf{V}_j^* \ n imes n & n imes k & k imes k & k imes n \end{array}$$

where the rank k is significantly smaller than the block size n.

The critical part of the assumption is that all off-diagonal blocks in the *i*'th row use the same basis matrices \mathbf{U}_i for their column spaces (and analogously all blocks in the *j*'th column use the same basis matrices \mathbf{V}_i for their row spaces).

What is the role of the basis matrices U_{τ} and V_{τ} ?

$$\text{Recall our toy example: } \mathbf{A} = \begin{bmatrix} \mathbf{D}_4 & \mathbf{U}_4 \,\tilde{\mathbf{A}}_{45} \,\mathbf{V}_5^* & \mathbf{U}_4 \,\tilde{\mathbf{A}}_{46} \,\mathbf{V}_6^* & \mathbf{U}_4 \,\tilde{\mathbf{A}}_{47} \,\mathbf{V}_7^* \\ \mathbf{U}_5 \,\tilde{\mathbf{A}}_{54} \,\mathbf{V}_4^* & \mathbf{D}_5 & \mathbf{U}_5 \,\tilde{\mathbf{A}}_{56} \,\mathbf{V}_6^* & \mathbf{U}_5 \,\tilde{\mathbf{A}}_{57} \,\mathbf{V}_7^* \\ \mathbf{U}_6 \,\tilde{\mathbf{A}}_{64} \,\mathbf{V}_4^* & \mathbf{U}_6 \,\tilde{\mathbf{A}}_{65} \,\mathbf{V}_5^* & \mathbf{D}_6 & \mathbf{U}_6 \,\tilde{\mathbf{A}}_{67} \,\mathbf{V}_7^* \\ \mathbf{U}_7 \,\tilde{\mathbf{A}}_{74} \,\mathbf{V}_4^* & \mathbf{U}_7 \,\tilde{\mathbf{A}}_{75} \,\mathbf{V}_5^* & \mathbf{U}_7 \,\tilde{\mathbf{A}}_{76} \,\mathbf{V}_6^* & \mathbf{D}_7 \end{bmatrix}$$

We see that the columns of U_4 must span the column space of the matrix $A(I_4, I_4^c)$ where I_4 is the index vector for the first block and $I_4^c = I \setminus I_4$.

The matrix A

What is the role of the basis matrices U_{τ} and V_{τ} ?

$$\text{Recall our toy example: } \mathbf{A} = \begin{bmatrix} \mathbf{D}_{4} & \mathbf{U}_{4} \,\tilde{\mathbf{A}}_{45} \,\mathbf{V}_{5}^{*} & \mathbf{U}_{4} \,\tilde{\mathbf{A}}_{46} \,\mathbf{V}_{6}^{*} & \mathbf{U}_{4} \,\tilde{\mathbf{A}}_{47} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \,\tilde{\mathbf{A}}_{54} \,\mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \,\tilde{\mathbf{A}}_{56} \,\mathbf{V}_{6}^{*} & \mathbf{U}_{5} \,\tilde{\mathbf{A}}_{57} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \,\tilde{\mathbf{A}}_{64} \,\mathbf{V}_{4}^{*} & \mathbf{U}_{6} \,\tilde{\mathbf{A}}_{65} \,\mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \,\tilde{\mathbf{A}}_{67} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \,\tilde{\mathbf{A}}_{74} \,\mathbf{V}_{4}^{*} & \mathbf{U}_{7} \,\tilde{\mathbf{A}}_{75} \,\mathbf{V}_{5}^{*} & \mathbf{U}_{7} \,\tilde{\mathbf{A}}_{76} \,\mathbf{V}_{6}^{*} & \mathbf{D}_{7} \end{bmatrix}$$

We see that the columns of U_5 must span the column space of the matrix $A(I_5, I_5^c)$ where I_5 is the index vector for the first block and $I_5^c = I \setminus I_5$.

The matrix A

$$\text{Recall } \mathbf{A} = \begin{bmatrix} \mathbf{D}_{4} & \mathbf{U}_{4} \, \tilde{\mathbf{A}}_{45} \, \mathbf{V}_{5}^{*} & \mathbf{U}_{4} \, \tilde{\mathbf{A}}_{46} \, \mathbf{V}_{6}^{*} & \mathbf{U}_{4} \, \tilde{\mathbf{A}}_{47} \, \mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \, \tilde{\mathbf{A}}_{54} \, \mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \, \tilde{\mathbf{A}}_{56} \, \mathbf{V}_{6}^{*} & \mathbf{U}_{5} \, \tilde{\mathbf{A}}_{57} \, \mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \, \tilde{\mathbf{A}}_{64} \, \mathbf{V}_{4}^{*} & \mathbf{U}_{6} \, \tilde{\mathbf{A}}_{65} \, \mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \, \tilde{\mathbf{A}}_{67} \, \mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \, \tilde{\mathbf{A}}_{74} \, \mathbf{V}_{4}^{*} & \mathbf{U}_{7} \, \tilde{\mathbf{A}}_{75} \, \mathbf{V}_{5}^{*} & \mathbf{U}_{7} \, \tilde{\mathbf{A}}_{76} \, \mathbf{V}_{6}^{*} & \mathbf{D}_{7} \end{bmatrix}$$

Then **A** admits the factorization:

$$\mathbf{A} = \underbrace{\begin{bmatrix} \mathbf{U}_{4} & & \\ & \mathbf{U}_{5} & \\ & & \mathbf{U}_{6} & \\ & & & \mathbf{U}_{7} \end{bmatrix}}_{=\mathbf{U}} \underbrace{\begin{bmatrix} \mathbf{0} & \tilde{\mathbf{A}}_{45} & \tilde{\mathbf{A}}_{46} & \tilde{\mathbf{A}}_{47} \\ & \tilde{\mathbf{A}}_{54} & \mathbf{0} & \tilde{\mathbf{A}}_{56} & \tilde{\mathbf{A}}_{57} \\ & \tilde{\mathbf{A}}_{64} & \tilde{\mathbf{A}}_{65} & \mathbf{0} & \tilde{\mathbf{A}}_{67} \\ & \tilde{\mathbf{A}}_{74} & \tilde{\mathbf{A}}_{75} & \tilde{\mathbf{A}}_{76} & \mathbf{0} \end{bmatrix}}_{=\mathbf{X}} \begin{bmatrix} \mathbf{V}_{4}^{*} & & & \\ & \mathbf{V}_{5}^{*} & & \\ & & \mathbf{V}_{6}^{*} & \\ & & \mathbf{V}_{7}^{*} \end{bmatrix}} + \underbrace{\begin{bmatrix} \mathbf{D}_{4} & & & \\ & \mathbf{D}_{5} & & \\ & & \mathbf{D}_{6} & \\ & & & \mathbf{D}_{7} \end{bmatrix}}_{=\mathbf{D}}$$

.

or

$$A = U \tilde{A} V^* + D,$$

$$pn \times pn pn \times pk pk \times pk pk \times pn pn \times pn$$

Lemma: [Variation of Woodbury] If an $N \times N$ matrix **A** admits the factorization

where (provided all intermediate matrices are invertible)

 $\hat{\mathbf{D}} = (\mathbf{V}^* \, \mathbf{D}^{-1} \, \mathbf{U})^{-1}, \quad \mathbf{E} = \mathbf{D}^{-1} \, \mathbf{U} \, \hat{\mathbf{D}}, \quad \mathbf{F} = (\hat{\mathbf{D}} \, \mathbf{V}^* \, \mathbf{D}^{-1})^*, \quad \mathbf{G} = \mathbf{D}^{-1} - \mathbf{D}^{-1} \, \mathbf{U} \, \hat{\mathbf{D}} \, \mathbf{V}^* \, \mathbf{D}^{-1}.$

Note: All matrices set in blue are block diagonal.

then

Classical Woodbury: $(\mathbf{D} + \mathbf{U}\tilde{\mathbf{A}}\mathbf{V}^*)^{-1} = \mathbf{D}^{-1} - \mathbf{D}^{-1}\mathbf{U}(\tilde{\mathbf{A}} + \mathbf{V}^*\mathbf{D}^{-1}\mathbf{U})^{-1}\mathbf{V}^*\mathbf{D}^{-1}$.

Derivation of "our" Woodbury: We consider the linear system

$$\begin{bmatrix} \mathbf{D}_{4} & \mathbf{U}_{4} \,\tilde{\mathbf{A}}_{45} \,\mathbf{V}_{5}^{*} \,\,\mathbf{U}_{4} \,\tilde{\mathbf{A}}_{46} \,\mathbf{V}_{6}^{*} \,\,\mathbf{U}_{4} \,\tilde{\mathbf{A}}_{47} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \,\tilde{\mathbf{A}}_{54} \,\mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \,\tilde{\mathbf{A}}_{56} \,\mathbf{V}_{6}^{*} \,\,\mathbf{U}_{5} \,\tilde{\mathbf{A}}_{57} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \,\tilde{\mathbf{A}}_{64} \,\mathbf{V}_{4}^{*} \,\,\mathbf{U}_{6} \,\tilde{\mathbf{A}}_{65} \,\mathbf{V}_{5}^{*} \,\,\mathbf{D}_{6} \,\,\mathbf{U}_{6} \,\,\tilde{\mathbf{A}}_{67} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \,\,\tilde{\mathbf{A}}_{74} \,\mathbf{V}_{4}^{*} \,\,\mathbf{U}_{7} \,\,\tilde{\mathbf{A}}_{75} \,\mathbf{V}_{5}^{*} \,\,\mathbf{U}_{7} \,\,\tilde{\mathbf{A}}_{76} \,\mathbf{V}_{6}^{*} \,\,\mathbf{D}_{7} \end{bmatrix} \begin{bmatrix} \mathbf{q}_{4} \\ \mathbf{q}_{5} \\ \mathbf{q}_{6} \\ \mathbf{q}_{6} \\ \mathbf{q}_{7} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{4} \\ \mathbf{f}_{5} \\ \mathbf{q}_{6} \\ \mathbf{q}_{7} \end{bmatrix}$$

Introduce *reduced variables* $\tilde{\mathbf{q}}_i = \mathbf{V}_i^* \mathbf{q}_i$.

The system $\sum_{j} \mathbf{A}_{ij} \mathbf{q}_{j} = \mathbf{f}_{i}$ then takes the form

D ₄	0	0	0	0	$\textbf{U}_{4}\tilde{\textbf{A}}_{45}$	$\textbf{U}_{4}\tilde{\textbf{A}}_{46}$	$\mathbf{U}_4 \tilde{\mathbf{A}}_{47}$	$ \left[\mathbf{q}_4 \right]$	$\begin{bmatrix} \mathbf{f}_4 \end{bmatrix}$
0	\mathbf{D}_5	0	0	$\mathbf{U}_5 \tilde{\mathbf{A}}_{54}$	0	$\textbf{U}_{5}\tilde{\textbf{A}}_{56}$	$\mathbf{U}_5 \tilde{\mathbf{A}}_{57}$	q ₅	f 5
0	0	D ₆	0	$\mathbf{U}_{6}\tilde{\mathbf{A}}_{64}$	$\mathbf{U}_{6}\tilde{\mathbf{A}}_{65}$	0	$\mathbf{U}_{6}\tilde{\mathbf{A}}_{67}$	q ₆	f ₆
0	0	0	\mathbf{D}_7	$\mathbf{U}_7 \tilde{\mathbf{A}}_{74}$	$\boldsymbol{U}_{7}\tilde{\boldsymbol{A}}_{75}$	$\boldsymbol{U}_{7}\tilde{\boldsymbol{A}}_{76}$	0	q ₇	 f ₇
$-V_4^*$	0	0	0		0	0	0	q ₄	 0
0	$-V_5^*$	0	0	0	I	0	0	q ₅	0
0	0	$-\mathbf{V}_{6}^{*}$	0	0	0	I.	0	q ₆	0
0	0	0	$-V_{7}^{*}$	0	0	0	I	$ $ $\tilde{\mathbf{q}}_7$	0

Now form the Schur complement to eliminate the \mathbf{q}_i 's.

After eliminating the "fine-scale" variables \mathbf{q}_i , we obtain

$$\begin{bmatrix} I & V_4^* \tilde{A}_{44}^{-1} U_4 \tilde{A}_{45} & V_4^* \tilde{A}_{44}^{-1} U_4 \tilde{A}_{46} & V_4^* \tilde{A}_{44}^{-1} U_4 \tilde{A}_{47} \\ V_5^* \tilde{A}_{55}^{-1} U_5 \tilde{A}_{54} & I & V_5^* \tilde{A}_{55}^{-1} U_5 \tilde{A}_{56} & V_5^* \tilde{A}_{55}^{-1} U_5 \tilde{A}_{57} \\ V_6^* \tilde{A}_{66}^{-1} U_6 \tilde{A}_{61} & V_6^* \tilde{A}_{66}^{-1} U_6 \tilde{A}_{65} & I & V_6^* \tilde{A}_{66}^{-1} U_6 \tilde{A}_{67} \\ V_7^* \tilde{A}_{77}^{-1} U_7 \tilde{A}_{74} & V_7^* \tilde{A}_{77}^{-1} U_7 \tilde{A}_{75} & V_7^* \tilde{A}_{77}^{-1} U_7 \tilde{A}_{76} & I \end{bmatrix} \begin{bmatrix} \tilde{q}_4 \\ \tilde{q}_5 \\ \tilde{q}_6 \\ \tilde{q}_7 \end{bmatrix} = \begin{bmatrix} V_4^* D_4^{-1} f_4 \\ V_5^* D_5^{-1} f_5 \\ V_6^* D_6^{-1} f_6 \\ V_7^* D_7^{-1} f_7 \end{bmatrix}$$

We set

$$\tilde{\mathbf{A}}_{ii} = \left(\mathbf{V}_i^* \, \mathbf{D}_{ii}^{-1} \, \mathbf{U}_i\right)^{-1},$$

and multiply line *i* by $\tilde{\mathbf{A}}_{ii}$ to obtain the reduced system

$$\begin{bmatrix} \tilde{A}_{44} & \tilde{A}_{45} & \tilde{A}_{46} & \tilde{A}_{47} \\ \tilde{A}_{54} & \tilde{A}_{55} & \tilde{A}_{56} & \tilde{A}_{57} \\ \tilde{A}_{64} & \tilde{A}_{65} & \tilde{A}_{66} & \tilde{A}_{67} \\ \tilde{A}_{74} & \tilde{A}_{75} & \tilde{A}_{76} & \tilde{A}_{77} \end{bmatrix} \begin{bmatrix} \tilde{q}_4 \\ \tilde{q}_5 \\ \tilde{q}_6 \\ \tilde{q}_7 \end{bmatrix} = \begin{bmatrix} \tilde{f}_4 \\ \tilde{f}_5 \\ \tilde{f}_6 \\ \tilde{q}_7 \end{bmatrix}$$

where

$$\tilde{\mathbf{f}}_i = \tilde{\mathbf{A}}_{ii} \, \mathbf{V}_i^* \, \mathbf{D}_{ii}^{-1} \, \mathbf{f}_i.$$

Before compression, we have a $pn \times pn$ linear system

$$\sum_{j=1}^{p} \mathbf{A}_{ij} \mathbf{q}_j = \mathbf{f}_i, \quad i = 1, 2, \dots, p.$$

The original matrix

After compression, we have a $pk \times pk$ linear system

$$\mathbf{D}_{ii}\widetilde{\mathbf{q}}_i + \sum_{i \neq j} \widetilde{\mathbf{A}}_{ij}\widetilde{\mathbf{q}}_j = \widetilde{\mathbf{f}}_i, \quad i = 1, 2, \dots, p.$$

Recall that *k* is the ε -rank of $\mathbf{A}_{i,j}$ for $i \neq j$. The point is that k < n.

The reduced matrix

The compression algorithm needs to execute the following steps:

- Compute \mathbf{U}_i , \mathbf{V}_i , $\tilde{\mathbf{A}}_{ij}$ so that $\mathbf{A}_{ij} = \mathbf{U}_i \, \tilde{\mathbf{A}}_{ij} \, \mathbf{V}_j^*$.
- Compute the new diagonal matrices $\hat{\mathbf{D}}_{ii} = (\mathbf{V}_i^* \mathbf{A}_{ii}^{-1} \mathbf{U}_i)^{-1}$.
- Compute the new loads $\tilde{\mathbf{q}}_i = \hat{\mathbf{D}}_{ii} \mathbf{V}_i^* \mathbf{A}_{ii}^{-1} \mathbf{q}_i$.

For the algorithm to be efficient, it has to be able to carry out these steps *locally*. To achieve this, we use interpolative representations, then $\tilde{A}_{i,j} = A(\tilde{l}_i, \tilde{l}_j)$. We have built a scheme for reducing a system of size $pn \times pn$ to one of size $pk \times pk$.

The computational gain is $(k/n)^3$. Good, but not earth-shattering.

Question: How do we get to O(N)?

Answer: It turns out that the reduced matrix is itself compressible. Recurse!

A globally O(N) algorithm is obtained by hierarchically repeating the process:

Formally, one can view this as a telescoping factorization of **A**:

$$\mathbf{A} = \mathbf{U}^{(3)} \big(\mathbf{U}^{(2)} \big(\mathbf{U}^{(1)} \, \mathbf{B}^{(0)} \, (\mathbf{V}^{(1)})^* + \mathbf{B}^{(1)} \big) (\mathbf{V}^{(2)})^* + \mathbf{B}^{(2)} \big) (\mathbf{V}^{(3)})^* + \mathbf{D}^{(3)}$$

Expressed pictorially, the factorization takes the form

The *inverse of A* then takes the form

$$\mathbf{A}^{-1} = \mathbf{E}^{(3)} \big(\mathbf{E}^{(2)} \big(\mathbf{E}^{(1)} \, \hat{\mathbf{D}}^{(0)} \, (\mathbf{F}^{(1)})^* + \hat{\mathbf{D}}^{(1)} \big) (\mathbf{F}^{(2)})^* + \hat{\mathbf{D}}^{(2)} \big) (\mathbf{V}^{(3)})^* + \hat{\mathbf{D}}^{(3)}$$

All matrices are block diagonal except $\hat{\mathbf{D}}^{(0)}$, which is small.

Formal definition of an HBS matrix

Let us first recall the concept of a binary tree on the index vector:

Let **A** be an $N \times N$ matrix.

Suppose T is a binary tree on the index vector I = [1, 2, 3, ..., N].

For a node τ in the tree, let I_{τ} denote the corresponding index vector.

For nodes σ and τ on the same level, set $\mathbf{A}_{\sigma,\tau} = \mathbf{A}(I_{\sigma}, I_{\tau})$.

Formal definition of an HBS matrix

Suppose \mathcal{T} is a binary tree.

For a node τ in the tree, let I_{τ} denote the corresponding index vector.

For leaves σ and τ , set $A_{\sigma,\tau} = A(I_{\sigma}, I_{\tau})$ and suppose that all off-diagonal blocks satisfy

$$\mathbf{A}_{\sigma,\tau} = \mathbf{U}_{\sigma} \quad \tilde{\mathbf{A}}_{\sigma,\tau} \quad \mathbf{V}_{\tau}^* \qquad \sigma \neq \tau$$
$$n \times n \qquad n \times k \quad k \times k \quad k \times n$$

For non-leaves σ and τ , let $\{\sigma_1, \sigma_2\}$ denote the children of σ , and let $\{\tau_1, \tau_2\}$ denote the children of τ . Set

$$\mathbf{A}_{\sigma,\tau} = \begin{bmatrix} \tilde{\mathbf{A}}_{\sigma_1,\tau_1} & \tilde{\mathbf{A}}_{\sigma_1,\tau_2} \\ \tilde{\mathbf{A}}_{\sigma_2,\tau_1} & \tilde{\mathbf{A}}_{\sigma_2,\tau_2} \end{bmatrix}$$

Then suppose that the off-diagonal blocks satisfy

$$\begin{array}{lll} \mathbf{A}_{\sigma,\tau} &= & \mathbf{U}_{\sigma} & \tilde{\mathbf{A}}_{\sigma,\tau} & \mathbf{V}_{\tau}^{*} & \sigma \neq \tau \\ \mathbf{2}k \times \mathbf{2}k & & \mathbf{2}k \times k & k \times k & k \times \mathbf{2}k \end{array}$$

An HBS matrix **A** associated with a tree T is specified by the following factors:

	Name:	Size:	Function:
For each leaf	$D_{ au}$	$n \times n$	The diagonal block $\mathbf{A}(I_{\tau}, I_{\tau})$.
node $ au$:	$oldsymbol{U}_{ au}$	n imes k	Basis for the columns in the blocks in row $ au$.
	$oldsymbol{V}_{ au}$	n imes k	Basis for the rows in the blocks in column $ au$.
For each parent	${f B}_{ au}$	$2k \times 2k$	Interactions between the children of τ .
node $ au$:	$oldsymbol{U}_{ au}$	$2k \times k$	Basis for the columns in the (reduced) blocks in row $ au$.
	$ig oldsymbol{V}_{ au}$	$2k \times k$	Basis for the rows in the (reduced) blocks in column $ au$.

INVERSION OF AN HBS MATRIX

loop over all levels, finer to coarser, $\ell = L, L - 1, ..., 1$

loop over all boxes τ on level ℓ ,

if τ is a leaf node

$$\bm{X}=\bm{D}_{\tau}$$

else

Let σ_1 and σ_2 denote the children of τ . $\mathbf{X} = \begin{bmatrix} \mathbf{D}_{\sigma_1} & \mathbf{B}_{\sigma_1,\sigma_2} \\ \mathbf{B}_{\sigma_2,\sigma_1} & \mathbf{D}_{\sigma_2} \end{bmatrix}$ end if $\mathbf{D}_{ au} = \left(\mathbf{V}_{ au}^* \, \mathbf{X}^{-1} \, \mathbf{U}_{ au}
ight)^{-1}.$ $\mathbf{E}_{\tau} = \mathbf{X}^{-1} \mathbf{U}_{\tau} \mathbf{D}_{\tau}.$ $\mathbf{F}_{ au}^{*}=\mathbf{D}_{ au}\,\mathbf{V}_{ au}^{*}\,\mathbf{X}^{-1}$, $\mathbf{G}_{\tau} = \mathbf{X}^{-1} - \mathbf{X}^{-1} \, \mathbf{U}_{\tau} \, \mathbf{D}_{\tau} \, \mathbf{V}_{\tau}^* \, \mathbf{X}^{-1}.$ end loop end loop 1

$$\textbf{G}_1 = \begin{bmatrix} \textbf{D}_2 & \textbf{B}_{2,3} \\ \textbf{B}_{3,2} & \textbf{D}_3 \end{bmatrix}^-$$

```
function EFG = OMNI_invert_HBS_nsym(NODES)
nboxes = size(NODES,2);
EFG = cell(3, nboxes);
ATD_VEC = cell(1, nboxes);
% Loop over all nodes, from finest to coarser.
for ibox = nboxes:(-1):2
  % Assemble the diagonal matrix.
  if (NODES{5,ibox}==0) % ibox is a leaf.
     AD = NODES{40, ibox};
  elseif (NODES{5,ibox}==2) % ibox has precisely two children
     ison1 = NODES{4, ibox}(1);
     ison2 = NODES{4, ibox}(2);
     AD = [ATD_VEC{ison1},NODES{46,ison1};NODES{46,ison2},ATD_VEC{ison2}];
  end
  % Extract the matrices U and V.
  U = NODES{38, ibox};
  V = NODES{39, ibox};
  % Construct the various projection maps.
  ADinv = inv(AD);
  ATD = inv(V'*ADinv*U);
  ATD_VEC{ibox} = ATD;
  EFG{1,ibox} = ADinv*U*ATD;
  EFG{2,ibox} = ATD*(V')*ADinv;
  EFG{3,ibox} = ADinv - EFG{1,ibox}*(V'*ADinv);
end
% Assemble the "top matrix" and invert it:
AT = [ATD_VEC{2}, NODES{46, 2}; NODES{46, 3}, ATD_VEC{3}];
EFG{3,1} = inv(AT);
return
```

Now let us return to the question of how to compute a block-separable factorization of a matrix **A**, where the low-rank factorization is based on an *interpolative decomposition*.

Example: Consider an $N \times N$ matrix **A**, and a partitioning of the index vector

$$I = \{1, 2, 3, ..., N\} = I_4 \cup I_5 \cup I_6 \cup I_7.$$

We then seek to determine matrices $\{\mathbf{U}_{\tau}, \mathbf{V}_{\tau}\}_{\tau=4}^7$ and index vectors $\tilde{I}_{\kappa} \subset I_{\kappa}$ such that

$$\mathbf{A}(\mathbf{I}_{\tau},\mathbf{I}_{\sigma}) = \mathbf{U}_{\tau} \, \tilde{\mathbf{A}}_{\tau,\sigma} \, \mathbf{V}_{\sigma}^{*}, \qquad \sigma \neq \tau,$$

where $\tilde{\mathbf{A}}_{\tau,\sigma} = \mathbf{A}(\tilde{\mathbf{I}}_{\tau}, \tilde{\mathbf{I}}_{\sigma})$ is a submatrix of $\mathbf{A}_{\tau,\sigma}$.

In other words, we seek a factorization

What is the role of the basis matrices U_{τ} and V_{τ} ?

$$\text{Recall our toy example: } \mathbf{A} = \begin{bmatrix} \mathbf{D}_4 & \mathbf{U}_4 \,\tilde{\mathbf{A}}_{45} \,\mathbf{V}_5^* & \mathbf{U}_4 \,\tilde{\mathbf{A}}_{46} \,\mathbf{V}_6^* & \mathbf{U}_4 \,\tilde{\mathbf{A}}_{47} \,\mathbf{V}_7^* \\ \mathbf{U}_5 \,\tilde{\mathbf{A}}_{54} \,\mathbf{V}_4^* & \mathbf{D}_5 & \mathbf{U}_5 \,\tilde{\mathbf{A}}_{56} \,\mathbf{V}_6^* & \mathbf{U}_5 \,\tilde{\mathbf{A}}_{57} \,\mathbf{V}_7^* \\ \mathbf{U}_6 \,\tilde{\mathbf{A}}_{64} \,\mathbf{V}_4^* & \mathbf{U}_6 \,\tilde{\mathbf{A}}_{65} \,\mathbf{V}_5^* & \mathbf{D}_6 & \mathbf{U}_6 \,\tilde{\mathbf{A}}_{67} \,\mathbf{V}_7^* \\ \mathbf{U}_7 \,\tilde{\mathbf{A}}_{74} \,\mathbf{V}_4^* & \mathbf{U}_7 \,\tilde{\mathbf{A}}_{75} \,\mathbf{V}_5^* & \mathbf{U}_7 \,\tilde{\mathbf{A}}_{76} \,\mathbf{V}_6^* & \mathbf{D}_7 \end{bmatrix}$$

We see that the columns of U_4 must span the column space of the matrix $A(I_4, I_4^c)$ where I_4 is the index vector for the first block and $I_4^c = I \setminus I_4$.

The matrix A

What is the role of the basis matrices U_{τ} and V_{τ} ?

$$\text{Recall our toy example: } \mathbf{A} = \begin{bmatrix} \mathbf{D}_{4} & \mathbf{U}_{4} \,\tilde{\mathbf{A}}_{45} \,\mathbf{V}_{5}^{*} & \mathbf{U}_{4} \,\tilde{\mathbf{A}}_{46} \,\mathbf{V}_{6}^{*} & \mathbf{U}_{4} \,\tilde{\mathbf{A}}_{47} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{5} \,\tilde{\mathbf{A}}_{54} \,\mathbf{V}_{4}^{*} & \mathbf{D}_{5} & \mathbf{U}_{5} \,\tilde{\mathbf{A}}_{56} \,\mathbf{V}_{6}^{*} & \mathbf{U}_{5} \,\tilde{\mathbf{A}}_{57} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{6} \,\tilde{\mathbf{A}}_{64} \,\mathbf{V}_{4}^{*} & \mathbf{U}_{6} \,\tilde{\mathbf{A}}_{65} \,\mathbf{V}_{5}^{*} & \mathbf{D}_{6} & \mathbf{U}_{6} \,\tilde{\mathbf{A}}_{67} \,\mathbf{V}_{7}^{*} \\ \mathbf{U}_{7} \,\tilde{\mathbf{A}}_{74} \,\mathbf{V}_{4}^{*} & \mathbf{U}_{7} \,\tilde{\mathbf{A}}_{75} \,\mathbf{V}_{5}^{*} & \mathbf{U}_{7} \,\tilde{\mathbf{A}}_{76} \,\mathbf{V}_{6}^{*} & \mathbf{D}_{7} \end{bmatrix}$$

We see that the columns of U_5 must span the column space of the matrix $A(I_5, I_5^c)$ where I_5 is the index vector for the first block and $I_5^c = I \setminus I_5$.

The matrix A

As mentioned earlier, it is handy to use the *interpolative decomposition (ID)*, in which U_{τ} and V_{τ} contain identity matrices. To review how this works, consider a situation with *n* sources in a domain Ω_1 inducing *m* potentials in a different domain Ω_2 .

A₂₁

Source locations $\{\mathbf{y}_j\}_{j=1}^n$

Target locations $\{\mathbf{x}_i\}_{i=1}^m$

Let \mathbf{A}_{21} denote the $m \times n$ matrix with entries $\mathbf{A}_{21}(i,j) = \log |\mathbf{x}_i - \mathbf{y}_j|$. Then

As mentioned earlier, it is handy to use the *interpolative decomposition (ID)*, in which U_{τ} and V_{τ} contain identity matrices. To review how this works, consider a situation with *n* sources in a domain Ω_1 inducing *m* potentials in a different domain Ω_2 .

Source locations $\{\mathbf{y}_j\}_{j=1}^n$

Target locations $\{\mathbf{x}_i\}_{i=1}^m$

Let \mathbf{A}_{21} denote the $m \times n$ matrix with entries $\mathbf{A}_{21}(i,j) = \log |\mathbf{x}_i - \mathbf{y}_j|$. Then

$$\begin{array}{rcl} \mathbf{f} &=& \mathbf{A}_{21} & \mathbf{q} &=& \mathbf{U}_2 & \tilde{\mathbf{A}}_{21} & \mathbf{V}_1^* & \mathbf{q} \\ m \times 1 & m \times n & n \times 1 & m \times k & k \times k & k \times n & n \times 1 \end{array}$$

where $\tilde{\mathbf{A}}_{21} = \mathbf{A}_{21}(\tilde{l}_2, \tilde{l}_1)$ is a $k \times k$ submatrix of \mathbf{A} .

The index vector $\tilde{I}_1 \subseteq \{1, 2, ..., n\}$ marks the chosen *skeleton source locations*. The index vector $\tilde{I}_2 \subseteq \{1, 2, ..., m\}$ marks the chosen *skeleton target locations*. *Review of ID:* Consider a rank-k factorization of an $m \times n$ matrix: $\mathbf{A}_{21} = \mathbf{U}_2 \, \tilde{\mathbf{A}}_{21} \, \mathbf{V}_1^*$

To precision 10^{-10} , the rank is 19.

Advantages of the ID:

- The rank is k is typically close to optimal.
- Applying V_1^* and U_2 is cheap they both contain $k \times k$ identity matrices.
- The matrices V_1^* and U_2 are well-conditioned.
- Finding the *k* points is cheap simply use Gaussian elimination.
- The map \tilde{A}_{12} is simply a restriction of the original map A_{12} . (We loosely say that "the physics of the problem is preserved".)
- Interaction between adjacent boxes can be compressed (no buffering required).

Review of ID: Consider a rank-k factorization of an $m \times n$ matrix: $\mathbf{A}_{21} = \mathbf{U}_2 \, \tilde{\mathbf{A}}_{21} \, \mathbf{V}_1^*$

To precision 10^{-10} , the rank is 46.

Advantages of the ID:

- The rank is k is typically close to optimal.
- Applying V_1^* and U_2 is cheap they both contain $k \times k$ identity matrices.
- The matrices V_1^* and U_2 are well-conditioned.
- Finding the *k* points is cheap simply use Gaussian elimination.
- The map \tilde{A}_{12} is simply a restriction of the original map A_{12} . (We loosely say that "the physics of the problem is preserved".)
- Interaction between adjacent boxes can be compressed (no buffering required).

Review of ID: Consider a rank-k factorization of an $m \times n$ matrix: $\mathbf{A}_{21} = \mathbf{U}_2 \, \tilde{\mathbf{A}}_{21} \, \mathbf{V}_1^*$

To precision 10^{-10} , the rank is 11.

Advantages of the ID:

- The rank is k is typically close to optimal.
- Applying V_1^* and U_2 is cheap they both contain $k \times k$ identity matrices.
- The matrices V_1^* and U_2 are well-conditioned.
- Finding the *k* points is cheap simply use Gaussian elimination.
- The map \tilde{A}_{12} is simply a restriction of the original map A_{12} . (We loosely say that "the physics of the problem is preserved".)
- Interaction between adjacent boxes can be compressed (no buffering required).

Model problem: Consider a collection of points $\{\mathbf{x}_i\}_{i=1}^N$ along a contour Γ . Let **A** be the $N \times N$ matrix with entries $\mathbf{A}(i,j) = \log |\mathbf{x}_i - \mathbf{x}_j|$ for $i \neq j$.

Model problem: Consider a collection of points $\{\mathbf{x}_i\}_{i=1}^N$ along a contour Γ . Let **A** be the $N \times N$ matrix with entries $\mathbf{A}(i,j) = \log |\mathbf{x}_i - \mathbf{x}_j|$ for $i \neq j$.

The matrix

Partition the contour into 16 leaves.

The block $\mathbf{A}(I_{\tau}, I_{\tau}^{c})$ shown in red.

Now let us focus on a single panel Γ_{τ} associated with index vector I_{τ} .

Our task is to determine a basis matrix \mathbf{U}_{τ} and an index vector $\tilde{I}_{\tau} \subset I_{\tau}$ such that

$$\mathbf{A}(I_{\tau}, I_{\tau}^{c}) = \mathbf{U}_{\tau} \quad \mathbf{A}(I_{\tau}, I_{\tau}^{c})$$
$$n \times (N - n) \quad n \times k \ k \times (N - n)$$

The most direct way of doing this is to perform Gram-Schmidt on the rows of $A(I_{\tau}, I_{\tau}^{c})$. This works great, but it is expensive, since $A(I_{\tau}, I_{\tau}^{c})$ is big. We seek a *local* procedure.

The contour

The block $\mathbf{A}(I_{\tau}, I_{\tau}^{(near)})$ shown in red.

Idea (bad): Ignore all charges in the far-field!

Let $I_{\tau}^{(\text{near})}$ denote the near-field points.

Then factor the smaller matrix $\mathbf{B} = \mathbf{A}(I_{\tau}, I_{\tau}^{(near)})$:

 $\mathbf{B} = \mathbf{U}_{\tau} \quad \mathbf{B}(J,:)$ $n \times n_{\text{near}} \quad n \times k \ k \times n_{\text{near}}$

and set $\tilde{I}_{ au} = I_{ au}(J)$.

Idea: Replace charges in the far-field by "proxy" charges. The block G shown in green.

Let $I_{\tau}^{(\text{near})}$ denote the near-field points and let **G** denote a matrix of size $n \times n_{\text{proxy}}$ that maps charges on the proxy locations to potentials on Γ_{τ} .

Then factor the smaller matrix $\mathbf{B} = [\mathbf{A}(I_{\tau}, I_{\tau}^{(\text{near})}), \mathbf{G}]$:

 $\mathbf{B} = \mathbf{U}_{\tau} \quad \mathbf{B}(J,:)$ $n \times (n_{\text{near}} + n_{\text{proxy}}) \quad n \times k \ k \times (n_{\text{near}} + n_{\text{proxy}})$

and set $\tilde{I}_{\tau} = I_{\tau}(J)$.

Idea: Replace charges in the far-field by "proxy" charges. The block G shown in green.

Let $I_{\tau}^{(\text{near})}$ denote the near-field points and let **G** denote a matrix of size $n \times n_{\text{proxy}}$ that maps charges on the proxy locations to potentials on Γ_{τ} .

Then factor the smaller matrix $\mathbf{B} = [\mathbf{A}(I_{\tau}, I_{\tau}^{(near)}), \mathbf{G}]$:

 $\mathbf{B} = \mathbf{U}_{\tau} \qquad \mathbf{B}(J,:)$ $n \times (n_{\text{near}} + n_{\text{proxy}}) \qquad n \times k \ k \times (n_{\text{near}} + n_{\text{proxy}})$

and set $\tilde{I}_{\tau} = I_{\tau}(J)$.

The contour

Idea: Replace charges in the far-field by "proxy" charges.

... execute the same steps for the next panel ...

Idea: Replace charges in the far-field by "proxy" charges.

... and the next ...

The contour

Once all leaves have been processed, we have in effect eliminated a bunch of points.

Now consider compression of a parent node.

The contour

Replace far-field nodes by a small set of proxy charges.

The contour

Points remaining after compression.

After level 4 compression.

After level 3 compression.

After level 2 compression.

٠

After level 1 compression.

Let Γ_{τ} be a panel associated with an index vector I_{τ} .

Our task is to determine basis matrices \mathbf{U}_{τ} , \mathbf{V}_{τ} and index vectors $\tilde{\mathbf{I}}_{\tau}$, $\hat{\mathbf{I}}_{\tau}$, s.t.

 $\begin{array}{ll} \mathbf{A}(I_{\tau},I_{\tau}^{c}) &= \mathbf{U}_{\tau} \quad \mathbf{A}(\tilde{I}_{\tau},I_{\tau}^{c}) \\ n \times (N-n) & n \times k \ k \times (N-n) \end{array} \quad \text{and} \quad \begin{array}{ll} \mathbf{A}(I_{\tau}^{c},I_{\tau}) &= \mathbf{A}(I_{\tau}^{c},\hat{I}_{\tau}) \quad \mathbf{V}_{\tau}^{*} \\ (N-n) \times n & (N-n) \times k \ k \times n \end{array}$

The contour

 $\mathbf{A}(I_{\tau}, I_{\tau}^{c})$ in red.

Let us first consider the task of finding \mathbf{U}_{τ} . We need to factor

Everything works the same!

The block **G** shown in green.

Replace charges in the far-field by "proxy" charges, let $I_{\tau}^{(\text{near})}$ denote the near-field points and let **G** denote a matrix of size $n \times n_{\text{proxy}}$ that maps *monopole* charges on the proxy locations to potentials on Γ_{τ} . Then factor the smaller matrix **B** = [**A**($I_{\tau}, I_{\tau}^{\text{(near)}}$), **G**]:

$$\mathbf{B} = \mathbf{U}_{\tau} \quad \mathbf{B}(J, :)$$
$$n \times (n_{\text{near}} + n_{\text{proxy}}) \quad n \times k \ k \times (n_{\text{near}} + n_{\text{proxy}})$$

and set $\tilde{I}_{\tau} = I_{\tau}(J)$.

The contour

 $\mathbf{A}(I_{ au}^{\mathrm{c}},I_{ au})$ in blue.

Next we consider the task of finding V_{τ} . We need to factor

$$egin{aligned} \mathbf{A}(I^{ ext{c}}_{ au},I_{ au}) &= & \mathbf{A}(I^{ ext{c}}_{ au},\hat{I}_{ au}) & \mathbf{V}^*_{ au} \ (N-n) imes n & (N-n) imes k \ k imes n \end{aligned}$$

Things work *almost* the same

 $\mathbf{A}(I_{\tau}^{c}, I_{\tau})$ in blue. **G** in magenta.

Replace charges in the far-field by "proxy" charges, let $I_{\tau}^{(\text{near})}$ denote the near-field points and let **G** denote a matrix of size $n \times n_{\text{proxy}}$ that maps *dipole* charges on Γ_{τ} to potentials on the proxy points. Then factor the smaller problem:

$$\begin{bmatrix} \mathbf{A}(I_{\tau}^{(\text{near})}, I_{\tau}) \\ \mathbf{G} \end{bmatrix} = \begin{bmatrix} \mathbf{A}(I_{\tau}^{(\text{near})}, \hat{I}_{\tau}) \\ \mathbf{G}(:, J) \end{bmatrix} \mathbf{V}_{\tau}^{*}.$$

Notes:

- There are in fact two potentially different sets of skeleton points:
 - 1. The *incoming skeleton points* resulting from an ID of the *rows* of $A(I_{\tau}, I_{\tau}^{c})$.
 - 2. The *outgoing skeleton points* resulting from an ID of the *columns* of $A(I_{\tau}^{c}, I_{\tau})$.

It is possible, and often practical, to enforce that these skeletons be the same. This can be done by constructing an ID for the rows of $[\mathbf{A}(I_{\tau}, I_{\tau}^{c}), \mathbf{A}(I_{\tau}^{c}, I_{\tau})^{*}].$

- In real life, the presence of quadrature corrections for "near-diagonal" elements slightly complicates matters. However, these complications can all be handled.
- For *Helmholtz*, the compression technique based on a proxy domain (e.g. circle) to account for the far-field has to be modifed to avoid the possibility of resonances (avoid using resonant radii, or, use *two* concentric sets of proxy circles separated by a distance $\lambda/4$, or, use both monopoles and dipoles on the proxy surface, etc).
- For other elliptic PDEs (Stokes, elasticity, time-harmonic Maxwell, etc), analogous representations can be worked out. Each case has its own subtleties, but the basic ideas carry over. (At least, it currently appears that they do!)
- Some care is necessary in determining how finely to sample the proxy surface, in particular for Helmholtz.

A "volume filling" domain: Now consider a contour like this:

Let **A** denote an $N \times N$ matrix arising upon discretizing a boundary integral operator

$$[Aq](\mathbf{x}) = q(\mathbf{x}) + \int_{\Gamma} \log |\mathbf{x} - \mathbf{y}| q(\mathbf{y}) dA(\mathbf{y}), \qquad \mathbf{x} \in \Gamma,$$

where Γ is the collection of ellipses shown.

We must now use a binary tree based on *splitting in physical space* (as opposed to parameter space).

Level 3

Level 4

Compression stage: Finding \tilde{I}_{τ} , U_{τ} , and V_{τ} , for a box τ works in principle the same as before, but the proxy surfaces are chosen a bit differently.

- Points in I_{τ} .
- Points in I_{τ}^{c} .

At first, it seems like we need to perform an ID of the large matrix $A(I_{\tau}, I_{\tau}^{c})$.

Compression stage: Finding \tilde{I}_{τ} , U_{τ} , and V_{τ} , for a box τ works in principle the same as before, but the proxy surfaces are chosen a bit differently.

- Points in I_{τ} .
- Points in $I_{\tau}^{(near)}$.
- Points in Γ_{proxy} .

(gray points are inactive)

At first, it seems like we need to perform an ID of the large matrix $\mathbf{A}(I_{\tau}, I_{\tau}^{c})$. But, using the *Green localization trick*, we only need to ID the matrix $[\mathbf{A}(I_{\tau}, I_{\tau}^{(near)}) \mathbf{G}]$, where **G** is the matrix of interaction with the proxy surface (green). **Compression stage:** Finding \tilde{I}_{τ} , U_{τ} , and V_{τ} , for a box τ works in principle the same as before, but the proxy surfaces are chosen a bit differently.

- Points in \tilde{I}_{τ} .
- Points in $I_{\tau}^{(\text{near})}$.
- Points in Γ_{proxy} .

(gray points are inactive)

At first, it seems like we need to perform an ID of the large matrix $\mathbf{A}(I_{\tau}, I_{\tau}^{c})$. But, using the *Green localization trick*, we only need to ID the matrix $[\mathbf{A}(I_{\tau}, I_{\tau}^{(near)}) \mathbf{G}]$, where **G** is the matrix of interaction with the proxy surface (green). Original set of points

Skeleton points on level 4, acc = 1.000e-09

Skeleton points on level 3, acc = 1.000e-09

Skeleton points on level 2, acc = 1.000e-09

Skeleton points on level 1, acc = 1.000e-09

Good news: The direct solver based on HBS matrix algebra works with only minor modifications.

Good news: The direct solver based on HBS matrix algebra works with only minor modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Good news: The direct solver based on HBS matrix algebra works with only minor modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Complexity analysis: For a box τ , define quantities:

- N_{τ} Number of discretization points in τ .
- *n* Number of points in the skeletons for the children of τ .
- *g* Number of points in the proxy contour.
- *k* Rank of interaction between τ and the outside world.

Then

Cost of compressing au ~ ngkCost of building local operators $au ~ n^3$

Unfortunately, for a "volume filling" set of points, we have

$$n\sim\sqrt{N_{ au}},\qquad g\sim\sqrt{N_{ au}},\qquad k\sim\sqrt{N_{ au}},$$

so the overall cost of the direct solver is $O(N^{3/2})$.

A surface in 3D: Now consider a surface in \mathbb{R}^3 :

Let **A** denote an $N \times N$ matrix arising upon discretizing a boundary integral operator

$$[Aq](\boldsymbol{x}) = q(\boldsymbol{x}) + \int_{\Gamma} \frac{1}{|\boldsymbol{x} - \boldsymbol{y}|} q(\boldsymbol{y}) dA(\boldsymbol{y}), \qquad \boldsymbol{x} \in \Gamma,$$

where Γ is the "torus-like" domain shown (it is deformed to avoid rotational symmetry).

We construct a tree by bisecting *in parameter space* — level 1.

Tessellation in parameter space at level 1 2 1.5 1 3 2 0.5 0 0 1 2 3 4 5 6 Tessellation in physical space at level 1 0.2 0 -0.2 0.5 0.5 0 0 -0.5 -0.5 -1 -1
We construct a tree by bisecting *in parameter space* — level 2.

Tessellation in parameter space at level 2

We construct a tree by bisecting *in parameter space* — level 3.

2 1.5 13 15 9 1 8 10 12 0.5 14 0 0 1 2 3 4 5 6 Tessellation in physical space at level 3 0.2 < 0、 -0.2 0.5 1 0.5 0 0 -0.5 -0.5 -1 -1

Tessellation in parameter space at level 3

We construct a tree by bisecting *in parameter space* — level 4.

Tessellation in parameter space at level 4

At first, it seems like we need to perform an ID of the large matrix $A(I_{\tau}, I_{\tau}^{c})$.

The domain in parameter space

Example: Consider free space scattering from a domain with variable wave speed. Given an "incoming wave" *v*, we seek to determine an "outgoing wave" *u* that solves

(2)
$$-\Delta u(\boldsymbol{x}) - k^2 (1 - b(\boldsymbol{x})) u(\boldsymbol{x}) = -k^2 b(\boldsymbol{x}) v(\boldsymbol{x}) \qquad \boldsymbol{x} \in \mathbb{R}^2$$

(3)
$$\lim_{|\boldsymbol{x}|\to\infty} \sqrt{|\boldsymbol{x}|} \left(\partial_{|\boldsymbol{x}|} u(\boldsymbol{x}) - ik \, u(\boldsymbol{x}) \right) = 0$$

We suppose that *b* is a smooth "scattering potential" whose support is contained to some rectangle Ω , support(*b*) $\subset \Omega$.

The scattering potential specifies the deviation of the local wave speed $v = v(\mathbf{x})$ from the free space wave speed v_{free} : $b(\mathbf{x}) = 1 - \left(\frac{v_{\text{free}}}{v(\mathbf{x})}\right)^2$.

We look for a solution of the form

(4)
$$u(\boldsymbol{x}) = [\phi_{\kappa} * \boldsymbol{q}](\boldsymbol{x}) = \int_{\mathbb{R}^2} \phi_{\kappa}(\boldsymbol{x} - \boldsymbol{y}) \boldsymbol{q}(\boldsymbol{y}) d\boldsymbol{A}(\boldsymbol{y}).$$

where $\phi_{\kappa}(\mathbf{x}) = H_0^{(1)}(\kappa |\mathbf{x}|)$ is the free space fundamental solution. *u* satisfies (3) automatically, and (2) is satisfied if *q* satisfies the *Lippman-Schwinger integral equation*:

(5)
$$q(\mathbf{x}) + \kappa^2 b(\mathbf{x}) \int_{\Omega} H_0^{(1)}(\kappa |\mathbf{x} - \mathbf{y}|) q(\mathbf{y}) dA(\mathbf{y}) = -\kappa^2 b(\mathbf{x}) v(\mathbf{x}), \quad \mathbf{x} \in \Omega.$$

Observe that (5) is a *local equation* defined on the bounded set Ω .

(It is also a second kind Fredholm equation, which is very nice.)

Recall: We seek to solve
$$q(\mathbf{x}) + \kappa^2 b(\mathbf{x}) \int_{\Omega} H_0^{(1)}(\kappa |\mathbf{x} - \mathbf{y}|) q(\mathbf{y}) dA(\mathbf{y}) = -\kappa^2 b(\mathbf{x}) v(\mathbf{x}), \ \mathbf{x} \in \Omega.$$

We discretize Ω using a uniform grid, and then split the points into a quad-tree:

Now discretize the integral equation using Nyström with the trapezoidal rule.

A small number of elements "close to the diagonal" (in physical space) are modified since the kernel in the integral is singular, but most matrix elements are given by

$$\mathbf{A}(i,j) = \kappa^2 b(\mathbf{x}_i) H_0^{(1)}(\kappa |\mathbf{x}_i - \mathbf{x}_j|) \sqrt{w_i w_j}.$$

We will build a direct solver for $\mathbf{Aq} = \mathbf{f}$, where $\mathbf{f}(i) = -\kappa^2 b(\mathbf{x}_i) v(\mathbf{x}_i) \sqrt{w_i}$.

Compression stage: Finding \tilde{I}_{τ} , U_{τ} , and V_{τ} , for a box τ works in principle as before.

At first, it seems like we need to perform an ID of the large matrix $A(I_{\tau}, I_{\tau}^{c})$.

At first, it seems like we need to perform an ID of the large matrix $\mathbf{A}(I_{\tau}, I_{\tau}^{c})$. But, using the *Green localization trick*, we only need to ID the matrix $[\mathbf{A}(I_{\tau}, I_{\tau}^{(near)}) \mathbf{G}]$, where **G** is the matrix of interaction with the proxy surface (green). *Peculiarity of Lippman-Schwinger I:* There is no need for a proxy surface in this case ... *Peculiarity of Lippman-Schwinger II:* $\mathbf{A} = \mathbf{I} + \mathbf{BG}$ where **B** is diagonal, and **G** is translation invariant. This means we only need to compress one box per level.