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Abstract

Motivation

Language modelling (LM) on biological sequences is an emergent topic in the field of bioinformatics.

Current research has shown that language modelling of proteins can create context-dependent

representations that can be applied to improve performance on different protein prediction tasks. However,

little effort has been directed towards analyzing the properties of the datasets used to train language

models. Additionally, only the performance of cherry-picked downstream tasks are used to assess the

capacity of LMs.

Results

We analyze the entire UniProt database and investigate the different properties that can bias or hinder

the performance of LMs such as homology, domain of origin, quality of the data, and completeness of

the sequence. We evaluate n-gram and Recurrent Neural Network (RNN) LMs to assess the impact of

these properties on performance. To our knowledge, this is the first protein dataset with an emphasis

on language modelling. Our inclusion of properties specific to proteins gives a detailed analysis of how

well natural language processing methods work on biological sequences. We find that organism domain

and quality of data have an impact on the performance, while the completeness of the proteins has little

influence. The RNN based LM can learn to model Bacteria, Eukarya, and Archaea; but struggles with

Viruses. By using the LM we can also generate novel proteins that are shown to be similar to real proteins.

Availability and implementation

https://github.com/alrojo/UniLanguage

1 Introduction

The task of language modelling (LM) (Bengio et al., 2003; Merity et al.,

2017) has proven a successful strategy to build unsupervised contextual

representations of text leading to state-of-the-art performance in many

supervised natural language processing (NLP) tasks (Devlin et al., 2018;

Peters et al., 2018).

Protein sequences are in many ways comparable to text: discrete

symbols (amino acids), dictionary of up to 25 symbols (similar to

characters), average length of 335 (like a paragraph), and access to large

databases of unlabelled sequences (akin to English Wikipedia).

Recent work has shown that LMs trained on protein sequences can

be used to improve performance on multiple protein prediction tasks

(Heinzinger et al., 2019; Rives et al., 2019). However, in contrast to NLP

where the field of language modelling has been studied in 20+ years before

being used for pretraining, little effort has been directed towards studying

the desired properties of datasets and methods for language modelling on

proteins.

As a result, current methods naively train LMs without considering

the vast heterogeneity of proteins in nature, evidence for protein existence,

protein fragments, and homology partitioning of training, validation, and

test sets. Mixing the taxonomic domains of life can be compared to training

a single LM on several different languages at the same time, potentially

missing out on domain specific specialization. This can make it particularly

challenging to learn underrepresented domains. Protein fragments might

© The Author 2019. 1
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Fig. 1: UniProt composition based on quality, completeness and homology. The different properties are divided by domain, where each color correspond

to a different domain. The evidence of existence is divided in four levels, where Protein and Transcript (high quality) have experimental evidence while

Homology and Predicted lack experimental evidence (low quality). The composition of the data is divided in complete sequences and fragments, which

is described in hundreds of millions. The homology composition represents the proportion of experimental proteins that remain when the dataset is

homology reduced by four different similarity thresholds. This indicates the degree of redundancy in the dataset.

be incomplete, discontinuous, or filled with unknown symbols. Lack of

experimental evidence, which constitutes 99% of UniProt, can cause noisy

training and unreliable testing. Not considering homology partitioning

can cause proteins with high similarity to be placed in different partitions

resulting in an overestimation of generalization performance potentially

leading to erroneous conclusions. Moreover, many homologous sequences

within a training set might lead training to overly focus on a certain family

of proteins or misjudge the true amount of unique proteins.

Figure 1 highlights the representation of taxonomic domains in

UniProt, the distribution of proteins across dataset qualities, the amount

of protein fragments, and homology overlap in the experimental dataset.

It can be observed that most of the data is predicted (no experimental

evidence of existence), Bacteria is overly represented, and Viruses have a

low amount of unique proteins.

We contribute a new language modelling dataset for protein sequences.

This dataset addresses all the above-mentioned concerns and provides a

language modelling dataset with homology partitioning; only high quality

samples for validation and testing; and segmentation according to domain,

quality, and completeness.

The end-goal with language modeling is to develop contextual

representations encapsulating important protein features. With such

contextual representations, we believe that state-of-the-art for all known

protein prediction tasks can be improved. Moreover, with understanding

of protein likelihood we can filter, auto-complete and generate new novel

proteins. However, this end-goal requires that language models are capable

of producing great contextual understanding of protein sequences from all

domains of interest. Measuring perplexity is commonly used in natural

language processing for evaluating contextual representations. Perplexity

is a measure of how well a language model can predict a protein. Perplexity

allows us to evaluate context-dependent representations without the need

of supervised protein tasks. This makes perplexity easily applicable and

allows us to evaluate across the entirety of UniProt, which is why we use

it for protein evaluation.

Our hope with this dataset is to facilitate language modeling and

understand how the varying levels of evidence for proteins (quality),

different taxonomic domains, and protein completeness impact the ability

to find regularity in protein sequences.

We evaluate a baseline n-gram and a modern recurrent neural network

architecture known as the AWD-LSTM. We train the baseline and AWD-

LSTM on varying levels of data quality (high quality, low quality, both), the

inclusion of taxonomic domains (training on one domain vs. all domains),

and only using incomplete proteins. When evaluated all models on the high
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quality validation and test sets for all domains, we find that that domain

and dataset quality have a significant effect on perplexity. Moreover, when

optimizing the AWD-LSTM hyperparameters we found that default NLP

hyperparameters often underperformed, achieving equivalent perplexity

to a count-based unigram model. To find the optimal parameters, we had

to do an extensive hyperparameter search using bayesian hyperparameter

optimization tools (Hayes et al., 2019).

In conclusion, we have defined a massive, curated, and standardized

dataset for language modelling on protein sequences. We provide results

from n-gram and modern recurrent neural network models.

2 Related work

In recent years significant progress has been made in language modelling

of text (Bengio et al., 2003). Most noticeable is the distributed encodings

of hidden states using deep neural networks, which can learn to compress,

understand, and produce sentences in fluent English (Mikolov et al., 2010;

Merity et al., 2017). Current state-of-the-art within language modelling

is based on attention architectures (Bahdanau et al., 2014; Vaswani et al.,

2017; Dai et al., 2019) and the access to immense computing resources

and large datasets (Radford et al., 2018, 2019). It has been found that these

large language models have a profound impact on generating contextual

embeddings for NLP tasks (Peters et al., 2018; Radford et al., 2018).

Language modelling is unidirectional as it decomposes the joint

probability. However, text, like proteins, is often given in a complete

form, presenting a possible bidirectionality that cannot be captured by

unidirectional language models. As a response, the models BERT (Devlin

et al., 2018) and XLNet (Yang et al., 2019) provide bidirectional language

modeling objectives by taking inspiration from denoising autoencoders

(Vincent et al., 2008), which currently rank state-of-the-art on popular

benchmarks such as GLUE (Wang et al., 2018).

However, these state-of-the-art models are prohibitively expensive

to train. Because of such, we use the computationally less demanding

Average Stochastic Gradient Descent Weight-Dropped LSTM (AWD-

LSTM) (Merity et al., 2017) for our benchmarks, which has comparable

results to state-of-the-art in unidirectional language modeling. For future

work we encourage researchers to test out modern attention architectures

and bidirectional language modelling objectives.

In the literature for language modeling on proteins, Rives et al. (2019)

performed language modelling on all of UniProt and did not consider

homology overlap. Heinzinger et al. (2019) and Alley et al. (2019)

improved upon this by using UniRef50, which is UniProt with 50%

homology reduction. However, 50% identity still implies a very significant

homology between proteins (Sander and Schneider, 1991). They randomly

assigned dataset partitions, which resulted in most of their test set not

being experimentally validated. Moreover, none of the mentioned papers

considered the domain of origin or protein completeness. The difference

between taxonomic domains, and bias towards highly represented domains

such as Bacteria, can cause the models to be biased.

When evaluating language model performance, most recent work has

copied the style from natural language processing by reporting scores

on supervised tasks using their contextual representations. Rao et al.

(2019) propose a combination of five protein prediction tasks to assess the

performance of contextual representations for protein sequences. However,

the performance of supervised tasks is not a direct measure of how

informative contextual representations are and suffers from dataset biases.

Perplexity on the other hand directly measures the models ability to predict

amino acids, which reflects the model capability to create informative

contextual representations. Nonetheless, Rao et al. (2019) can provide an

ability to assess if the contextual representation captures certain structural

phenomena, which perplexities will not provide.

3 Methods

Language modeling is the task of estimating the joint probability

distribution over a finite sequence of length l of discrete tokens:

P (x1, x2, . . . , xl) . (1)

A token, xi ∈ W , comes from a size k discrete dictionary, W =

{w1, w2, . . . , wk}.

By modelling the probability of a sequence we can evaluate whether a

sentence is likely to exist. Defining the dictionary, W , as the set of amino

acids allows us to calculate the probability of a protein sequence existing.

As equation (1) is hard to calculate we will introduce two methods,

popularized in NLP, for doing language modeling of proteins: The n-

gram language model and the Recurrent Neural Network Language

Model (RNN-LM). To test language modeling capability we propose the

biggest known language modelling dataset, with homology partitioning,

by clustering the experimental part of UniProt. The dataset consists of

different subsets in order to test the influence on language modelling of

taxonomic domain, quality, homology, and protein completeness.

3.1 Conditional language modelling

The n-gram and RNN-LM models both rely on rewriting eq. (1) using the

chain rule of probability:

P (x1, x2, . . . , xn) = P (x1)P (x2|x1) . . . P (xl|x1, . . . xl−1)

= Πl
i=1

P (xi|x1, x2, . . . xi−1) .
(2)

In order to make a model that scales, the n-gram makes a Markov

assumption and the RNN-LM uses a learnable compression of the

conditionals.

3.2 n-gram models and the Markov assumption

The nth order Markov assumption relaxes the rules of conditional

probability by assuming that predicting the next token only depends on

the n preceding tokens:

P (x1, x2, . . . , xl) ≈ ΠiP (xi|xi−n, . . . xi−1) . (3)

This is a strong assumption that is definitely not true for neither text nor

proteins. However, it can be argued that some tokens have a larger influence

on predicting future tokens. In particular for text, the most recent words

are highly influential on what might come next.

Using the chain rule we can write:

p(xi|xi−n, . . . , xi−1) =
p(xi, xi−1 . . . xi−n)

p(xi−1 . . . xi−n)
. (4)

In a pure maximum likelihood, frequencies are used to estimate

probabilities so the training set counts can be used to estimate the

conditionals:

P (xi|xi−n, . . . , xi−1) =
count(xi, xi−1 . . . xi−n)

count(xi−1 . . . xi−n)
. (5)

The simple n-gram technique has been shown to work surprisingly well in

NLP literature when calculating the probability of text. Laplace smoothing,

also known as the add-one trick, where count → count +1 is used as

regularization to better deal with low count n-grams (Jurafsky and Martin,

2009).
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3.3 Recurrent Neural Network Language Models

The Recurrent Neural Network Language Models (RNN-LM) is a neural

network based language model that circumvents the statistical based

approach of the n-gram model by compressing the conditional into a

hidden state, hi ∈ R
d, using neural networks:

Pθ(xi|x1, x2 . . . xi−1) = RNN-LM(hi) , (6)

where the RNN-LM is a non-linear, potentially multi-layered, function

that outputs the probability of xi. The RNN-LM repeatedly updates the

the hidden state, ht, at every time step, allowing the RNN-LM to predict

the probability of a sequence in linear time w.r.t. the sequence length

hi = g(xi−1, hi−1) , (7)

where g corresponds to the recurrent neural network portion of the RNN-

LM. We use the AWD-LSTM (averaged stochastic gradient descent weight

dropped LSTM) as our specific RNN-LM implementation (Merity et al.,

2017). The AWD-LSTM has several hyperparameters that we optimize

with SigOpt (Hayes et al., 2019).

3.4 Inference

Given a trained RNN-LM model, we can generate novel protein sequences

by iteratively sampling from the network’s output distribution, x̂i ∼

RNN-LM(hi), then feeding in the sample as input at the next timestep

hi = g(x̂i−1, hi−1). While the RNN-LM is deterministic, the

stochasticity of multinomial sampling gives a distribution over protein

sequences. As sampling is conditional on the hidden state, the distribution

of sequences depends on previous inputs. This allows the RNN-LM

to complete any partial sequence. For generating a completely novel

sequence, we will provide the RNN-LM with a hidden state, h1, of zeroes

and x1 set to Methionine.

3.5 Evaluation metric

Historically, perplexity has been the preferred method to evaluate model

performance in language modelling literature (Jurafsky and Martin, 2009;

Dai et al., 2019; Merity et al., 2017). Perplexity is the exponential of the

average log-likelihood and measures how well a language model predicts

a sequence of amino acids.

Perplexity = exp

(

−
1

N

∑

i

logP (xi|x<i)

)

(8)

Because of the log term very confident and wrong predictions will weight

more. When reporting perplexities we will consider the protein sequences

as one contiguous sequence, such that long proteins will have a larger

influence. Notice, that predicting uniform probability over all classes will

correspond to a perplexity equal the amount of classes. In our case, the

uniform perplexity will be 26 for our 25 amino acids + end-of-sequence

symbol.

3.6 Datasets

The data used in this project are downloaded in their entirety from the

UniProt database (UniProt Consortium, 2019). For each protein, we extract

information regarding its experimental evidence (experimentally validated

or predicted), domain of origin (Eukarya, Bacteria, Archaea, or Viruses),

and completeness (i.e. whether the protein is complete or fragmented).

This gives in total 2× 4× 2 = 16 datasets. The exact definition of these

criteria are discussed below and summarized in Table 1.

The dataset is divided into two sets depending on the evidence of

their existence using the field Protein existence in UniProt. Proteins can

have experimental evidence at protein and transcript level. Proteins with

existence being inferred by homology or predicted by gene finding methods

are regarded as predicted proteins.

Fragmented proteins are incomplete protein sequences that might be

from a random place in the original sequence, contain many unknowns,

or noncontiguous regions. We also consider proteins that do not start with

Methionine as fragments.

The high quality dataset is homology partitioned into training,

validation, and test set. We employ 60% for training, 10% for validation

and 30% for testing. When partitioning we first cluster the proteins based

on a similarity threshold of 20% identity. This means that proteins with

an identity higher than this threshold are grouped in the same cluster. For

the clustering task, we utilize the MMSeqs2 tool (Steinegger and Söding,

2017). Each cluster is then assigned to one of the three possible partitions,

taking into consideration that the proportions of taxonomical domains, and

fragmented proteins, are the same across all partitions.

The low quality dataset is aligned to the validation and test sets obtained

from the high quality homology partitioning. MMSeqs2 is also used

for this alignment process. Low quality proteins with a similarity above

20% identity are discarded. The remaining proteins are kept as the low

quality training set. For both high and low quality datasets, we remove all

duplicated proteins. The dataset statistics can be found in Table 1.

Table 1. Number of sequences and distribution of lengths for each domain and

protein quality.

Eukarya Bacteria Archaea Viruses

Experimental

Mean length 428 489 327 376

High quality 899K 69K 3.3K 30K

Low quality 421K 7916 2252 30K

Proteins removed 52K 43K 67 22K

Predicted

Mean length 460 313 280 365

High quality 17.9M 56.9M 1.9M 1.0M

Low quality 4.3M 3.6M 188K 1.1M

Proteins removed 17.6M 68.5M 1.8M 678K

4 Experimental Design

In our experiments we test the AWD-LSTM (Merity et al., 2017) and n-

gram model with add-one smoothing (Jurafsky and Martin, 2009) on the

datasets defined above in Section 3.6.

4.1 Model details

As our specific RNN-LM implementation, we modify the AWD-LSTM by

using SGD instead of averaged SGD. We reduce the learning rate if there

has been no improvements over 10 epochs for the experimental training

sets. If the learning rate was reduced more than 5 times, the training was

stopped. For the predicted datasets we use iterations comparable to 10

epochs on the experimental eukaryotes (about 600k samples per epoch). To

optimize the hyperparameters of the AWD-LSTM we use SigOpt (Hayes

et al., 2019) and define the parameter space as follows: learning rate [1, 20],

learning rate decay size [0.05, 1], batch size [32, 256], back propagation

through time [32, 256], LSTM layers [2, 5], number of hidden LSTM

units in each layer [128, 1280], gradient clipping [0.05, 1], weight decay

[0.0, 0.001], all dropouts individually set [0, 0.6].

On the experimental dataset we train and validate 300 models on

Eukarya. We then take the best performing hyperparameters of the Eukarya

and use it on all other language modelling training sets to achieve



✐

✐

“output” — 2019/12/3 — 11:59 — page 5 — #5
✐

✐

✐

✐

✐

✐

Language modelling for biological sequences 5

comparable results. We also tried to optimize AWD-LSTM parameters

individually for each domain on the experimental training set. Here we

found that only Archaea benefits from having individually optimized

parameters, which we comment on in the result section.

Each model is trained on a single GTX-Titan-X GPU with 12 Gb of

internal memory. We use the Salesforce implementation of AWD-LSTM1,

which is written in the PyTorch framework (Paszke et al., 2017).

4.2 Quantitative evaluation

Given a homology partitioned validation and test set of experimental

quality and identical model hyperparameters, we compare the perplexities

of different datasets. We train on single domain experimental, predicted,

and combined data; on all-domain experimental and combined data; and

finally on fragments for Eukaryotes.

4.3 Qualitative evaluation

To better understand what the model learns and when it is confident in

its predictions, we analyse model likelihood and proteins that have been

generated by the AWD-LSTM. We take a single protein and overlay the

amino acid probability with regions that have known secondary structures

(non-coil). To assess whether proteins generated by the trained model

has protein-like features, we use SignalP 5.0 (Almagro Armenteros et al.,

2019) to predict signal peptides in proteins generated by the AWD-LSTM

model. We compare their signal peptide logos with logos generated from

real proteins and from proteins generated by a baseline model.

5 Results and Discussion

We present quantitative results with language model performance on the

experimental test set of each domain. For comparison, we evaluaten-gram

models, and present results from training the AWD-LSTM on varying

dataset qualities, domains, and completeness.

5.1 n-grams baseline

The n-gram models are used as a baseline in language modeling in protein

sequences, results are shown in Figure 2. This performance varies for the

different taxonomic domains, with Viruses being the worst performing

domain while Archaea achieve the lowest perplexity. Regarding the size

of the n-gram context, a bigram and trigram achieve the best performance,

with the exception of Viruses, where a unigram (predicting according to

amino acid frequencies) obtains the best performance. The best perplexity

for the different domains are: Eukarya 18.09, Bacteria 17.49, Archaea

17.31, and Viruses 18.83. Anything below the perplexity of the unigram

indicates that the model has found structure in the sequence of amino acids.

5.2 Quality and origin of training data

The RNN-LM performance can be found in Table 2. We use the same

model for all dataset combinations. The model is described in Section

4.1. The experimental column can be directly compared with the n-

grams as the training and test setup is identical. We can observe that

for Eukarya and Bacteria, the perplexity is significantly lower, with a

reduction of 3.87 and 8.22 perplexity, respectively. This indicates that

the RNN-LM is able to learn the contextual information preceding each

amino acid. However, the perplexity of the RNN-LM for Archaea and

Viruses are equal to the unigram perplexity. This indicates that the RNN-

LM has been unable to capture sequential information in the amino

1 https://github.com/salesforce/awd-lstm-lm

Fig. 2: n-gram and RNN-LM perplexity test performance (low is better)

for different n and domains of life. The n-gram is calculated on the

experimental training set separately for each domain.

acid sequence. The most reasonable explanation for these results is the

minuscule amount of data used to train Archaea and Viruses. Together with

the high complexity of the RNN-LM, it can lead to a quick overfitting on the

training data. Nonetheless, when optimizing the hyperparameters for each

domain separately, we surprisingly found that the best hyperparameters

for Archaea gave a perplexity of 10.5, while optimizing for virus gave no

improvement over unigram.

The lack of experimental data in Archaea and Virus is more apparent

when looking at the performance of RNN-LM trained on the predicted

protein data. The predicted data, even though of unverified existence,

has a significantly greater amount of examples. Here we can see that the

perplexity for both Archaea and Viruses is lower than when training only

on the experimental dataset.

For Eukaryotes and Bacteria we observe that RNN-LMs trained on

predicted dataset exhibit a slightly higher perplexity than when trained on

the experimental dataset. This finding is striking considering that there

is approximately 20 and 900 times more data in the predicted dataset for

Eukarya and Bacteria, respectively.

These results demonstrate that the evidence of existence of protein data

impacts the perplexity of protein LMs. We find that predicted datasets,

even though high quantity, are not as reliable as the experimental data and

Table 2. Model test performance when trained separately for each domain and

for all the domains simultaneously. Test performance is in all cases measured

on experimental test set. Test results for models trained with the RNN-LM. In

domain-single, each row and column pair corresponds to a model trained with

a specific domain and existence class and then tested on the same domain. E.g.

Bacteria predicted is trained on predicted Bacteria sequences and then tested

on the experimental Bacteria test set (as described in section 3). In domain-all,

each column corresponds to one model trained on all domains for a specific

dataset quality and then tested for each domain individually.

Domain
Domain-single Domain-all

Experimental Predicted Combined Experimental Combined

Eukarya 14.04 14.67 14.28 14.74 14.93

Bacteria 9.11 11.56 9.93 9.61 12.24

Archaea 17.50 15.33 15.92 16.12 15.78

Viruses 18.76 17.08 17.15 17.56 17.19

Mean 14.85 14.66 14.32 14.51 15.04
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introduce noise in training. However, this higher perplexity could also be

due to other reasons. One possibility could be that some of the organisms

represented in the predicted data are phylogenetically distant from the

organisms represented in our experimental test set. This can lead to a

biased model that favours the amino acid structure of the most represented

organisms used to train the model. Moreover, the predicted and combined

results should be very similar as we do not oversample the experimental

proteins. Though, we still see a modest difference in their results, this

could be due to seed and optimization variance.

5.3 Training on all domains

In Table 2 we show the results obtained when training a model on the

data from all domains. The objective of this analysis is to address the

question of whether a single RNN-LM can simultaneously learn to predict

proteins belonging to different domains. The performance for the four

different domains is comparable to the performance of the RNN-LM

trained individually on each domain. The perplexity is slightly higher in the

combined RNN-LM, but not by a large margin. This suggests that the RNN-

LM is powerful enough to model multiple distributions of proteins at once.

Another possibility could be that proteins from different domains share

some properties that are easily captured by the RNN-LM. We can conclude

that as only small differences are found between individual and combined

training, the choice of training would be dependent on the downstream task

usage. Furthermore, if the sole objective is to determine the probability of

a protein belonging to one of these domains, then a domain-specific LM

would be preferred.

5.4 Cross-domain predictions

Table 3. Extrapolation when only training on experimental data of one domain

(row) and testing on other domains (column). E.g. Eukaryotes-Bacteria means

that the model was trained on Eukaryotes and tested on Bacteria.

Domain Eukarya Bacteria Archaea Viruses

Eukarya 14.04 12.83 16.48 17.58

Bacteria 17.74 9.11 16.30 18.17

Archaea 19.08 17.83 17.50 19.29

Viruses 18.62 18.06 18.24 18.76

Table 4. Cross-domain prediction when training on predicted data of one domain

(row) and testing on experimental data of other domains (column).

Domain Eukarya Bacteria Archaea Viruses

Eukarya 14.67 12.70 16.51 17.36

Bacteria 16.87 11.56 16.18 17.72

Archaea 16.71 15.03 15.33 17.68

Viruses 16.64 16.02 16.71 17.08

We investigated whether a domain-specific RNN-LM is able to

distinguish between proteins from different taxonomic domains. We

hypothesized that domain-specific models would assign a higher perplexity

to proteins belonging to different domains. In Table 3 we present results

where an RNN-LM is trained on a single domain and evaluated on all

domains individually. We found that in most of the cases, a domain-specific

LM assigns a higher perplexity to proteins from other domains. One clear

example is the case of Eukaryotes and Bacteria. While a model trained on

Eukaryotes attains a lower perplexity on bacterial proteins (12.83) than on

its own domain (14.04), the bacterial perplexity is still much higher than a

Bacteria-specific RNN-LM (9.11). This could also indicate that bacterial

proteins are easier to predict than eukaryotic proteins. The performances

obtained by Archaea and Viruses do not support this finding due to the

reduced amount of training data. For this purpose, we also looked at the

performance obtained by an RNN-LM trained on predicted protein data,

which is shown in Table 4. In this case, we find that a domain specific

model is best at predicting its own domain. Interestingly, Viruses are very

hard to predict, as even the Virus-specific model has lower perplexities on

other domains than itself.

5.5 Incomplete or fragmented proteins

Finally, we investigate the impact of training with proteins that are either

incomplete or fragmented. We only consider fragments belonging to

experimental data of Eukarya as it is the most abundant set of high

quality fragments. We find that the performance on the Eukarya full

sequence test set is 14.66. This result is unexpected to us, as we believed

that fragments of proteins would introduce undesired noise to the real

distribution of amino acid sequences. However, it seems that this is not

the case and a model trained on fragments can perform almost as well as a

model trained on full proteins. One possible explanation could be that the

information to predict the next amino acid is more local and only short-

range dependencies are required. In this context, a fragment would be

equivalent to a full protein, as long-range dependencies in full sequences

would be underutilized.

5.6 Performance over sequence length

Additionally, we studied whether the length of the protein has an influence

on the overall protein perplexity. We analyze the perplexity of eukaryotic

proteins in relation to their sequence length. Figure 3 illustrates that short

proteins are more challenging for the RNN-LM. In particular, protein

sequences below 150 amino acids have a higher perplexity. This result

suggests that perplexity decreases as the protein length increases, which

could indicate that longer sequences are either easier to predict or that the

RNN-LM can better exploit the larger context of the protein.

5.7 Qualitative analysis

5.7.1 Probabilities along sequence

When executing the RNN-LM over a protein sequence we obtain a

likelihood for each residue. This likelihood estimate can be used to assess

the model’s abilities at specific positions, or regions, in the sequence. One

example of likelihood over the sequence is illustrated in Figure 4. In this

example, we can observe that certain regions have a high likelihood, even

close to 1. When comparing these regions against the amino acids with

secondary structure we see an overlap. This suggests that the model is more

correct and confident in regions with secondary structure, as these regions

are generally more conserved than the rest of the sequence. For future

work, it would be of interest to further analyse the correlation between the

likelihood of the RNN-LM and secondary structure and/or conservation.

5.7.2 Discriminating between real and random proteins

One of the RNN-LM outputs is the perplexity of the overall protein

sequence. This perplexity can be interpreted as a score of how much

the protein resembles the training set – i.e. how much it resembles a real

protein. To better understand how well the RNN-LM performs we compare

the average protein perplexity over our test set to a randomly generated

sequence of amino acids. The random sequences are sampled with the

underlying frequencies of amino acids of eukaryotic proteins (unigram

probability). Figure 5 shows the perplexity assigned by the RNN-LM to

experimental eukaryotic proteins and unigram sampled proteins. We can

observe that, even though both sets have the same amino acid composition,
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Fig. 3: Perplexity of eukaryotic proteins by sequence length. The plot represents the mean and standard deviation of the perplexity for each protein length.

The unigram perplexity is included as a baseline. The cumulative sum of the amino acids at each length interval is also represented.

Fig. 4: Probability per residue along the sequence of the CD55 human protein. Secondary structure elements are overlaid.
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Fig. 5: Comparison of the RNN-LM perplexity assigned to experimental

eukaryotic proteins and proteins sampled from the unigram distribution.

the RNN-LM assigns a lower perplexity to the real proteins, whereas

a composition-based method would not be able to distinguish real and

synthetic proteins. These results suggests that the RNN-LM perplexity can

be used as a threshold to discriminate between real and random proteins.

5.7.3 Generating new proteins

RNN-LM can generate novel proteins, as elaborated in Section 3.4.

However, it is challenging to assess the quality of such proteins as we

cannot directly confirm whether a generated protein looks like a real

protein. The best approach would be to express this protein in a host cell and

study its behaviour. As our resources do not extend that far, we analyse the

signal peptides (SPs) of proteins generated by the RNN-LM. We observe

two interesting facts using this methodology. Firstly, of the 10K generated

proteins, 15.62% of them are predicted as having an SP by SignalP 5.0.

On the other hand, a set of the same size with random sequences sampled

from amino acid frequencies (unigram model) only achieved a 0.66% of

predicted SPs. For comparison, the percentage of proteins with SPs in the

human proteome is 14.95%. Secondly, we investigate the composition

of amino acids in the SPs. In Figure 6 we plot the peptide logos of

experimental, LM and random proteins with predicted signal peptides.

For random proteins, due to the low amount of signal peptides, the logo

plot does not capture the true SP motif whereas the logos for experimental

and RNN-LM generated proteins looks indistinguishable.

We can thus conclude that the RNN-LM is able to generate realistic

secretory proteins by analysing the SP of the generated sequence. However,

it still remains unknown whether these proteins can be secreted, folded

correctly, and develop any function in or outside the cell.

6 Conclusion

In this manuscript, we have studied protein specific dataset properties that

can affect the performance of language models (LMs), in particular the

Recurrent Neural Network LM (RNN-LM). We have demonstrated that

the domain of origin and the experimental evidence of the protein data

can have an effect on the perplexity of LMs. The LMs have been tested

on a new dataset, with protein specific properties, that we have assembled

to be used in future work for benchmarking language models on protein

sequences.
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(c) Signal peptide motif from random proteins

Fig. 6: Comparison between signal peptides predicted in experimental test set proteins, novel proteins generated by the RNN-LM from scratch, and

proteins that have been randomly generated using the unigram probabilities.

By investigating taxonomic domains we find that Bacteria are generally

easier to predict while viral proteins are the most difficult to model.

Furthermore, incomplete proteins can be as informative as full proteins

when training an LM.

In our qualitative analysis, our findings suggest that RNN-LM can

generate realistic proteins with a signal peptide distribution that matches

what is found in experimentally validated proteins from UniProt.

With this work we aspire to facilitate language modeling research by

supplying a stringently formatted dataset. We hope that this can yield better

amino acid embeddings for all domains of life and assist improvements in

protein prediction tasks.
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