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In this lecture, we develop a direct solver for an integral equations such as

(1) α q(x) +

∫
Γ
k(x,y)q(y)dS(y) = f (x), x ∈ Γ,

where Γ is a contour in R2 or a surface in R3. We’ll do 2D first, and will then generalize.

Upon Nyström discretization (see Lecture 7), the BIE (1) turns into the linear system
A q = f,

N × N N × 1 N × 1
where A is a dense N × N matrix.

Standard approach: Use an iterative solver (e.g. GMRES, CG), combined with an O(N)

method for evaluating x 7→ Ax such as the Fast Multipole Method (FMM) or panel
clustering. When convergence is fast, optimal O(N) complexity results.

New approach: We seek to construct a direct solver which in a single sweep constructs
a data-sparse representation of an operator B such that B ≈ A−1. Why?
• Can solve problems for which iterative methods converge slowly or not at all.
• Very fast when solving a sequence of equations with the same operator.
•Well suited for modern computers (low communication, memory and flops are cheap).

Key observation: The off-diagonal blocks of A tend to have low numerical rank.
(Note that for high-frequency problems, other structure in A is used.)



The direct solvers are (like the FMM, panel clustering, H-matrices, ... ) based on
hierarchical partitioning of the physical domain.

Example: Consider a BIE defined on a contour Γ ⊂ R2.

Γ = Γ1 Γ2Γ3 Γ4

Γ5

Γ6

Γ7

Let Γ = Γ1 denote the root of a tree.

Partition Γ1 into two pieces Γ1 = Γ2 ∪ Γ3.

Further partition Γ2 = Γ4 ∪ Γ5 and Γ3 = Γ6 ∪ Γ7.



The tree partitioning corresponds to a partitioning of the index vector I = [1,2,3, . . . ,N].

For instance, if N = 400, and we use a tree with 4 levels, and split the index vector by
halves each time, we get:

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

Note: This simplistic illustration would be accurate for a simple curve.
For complicated curves, for surfaces/volumes, etc, the index vectors are not contiguous.
The key is to subdivide based on locations {xi}Ni=1 in physical space.

Claim: The matrix A resulting upon discretization of a BIE on a curve can often be
represented as an “S-matrix” with low or moderate ranks.



Example 1: Laplace problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour.

“Combined field” kernel:

K (x,x ′) = log |x−x ′|+n′ · (x − x ′)
|x − x ′| .
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Rank structure of A. acc=1.00e−10  ntot=400

Ranks of off-diagonal blocks.



Example 1: Laplace problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour.

“Combined field” kernel:

K (x,x ′) = log |x−x ′|+n′ · (x − x ′)
|x − x ′| .
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Example 2: Helmholtz problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 1.2λ.

“Combined field” kernel:

K (x,x ′) = i κH0(κ|x − x ′|)
+ ∂n′H0(κ|x − x ′|).

(the weights might be off...)
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Example 2: Helmholtz problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 1.2λ.

“Combined field” kernel:

K (x,x ′) = i κH0(κ|x − x ′|)
+ ∂n′H0(κ|x − x ′|).

(the weights might be off...)
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Example 3: medium-frequency Helmholtz, Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 29λ.

“Combined field” kernel:

K (x,x ′) = i κH0(κ|x − x ′|)
+ ∂n′H0(κ|x − x ′|).

(the weights might be off...)
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Example 3: medium-frequency Helmholtz, Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 29λ.

“Combined field” kernel:

K (x,x ′) = i κH0(κ|x − x ′|)
+ ∂n′H0(κ|x − x ′|).

(the weights might be off...)
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The “simple” S-matrix format can be used for to build direct solvers for BIEs, but we will
use a more efficient format called the Hierarchically Block Separable (HBS) format
(sometimes called “Hierarchically Semi Separable (HSS)” format).

First we introduce block separable matrices. Consider a linear system

Aq = f,

where A is a “block-separable” matrix consisting of p× p blocks of size n× n:

A =


D4 A45 A46 A47
A54 D5 A56 A57
A64 A65 D6 A67
A74 A75 A76 D7

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗j
n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n.
The critical part of the assumption is that all off-diagonal blocks in the i ’th row use the
same basis matrices Ui for their column spaces (and analogously all blocks in the j ’th
column use the same basis matrices Vj for their row spaces).



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .
We see that the columns of U4 must span the column space of the matrix A(I4, Ic4) where
I4 is the index vector for the first block and Ic4 = I\I4.

A(I4, Ic4)

The matrix A



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .
We see that the columns of U5 must span the column space of the matrix A(I5, Ic5) where
I5 is the index vector for the first block and Ic5 = I\I5.

A(I5, Ic5)

The matrix A



Recall A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .

Then A admits the factorization:

A =


U4

U5
U6

U7


︸ ︷︷ ︸

=U


0 Ã45 Ã46 Ã47

Ã54 0 Ã56 Ã57
Ã64 Ã65 0 Ã67
Ã74 Ã75 Ã76 0


︸ ︷︷ ︸

=Ã


V∗4

V∗5
V∗6

V∗7


︸ ︷︷ ︸

=V∗

+


D4

D5
D6

D7


︸ ︷︷ ︸

=D
or

A = U Ã V∗ + D,
p n× p n p n× p k p k × p k p k × p n p n× p n



Lemma: [Variation of Woodbury] If an N × N matrix A admits the factorization
A = U Ã V∗ + D,

p n× p n p n× p k p k × p k p k × p n p n× p n

then
A−1 = E (Ã + D̂)−1 F∗ + G,

p n× p n p n× p k p k × p k p k × p n p n× p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗D−1U

)−1
, E = D−1U D̂, F = (D̂ V∗D−1)∗, G = D−1 − D−1U D̂V∗D−1.

Note: All matrices set in blue are block diagonal.

Classical Woodbury:
(
D + UÃV∗

)−1
= D−1 − D−1U

(
Ã + V∗D−1U

)−1V∗D−1.



Derivation of “our” Woodbury: We consider the linear system
D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7




q4
q5
q6
q7

 =


f4
f5
f6
f7

 .
Introduce reduced variables q̃i = V∗i qi.

The system
∑

j Aij qj = fi then takes the form

D4 0 0 0 0 U4Ã45 U4Ã46 U4Ã47
0 D5 0 0 U5Ã54 0 U5Ã56 U5Ã57
0 0 D6 0 U6Ã64 U6Ã65 0 U6Ã67
0 0 0 D7 U7Ã74 U7Ã75 U7Ã76 0
−V∗4 0 0 0 I 0 0 0
0 −V∗5 0 0 0 I 0 0
0 0 −V∗6 0 0 0 I 0
0 0 0 −V∗7 0 0 0 I





q4
q5
q6
q7
q̃4
q̃5
q̃6
q̃7


=



f4
f5
f6
f7
0
0
0
0


.

Now form the Schur complement to eliminate the qj ’s.



After eliminating the “fine-scale” variables qi, we obtain
I V∗4Ã

−1
44U4Ã45 V∗4Ã

−1
44U4Ã46 V∗4Ã

−1
44U4Ã47

V∗5Ã
−1
55U5Ã54 I V∗5Ã

−1
55U5Ã56 V∗5Ã

−1
55U5Ã57

V∗6Ã
−1
66U6Ã61 V∗6Ã

−1
66U6Ã65 I V∗6Ã

−1
66U6Ã67

V∗7Ã
−1
77U7Ã74 V∗7Ã

−1
77U7Ã75 V∗7Ã

−1
77U7Ã76 I




q̃4
q̃5
q̃6
q̃7

 =


V∗4D

−1
4 f4

V∗5D
−1
5 f5

V∗6D
−1
6 f6

V∗7D
−1
7 f7.

 .
We set

Ãii =
(
V∗i D

−1
ii Ui

)−1
,

and multiply line i by Ãii to obtain the reduced system
Ã44 Ã45 Ã46 Ã47
Ã54 Ã55 Ã56 Ã57
Ã64 Ã65 Ã66 Ã67
Ã74 Ã75 Ã76 Ã77




q̃4
q̃5
q̃6
q̃7

 =


f̃4
f̃5
f̃6
f̃7

 .
where

f̃i = Ãii V∗i D
−1
ii fi.



Before compression, we have a pn× pn linear system
p∑

j=1
Aijqj = fi, i = 1,2, . . . ,p.

After compression, we have a pk × pk linear system

Diiq̃i +
∑
i 6=j

Ãijq̃j = f̃i, i = 1,2, . . . ,p.

Recall that k is the ε-rank of Ai,j for i 6= j.
The point is that k < n.

The original matrix

The reduced matrix

The compression algorithm needs to execute the following steps:
• Compute Ui, Vi, Ãij so that Aij = Ui Ãij V∗j .

• Compute the new diagonal matrices D̂ii =
(
V∗i A

−1
ii Ui

)−1.
• Compute the new loads q̃i = D̂ii V∗i A

−1
ii qi.

For the algorithm to be efficient, it has to be able to carry out these steps locally.
To achieve this, we use interpolative representations, then Ãi,j = A(̃Ii, Ĩj).



We have built a scheme for reducing a system of size pn× pn to one of size pk × pk.

→

The computational gain is (k/n)3. Good, but not earth-shattering.

Question: How do we get to O(N)?

Answer: It turns out that the reduced matrix is itself compressible. Recurse!



A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress
Cluster Cluster



Formally, one can view this as a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗ + B(1))(V(2))∗ + B(2))(V(3))∗ + D(3).

Expressed pictorially, the factorization takes the form
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

The inverse of A then takes the form

A−1 = E(3)(E(2)(E(1) D̂(0)
(F(1))∗ + D̂(1))

(F(2))∗ + D̂(2))
(V(3))∗ + D̂(3)

.

All matrices are block diagonal except D̂(0), which is small.



Formal definition of an HBS matrix

Let us first recall the concept of a binary tree on the index vector:

Let A be an N × N matrix.

Suppose T is a binary tree on the index vector I = [1, 2, 3, . . . , N].

For a node τ in the tree, let Iτ denote the corresponding index vector.

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

For nodes σ and τ on the same level, set Aσ,τ = A(Iσ, Iτ ).



Formal definition of an HBS matrix

Suppose T is a binary tree.

For a node τ in the tree, let Iτ denote the corresponding index vector.

For leaves σ and τ , set Aσ,τ = A(Iσ, Iτ ) and suppose that all off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗τ σ 6= τ

n× n n× k k × k k × n

For non-leaves σ and τ , let {σ1, σ2} denote the children of σ, and let {τ1, τ2} denote the
children of τ . Set

Aσ,τ =

[
Ãσ1,τ1 Ãσ1,τ2
Ãσ2,τ1 Ãσ2,τ2

]
Then suppose that the off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗τ σ 6= τ

2k × 2k 2k × k k × k k × 2k



An HBS matrix A associated with a tree T is specified by the following factors:

Name: Size: Function:
For each leaf Dτ n× n The diagonal block A(Iτ , Iτ ).
node τ : Uτ n× k Basis for the columns in the blocks in row τ .

Vτ n× k Basis for the rows in the blocks in column τ .
For each parent Bτ 2k × 2k Interactions between the children of τ .
node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .



Inversion of an HBS matrix

loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
loop over all boxes τ on level `,
if τ is a leaf node
X = Dτ

else
Let σ1 and σ2 denote the children of τ .

X =

[
Dσ1 Bσ1,σ2

Bσ2,σ1 Dσ2

]
end if
Dτ =

(
V∗τ X−1Uτ

)−1.
Eτ = X−1Uτ Dτ .
F∗τ = Dτ V∗τ X−1.
Gτ = X−1 − X−1Uτ Dτ V∗τ X−1.

end loop
end loop

G1 =

[
D2 B2,3
B3,2 D3

]−1
.



function EFG = OMNI_invert_HBS_nsym(NODES)

nboxes = size(NODES,2);

EFG = cell(3,nboxes);

ATD_VEC = cell(1,nboxes);

% Loop over all nodes, from finest to coarser.

for ibox = nboxes:(-1):2

% Assemble the diagonal matrix.

if (NODES{5,ibox}==0) % ibox is a leaf.

AD = NODES{40,ibox};

elseif (NODES{5,ibox}==2) % ibox has precisely two children

ison1 = NODES{4,ibox}(1);

ison2 = NODES{4,ibox}(2);

AD = [ATD_VEC{ison1},NODES{46,ison1};NODES{46,ison2},ATD_VEC{ison2}];

end

% Extract the matrices U and V.

U = NODES{38,ibox};

V = NODES{39,ibox};

% Construct the various projection maps.

ADinv = inv(AD);

ATD = inv(V’*ADinv*U);

ATD_VEC{ibox} = ATD;

EFG{1,ibox} = ADinv*U*ATD;

EFG{2,ibox} = ATD*(V’)*ADinv;

EFG{3,ibox} = ADinv - EFG{1,ibox}*(V’*ADinv);

end

% Assemble the "top matrix" and invert it:

AT = [ATD_VEC{2},NODES{46,2};NODES{46,3},ATD_VEC{3}];

EFG{3,1} = inv(AT);

return



Now let us return to the question of how to compute a block-separable factorization of a
matrix A, where the low-rank factorization is based on an interpolative decomposition.

Example: Consider an N × N matrix A, and a partitioning of the index vector

I = {1, 2, 3, . . . , N} = I4 ∪ I5 ∪ I6 ∪ I7.

We then seek to determine matrices {Uτ , Vτ}7τ=4 and index vectors Ĩκ ⊂ Iκ such that

A(Iτ , Iσ) = Uτ Ãτ,σ V∗σ, σ 6= τ,

where Ãτ,σ = A(̃Iτ , Ĩσ) is a submatrix of Aτ,σ.

In other words, we seek a factorization

A =


U4

U5
U6

U7


︸ ︷︷ ︸

=U


0 Ã45 Ã46 Ã47

Ã54 0 Ã56 Ã57
Ã64 Ã65 0 Ã67
Ã74 Ã75 Ã76 0


︸ ︷︷ ︸

=Ã


V∗4

V∗5
V∗6

V∗7


︸ ︷︷ ︸

=V∗

+


D4

D5
D6

D7


︸ ︷︷ ︸

=D

.



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .
We see that the columns of U4 must span the column space of the matrix A(I4, Ic4) where
I4 is the index vector for the first block and Ic4 = I\I4.

A(I4, Ic4)

The matrix A



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .
We see that the columns of U5 must span the column space of the matrix A(I5, Ic5) where
I5 is the index vector for the first block and Ic5 = I\I5.

A(I5, Ic5)

The matrix A



As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which Uτ
and Vτ contain identity matrices. To review how this works, consider a situation with n
sources in a domain Ω1 inducing m potentials in a different domain Ω2.

Source locations {yj}nj=1 Target locations {xi}mi=1

−→
A21

Let A21 denote the m× n matrix with entries A21(i, j) = log |xi − yj|. Then

f = A21 q = U2 Ã21 V∗1 q
m× 1 m× n n× 1 m× k k × k k × n n× 1



As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which Uτ
and Vτ contain identity matrices. To review how this works, consider a situation with n
sources in a domain Ω1 inducing m potentials in a different domain Ω2.

Source locations {yj}nj=1 Target locations {xi}mi=1

−→
Ã21

Let A21 denote the m× n matrix with entries A21(i, j) = log |xi − yj|. Then

f = A21 q = U2 Ã21 V∗1 q
m× 1 m× n n× 1 m× k k × k k × n n× 1

where Ã21 = A21(̃I2, Ĩ1) is a k × k submatrix of A.

The index vector Ĩ1 ⊆ {1, 2, . . . , n} marks the chosen skeleton source locations.

The index vector Ĩ2 ⊆ {1, 2, . . . , m} marks the chosen skeleton target locations.



Review of ID: Consider a rank-k factorization of an m× n matrix: A21 = U2 Ã21V∗1

Sources in Ω1 Targets in Ω2

→
Ã21

To precision 10−10, the rank is 19.

q1
A21 //

V∗1
��

f2

q̂1 Askel
21

// f̂2

U2

OO

Advantages of the ID:
• The rank is k is typically close to optimal.
• Applying V∗1 and U2 is cheap — they both contain k × k identity matrices.
• The matrices V∗1 and U2 are well-conditioned.
• Finding the k points is cheap — simply use Gaussian elimination.
• The map Ã12 is simply a restriction of the original map A12.
(We loosely say that “the physics of the problem is preserved”.)
• Interaction between adjacent boxes can be compressed (no buffering required).



Review of ID: Consider a rank-k factorization of an m× n matrix: A21 = U2 Ã21V∗1

Sources in Ω1 Targets in Ω2

To precision 10−10, the rank is 46.

q1
A21 //

V∗1
��

f2

q̂1 Askel
21

// f̂2

U2

OO

Advantages of the ID:
• The rank is k is typically close to optimal.
• Applying V∗1 and U2 is cheap — they both contain k × k identity matrices.
• The matrices V∗1 and U2 are well-conditioned.
• Finding the k points is cheap — simply use Gaussian elimination.
• The map Ã12 is simply a restriction of the original map A12.
(We loosely say that “the physics of the problem is preserved”.)
• Interaction between adjacent boxes can be compressed (no buffering required).



Review of ID: Consider a rank-k factorization of an m× n matrix: A21 = U2 Ã21V∗1

Sources in Ω1 Targets in Ω2

To precision 10−10, the rank is 11.

q1
A21 //

V∗1
��

f2

q̂1 Askel
21

// f̂2

U2

OO

Advantages of the ID:
• The rank is k is typically close to optimal.
• Applying V∗1 and U2 is cheap — they both contain k × k identity matrices.
• The matrices V∗1 and U2 are well-conditioned.
• Finding the k points is cheap — simply use Gaussian elimination.
• The map Ã12 is simply a restriction of the original map A12.
(We loosely say that “the physics of the problem is preserved”.)
• Interaction between adjacent boxes can be compressed (no buffering required).



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The matrix



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The matrix

Partition the contour into 16 leaves.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The block A(Iτ , Icτ) shown in red.

Now let us focus on a single panel Γτ associated with index vector Iτ .

Our task is to determine a basis matrix Uτ and an index vector Ĩτ ⊂ Iτ such that
A(Iτ , Icτ ) = Uτ A(̃Iτ , Icτ )

n× (N − n) n× k k × (N − n)

The most direct way of doing this is to perform Gram-Schmidt on the rows of A(Iτ , Icτ ).

This works great, but it is expensive, since A(Iτ , Icτ ) is big. We seek a local procedure.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The block A(Iτ , I(near)
τ ) shown in red.

Idea (bad): Ignore all charges in the far-field!

Let I(near)
τ denote the near-field points.

Then factor the smaller matrix B = A(Iτ , I(near)
τ ):

B = Uτ B(J, :)

n× nnear n× k k × nnear

and set Ĩτ = Iτ (J).



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The block A(Iτ , I(near)
τ ) shown in red.

The block G shown in green.Idea: Replace charges in the far-field by “proxy” charges.

Let I(near)
τ denote the near-field points and let G denote a matrix of size n× nproxy that

maps charges on the proxy locations to potentials on Γτ .

Then factor the smaller matrix B = [A(Iτ , I(near)
τ ), G]:

B = Uτ B(J, :)

n× (nnear + nproxy) n× k k × (nnear + nproxy)

and set Ĩτ = Iτ (J).



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The block A(Iτ , I(near)
τ ) shown in red.

The block G shown in green.Idea: Replace charges in the far-field by “proxy” charges.

Let I(near)
τ denote the near-field points and let G denote a matrix of size n× nproxy that

maps charges on the proxy locations to potentials on Γτ .

Then factor the smaller matrix B = [A(Iτ , I(near)
τ ), G]:

B = Uτ B(J, :)

n× (nnear + nproxy) n× k k × (nnear + nproxy)

and set Ĩτ = Iτ (J).



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Idea: Replace charges in the far-field by “proxy” charges.

... execute the same steps for the next panel ...



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Idea: Replace charges in the far-field by “proxy” charges.

... and the next ...



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Once all leaves have been processed, we have in effect eliminated a bunch of points.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The matrix

Now consider compression of a parent node.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Replace far-field nodes by a small set of proxy charges.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Points remaining after compression.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

All points



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

After level 4 compression.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

After level 3 compression.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

After level 2 compression.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

After level 1 compression.



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour A(Iτ , Icτ) in red.
A(Icτ , Iτ) in blue.Let Γτ be a panel associated with an index vector Iτ .

Our task is to determine basis matrices Uτ , Vτ and index vectors Ĩτ , Îτ , s.t.
A(Iτ , Icτ ) = Uτ A(̃Iτ , Icτ )

n× (N − n) n× k k × (N − n)
and

A(Icτ , Iτ ) = A(Icτ , Îτ ) V∗τ
(N − n)× n (N − n)× k k × n



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour A(Iτ , Icτ) in red.

Let us first consider the task of finding Uτ . We need to factor

A(Iτ , Icτ ) = Uτ A(̃Iτ , Icτ )

n× (N − n) n× k k × (N − n)



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour The block A(Iτ , I(near)
τ ) shown in red.

The block G shown in green.Everything works the same!

Replace charges in the far-field by “proxy” charges, let I(near)
τ denote the near-field points

and let G denote a matrix of size n× nproxy that maps monopole charges on the proxy
locations to potentials on Γτ . Then factor the smaller matrix B = [A(Iτ , I(near)

τ ), G]:
B = Uτ B(J, :)

n× (nnear + nproxy) n× k k × (nnear + nproxy)

and set Ĩτ = Iτ (J).



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour A(Icτ , Iτ) in blue.

Next we consider the task of finding Vτ . We need to factor

A(Icτ , Iτ ) = A(Icτ , Îτ ) V∗τ
(N − n)× n (N − n)× k k × n



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour A(Icτ , Iτ) in blue.
G in magenta.Things work almost the same . . .

Replace charges in the far-field by “proxy” charges, let I(near)
τ denote the near-field points

and let G denote a matrix of size n× nproxy that maps dipole charges on Γτ to potentials
on the proxy points. Then factor the smaller problem:A(I(near)

τ , Iτ )

G

 =

A(I(near)
τ , Îτ )

G(:, J)

 V∗τ .



Notes:

• There are in fact two potentially different sets of skeleton points:
1. The incoming skeleton points resulting from an ID of the rows of A(Iτ , Icτ).
2. The outgoing skeleton points resulting from an ID of the columns of A(Icτ , Iτ).

It is possible, and often practical, to enforce that these skeletons be the same.
This can be done by constructing an ID for the rows of [A(Iτ , Icτ ), A(Icτ , Iτ )∗].

• In real life, the presence of quadrature corrections for “near-diagonal” elements slightly
complicates matters. However, these complications can all be handled.

• For Helmholtz, the compression technique based on a proxy domain (e.g. circle) to
account for the far-field has to be modifed to avoid the possibility of resonances (avoid
using resonant radii, or, use two concentric sets of proxy circles separated by a
distance λ/4, or, use both monopoles and dipoles on the proxy surface, etc).

• For other elliptic PDEs (Stokes, elasticity, time-harmonic Maxwell, etc), analogous
representations can be worked out. Each case has its own subtleties, but the basic
ideas carry over. (At least, it currently appears that they do!)

• Some care is necessary in determining how finely to sample the proxy surface, in
particular for Helmholtz.



A “volume filling” domain: Now consider a contour like this:

Let A denote an N × N matrix arising upon discretizing a boundary integral operator

[Aq](x) = q(x) +

∫
Γ
log |x − y |q(y)dA(y), x ∈ Γ,

where Γ is the collection of ellipses shown.



We must now use a binary tree based on splitting in physical space (as opposed to
parameter space).
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Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

Ωτ

• Points in Iτ .
• Points in Icτ .

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

Ωτ

• Points in Iτ .
• Points in I(near)

τ .
• Points in Γproxy.
(gray points are inactive)

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

Ωτ

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.
(gray points are inactive)

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Original set of points



Skeleton points on level 4, acc =  1.000e−09



Skeleton points on level 3, acc =  1.000e−09



Skeleton points on level 2, acc =  1.000e−09



Skeleton points on level 1, acc =  1.000e−09



Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Complexity analysis: For a box τ , define quantities:

Nτ Number of discretization points in τ .
n Number of points in the skeletons for the children of τ .
g Number of points in the proxy contour.
k Rank of interaction between τ and the outside world.

Then

Cost of compressing τ ∼ n g k
Cost of building local operators τ ∼ n3

Unfortunately, for a “volume filling” set of points, we have

n ∼
√

Nτ , g ∼
√

Nτ , k ∼
√
Nτ ,

so the overall cost of the direct solver is O(N3/2).



Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Complexity analysis: For a box τ , define quantities:

Nτ Number of discretization points in τ .
n Number of points in the skeletons for the children of τ .
g Number of points in the proxy contour.
k Rank of interaction between τ and the outside world.

Then

Cost of compressing τ ∼ n g k
Cost of building local operators τ ∼ n3

Unfortunately, for a “volume filling” set of points, we have

n ∼
√
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√
Nτ ,

so the overall cost of the direct solver is O(N3/2).



Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Complexity analysis: For a box τ , define quantities:

Nτ Number of discretization points in τ .
n Number of points in the skeletons for the children of τ .
g Number of points in the proxy contour.
k Rank of interaction between τ and the outside world.

Then

Cost of compressing τ ∼ n g k
Cost of building local operators τ ∼ n3

Unfortunately, for a “volume filling” set of points, we have

n ∼
√

Nτ , g ∼
√

Nτ , k ∼
√

Nτ ,

so the overall cost of the direct solver is O(N3/2).



A surface in 3D: Now consider a surface in R3:
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The domain in physical space

Let A denote an N × N matrix arising upon discretizing a boundary integral operator

[Aq](x) = q(x) +

∫
Γ

1
|x − y | q(y)dA(y), x ∈ Γ,

where Γ is the “torus-like” domain shown (it is deformed to avoid rotational symmetry).



We construct a tree by bisecting in parameter space — level 1.
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Tessellation in physical space at level 1



We construct a tree by bisecting in parameter space — level 2.
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Tessellation in physical space at level 2



We construct a tree by bisecting in parameter space — level 3.
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We construct a tree by bisecting in parameter space — level 4.
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Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

Γτ

• Points in Iτ .
• Points in Icτ .

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

Γτ

• Points in Iτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

Γτ

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).
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Example: Consider free space scattering from a domain with variable wave speed.
Given an “incoming wave” v, we seek to determine an “outgoing wave” u that solves

−∆u(x)− k2 (1− b(x))u(x) =− k2 b(x) v(x) x ∈ R2(2)
lim
|x|→∞

√
|x|
(
∂|x|u(x)− ik u(x)

)
= 0(3)

We suppose that b is a smooth “scattering potential” whose support is contained to
some rectangle Ω, support(b) ⊂ Ω.

The scattering potential specifies the deviation of the local wave speed v = v(x) from

the free space wave speed vfree: b(x) = 1−
(
vfree
v(x)

)2
.

We look for a solution of the form

(4) u(x) = [φκ ∗ q](x) =

∫
R2
φκ(x − y)q(y)dA(y).

where φκ(x) = H(1)
0 (κ|x|) is the free space fundamental solution. u satisfies (3)

automatically, and (2) is satisfied if q satisfies the Lippman-Schwinger integral equation:

(5) q(x) + κ2 b(x)

∫
Ω
H(1)
0 (κ|x − y |)q(y)dA(y) = −κ2 b(x) v(x), x ∈ Ω.

Observe that (5) is a local equation defined on the bounded set Ω.
(It is also a second kind Fredholm equation, which is very nice.)



Recall: We seek to solve q(x) + κ2 b(x)

∫
Ω

H(1)
0 (κ|x − y |)q(y)dA(y) = −κ2 b(x) v(x), x ∈ Ω.

We discretize Ω using a uniform grid, and then split the points into a quad-tree:
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Now discretize the integral equation using Nyström with the trapezoidal rule.

A small number of elements “close to the diagonal” (in physical space) are modified
since the kernel in the integral is singular, but most matrix elements are given by

A(i, j) = κ2 b(xi)H
(1)
0 (κ|xi − xj|)

√
wi wj.

We will build a direct solver for Aq = f, where f(i) = −κ2 b(xi) v(xi)
√wi.



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

• Points in Iτ .
• Points in Icτ .

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

• Points in Iτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).
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• Points in I(near)

τ .
• Points in Γproxy.
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τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).
Peculiarity of Lippman-Schwinger I: There is no need for a proxy surface in this case ...
Peculiarity of Lippman-Schwinger II: A = I + BG where B is diagonal, and G is
translation invariant. This means we only need to compress one box per level.


