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In this lecture, we develop a direct solver for an integral equations such as
(1 0q(0)+ [ k(x.y)a(y)ds) = f(x).  xer,
where I is a contour in R? or a surface in R3. We'll do 2D first, and will then generalize.

Upon Nystrom discretization (see Lecture 7), the BIE (1) turns into the linear system
A q = f
NxNNx1 NxI1
where A is a dense N x N matrix.

Standard approach: Use an iterative solver (e.g. GMRES, CG), combined with an O(N)
method for evaluating x — AX such as the Fast Multipole Method (FMM) or panel
clustering. When convergence is fast, optimal O(N) complexity results.

New approach: We seek to construct a direct solver which in a single sweep constructs
a data-sparse representation of an operator B such that B ~ AT Why?

e Can solve problems for which iterative methods converge slowly or not at all.

e Very fast when solving a sequence of equations with the same operator.

e Well suited for modern computers (low communication, memory and flops are cheap).

Key observation: The off-diagonal blocks of A tend to have low numerical rank.
(Note that for high-frequency problems, other structure in A is used.)



The direct solvers are (like the FMM, panel clustering, H-matrices, ... ) based on
hierarchical partitioning of the physical domain.

Example: Consider a BIE defined on a contour I ¢ R2,

6
x ~ L

Let [ = [ denote the root of a tree.
Partition I'y into two pieces [{ = > U 3.

Further partition o =T4,Ulgand 3 =TgUT-.



The tree partitioning corresponds to a partitioning of the index vector I = [1,2,3,...,N].

For instance, if N = 400, and we use a tree with 4 levels, and split the index vector by
halves each time, we get:

Level O G Iy =[1,2,...,400]

Level 1 e e Ib=[1,2,...,200], Iy = [201, 202, ..., 400]
Level 2 Q e G e I,=[1,2,...,100], Is = [101, 102, ..., 200], ...
Level3 e @ G @ @ @ @ ls=1,2,...,50], lg =[51, 52, ..., 100], ...

Note: This simplistic illustration would be accurate for a simple curve.
For complicated curves, for surfaces/volumes, etc, the index vectors are not contiguous.
The key is to subdivide based on locations {x,-}i’\i 1 in physical space.

Claim: The matrix A resulting upon discretization of a BIE on a curve can often be
represented as an “S-matrix” with low or moderate ranks.



Example 1: Laplace problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour.

“Combined field” kernel:
n.(x—x')

Rank structure of A. acc=1.00e-10 ntot=400
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Example 1: Laplace problem discretized with Kolm-Rokhlin quadrature, n = 400.

10"
— SVd(Az,S)
107 s
1070 .
107"°F .
The contour.
“Combined field” kernel: 1072 . <

/ / 0 20 40 60 80 100 120 140 160 180 200
n.(x—x')

x — x|

K(x,x') = log |x—x'|+

Singular values of A3

(top right quadrant of A)



Example 2: Helmholtz problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 1.2 )\.

“Combined field” kernel:

K(x,x") =ik Hy(k|x — x|

+ O Ho(k|x — X']).

(the weights might be off...)

Rank structure of A. acc=1.00e-10 ntot=400
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Example 2: Helmholtz problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 1.2 ).

“Combined field” kernel:

K(x,x") =irHy(x|x — x|

+ O Ho(k|x — X']).

(the weights might be off...)
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Example 3: medium-frequency Helmholtz, Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 29)\.

“Combined field” kernel:

K(x,x") =ik Hy(k|x — x|

+ O Ho(k|x — X']).

(the weights might be off...)

Rank structure of A. acc=1.00e-10 ntot=400
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Example 3: medium-frequency Helmholtz, Kolm-Rokhlin quadrature, n = 400.

10°
X SVd(A2 3)
1 OO ‘m"“""""‘3"1111='==1~::~::~::::~::~:::::::::::::
107
107"
The contour, diameter = 29)\.
107 "“"~=*=:=t=:=::::::::::::m;;:;:;:::::m_mmmmWmmu\ml
“Combined field” kernel:
/ . / 10_20 | | | | | | | | |
K(x,Xx') =irHy(k|x —Xx|) 0 20 40 60 80 100 120 140 160 180

+ O Ho(k|x — X']).
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The “simple” S-matrix format can be used for to build direct solvers for BIEs, but we will
use a more efficient format called the Hierarchically Block Separable (HBS) format
(sometimes called “Hierarchically Semi Separable (HSS)” format).

First we introduce block separable matrices. Consider a linear system
Ag-=Tt
where A is a “block-separable” matrix consisting of p x p blocks of size n x n:
Dy Ass Age Asgy
As4 D5 Asg Asy
Ags Ags Dg Agy
| A74 A75 Azg D7

A= (Shown for p = 4.)

Core assumption: Each off-diagonal block A;; admits the factorization

~

Aij = U; A,-j V;-k
nxn nNxKKkxkKkKxn
where the rank k is significantly smaller than the block size n.

The critical part of the assumption is that all off-diagonal blocks in the /'th row use the

same basis matrices U; for their column spaces (and analogously all blocks in the j'th
column use the same basis matrices V; for their row spaces).



What is the role of the basis matrices U, and V.?

Dy, UyAu5VE UgAugVE UgAyr V3
UsAs,V, Ds  UsAggVs UsAg, V3
UgAgsV; UgAgsVe Dg  UgAg, V3
U,A;,V; U;A5V: U, AV Dy

Recall our toy example: A =

We see that the columns of U, must span the column space of the matrix A(l4, /;) where
/4 is the index vector for the first block and [ = /\/,.

The matrix A



What is the role of the basis matrices U, and V.?

Dy UgAu5VE UgAugVE UgAy V3
UsAssV, Ds  UsAggVys UsAg, V3
UgAgsV; UgAgsVe Dg  UgAg, V3
U,A;,V; U;A5V: U, AV Dy

Recall our toy example: A =

We see that the columns of U5 must span the column space of the matrix A(/s, I5) where
I5 is the index vector for the first block and Iz = /\/s.

The matrix A



Dy UgAu5VE UgAugVE UgAys V3
U-A-,V: D Us A Vi Uz Ao VE
Recall A = 5~54 :]<. ~5 ) 5M56 Vg 5~57 Z
UsAsaVy UsAgsVs  Ds  UsAg7 V7
U;A,4V; U;A5VE U,A5VE Dy
Then A admits the factorization'
U, 0 Aus Ass Ag7 | |V
A_ Us Asy 0 Agg As; Vs
Us Ags Ags 0 Ag7 Vs
i U7 _A74 Azs Azg O || V7
~U A _V*
or
A — U A V* 4
pnxpn pnxpk pkxpk pkxpn

e

pnxpn




Lemma: [Variation of Woodbury] If an N x N matrix A admits the factorization

~

A = U A V* + D,
pnxpn pnxpk pk xpk pkxpn pnxpn
then
A~ -~ E (A+D) = + G,
pnxpn pnxpk pkxpk pkxpn pnxpn

B -

where (provided all intermediate matrices are invertible)

D-(v'D'U)"', E=D'Ub, F=dV'D '), G=D"'-D'ubv'D "

Note: All matrices set in blue are block diagonal.

Classical Woodbury: (D +UAV*)"' =D~ ' - D 'U(A+v*D'u) 'v'D .



Derivation of “our” Woodbury: We consider the linear system

D,  UyAusVE UgAug Vg UsAgr V5 | | ay
UsAs4V; D5 UsAsgVg UsAs; V3 | | Os
UsAgsV; UgAgsVs  Dg  UgAgr V7| | g
(U7A74V; U7A75V; Uz AgVg D7 | | a7
Introduce reduced variables q; = V7 q;.
The system > ; Aj;q; = f; then takes the form
'D, 0 0 O 0 UA;zUAl UA,,
0 D 0 0 UA;; 0 UsA;5 UA;-
0 0 Dg 0 UgAgs UsAg: 0  UgAg-
0 0 0 D; U/AyuUArsUAyg O
vV 0 0 0 I 0 0 0
0 -v: 0 0 0 I 0 o0
O O —Vg 0 0 0 | 0
0 0 0 V5 0 0 0 |

Now form the Schur complement to eliminate the g;’s.

0O O 0O O
~ » (&) EAN




After eliminating the “fine-scale” variables q;, we obtain

N T

ViAse Ushs, |
v q o~ N T

VsAss UsAs1 VgAss UsAgs |

We set

A; = (viD;'u)

and multiply line i by A,-,- to obtain the reduced system

Ay Ays /}46 647
Asy Ags Asg As;
Ags Ags Agg Agy
Az4 Azs Azg Azz

where

IR T T
| V7A77U7A74 V7A77 UzA75 V7A77 UzAze

O O
(&)

O
»

O

4

7

<1 <1 MR

| Vila Usas Vika Uihss Vikas UiAs
V5As5 UsAsg V5Ass UsAs?
ViAgs Ush;

f;=A;ViD 'f;.

O O 0O O
N~ OO o B~

ViD, ',
ViD; ' fs
ViD, ' fg

1
ViD, ;.




Before compression, we have a pn x pn linear system

p
ZA’/q/:f” i:1,2,...,p.
Jj=1

After compression, we have a pk x pk linear system
D;d; + > AjG; =1, i=12..p.
i7]
Recall that k is the e-rank of A; ; for i # J.
The point is that kK < n.

The compression algorithm needs to execute the following steps:

e Compute U;, V;, A so that Aj = U; A; V.
 Compute the new diagonal matrices D;; = (V} AI.IT1 U,-)_1.

e Compute the new loads §; = D;; V; AI.,_.1 q;-

The original matrix

The reduced matrix

For the algorithm to be efficient, it has to be able to carry out these steps locally.

To achieve this, we use interpolative representations, then A; ; = A(/;, /;).



We have built a scheme for reducing a system of size pn x pn to one of size pk x pk.

EEEE T

EEEE - = "=
T

HEEE ENE

The computational gain is (k/n)3. Good, but not earth-shattering.
Question: How do we get to O(N)?

Answer: It turns out that the reduced matrix is itself compressible. Recurse!



A globally O(N) algorithm is obtained by hierarchically repeating the process:

1 Compress ya 1 Compress | Compress
Cluster Cluster




Formally, one can view this as a telescoping factorization of A:

A — U(3)(U(2)(U(1) B(O) (v(Dy* 4 B(1))(V(2))* 4 B(Z))(V(S))* 1+ p®).

Expressed pictorially, the factorization takes the form
u® u® u (V(S))*

(1) g(0) (V(1))* B(1) (V(Z))* B(2)
i " B
e e, T

The inverse of A then takes the form
A—1 _ E(3)(E(2)(E(1) ﬁ(o) (F(‘I))* 4 6(1))(F(2))* 1 6(2))(\/(3))* D

(0)

All matrices are block diagonal except D , Wwhich is small.



Formal definition of an HBS matrix

Let us first recall the concept of a binary tree on the index vector:
Let A be an N x N matrix.

Suppose 7 is a binary tree on the index vector / =[1, 2, 3, ..., N].

For a node 7 in the tree, let /- denote the corresponding index vector.

Level O G Iy =[1,2,...,400]

Level 1 9 e lb=[1,2,...,200], Iy = [201, 202, ..., 400]
Level 2 o e 6 e I,=[1,2,...,100], Is = [101, 102, ..., 200], ...
Level3 e @ Q @ @ @ @ lg=[1,2,...,50],ls=[51,52,...,100], ...

For nodes o and 7 on the same level, set A, = A(l,, I;).



Formal definition of an HBS matrix
Suppose 7T is a binary tree.
For a node 7 in the tree, let /- denote the corresponding index vector.

For leaves o and 7, set A, - = A(l,, /) and suppose that all off-diagonal blocks satisfy

~

A, = U, A, V: oFT
nxn nxkKxKkKkKkxn

For non-leaves o and 7, let {04, 05} denote the children of ¢, and let {4, 75} denote the
children of 7. Set

~

A AU1 1 AU1 T2
o7 — | =

~

| As,r A
Then suppose that the off-diagonal blocks satisfy

02,72 |

~

A, = U, A, V; oF£T
2k x 2k 2k x Kk k x k k x 2k



An HBS matrix A associated with a tree T is specified by the following factors:

Name: | Size: Function:

For each leaf - nxn | The diagonal block A(/-, ;).

- n x k | Basis for the columns in the blocks in row .
n x kK | Basis for the rows in the blocks in column 7.

node T:

ﬂ

2k x 2k | Interactions between the children of .
- 2k x k |Basis for the columns in the (reduced) blocks in row .
- 2k x k |Basis for the rows in the (reduced) blocks in column 7.

For each parent

ﬁ

D
U
\'
B
node T U
\'




INVERSION OF AN HBS MATRIX

loop over all levels, finerto coarser, ¢/ =L, L —1, ..., 1
loop over all boxes 7 on level /,
if 7 is a leaf node
X=D;
else

Let 04 and o, denote the children of .

_ D‘71 B(717(72
- L B02701 DUZ i
end if
D, = (ViX Tu;)
E.=X"'U,D;
Fif=D,ViX .
G- =X"'-X"'U,D,V:X!
end loop
end loop
D, Bss |

G —

B3> D3 |




function EFG = OMNI_invert_HBS_nsym(NODES)
nboxes = size(NODES,2);
EFG = cell(3,nboxes);
ATD_VEC = cell(1,nboxes);
% Loop over all nodes, from finest to coarser.
for ibox = nboxes: (-1):2
%» Assemble the diagonal matrix.
if (NODES{5,ibox}==0) % ibox is a leaf.
AD = NODES{40,ibox};
elseif (NODES{5,ibox}==2) % ibox has precisely two children
isonl = NODES{4,ibox}(1);
ison2 = NODES{4,ibox}(2);
AD = [ATD_VEC{ison1},NODES{46,isonl};NODES{46,ison2},ATD_VEC{ison2}];
end
% Extract the matrices U and V.
U = NODES{38,ibox};
V = NODES{39,ibox};

% Construct the various projection maps.
ADinv = inv(AD);

ATD = inv(V’*ADinvx*U) ;

ATD_VEC{ibox} = ATD;

EFG{1,ibox} = ADinv*Ux*ATD;

EFG{2,ibox} = ATD*(V’)*ADinv;

EFG{3,ibox} = ADinv - EFG{1,ibox}*(V’*ADinv) ;

end

% Assemble the "top matrix" and invert it:

AT = [ATD_VEC{2},NODES{46,2};NODES{46,3},ATD_VEC{3}];
EFG{3,1} = inv(AT);

return



Now let us return to the question of how to compute a block-separable factorization of a
matrix A, where the low-rank factorization is based on an interpolative decomposition.

Example: Consider an N x N matrix A, and a partitioning of the index vector
[={1,2,3,..., N} =1, UlsUlgU .
We then seek to determine matrices {U, VT}Z: 4 and index vectors 7,46 C I. such that

A(l;,1;)=U; A,V o+,

~

where A, , = A(I;, I,) is a submatrix of A ;.

In other words, we seek a factorization

U, 0 Ay Ags Ay Vi D4
Us Asy 0 Agg As; Vs D5
Us Ags Ags 0 Agy Ve De
U; | | A7y Ass Azg O V7 D7

N 4 4 b 4 ) b 4

=U _A =V* =D




What is the role of the basis matrices U, and V.?

Dy, UyAu5VE UgAugVE UgAyr V3
UsAs,V, Ds  UsAggVs UsAg, V3
UgAgsV; UgAgsVe Dg  UgAg, V3
U,A;,V; U;A5V: U, AV Dy

Recall our toy example: A =

We see that the columns of U, must span the column space of the matrix A(l4, /;) where
/4 is the index vector for the first block and [ = /\/,.

The matrix A



What is the role of the basis matrices U, and V.?

Dy UgAu5VE UgAugVE UgAy V3
UsAssV, Ds  UsAggVys UsAg, V3
UgAgsV; UgAgsVe Dg  UgAg, V3
U,A;,V; U;A5V: U, AV Dy

Recall our toy example: A =

We see that the columns of U5 must span the column space of the matrix A(/s, I5) where
I5 is the index vector for the first block and Iz = /\/s.

The matrix A



As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which U
and V. contain identity matrices. To review how this works, consider a situation with n
sources in a domain €24 inducing m potentials in a different domain 2.

Source locations {y;}!" Target locations {x;}"
JJj=1 1Jj=1

Let Ap4 denote the m x n matrix with entries A (/,j) = log |x; — y;|. Then

= Ay 4
m x 1 mxnnx1



As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which U
and V. contain identity matrices. To review how this works, consider a situation with n
sources in a domain €24 inducing m potentials in a different domain 2.

Source locations {y;}!" Target locations {x;}"
JJj=1 1Jj=1

Let Ap4 denote the m x n matrix with entries A (/,j) = log |x; — y;|. Then

f = Ay q = Uy Ay Vi ¢
m x 1 mxnnx mxkKxkkxnnx1

where Aoy = Asq(ln, 11) is a k x k submatrix of A.
The index vector 71 C {1, 2, ..., n} marks the chosen skeleton source locations.

The index vector 72 C {1, 2, ..., m} marks the chosen skeleton target locations.



Review of ID: Consider a rank-k factorization of an m x n matrix: Aoy = Uy Aoy '

Sources in 14 Targets in Q5
Az
g f>
Ao Vi Uz
%
91 A f5

To precision 10~1°, the rank is 19.

Advantages of the ID:

e The rank is k is typically close to optimal.

e Applying V7 and U, is cheap — they both contain k x k identity matrices.
e The matrices V§ and U, are well-conditioned.

e Finding the k points is cheap — simply use Gaussian elimination.

e The map A12 is simply a restriction of the original map A4o».
(We loosely say that “the physics of the problem is preserved’.)

e Interaction between adjacent boxes can be compressed (no buffering required).



Review of ID: Consider a rank-k factorization of an m x n matrix: Aoy = Uy Aoy '

Sources in 14

Targets in €25

[ ] ® ) J A
°° .. [ J o ® 21
l.... e £ e d f2
.o.o \. ....o.o. hd
l. o o .. ...‘o : ° .. ¢ ] V>1k U2
co © oo © o’ ”
: o ...o: o’ é\l ’f‘
“ e o, ., ° 1 2
AR AR Az
) ® Py e

To precision 10~

10 the rank is 46.

Advantages of the ID:

e The rank is k is typically close to optimal.

e Applying V7 and U, is cheap — they both contain k x k identity matrices.

e The matrices V§ and U, are well-conditioned.

e Finding the k points is cheap — simply use Gaussian elimination.

e The map Z\12 is simply a restriction of the original map A».
(We loosely say that “the physics of the problem is preserved’.)

e Interaction between adjacent boxes can be compressed (no buffering required).



Review of ID: Consider a rank-k factorization of an m x n matrix: Aoy = Uy Aoy '

Sources in €14 Targets in 5
Az
nooooooooooo.............”..... q1 f2
“‘”‘n‘\ V>_|I< U2
91 A f5

To precision 10~19, the rank is 11.

Advantages of the ID:

e The rank is k is typically close to optimal.

e Applying V7 and U, is cheap — they both contain k x k identity matrices.
e The matrices V§ and U, are well-conditioned.

e Finding the k points is cheap — simply use Gaussian elimination.

e The map Z\12 is simply a restriction of the original map A».
(We loosely say that “the physics of the problem is preserved’.)

e Interaction between adjacent boxes can be compressed (no buffering required).



Model problem: Consider a collection of points {x,-}’.\L1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # .

The contour The matrix



Model problem: Consider a collection of points {x,-}’.\L1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # .

The contour The matrix

Partition the contour into 16 leaves.



Model problem: Consider a collection of points {x,} ' ; along a contour T
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

o"...

The contour The block A(l, [¢) shown in red.

Now let us focus on a single panel I - associated with index vector /..

Our task is to determine a basis matrix U.- and an index vector /- C /- such that
A(l-,18) = U A1)
Xx(N—n) nxkkx(N-n)

The most direct way of doing this is to perform Gram-Schmidt on the rows of A(/, ).

This works great, but it is expensive, since A(/, ;) is big. We seek a local procedure.



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

The contour The block A(l,, ")) shown in red.

Idea (bad): Ignore all charges in the far-field!
Let /") denote the near-field points.

Then factor the smaller matrix B = A(/,., [**%)):
B - U B,

N X Npear N XK K X Npear

and set I, = I.(J).



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

The contour The block A(l,, ")) shown in red.

Idea: Replace charges in the far-field by “proxy” charges. The block G shown in green.

Let I&near) denote the near-field points and let G denote a matrix of size n x N0y, that
maps charges on the proxy locations to potentials on ;.

Then factor the smaller matrix B = [A(l, ")) G:
B _ U, B(J, )
N X (Mnear + nproxy) nx Kk K x (Mear + nproxy)

and set I, = I.(J).



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

The contour The block A(l,, ")) shown in red.

Idea: Replace charges in the far-field by “proxy” charges. The block G shown in green.

Let I&near) denote the near-field points and let G denote a matrix of size n x N0y, that
maps charges on the proxy locations to potentials on ;.

Then factor the smaller matrix B = [A(l, ")) G:
B _ U, B(J, )
N X (Mnear + nproxy) nx Kk K x (Mear + nproxy)

and set I, = I.(J).



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with-entries A(/,j) = log |x; — x;| for i # J.

The contour

Idea: Replace charges in the far-field by “proxy” charges.

... execute the same steps for the next panel ...



Model problem: Consider a collection of points {x,-}i’i1

Let A be the N x-N matrix with entries A(/,j) = log |x; — x;| for i # J.

along a contour I'.

The contour

Idea: Replace charges in the far-field by “proxy” charges.

... and the next ...



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

The contour

Once all leaves have been processed, we have in effect eliminated a bunch of points.



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
_et A be the N x N matrix with entries A(i,j) = log |x; — x;| for i # j.

oseeo® ® 0ooces ,
o ~
ya \
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|
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o.\ ./.o
-~ -~
T ....“.° o ® © 0 o0oceee 0 0o © L4 .M. -
The contour The matrix

Now consider compression of a parent node.




Model problem: Consider a collection .of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

The contour

Replace far-field nodes by a small set of proxy charges.



Model problem: Consider a collection .of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

The contour

Points remaining after compression.



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

All points



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.
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After level 4 compression.



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

After level 3 compression.



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

After level 2 compression.



Model problem: Consider a collection of points {x,-}i’i1 along a contour I'.
Let A be the N x N matrix with entries A(/,j) = log |x; — x;| for i # J.

After level 1 compression.



Model problem (non-sym): Consider a collection of points {x,-}i’i1 along a contour I'.

(X; — X;)

Let A be the N x N non-symmetric matrix with entries A(i,j) = 5 ! for i £ J.

X — X;|

The contour A(l, %) in red.

Let I'; be a panel associated with an index vector /. A(I7, 1) in blue.

Our task is to determine basis matrices U, V.- and index vectors 77, 77, S.ti.
Al 19) = U A1) o A(S, 1) = A(ST) VY
nx(N—n) nxkkx(N-n) (N—n)xn (N—n)xkkxn



Model problem (non-sym): Consider a collection of points {x,-}i’i1 along a contour I'.

X; — X)) S+ fori#].
X — X;|

Let A be the N x N non-symmetric matrix with entries A(i,j) =

The contour A(l,[2) in red.
Let us first consider the task of finding U.. We need to factor
A(l-,18) = U A1)
nx(N—n) nxkkx(N-n)



Model problem (non-sym): Consider a collection of points {x,-},.’i1 along a contour I'.

Let A be the N x N non-symmetric matrix with entries A(i,j) = ( " 2 2 ! for i +£ |.
X — Xj
—
The contour The block A(l,, 1) shown in red.

Everything works the same! The block G shown in green.

Replace charges in the far-field by “proxy” charges, let /") denote the near-field points
and let G denote a matrix of size n x ny;oxy that maps monopole charges on the proxy
locations to potentials on I'-. Then factor the smaller matrix B = [A(I-, ")), G]:
B _ U, B(J, )
N X (Mpear + Nproxy) N X K K X (NMyear + Nproxy)
and set I, = I.(J).



Model problem (non-sym): Consider a collection of points {x,-}i’i1 along a contour I'.

X; — X)) S+ fori#].
X — X;|

Let A be the N x N non-symmetric matrix with entries A(i,j) =

0o®’

The contour A5, 1) in blue.
Next we consider the task of finding V.. We need to factor
A1) = ASL) Vi

(N—n)xn (N—n)xkkxn



Model problem (non-sym): Consider a collection of points {x,-},.’i1 along a contour I'.
(X; — X;)

Let A be the N x N non-symmetric matrix with entries A(i,j) = 5 ! for i +£ |.

The contour A5, 1) in blue.

Things work almost the same ... G in magenta.

Replace charges in the far-field by “proxy” charges, let /") denote the near-field points
and let G denote a matrix of size n x ny;oxy that maps dipole charges on I'; to potentials
on the proxy points. Then factor the smaller problem:

A(lgnear)7 I;) A(énear) ’/‘7_)

Y V>l<
G G(:,J)

7—.




Notes:

e There are in fact two potentially different sets of skeleton points:

1. The incoming skeleton points resulting from an ID of the rows of A(/., ).
2. The outgoing skeleton points resulting from an ID of the columns of A(/¢, I,).

It is possible, and often practical, to enforce that these skeletons be the same.
This can be done by constructing an ID for the rows of [A(/,I5), A(I%, I7)*].

e In real life, the presence of quadrature corrections for “near-diagonal” elements slightly
complicates matters. However, these complications can all be handled.

e For Helmholtz, the compression technique based on a proxy domain (e.g. circle) to
account for the far-field has to be modifed to avoid the possibility of resonances (avoid
using resonant radii, or, use two concentric sets of proxy circles separated by a
distance \/4, or, use both monopoles and dipoles on the proxy surface, etc).

e For other elliptic PDEs (Stokes, elasticity, time-harmonic Maxwell, etc), analogous
representations can be worked out. Each case has its own subtleties, but the basic
ideas carry over. (At least, it currently appears that they do!)

e Some care is necessary in determining how finely to sample the proxy surface, in
particular for Helmholtz.



A “volume filling” domain: Now consider a contour like this:

Let A denote an N x N matrix arising upon discretizing a boundary integral operator

Agl(x) = q(x) + /r og|x — y|q(y)dA(y), x e,

where [ is the collection of ellipses shown.



We must now use a binary tree based on splitting in physical space (as opposed to
parameter space).

Level O Level 1 Level 2

Level 3 Level 4

21 23 29 31
10 11 14 15

20 22 28 30

17 19 25 27

16 18 24 26




Compression stage: Finding /-, U,, and V-, for a box r works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

e Points in /.

e Points in .

At first, it seems like we need to perform an ID of the large matrix A(/-, ).



Compression stage: Finding /-, U,, and V-, for a box r works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

e Points in /.

e Points in /"),

Points in I'proxy-

At first, it seems like we need to perform an ID of the large matrix A(/-, [5).
But, using the Green localization trick, we only need to ID the matrix [A(/, ")) G],
where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding /-, U,, and V-, for a box r works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

e Points in /..

e Points in /"),

Points in I'proxy-

At first, it seems like we need to perform an ID of the large matrix A(/-, ).
But, using the Green localization trick, we only need to ID the matrix [A(/, ")) G],
where G is the matrix of interaction with the proxy surface (green).






Skeleton points on level 4, acc = 1.000e-09




Skeleton points on level 3, acc = 1.000e-09




Skeleton points on level 2, acc = 1.000e-09




Skeleton points on level 1, acc = 1.000e-09




Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.



Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.

Bad news: The simple direct solver no longer has O(N) complexity.



Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Complexity analysis: For a box 7, define quantities:

N- Number of discretization points in 7.

n Number of points in the skeletons for the children of .
g Number of points in the proxy contour.

k Rank of interaction between 7 and the outside world.

Then

Cost of compressing ™ ~ngk

Cost of building local operators 7~ n°

Unfortunately, for a “volume filling” set of points, we have

n~ /N, g~ vN-, K ~ /N,

so the overall cost of the direct solver is O(N3/2).



A surface in 3D: Now consider a surface in R3

aaaaaaaaaaaaaaaaaaaaaaaa

Let A denote an N x N matrix arising upon discretizing a boundary integral operator

AdIx) = qx) + [ a)dA).  xerT

where [ is the “torus-like” domain shown (it is deformed to avoid rotational symmetry).




We construct a tree by bisecting in parameter space — level 1.

Tessellation in parameter space at level 1

1.5+

0.5

0 1 2 3 4 5 6
Tessellation in physical space at level 1




We construct a tree by bisecting in parameter space — level 2.

Tessellation in parameter space at level 2

1.5+

0.5

0 1 2 3 4 5 6
Tessellation in physical space at level 2




We construct a tree by bisecting in parameter space — level 3.

Tessellation in parameter space at level 3

1.5+

0.5

0 1 2 3 4 5 6
Tessellation in physical space at level 3




We construct a tree by bisecting in parameter space — level 4.

Tessellation in parameter space at level 4

1.5+

0.5

14

0 1 2 3 4 5 6
Tessellation in physical space at level 4




Compression stage: Finding 77, U-, and V,, for a box 7 works in principle as before.

e Points in /.

e Points in .

At first, it seems like we need to perform an ID of the large matrix A(/, I5).



Compression stage: Finding /-, U,, and V., for a box = works in principle as before.

e Points in /.

e Points in /"),

Points in [proxy-

At first, it seems like we need to perform an ID of the large matrix A(/, I5).

But, using the Green localization trick, we only need to ID the matrix [A(/, ")) G],

where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding /-, U,, and V., for a box = works in principle as before.

e Points in /..

e Points in /")

Points in [proxy-

At first, it seems like we need to perform an ID of the large matrix A(/, I5).

But, using the Green localization trick, we only need to ID the matrix [A(/, ")) G],

where G is the matrix of interaction with the proxy surface (green).
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The domain in physical space

“‘é»




The domain in physical space

//

///ﬂ//

0.2
0.1
-0.1
-0.2



The domain in physical space
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0.5

The domain in parameter space
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The domain in parameter space

SNIOSNINION] SNISNININ] AN AN
< <
NgZﬁ SIS ﬁﬁﬁj\ ~ D NNy g@ﬁ
<<
~ ~ ~J N < >
< D
~ < NN < RS < D RSN
SN N <7 Do D D > NN BN
S D
D a D = < D D
NS
~J ~J ~
< <
~ < D NS N LS N D S o
NN NN NN NN NN




1.5

0.5

The domain in parameter space
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The domain in parameter space
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Example: Consider free space scattering from a domain with variable wave speed.
Given an “incoming wave” v, we seek to determine an “outgoing wave” u that solves

(2) — Au(x) —KkZ(1 —b(x))u(x) =—k?b(x)v(x) x€R?
(3) | Ilim VX[ (O u(x) — ik u(x)) =0

We suppose that b is a smooth “scattering potential” whose support is contained to
some rectangle Q, support(b) C Q.

The scattering potential specifies the deviation of the local wave speed v = v(x) from

N
the free space wave speed Vg, ... b(X) =1 — (\‘;?;3) .

We look for a solution of the form
(4) ux) = lonxqlix) = | oxlX —y)qly) dAl).

where ¢.(Xx) = H(()1)(/f\x|) is the free space fundamental solution. u satisfies (3)
automatically, and (2) is satisfied if g satisfies the Lippman-Schwinger integral equation:

5)  q(x)+x2b(x) /Q HO(slx — y)) aly) dAY) = —k2b(xX)v(x),  x €9

Observe that (5) is a local equation defined on the bounded set 2.
(It is also a second kind Fredholm equation, which is very nice.)



Recall: We seek to solve q(x) + x° b(x) /H(()”(/{\X —y)g(y)dA(y) = =% b(x) v(x), x € Q.
Q

We discretize Q2 using a uniform grid, and then split the points into a quad-tree:

11 13 - 19 - 21
3 S
10| - 12| - 18| - 20
]
7 9 15| - 17
2 4
6 8 14 - 16

Now discretize the integral equation using Nystrom with the trapezoidal rule.

A small number of elements “close to the diagonal” (in physical space) are modified

since the kernel in the integral is singular, but most matrix elements are given by

A(7,j) = k2 b(x;) HS (k1 — x;1) /Wi .

We will build a direct solver for Aq = f, where f(/)

—K2 b(X;) V(X;) /W;.




Compression stage: Finding /-, U,, and V., for a box = works in principle as before.

coccscelscsscsslosccsscsscsses e Points in /.
coccscolscsscsslosscsscsscsses e Points in /¢,

At first, it seems like we need to perform an ID of the large matrix A(/, ).



Compression stage: Finding /-, U,, and V., for a box = works in principle as before.

3 I 3 o Points in /-.
3 A e Points in /).
cesssseesee Points in Mroxy-

At first, it seems like we need to perform an ID of the large matrix A(/, I5).

But, using the Green localization trick, we only need to ID the matrix [A(/-, ")) G],

where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding /-, U,, and V., for a box = works in principle as before.

3 R 3 o Points in -
3 e e Points in /)
cesssseesee Points in Mroxy-

At first, it seems like we need to perform an ID of the large matrix A(/-, ).

But, using the Green localization trick, we only need to ID the matrix [A(/-, ")) G],

where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding /-, U,, and V., for a box = works in principle as before.

3 R 3 o Points in -
3 e e Points in /)
cesssseesee Points in Mroxy-

At first, it seems like we need to perform an ID of the large matrix A(/-, ).

But, using the Green localization trick, we only need to ID the matrix [A(l-, /")) G],
where G is the matrix of interaction with the proxy surface (green).

Peculiarity of Lippman-Schwinger I: There is no need for a proxy surface in this case ...
Peculiarity of Lippman-Schwinger II: A =1+ BG where B is diagonal, and G is

translation invariant. This means we only need to compress one box per level.



