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ABSTRACT

Automated ProgramRepair (APR) is one of themost recent advances

in automated debugging, and can directly fix buggy programs with

minimal human intervention. Although various advanced APR tech-

niques (including search-based or semantic-based ones) have been

proposed, they mainly work at the source-code level and it is not

clear how bytecode-level APR performs in practice. Also, empirical

studies of the existing techniques on bugs beyond what has been

reported in the original papers are rather limited. In this paper,

we implement the first practical bytecode-level APR technique,

PraPR, and present the first extensive study on fixing real-world

bugs (e.g., Defects4J bugs) using JVM bytecode mutation. The ex-

perimental results show that surprisingly even PraPR with only the

basic traditional mutators can produce genuine fixes for 17 bugs;

with simple additional commonly used APR mutators, PraPR is able

to produce genuine fixes for 43 bugs, significantly outperforming

state-of-the-art APR, while being over 10X faster. Furthermore, we

performed an extensive study of PraPR and other recent APR tools

on a large number of additional real-world bugs, and demonstrated

the overfitting problem of recent advanced APR tools for the first

time. Lastly, PraPR has also successfully fixed bugs for other JVM

languages (e.g., for the popular Kotlin language), indicating PraPR

can greatly complement existing source-code-level APR.
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1 INTRODUCTION

Software systems are ubiquitous in today’s world; most of our

activities, and sometimes even our lives, depend on software. Un-

fortunately, software systems are not perfect and often come with
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bugs. Software debugging is a challenging activity that consumes

over 50% of the development time/effort [78], and costs the global

economy billions of dollars [17]. To date, a huge body of research

has been dedicated to automatically localize [10, 13, 14, 44, 46, 48,

67, 79, 87, 94, 97] or fix [18, 21, 22, 28, 30, 35, 43, 49ś51, 56, 58, 61,

66, 68, 76, 80, 82, 84, 92] software bugs. Automated Program Repair

(APR) techniques aim to directly fix software bugs with minimal

human intervention, and has been under intense research in spite

of being a young research area [28].

Based on the actions taken for fixing a bug, state-of-the-art APR

techniques can be divided into two broad categories: (1) techniques

that monitor the dynamic execution of a program to find deviations

from certain specifications, and then heal the program bymodifying

its runtime state in case of any abnormal behavior [51, 68]; (2)

generate-and-validate (G&V) techniques that modify program code

representations based on various rules/techniques, and then use

either tests or formal specifications as the oracle to validate each

generated candidate patch for finding plausible patches (i.e., the

patches that can pass all the tests/checks), which are further checked

to find genuine patches (i.e., the patches semantically equivalent to

developer patches) [18, 21, 22, 30, 35, 43, 48ś50, 56, 61, 66, 80, 85, 92].

Among these, G&V techniques, especially those based on tests, have

gained popularity as testing is the prevalent way for detecting bugs,

while very few systems are based on rigorous, formal specifications.

It is worth noting that, lately, multiple APR research papers get

published in Software Engineering conferences and journals each

year, introducing various delicately designed and/or implemented

APR techniques. With such state-of-the-art APR techniques, more

and more real bugs can be fixed fully automatically, e.g., the recent

CapGen [85] technique, published in ICSE’18, has been reported

to produce genuine patches for 22 bugs of Defects4J (a suite of

real-world Java programs widely used for evaluating APR tech-

niques [38]). Despite the success of recent APR techniques, as also

highlighted in a recent survey [28], currently we have a scattered

collection of findings and innovations with no thorough evaluation

of them. In particular, it is not clear how a simplistic bytecode-

mutation approach works for APR in practice.

In this paper, we present the first extensive study on APR tech-

niques, with an emphasis on bytecode-level APR, on the widely

used Defects4J dataset [31, 38]. To this end, we build a practical

APR tool named PraPR (Practical ProgramRepair) based on a set of

simple JVM bytecode [47] mutation rules, including basic mutators

from traditional mutation testing [36] (e.g., changing a>=b into a>b)

and augmented mutators that occur frequently in real-world bug-fix

commits (e.g., replacing field accesses or method invocations). We

stress that although simplistic, PraPR offers various benefits and

can complement state-of-the-art techniques. First, all the patches

that PraPR generates can be directly validated without compilation,

while existing techniques [18, 21, 22, 30, 35, 37, 43, 49, 50, 56, 61,

66, 80, 85, 92] have to compile and load each candidate patch. Even
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though some techniques curtail compilation overhead by encod-

ing a group of patches inside a single meta-program, it can still

take up to 37 hours to fix a Defects4J program due to numerous

patch compilations and loading [18]. Second, bytecode-level repair

avoids messing up the source code in unexpected ways, and can

even be applicable for fixing code without source code information,

e.g., buggy 3rd-party libraries that do not have official patches yet.

Third, manipulating programs at the level of JVM bytecode makes

PraPR independent of the syntax of a specific target programming

language, and applicable to different Java versions and even other

popular JVM-based languages (notably Kotlin [34], Scala [62], and

Groovy [25]). Lastly, PraPR does not require complex patching

rules [43, 49, 92], complicated computations such as symbolic exe-

cution and constraint solving [18, 56, 61], or any training/mining

[37, 71, 85, 91], making it directly applicable to real-world programs

and easily adoptable as the baseline for future APR techniques.

We have applied PraPR to fix all the 395 bugs available in De-

fects4J V1.2.0. Surprisingly, even the basic traditional mutators can

already produce genuine fixes for 17 bugs. With both the traditional

and the augmented mutators, PraPR successfully produces genuine

fixes for 43 bugs, thereby significantly outperforming state-of-the-

art APR techniques (e.g., the recent CapGen [85] fixes only 22 bugs).

Also, thanks to the bytecode-level manipulation, PraPR with only

single thread can already be over an order of magnitude faster

than state-of-the-art SimFix [37], CapGen, JAID [18] (that reduces

compilation overhead by bundling patches in meta-programs), and

SketchFix [33] (that reduces compilation overhead via sketching).

We further study PraPR (and other recent APR tools) on 192 addi-

tional bugs from Defects4J V1.4.0 and bugs from another popular

JVM language, Kotlin. The paper makes the following contributions:

• Study.We perform the first extensive study on the perfor-

mance and efficiency of both source-code-level and bytecode-

level APR techniques on 395 real-world Java bugs from De-

fects4J V1.2.0 [38]. We are also the first to evaluate recent

advanced APR techniques on the 192 additional bugs from

Defects4J V1.4.0 [31]. Furthermore, we report the first repair

study on Kotlin bugs from Defexts [16] (a dataset with 225

real-world Kotlin bugs).

• Implementation. We implement a full-fledged practical

program repair tool for JVM bytecode, PraPR (available on

Maven Central Repo and GitHub [29]). To our knowledge,

this is also the first general-purpose polyglot APR technique

for JVM-based languages. Furthermore, we were unable

to successfully apply the other studied APR tools on the

bugs other than the ones in the original papers. We actively

worked with the authors to address that: we reported several

bugs to the CapGen authors, and also directly contributed to

enable CapGen to run on more projects; we also managed

to write our own code to produce all information needed by

SimFix for fixing arbitrary Java programs.

• Results. Our results demonstrate that on Defects4J V1.2.0

PraPR can fix more bugs than the state-of-the-art APR tech-

niques, while being over 10X faster. Also, PraPR showed a

decent level of consistency both in the number of false posi-

tives and successfully fixed bugs when applied to additional

bugs from Defects4J V1.4.0, while other techniques suffer

from overfitting. Furthermore, PraPR successfully fixed vari-

ous Kotlin bugs from Defexts.

• Guidelines. Our findings demonstrate for the first time that

simple bytecode mutations can greatly complement state-of-

the-art APR techniques in at least three aspects (effectiveness,

efficiency, and applicability), and can inspire more work to

advance APR in this direction.

2 RELATED WORK
2.1 Mutation Testing
Mutation testing [11] is a powerful method for assessing the quality

of a given test suite in detecting potential software bugs. Mutation

testing measures test suite quality via injecting łartificial bugsž into

the subject programs. The basic intuition is that the more artificial

bugs that a test suite can detect, the more likely is it to detect

potential real bugs, hence the test suite is of higher quality [12, 39].

Central to mutation testing is the notion of mutation operator, aka

mutator, which is used to generate artificial bugs to mimic real

bugs. Applying a mutator on a program results in a mutant (or

mutation) of the programÐa variant of the program that differs

from the original program only in the injected artificial bug, e.g.,

replacing a+b with a-b. This suggests that the resulting mutants

should be syntactically valid and typeable, and the mutators are

highly dependent on the target programming language.

Given a program P, mutation testing will generate a set of mu-

tantsM. Given a mutantm ∈ M of the program, a test suite T

is said to kill mutantm if and only if there exists at least one test

t ∈ T such that the observable final state of P on t differs from

that of m on t , i.e., PJtK , mJtK. Similarly, a mutant is said to

survive if no test in T can kill it. Some of the survived mutants

might be (semantically) equivalent to the original program, hence

no test can ever kill such equivalent mutants. By having the num-

ber of killed and equivalent mutants for a given test suite T , one

may easily compute a mutation score to evaluate the quality of

T , i.e., the ratio of killed mutants to all non-equivalent mutants

(MS =
|Mkil led |

|M |−|Mequivalent |
). Besides its original application in test

suite evaluation, recently mutation testing has also been widely

applied in various other areas, such as simulating real bugs for

software-testing experiments [12, 39], automated test generation

[65, 95], fault localization [45, 46, 59, 63, 96], and even automated

program repair [22, 55] and build repair [52]. When using mutation

testing for program repair, the inputs are a buggy program P and

its corresponding test suite T with failed tests due to the bug(s).

The output will be a subset M ⊆ M of mutants that pass all the

tests within T . Such resulting mutants are plausible fixes for P.

2.2 Generate-and-Validate Program Repair
ModernG&VAPR techniques usually first utilize existing fault local-

ization [10, 13, 87] techniques to identify suspicious code elements,

and then systematically change/insert/delete code at suspicious

locations to search for a new program variant that can produce

expected outputs. In practice, tests play a central role in both lo-

calizing the bugs and also checking if a program variant behaves

as expectedÐi.e., tests are also used as fix oracles. Fault localiza-

tion techniques use the information obtained from both failing and

passing tests to compute degrees of suspiciousness for each ele-

ment of the program. For example, spectrum-based fault localization
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techniques [87], which identify the program elements covered by

more failed tests and less passed tests as more suspicious, have been

widely adopted by various APR techniques [28, 55, 58]. Modifying

a buggy program results in various candidate patches that could be

verified using the available test suite. A candidate patch that can

pass all the failing and passing tests within the original test suite

is called a plausible patch, while a patch that not only passes all

the tests but is also semantically equivalent to the corresponding

developer patch denotes a genuine patch. Note that, due to the APR-

overfitting problem [28, 32, 58, 70, 93], not all plausible patches

might be considered genuine patches. Overfitting is a principal

problem with test-driven G&V APR because of its dependence on

the test suites to verify patches. In practice, test suites are usually

not perfect, and a patch passing the test suite may not generalize

to other potential tests of the program. Thus, various techniques

[56, 61, 88, 90] have been proposed to mitigate overfitting.

Based on different hypotheses, state-of-the-art G&V APR tools

use a variety of techniques to generate or synthesize patches. Search-

based APR techniques are based on the hypothesis that most bugs

could be solved by searching through all the potential candidate

patches based on certain patching rules [22, 43]. Alternatively,

semantic-based techniques use deeper semantical analyses (such as

symbolic execution) to synthesize conditions, or evenmore complex

code snippets, that can pass all the tests [56, 61, 83, 92]. There are

also various other studies on APR techniques: while some studies

show that generating patches just by deleting the original software

functionality can be effective [69, 70], other studies [43, 85] demon-

strate that fix ingredients could be adopted from somewhere in the

buggy program itself or even other programs based on the plastic

surgery hypothesis [15]. As discussed earlier, mutation testing has

also been applied for APR. The hypothesis for mutation-based APR

is that łif the mutators mimic programmer errors, mutating a defec-

tive program can, therefore, fix itž [22]. However, the existing studies

either concern mutation-based APR on a set of small programs (e.g.,

the Siemens Suite [1]) with artificial bugs [22] or apply only a lim-

ited set of mutators [55]. For example, the most recent study [55]

on mutation-based APR with 3 mutators shows that it can fix only

4 Defects4J bugs. Furthermore, all the existing studies [22, 55, 69]

apply mutation at the source code level, which can incur substantial

compilation/class-loading overhead and is language-dependent. Ma

et al. leveraged domain knowledge to fix cryptography misuses for

Android apps at the bytecode level [53]. Schulte et al. discussed the

possibility to fix bugs through evolution of assembly code [74]. We

present and study the first general-purpose mutation-based APR

technique at the bytecode level.

3 PRAPR
This section first presents the overall approach of PraPR (ğ3.1), and

then discusses mutator design (ğ3.2), which makes up the core of

PraPR. Both our overall approach and mutator design are simplistic

for easy result reproduction and future extension.

3.1 Overall Approach
The overall approach of PraPR is presented in Algorithm 1. The algo-

rithm inputs are the original buggy program P and its test suite T

that can detect the bug(s). For the ease of illustration, we represent

the passing and failing tests in the test suite as Tp and Tf , respec-

tively. The algorithm output is P✓, a set of plausible patches that

Algorithm 1: PraPR

Input: Original buggy program P , failing tests Tf , passing tests Tp
Output: Plausible patch set P✓

1 begin
2 L ← FaultLocalization(P)// Fault localization

3 P← MutGen(P, L) // Candidate patch generation

/* Perform validation for each candidate patch */

4 for P′ ∈ P do
5 falsified=False// Whether the patch is falsified

6 T′ ← Cover(Diff(P′, P))

7 if ! T′ ⊇ Tf then continue;

/* Check if originally failed tests still fail */

8 for t ∈ Tf do

9 if P′JtK = failing then
10 falsified=True

11 break // Abort current patch validation

12 if falsified=True then continue;

/* Check if any originally passed test fails */

13 for t ∈ Tp ∩ T
′ do

14 if P′JtK = failing then
15 falsified=True

16 break // Abort current patch validation

17 if falsified=False then
18 P✓ ← P✓ ∪ {P

′ }// Store current plausible patch

19 return P✓ // Return the resulting patch set

can pass all the tests in T , and the developers can further inspect

P✓ to check if there is any genuine patch. Shown in the algorithm,

Line 2 first computes and ranks the suspicious program locations L

using off-the-shelf fault localization techniques (e.g., Ochiai [10] for

this work). Line 3 then exhaustively generates candidate patches

P for all suspicious locations (i.e., the locations executed by any

failed test) using our mutators presented in ğ3.2. Following prior

APR work [18, 55, 85], patches modifying more suspicious loca-

tions obtain a higher rank. Then, Lines 4 to 18 iterate through each

candidate patch to find plausible patches.

To ensure efficient patch validation, following prior work [55, 85],

each candidate patch is firstly executed against the failed tests (Lines

8-11), and will only be executed against the remaining tests once

it passes all the originally failed tests. The reason is that the origi-

nally failed tests are more likely to fail again on candidate patches,

whereas the patches failing any test are already falsified, and do

not need to be executed against the remaining tests for sake of

efficiency. Furthermore, we also apply two additional optimizations

widely used in the mutation testing community (e.g., PIT [19] and

Javalanche [73]). First, all the candidate patches are directly gener-

ated at the JVM bytecode level to avoid expensive recompilation

of a huge number of candidate patches. Second, PraPR computes

the tests covering the patched location (i.e., statements) of each

candidate patch as T ′ (Line 6) to safely reduce test executions (re-

cent APR techniques also adopted this optimization [33, 57]). For

failing tests, if T ′ does not subsume Tf , the candidate patch can

be directly skipped since the patched location is not covered by all

failed tests and thus cannot make all failed tests pass (Line 7); for

passing tests, PraPR only needs to check the patch against the tests

covering the patched location (Line 13) since the other passing tests

do not touch the patched location and will still pass. If the patch

passes all tests, it will be recorded in the resulting plausible patch

set P✓. Finally, PraPR returns P✓ (Line 19).

Note that the bytecode-level patches include enough information

for the developers to confirm/reject the patches and apply them to

the source code. Shown in Figure 1, the two example bytecode-level
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PraPR 2 (JDK 1.7) Fix Report - Mon Jan 14 21:01:01 CST 2019

Number of Plausible Fixes: 2

Total Number of Patches: 416

================================================

1. Mutator: METHOD CALL (the call to java.lang.Character::isWhitespace(C)Z

is replaced with the used of default value false)

File Name: org/apache/commons/lang3/time/FastDateParser.java

Line Number: 307

------------------------------------------------

2. Mutator: CONDITIONAL (removed conditional - replaced equality check

with false)

File Name: org/apache/commons/lang3/time/FastDateParser.java

Line Number: 307

Contents of the file org/apache/commons/lang3/time/FastDateParser.java for Lang 10:

305 for(int i= 0; i<value.length(); ++i) {

306 char c= value.charAt(i);

307 if(Character.isWhitespace(c)) {

308 ...

Figure 1: Two example patch reports automatically gener-

ated by PraPR (for bug Lang-10). Underlined parts convey

sufficient information for locating and fixing the buggy if-

statement shown in the bottom part of the figure.

appendQuoting(description);

description.appendText(wanted.toString());

+++description.appendText(wanted == null ? "null" : wanted.toString());

appendQuoting(description);

/*28*/ this.appendQuoting(description);

/*29*/ description.appendText(this.wanted == null?null:this.wanted.toString());

/*30*/ this.appendQuoting(description);

Figure 2: Developer fix for the bug Mockito-29, and decom-

piled patch generated by PraPR below it (with automatically

generated line number information)

PraPR patches (in the first half of the figure) include sufficient debug-

ging information, and it is trivial for the developers to understand

and apply the patches. In addition, as shown in Figure 2, PraPR

also supports automatically decompiling the mutated bytecode to

present patched lines in the source-code format.

3.2 PraPR Mutators
PraPR mutators are intended to mutate the input programs via sim-

ple transformation rules that affect only one program statement at

a time. All our mutators are implemented at the JVM level for sake

of efficiency, and our implementation, for which we put a consid-

erable engineering effort, supports the full set of JVM instructions

and data types. For simplicity in presentation though, we chose to

present all our mutators in a core Java language, named ClassicJava

[24]. Our goal is to describe the mutators using a minimal subset

of Java so that the functionality of the mutators could be described

simply, yet unambiguously. Figure 3 presents the abstract syntax of

an extended version of the ClassicJava. The full definition of the op-

erational semantics and type-rules for the core part of ClassicJava,

could be found in the original paper [24].

Table 1 presents the details of PraPR mutators in rewrite rules.

Each rule is represented in the form of p ⊢ e ֒→ e ′, which denotes

that when the premise p holds, a candidate patch can be gener-

ated via mutating a single instance of expression e to e ′ (note that

all the other portions of the input program is intended to remain

unchanged). In the case of no premises, p is omitted, e.g. as in

⊢ e ֒→ e ′. In addition, the overloaded operator τ (·) computes typ-

ing information if the input is an expression and returns a type de-

scriptor (i.e., the parameter types and return types according to JVM

P = defn∗ e

defn = class c extends c implements i∗{field∗ meth∗}

| interface i extends i∗{meth∗}

field = t fd

meth = t md(arд∗){body} | voidmd(arд∗){body}

arд = t var

body = e | abstract

e = ct | ae | be | new c | var | e.fd | e.fd=e

| e.md(e∗) | super.md(e∗) | let var = e in e

| be ? e : e | switch(e) (case ct : e)∗ default: e

| fail | return e | var++ | var - - | e ; e

| try { e } catch (c var ) { e } | throw e

ae = n | e + e | -e | e - e | . . .

be = !e | e && e | e == e | e < e | . . .

var = a variable name or this

c = a class name or Object

i = an interface name or Empty

fd = a field name

md = a method name

t = c | i | int | boolean

ct = n | true | false | null

n = an integer

Figure 3: Abstract syntax of extended ClassicJava

Table 2: Mutator illustration

ID Mutator Illustration

AP y=o.m(x)֒→y=x

RV return x֒→return x+1

FR int x=o.f1֒→int x=o.f2

MR int y=o.m1(x)֒→int y=o.m2(x)

FG int x=o.f֒→int x=(o=null?0:o.f)

MG int y=o.m(x)֒→int y=(o=null?0:o.m(x))

specification [47]) when

the input is the fully qual-

ified name of a method.

Function defVal(·), given

a type-name, returns the

default value correspond-

ing to a given type as de-

scribed in JVM specification [47]. τ1 ⪯ τ2 denotes that type τ1 is a

subtype of τ2. Table 2 presents some example mutators.

In the table, the white block presents all the mutators directly

supported by PIT. Note that although a slightly different catego-

rization is used here, the table includes all the official PIT mutators.

Table 3: PraPR muta-

tor frequency in HD-

Repair dataset

Mutator Freq. Mutator Freq.

MR 8.76% IS 0.15%

CO 2.26% RV 0.09%

FR 2.17% TR 0.09%

VR 1.80% FG 0.09%

MC 0.95% CC 0.06%

IC 0.76% MV 0.06%

AP 0.37% PC 0.06%

MG 0.31% SW 0.00%

AO 0.15% IN 0.00%

The light-gray block presents our

augmented mutators used for ex-

pression replacement. Finally, the

dark-gray block presents all our

augmented mutators responsible

for inserting conditionals in the

vicinity of method calls and field

dereferences as guards, and at

the entry/exit of methods as pre-

/post-condition checkers. It is

worth noting that we omit the pre-

sentation of PraPR mutators involving datatypes absent in the

syntax of ClassicJava (e.g., float and double). We stress that our

mutators are either well-known mutators extensively studied in

mutation testing literature [11, 19, 64, 73] or developed to handle

common, simple bugs without any bias towards the bugs in De-

fects4J (both expression relacement and conditional insertion are

simple rules widely explored in prior repair work [33, 42, 71, 85, 91]).

To further confirm the generality of PraPR mutators, we built a

fix-pattern extraction program (with 4K LoC Java code) based on

the GumTree AST diffing framework [23], to automatically extract

fix patterns in another HD-Repair dataset [42] that comprises 3,000+

real patches from 700+ GitHub projects (overlapping projects with

Defects4J were removed). Table 3 summarizes the set of mutators,
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Table 1: Supported Mutators
ID Mutator Name Rules

AP ARGUMENT PROPAGATION i ∈ {0, . . . ,n},τ (ei ) ⪯ τ (e0.m(e1, . . . , en)), i > 0,∀j > i .τ (ej ) ⪯̸ τ (e0.m(e1, . . . , en)) ⊢ e0.m(e1, . . . , en) ֒→ ei
RV RETURN VALUE τ (e) = boolean ⊢ return e ֒→ return !e

τ (e) = int, e ′ ∈ {0, (e == 0 ? 1 : 0)} ⊢ return e ֒→ return e ′

τ (e) = Object, e ′ ∈ {null, (e == null ? fail : e)} ⊢ return e ֒→ return e ′

CC CONSTRUCTOR CALL ⊢ new c() ֒→ null

IS INCREMENTS ⋆,⋆
′ ∈ {++, - -},⋆ , ⋆′, e ∈ {var ,var⋆′} ⊢ var⋆ ֒→ e

⋆,⋆
′ ∈ {++, - -},⋆ , ⋆′, e ∈ {var ,⋆′var } ⊢ ⋆var ֒→ e

IC INLINE CONSTANTS n′ ∈ {0, (n + 1)} ⊢ n ֒→ n′

MV MEMBER VARIABLE τ (e1. f d) = t , defVal(t) = v ⊢ e1. f d = e2 ֒→ e1. f d = v

SW SWITCH ⊢ switch(e) case ct1: e1 . . . case ctn : en default: ed ֒→ switch(e) case ct1: ed . . . case ctn : ed default: e1
1 ≤ i ≤ n ⊢ switch(e) case ct1: e1 . . . case ctn : en default: ed ֒→ switch(e) . . . case cti : ed . . . default: ed

MC METHOD CALL τ (e.md(e1, . . . , en)) = t , defVal(t) = v ⊢ e.md(e1, . . . , en) ֒→ v

τ (md) = voidmd(t1, . . . , tn),τ (e1) = t1, . . . ,τ (en ) = tn ⊢ e.md(e1, . . . , en) ֒→ 2

IN INVERT NEGATIVES τ (e) = int ⊢ -e ֒→ e

AO ARITHMETIC OPERATOR ⋆,⋆
′ ∈ {+, -, *, /, %, >>, >>>, <<, &, |, }̂,⋆ , ⋆′ ⊢ e1 ⋆ e2 ֒→ e1 ⋆

′ e2
CO CONDITIONAL ⋆,⋆

′ ∈ {≤, ≥, <, >, ==, !=},⋆ , ⋆′ ⊢ e1 ⋆ e2 ֒→ e1 ⋆
′ e2

⋆,⋆
′ ∈ {≤, ≥, <, >, ==, !=},⋆ , ⋆′ ⊢ e1 ⋆ e2 ֒→ true

⋆,⋆
′ ∈ {≤, ≥, <, >, ==, !=},⋆ , ⋆′ ⊢ e1 ⋆ e2 ֒→ false

VR VARIABLE REPLACEMENT var1 , var2,τ (var1) = τ (var2) ⊢ var1 ֒→ var2
τ (var ) = τ (e.f d) ⊢ var ֒→ e.f d

τ (var ) = τ (e.md()) ⊢ var ֒→ e.md()

FR FIELD REPLACEMENT f d1 , f d2,τ (e.f d1) = τ (e.f d2) ⊢ e.f d1 ֒→ e.f d2
τ (e.f d) = τ (var ) ⊢ e.f d ֒→ var

τ (e.f d) = τ (e.md()) ⊢ e.f d ֒→ e.md()

τ (e2) = t ,τ (md) = tr md(t) ⊢ e1.f d=e2 ֒→ e1.md(e2)

MR METHOD REPLACEMENT md ,md ′,τ (md) = τ (md ′) ⊢ e.md(e1, . . . , en) ֒→ e.md ′(e1, . . . , en)

e ′i ∈ {e1, . . . , en } ∪ {var | ∃ei .τ (var ) = τ (ei )} ∪ {this.fd | ∃ei .τ (this.fd) = τ (ei )} ∪ {0, false,null}

⊢ e.md(e1, . . . , en) ֒→ e.md(e ′1, . . . , e
′
m)

τ (e.md(e1, . . . , en)) = τ (var ) ⊢ e.md(e1, . . . , en) ֒→ var

τ (e.md(e1, . . . , en)) = τ (e.f d) ⊢ e.md(e1, . . . , en) ֒→ e.f d

TR TYPE REPLACEMENT t1 ⪯ t2 ⊢ t1 e ֒→ t2 e

FG FIELD GUARD t md(...){...e . fd ...}, defVal(t) = v ⊢ e . fd ֒→ (e == null ? return v : e . fd)

t md(...){...e . fd ...},τ (var ) = t ⊢ e . fd ֒→ (e == null ? return var : e . fd)

t md(...){...e . fd1...},τ (this.fd2) = t ⊢ e . fd1 ֒→ (e == null ? return this. fd2 : e . fd1)

τ (e . fd) = t , defVal(t) = v ⊢ e . fd ֒→ (e == null ? v : e . fd)

τ (e . fd) = τ (var ) ⊢ e . fd ֒→ (e == null ? var : e . fd)

τ (e . fd1) = τ (this.fd2) ⊢ e . fd1 ֒→ (e == null ? this.fd2 : e . fd1)

MG METHOD GUARD τ (e.md(e1, . . . , en)) = t , defVal(t) = v ⊢ e.md(e1, . . . , en) ֒→ (e == null ? return v : e.md(e1, . . . , en))

τ (e.md(e1, . . . , en)) = τ (var ) ⊢ e.md(e1, . . . , en) ֒→ (e == null ? return var : e.md(e1, . . . , en))

τ (e.md(e1, . . . , en)) = τ (this.fd) ⊢ e.md(e1, . . . , en) ֒→ (e == null ? return this.fd : e.md(e1, . . . , en))

τ (e.md(e1, . . . , en)) = t , defVal(t) = v ⊢ e.md(e1, . . . , en) ֒→ (e == null ? v : e.md(e1, . . . , en))

τ (e.md(e1, . . . , en)) = τ (var ) ⊢ e.md(e1, . . . , en) ֒→ (e == null ? var : e.md(e1, . . . , en))

τ (e.md(e1, . . . , en)) = τ (this.fd) ⊢ e.md(e1, . . . , en) ֒→ (e == null ? this.fd : e.md(e1, . . . , en))

PC PRE/POST- CONDITION e ′1, ..., e
′
m ∈ {ei | ti ⪯ Object ∧ 0 ≤ i ≤ n}, defVal(t) = v

⊢ t md(t1 e1, ..., tn en){e} ֒→ t md(t1 e1, ..., tn en){(e
′
1 == null | | ... | | e ′m == null) ? return v : e}

t md(...){...e.md(e1, . . . , en)...},τ (e.md(e1, . . . , en)) ⪯ Object, defVal(t) = v,τ (var ) = t ,τ (this.fd) = t , e ′ = {v,var , this.fd}

⊢ e.md(e1, . . . , en) ֒→ (e.md(e1, . . . , en) == null ? return e ′ : e.md(e1, . . . , en))

together with their frequency (i.e., the ratio of patches that each

mutator occur), that we afforded to implement at the level of byte-

code. Interestingly, the data in the table is consistent with what we

observed when we actually fixed Defects4J bugs. In particular, the

two least frequent mutators (as per Table 3) were unable to produce

any plausible patch. We next discuss design challenges for each

augmented mutator in PraPR:

3.2.1 Expression Replacement. This set of mutators mutate the

commonly used variables, fields, methods, and types into other

type-compatible ones. Mutator VR replaces the definition or use

of a variable with the definition or use of another visible variable,

field, or method with the same (return) type. Obtaining the set

of visible variables at the mutation point is the most challenging

part of implementing this mutator. We compute the set of visi-

ble variables at each point of the method under mutation using

a simple dataflow analysis [60], before doing the actual mutation.

Mutator FRmutates all field access instructions, namely GETFIELD,

PUTFIELD, GETSTATIC, and PUTSTATIC. Upon visiting a field access

instruction, the mutator loads the owner class of the field to extract

all the information about its fields. The mutator then selects a dif-

ferent visible field (e.g., public fields), local variable, or method

invocation, whose (return) type is compatible with that of the cur-

rent field. It is worth noting that the newly selected field/method

should be static if and only if the current field is static. Finally,

the field access instruction is mutated to access the new element.

Mutator MR aims to mutate all kinds of method invocation in-

structions (static and virtual). The operational details of this

mutator is similar to that of FR, i.e., replacing a method invocation

with another method invocation or variable/field access. Note that

when mutating it to another method invocation, the mutator selects

another method with a different name but with the same method

descriptor (i.e., the same parameter and return types), or another

method with the same name and compatible return type but with

different parameter types (i.e., another overload of the callee). Note

that replacing a method invocation with another overload can be

non-trivial ś we take advantage of the utility library shipped with

ASM bytecode manipulation framework [2] to create temporary

local variables so as to store the old argument values, and then
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use a variant of Levenshtein’s edit distance algorithm [86] to find

the minimal set of operations needed for reordering these local

variables or using some other values (such as the default value

corresponding to the type of a given parameter, or a visible local

variable/field of the appropriate type) in order to prepare the stack

before calling newly selected method overload. Finally, mutator

TR aims to replace one type with another compatible one. Note

that, for performance reasons, we only consider type widening in

our implementation (via replacing a type with its immediate super-

type) and apply the mutation only to catch(T e) blocks, because it

usually does not make much sense in other contexts.

3.2.2 Conditional Insertion. The mutator FG mutates field deref-

erence sites so as to inject code checking if the base expression is

null at a given site. If it is non-null the injected code does nothing,

otherwise it does either of the following: (1) returns the default

value corresponding to the return type of the mutated method; (2)

returns a local variable visible at the mutation point whose type is

compatible with the return type of the mutated method; (3) returns

a field whose type is compatible with the return type of the mutated

method; (4) uses the default value corresponding to the type of the

field being dereferenced instead of the field dereference expression;

(5) uses a local variable visible at the mutation point whose type is

compatible with that of the field being dereferenced; (6) uses a field

whose type is compatible with that of the field being dereferenced.

xSTORE tempm
...

xSTORE temp1
DUP

IFNONNULL restore

POP

xLOAD n

goto escape

restore:

xLOAD temp1
...

xLOAD tempm
INVOKEVIRTUAL ...

escape:

The mutator MG targets virtual method in-

vocation instructions. As the name suggests,

the mutator PC is intended to add nullness

checks for (1) the object-typed parameters

and (2) what the method returns, provided

that it is a subtype of Object, to avoid Null-

PointerExceptions. Note that although the

mutators look trivial, they can be challenging

to implement to support the full set of JVM in-

sturctions/data types. For example, the set of

JVM instructions shown in the side-figure il-

lustrate the general form of the checking code

injected byMG before an INVOKEVIRTUAL in-

struction, wherem is the number of arguments of the callee, n is the

index of a visible local variable to be used instead of the method call,

while x , depending on the type of the parameters of the callee, could

be I (int), L (long), and so on. The mutation is done as follows.

First, we createm temporary local variables for each parameter of

the callee, and store the argument values in the temporaries (using

the leading group of xSTOREs). Then, we check if the receiver object

is null (please note that we duplicate the reference to the receiver

object since instruction IFNONNULL consumes an object reference

from the top of stack): if it is null, we pop the remaining copy of

the receiver object off top of the stack, load the intended local n, and

continue normal execution by jumping to label escape; otherwise,

we push the arguments back to stack and invoke the target method.

4 EXPERIMENTAL SETUP

Our study investigates the following five research questions:

RQ1 How does PraPR perform in terms of effectiveness on auto-

matically fixing real bugs?

RQ2 How does PraPR perform in terms of efficiency?

RQ3 How does PraPR compare with the state-of-art?

Table 4: Defects4J V1.4.0 programs
Sub. Name #Bugs #Tests LoC

Chart JFreeChart 26 2,205 96K
Time Joda-Time 27 4,130 28K
Mockito Mockito framework 38 1,366 23K
Lang Apache commons-lang 65 2,245 22K
Math Apache commons-math 106 3,602 85K
Closure Google Closure compiler 133 7,927 90K

Cli Apache commons-cli 24 409 4K
Codec Apache commons-codec 22 883 10K
Csv Apache commons-csv 12 319 2K
JXPath Apache commons-jxpath 14 411 21K
Gson Google GSON 16 N/A 12K
Guava Google Guava 9 1,701,947 420K
Core Jackson JSON processor 13 867 31K
Databind Jackson data bindings 39 1,742 71K
Xml Jackson XML extensions 5 177 6K
Jsoup Jsoup HTML parser 63 681 14K

Total 587 26,964 503K

RQ4 How do PraPR and recent APR techniques perform on addi-

tional bugs?

RQ5 How does PraPR perform on fixing real bugs from other JVM

languages besides Java?

Subjects We conduct our experiments on Defects4J V1.4.0 [27,

31, 72], a collection of 16 real-world Java programs from GitHub

with known, reproducible real bugs that subsumes all the bugs

in Defects4J V1.2.0 [38]. These programs are real-world projects

developed over an extended period of time, so they contain a variety

of programming idioms and are a good representative of those

programs found randomly in the wild. Thus, Defects4J programs

are suitable for evaluating the effectiveness of candidate program

repair techniques. Shown in Table 4, Column ł#Bugsž presents the

number of bugs for each program, while Columns ł#Testsž and

łLoCž present the number of tests (i.e., JUnit test methods) and the

lines of code for the HEAD buggy version of each program. The first

half of the table lists the projects (on or before Defects4J V1.2.0)

that are already widely studied in prior APR research [18, 37, 42, 55,

71, 83, 85, 91] and also used in ourRQ1-RQ3, while the second half

of the table lists the projects that have not been used before and

are used to answer RQ4. The two highlighted rows belong to the

projects excluded due to build/testing framework incompatibility

issues with PraPR.

Due to its minimalist syntax, and having a more sophisticated

type system, Kotlin has gained popularity in recent years [34].

Kotlin has become the official łfirst-classž language for Android at

Google I/O 2018 (in addition to Java) [20]; since then, 95% of devel-

opers show interest in using Kotlin for Android development and

the number of Play Store apps using Kotlin grew 6X [77], including

Uber, Square, Coursera, and Twitter apps. In addition, according

to a recent Stack Overflow survey, Kotlin is the 2nd loved/wanted

language (above Python) [5]. Therefore, in RQ5, we investigate

bug fixing for Kotlin-based systems. More specifically, we applied

PraPR on all the Kotlin bugs from a recent bug dataset Defexts [16].

Note that we were only able to run PraPR on 118 out of 225 Defexts

Kotlin bugs, e.g., due to testing framework incompatibility.

Implementation PraPR has been implemented as a full-fledged

program repair tool for JVM bytecode (publicly available on Maven

Central Repo and our project website [29]). Currently it supports

Java and Kotlin projects under different popular build systems (i.e.,

Maven [26] and Gradle [7]), and testing frameworks (i.e., JUnit [8],

TestNG [3], and Spek [9] with JUnit runner). Given any such pro-

gram with at least one failed test, PraPR can be applied using a
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single command, łmvn org.mudebug:prapr-plugin:praprž. Dur-

ing the repair process, PraPR uses the ASM bytecode manipulation

framework [2] and Java Agent [4] to collect coverage information

(used for Ochiai-based fault localization [10]) and perform patch

generation. We have built PraPR via extending the mutators em-

ployed by the state-of-the-art bytecode-level mutation engine PIT

[19], since PIT is the most robust and widely used mutation testing

tool both in academia and industry [19, 41]. All our experimenta-

tion is done on a Dell workstation with Intel Xeon CPU E5-2697

v4@2.30GHz and 98GB RAM, running Ubuntu 16.04.4 LTS and Ora-

cle Java 64-Bit Server version 1.7.0_80. PraPR supports multi-thread

patch validation, and we run PraPR using both 1 and 4 threads

exhaustively on all candidate patches to precisely measure its cost.

5 RESULT ANALYSIS

5.1 RQ1: PraPR Effectiveness

Table 5 presents the main repair results for all the bugs from De-

fects4J V1.2.0 for which PraPR can generate plausible fixes. In the

table, Column łOriginal Mutatorsž presents the repair results using

only the original PIT mutators for each bug, including the total

repair time (using single thread) for validating all patches (Column

ł1-T(s)ž) and the number of all validated patches (Column ł#Pž). The

cells highlighted with light gray denote plausible fixes, while those

highlighted with dark gray correspond to genuine fixes. Note that

we only present the number of validated patches (i.e., the patches

passing the check at Line-7 in Algorithm 1), since the other patches

cannot pass all the failed tests and do not need to be validated.

Similarly, Column łAll Mutatorsž presents the corresponding repair

results using all the mutators (i.e., further including our augmented

mutators). Finally, the last two rows show the number of plausi-

ble/genuine fixes produced by the two classes of mutators.

According to the table, surprisingly, even the original PIT mu-

tators can generate plausible fixes for 106 bugs and genuine fixes

for 17 bugs from Defects4J V1.2.0, comparable to the most recent

work CapGen [85] that produces genuine fixes for 22 bugs. On the

contrary, prior jMutRepair work [55] showed that mutation testing

can find only 17 plausible and 4 genuine fixes for the same version

of Defects4J. One potential reason is that the prior work was based

on source-code mutation which incurs expensive recompilation and

loading for each mutant, and thus does not scale to large programs

like Closure. Another reason is that the prior work used only 3

mutators (we found that had jMutRepair been able to scale to all the

Defects4J programs, it would generate up to 7 genuine fixes). To our

knowledge, this is the first study demonstrating that plain mutation

testing can be comparable to state-of-the-art APR for fixing real bugs.

Furthermore, all PraPR mutators (including the original PIT

mutators and our augmented mutators) can produce plausible and

genuine fixes for 148 and 43 bugs, respectively. To our knowledge,

this is the largest number of bugs reported as fixed for Defects4J to

date. The key reason for this result is PraPR’s capability in exploring

such a large number of potential patches within a short time due to

the bytecode-level patch generation/validation and our execution

optimizations. For example, even for the largest Closure, PraPR

with 1 thread is still able to validate approximately 10 patches per

second. This demonstrates the effectiveness of PraPR and shows the

importance of fast (and exhaustive) patch generation and validation

Table 5: Overall PraPR repair results
Original Mutators All Mutators Original Mutators All Mutators

BugID 1-T(s) #P 1-T(s) #P BugID 1-T(s) #P 1-T(s) #P

Chart-1 74 703 199 2624 Closure-130 987 9772 3782 34380

Chart-3 44 307 65 801 Closure-133 409 3240 1338 12732

Chart-4 76 835 158 2772 Lang-6 51 92 84 207

Chart-5 35 103 38 244 Lang-7 40 368 65 725

Chart-7 38 267 55 1039 Lang-10 60 416 127 919

Chart-8 38 122 52 403 Lang-22 83 78 170 177

Chart-11 34 52 36 106 Lang-25 20 3 21 18

Chart-12 50 440 76 1517 Lang-26 27 403 52 1066

Chart-13 43 571 66 2308 Lang-27 27 338 47 657

Chart-15 122 1774 237 6481 Lang-31 21 43 25 91

Chart-20 33 48 35 205 Lang-33 20 17 20 20

Chart-24 31 23 33 96 Lang-39 51 164 198 687

Chart-25 247 5497 745 19275 Lang-43 3046 66 11952 173

Chart-26 191 2658 449 9481 Lang-44 29 106 35 201

Closure-1 1147 6662 4117 22352 Lang-51 30 123 31 205

Closure-2 857 8893 3037 31634 Lang-57 24 4 24 10

Closure-3 1221 11358 4610 39365 Lang-58 28 177 40 372

Closure-5 884 8731 3300 31264 Lang-59 25 35 27 113

Closure-7 409 3036 1271 12538 Lang-60 31 125 45 436

Closure-8 731 6832 2845 24838 Lang-61 34 89 43 342

Closure-10 692 7481 2624 25929 Lang-63 67 322 126 1039

Closure-11 1421 11825 4774 42402 Math-2 562 332 581 1325

Closure-12 1090 11027 4203 38084 Math-5 1473 48 1493 201

Closure-13 1787 19832 6644 66760 Math-6 1443 116 1449 317

Closure-14 306 1962 799 6844 Math-7 1750 2454 2767 11117

Closure-15 981 9662 3759 33480 Math-8 1504 266 1545 1086

Closure-17 1187 12358 4529 44261 Math-18 894 3288 1410 12466

Closure-18 1071 10926 3820 36773 Math-20 1095 3189 1671 11645

Closure-21 754 7757 2956 27366 Math-28 784 1101 976 3364

Closure-22 748 7715 2949 27247 Math-29 849 419 1166 1601

Closure-29 969 8184 3805 28404 Math-32 943 3510 1508 17591

Closure-30 971 8684 3528 30053 Math-33 788 1179 861 3712

Closure-31 824 7487 2545 23931 Math-34 700 63 705 145

Closure-33 1303 13849 5065 49455 Math-39 177 1038 365 4171

Closure-35 1221 13349 4789 47397 Math-40 258 432 290 1661

Closure-36 2073 24838 7864 82595 Math-42 298 1069 403 3283

Closure-38 315 2636 768 8139 Math-49 252 351 270 1222

Closure-40 838 7954 3069 27621 Math-50 252 238 260 970

Closure-42 330 2923 1135 11251 Math-57 216 135 238 373

Closure-45 806 8615 3383 30263 Math-58 551 1486 1693 6276

Closure-46 284 2191 1048 8916 Math-59 175 642 231 1739

Closure-48 1095 11832 4310 42152 Math-60 74 540 99 1919

Closure-50 662 6026 2545 21198 Math-62 61 427 84 2310

Closure-59 1876 21648 6531 68137 Math-63 45 44 46 76

Closure-62 138 123 140 346 Math-64 134 929 322 4690

Closure-63 137 123 145 346 Math-65 89 979 150 4346

Closure-64 1208 14017 4014 44167 Math-70 33 61 35 189

Closure-66 586 6194 1881 21424 Math-71 287 649 766 2852

Closure-68 372 2606 1078 10527 Math-73 30 239 44 1187

Closure-70 921 8060 3217 27873 Math-74 489 1925 1535 8135

Closure-72 707 8408 2608 28075 Math-75 31 145 44 381

Closure-73 274 2392 676 7181 Math-78 55 421 129 2279

Closure-76 674 6992 2691 23868 Math-80 248 1922 919 10001

Closure-81 258 2462 962 9425 Math-81 157 1498 679 7647

Closure-84 258 2514 959 9637 Math-82 44 665 69 2051

Closure-86 345 1615 899 5255 Math-84 50 190 82 574

Closure-92 496 5704 1922 19029 Math-85 95 372 250 1195

Closure-93 493 5704 1965 19028 Math-88 47 775 82 2356

Closure-101 1020 12569 4059 39882 Math-95 3571 287 13320 928

Closure-107 1166 11714 4665 39195 Math-101 20 120 30 360

Closure-108 1036 8775 5299 33521 Math-104 56 212 141 823

Closure-109 568 3158 1458 12451 Mockito-5 38 97 57 184

Closure-111 651 4670 1792 17601 Mockito-8 35 119 41 246

Closure-115 1453 9496 5081 32442 Mockito-15 65 808 88 1885

Closure-119 787 7424 2901 27729 Mockito-28 91 1069 134 2525

Closure-120 963 9589 3624 33008 Mockito-29 78 1210 112 2716

Closure-121 985 9589 3669 33008 Mockito-38 29 115 34 258

Closure-122 439 2907 1437 11076 Time-4 59 768 84 1812

Closure-123 434 4097 1350 13491 Time-11 81 1327 102 2908

Closure-124 742 6586 2713 23706 Time-14 60 504 70 1019

Closure-125 1463 14754 5652 52866 Time-17 114 2100 184 6324

Closure-126 780 6567 2814 23569 Time-19 121 1422 152 3302

Closure-127 1067 7363 3725 25626 Time-20 144 2582 225 6996

Closure-129 1551 16465 5413 54648 Time-24 109 1560 166 3395

Σ #Plau. Original Mutators 106 Σ #Gen. Original Mutators 17

Σ #Plau. All Mutators 148 Σ #Gen. All Mutators 43

for automatic program repair: faster mutation allows us to apply more

mutators and hence exploring a larger portion of the search space.

Next we show some example genuine fixes produced by PraPR

to qualitatively illustrate the effectiveness of PraPR. As shown in

Figure 4, PraPR using the mutator CO is able to produce a genuine

fix identical to the developer patches. Note that those patches are

as expected for they directly fall into the capability of the employed
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// Developer and PraPR patches

} else if (offsetLocal > 0) {

+++} else if (offsetLocal >= 0) {

Figure 4: Time-19 patches

// Developer patch

@Override

public JSType getLeastSupertype(JSType that) {

if (!that.isRecordType()) {

return super.getLeastSupertype(that);}...}

// PraPR patch

@Override

public JSType getLeastSupertype(JSType that) {

if (!that.isRecordType()) {

+++if (!false) {

return super.getLeastSupertype(that); }...}

Figure 5: Closure-46 patches

Table 6: Average PraPR time cost with single thread
Original Mutators All Mutators

Sub. #P Avg(s) Min(s) Max(s) #P Avg(s) Min(s) Max(s)

Chart 619.9 59.4 31 247 2158.3 112.1 33 745

Closure 6876 739 128 128 23877.7 2659.2 140 11080

Lang 147.5 80.3 16 3046 356 236.8 16 11952

Math 550.4 554.4 15 6997 2258.9 1143.1 18 13320

Mockito 728.7 74.1 14 204 1702.9 104.8 14 331

Time 781 74 32 155 1835.1 99.1 33 225

mutators. Interestingly, we also observe that in a couple of cases

PraPR is able to suggest more complex genuine fixes that require

simple semantic reasoning. Figure 5 presents both the developer

and PraPR patches for Closure-46. According to the figure, the de-

veloper patch removes an overriding method from a subclass, which

is not directly handled using PraPR mutators, but the PraPR patch,

generated via the mutator CO, forces the overriding method to al-

ways directly invoke the corresponding overridden method, which

is semantically equivalent to removing the overriding method.

5.2 RQ2: PraPR Efficiency
We present the efficiency information of PraPR on all the Defects4J

bugs using the default, single thread, settings in Table 6. In the table,

Column łOriginal Mutatorsž presents the average number of all

validated patches (Column ł#Pž), as well as the average/minimum/-

maximum time cost with 1 thread (Column łAvgž/łMinž/łMaxž) for

all the bugs of each subject system using the original PIT mutators.

Similarly, Column łAll Mutatorsž presents the information when

using all PraPR mutators. We observe that PraPR is remarkably

efficient even using only a single thread, e.g., it costs at most 3.7

hours among all studied bugs (i.e.,Math-95 because the majority of

the mutations modify the program control-flow in such a way that

resulting in a huge number of infinite/costly loops). Furthermore,

we have also run PraPR on all the studied bugs with 4 threads and

observed up to 2.1X performance gain.

Note that besides the machine time, the repair efficiency also

involves the manual efforts in inspecting plausible patches. Thus,

we further present the ranking of genuine patches within all vali-

dated/plausible patches to truly understand PraPR efficiency. Table

7 presents the ranking of the genuine fixes among all validated

patches and all plausible fixes. Columns łRank Orig.ž and łRank All’

present the rank of the first genuine fix among the validated patches

when using the original PIT mutators and all PraPR mutators, re-

spectively. The rank of the first genuine fix among all plausible

fixes is shown in parentheses. Note that for the patches with tied

Table 7: Rank of PraPR genuine fixes

BugID Rank Orig. Rank All BugID Rank Orig. Rank All

Chart-1 54 (1) 205 (1) Lang-10 247 (1) 300 (2)

Chart-8 N/A (N/A) 95 (2) Lang-26 N/A (N/A) 967 (1)

Chart-11 N/A (N/A) 106 (1) Lang-33 N/A (N/A) 20 (1)

Chart-12 N/A (N/A) 118 (2) Lang-57 N/A (N/A) 10 (3)

Chart-20 N/A (N/A) 45 (1) Lang-59 N/A (N/A) 93 (2)

Chart-24 N/A (N/A) 77 (1) Math-5 N/A (N/A) 53 (1)

Chart-26 N/A (N/A) 1111 (17) Math-33 N/A (N/A) 602 (1)

Closure-10 N/A (N/A) 1677 (1) Math-34 N/A (N/A) 22 (1)

Closure-11 2006 (1) 7230 (1) Math-50 21 (5) 113 (40)

Closure-14 N/A (N/A) 1 (1) Math-58 N/A (N/A) 401 (2)

Closure-18 6773 (1) 22034 (1) Math-59 N/A (N/A) 29 (1)

Closure-31 3851 (2) 17383 (6) Math-70 N/A (N/A) 17 (1)

Closure-46 21 (1) 61 (1) Math-75 N/A (N/A) 24 (1)

Closure-62 21 (1) 55 (1) Math-82 270 (5) 754 (9)

Closure-63 21 (1) 55 (1) Math-85 204 (4) 582 (4)

Closure-70 229 (1) 827 (1) Mockito-5 N/A (N/A) 74 (31)

Closure-73 34 (1) 71 (1) Mockito-29 N/A (N/A) 72 (2)

Closure-86 1 (1) 1 (1) Mockito-38 N/A (N/A) 11 (2)

Closure-92 N/A (N/A) 174 (1) Time-4 N/A (N/A) 315 (5)

Closure-93 N/A (N/A) 174 (1) Time-11 24 (1) 70 (1)

Closure-126 12 (2) 55 (5) Time-19 870 (1) 1939 (2)

Lang-6 N/A (N/A) 160 (1)

Avg. Total Rank Original 862.3 Avg. Plau. Rank Original (1.8)

Avg. Total Rank All 1353.1 Avg. Plau. Rank All (3.8)

suspiciousness, PraPR favors the patches generated by mutators

with smaller ratios of plausible to validated patches since the muta-

tors with larger ratios tend to be resilient to the corresponding test

suite. If the tie remains, PraPR uses the worst ranking for all the

tied patches. From the table, we can observe that the genuine fixes

are ranked high among validated and plausible patches when using

both original and all mutators. For example, surprisingly, among

the plausible fixes, the genuine fixes are ranked only 1.8th using

original mutators and ranked only 3.8th using all mutators, demon-

strating that few manual efforts will be involved when inspecting

the repair results of PraPR. We found that one reason is the small

number of plausible fixes even when using all the mutators since

the test suites of the Defects4J subjects are strong enough to falsify

the vast majority of non-genuine patches. To illustrate, the number

of plausible patches is usually smaller for Closure (which has the

most candidate patches) due to the stronger test suite of Closure,

e.g., Closure has 300+ contributors and the largest test suite among

the subjects studied in this section.

5.3 RQ3: Comparison with the State-of-Art

Effectiveness To investigate this question, we compare PraPR

with the state-of-the-art APR techniques that have been evaluated

on Defects4J (V1.2.0) before, including SimFix [37], CapGen [85],

JAID [18], SketchFix [33], ELIXIR [71], ssFix [89], ACS [91], HD-

Repair [42], xPAR [42] (a reimplementation of PAR [40]), NOPOL

[92], jGenProg [54] (a reimplementation of GenProg [43] for Java),

jMutRepair [55] (a reimplementation of source-level mutation-

based repair [22] for Java), and jKali [55] (a reimplementation of

Kali [70] for Java). Following [18, 85, 91], except for SimFix, CapGen,

SketchFix, and JAID, we obtained the repair results for prior APR

techniques from their original papers. In Table 8, Column łTech.ž

lists all the compared techniques. Column łAll Positionsž presents

the number of genuine and non-genuine plausible fixes found when

inspecting all the generated plausible fixes for each bug. Similarly,

the columns łTop-10 Positionsž and łTop-1 Positionž present the

number of genuine and non-genuine plausible fixes found when

inspecting Top-10 and Top-1 plausible fixes, resp. Except for the
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case of Top-1, we can observe that PraPR can fix the most number

of bugs compared to all the studied techniques. Figure 6 further

presents the distribution of the bugs that can be successfully fixed

by PraPR and other recent APR techniques. We can observe that

PraPR can fix 10 bugs that have not been fixed by any of the afore-

mentioned techniques. Also, the studied tools are complementary,

i.e., putting all the tools together, we can fix 90+ bugs from Defects4J.
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Figure 6: Fixed bug dist.

Another interesting observa-

tion worth discussion is that

PraPR produces only non-genuine

plausible fixes for more bugs

than the other techniques. We

found a couple of reasons. First,

our main goal in this work is

to propose a baseline repair

technique that does not require

any mining/learning informa-

tion [85, 91] for both practi-

cal application and experimen-

tal evaluation; also, recently various patch correctness checking

techniques [32, 81, 90] have been proposed, and can be directly

applied to further improve the PraPR patch validation process. We

have already explored one of these possibilities. Specifically, we

used the mined mutator frequency presented in Table 3 to break the

ties after sorting the plausible fixes according to their suspicious-

ness (more frequent mutators get higher priorities). The results

in Row łPraPR⋆ž shows that such simple mining information can

already rank 30 genuine fixes in Top-1, comparable to the state-of-

art. Second, PraPR is able to explore a large search space during a

short time due to the lightweight bytecode-level patch generation,

while existing techniques usually have to terminate early due to

time constraints. Third, prior work using intensive mining/learning

information can suffer from the overfitting problem: the original

CapGen was not evaluated on Closure and Mockito, while SimFix

was not evaluated onMockito; working together with their authors,

we were able to run such experiments, but observed a much lower

precision than their original subjects (shown in the last two rows of

Table 8) ś CapGen produces 1092 plausible fixes in total for 10/14

bugs from Mockito/Closure, and SimFix fails to locate any suitable

code snippets forMockito.

Lastly, in this work, we also manually inspected all the 105 bugs

for which PraPR is only able to produce non-genuine plausible

fixes. Surprisingly, we observe that even the non-genuine plausible

fixes for such bugs can still provide useful debugging hints. For

example, the plausible fixes ranked at the 1st position for 50 bugs

share the same methods with the actual developer patches, i.e., for

48% cases the non-genuine plausible fixes can directly point out the

patch locations for manual debugging while even state-of-the-art

spectrum-based (e.g., Ochiai) and mutation-based (e.g., MUSE [59]

and Metallaxis [64]) fault localization can localize at most 21% of

the same bugs within Top-1, indicating a promising future for using

APR patches to boost fault localization (in contrast to the current

paradigm of using fault localization to boost APR).

EfficiencyWe further executed the publicly available recent APR

tools (i.e., SimFix, CapGen, JAID, and SketchFix) on the same plat-

form with single-thread PraPR for a fair efficiency comparison.

Table 9 shows the average time data on the bugs that the compared

Table 8: Comparison with state-of-the-art techniques

All Positions Top-10 Positions Top-1 Position

Tech. Gen. Non-gen. Gen. Non-gen. Gen. Non-gen.

PraPR 43 105 40 108 26 122

PraPR⋆ 43 105 39 109 30 118

SimFix N/A N/A N/A N/A 34 22

CapGen 22 3 22 3 21 4

JAID 25 6 15 16 9 22

SketchFix 19 7 N/A N/A 9 17

ELIXIR N/A N/A N/A N/A 26 15

ssFix N/A N/A N/A N/A 15 45

ACS N/A N/A N/A N/A 18 5

HD-Repair 16 N/A N/A N/A 10 N/A

xPAR 4 N/A 4 N/A N/A N/A

NOPOL 5 30 5 30 5 30

jGenProg 5 22 5 22 5 22

jMutRepair 4 13 4 13 4 13

jKali 1 21 1 21 1 21

SimFix Mockito 0 0 0 0 0 0

CapGen Mockito,Closure 0 24 0 24 0 24

Table 9: Time costs of recent APR tools
SimFix CapGen JAID SketchFix

Sub. #P P/s Gain #P P/s Gain #P P/s Gain #P P/s Gain

Chart 1141.5 0.3 (27.5X) 254.8 0.4 (16.9X) 3561.8 1.3 (4X) 3186 0.7 (9.5X)

Closure 311.2 0.1 (51.5X) N/A N/A (N/A) 7110.1 0.3 (23.8X) 903.3 0.07 (93.5X)

Lang 412.3 0.3 (3X) 807.4 0.3 (27.2X) 3602.4 1 (1.04X) N/A N/A (N/A)

Math 360.2 0.3 (16.4X) 604.6 0.3 (19.5X) 8348 0.5 (19X) 1561.8 0.4 (20.8X)

Time 431 0.3 (N/A) N/A N/A (N/A) N/A N/A (N/A) N/A N/A (N/A)

tools can correctly fix. Columns 2 to 4 present the following infor-

mation for SimFix: the number of patches validated, the average

number of patches validated per time unit (s), and the speedup

gained by PraPR in terms of the average number of patches per

second. The other columns show the corresponding information

for CapGen, JAID, and SketchFix. Note that the gray row marks

that we were unable to reproduce any patch for Lang when using

SketchFix. According to Table 9, JAID and SketchFix are usually

faster than CapGen and SimFix on the same subject, due to their

compilation optimization strategies, e.g., meta-program encoding

and sketching; PraPR is almost at least an order of magnitude faster

compared with all tools on all subjects except some minor cases,

e.g., when compared with JAID on the smallest subject Lang. The

reason is that there is only one bug that both PraPR and JAID can

fix (i.e., Lang-33), and PraPR fixes it using 20 patches within 20

seconds (a similar speed with JAID) since the startup cost for such a

small number of patches makes PraPR’s per-patch time non-trivial.

Actually, if we average over all fixable bugs across all subjects,

PraPR is over 10X faster than all the compared techniques (including

JAID). We attribute this substantial speedup to the fact that PraPR

operates completely at the bytecode level; it does not need any re-

compilation and loading from disk for any patch. For manual-effort

efficiency, we also found prior tools require various configurations

to get started, and are usually not designed to be used for arbitrary

Java projects. On the contrary, PraPR offers a 1-click APR tool pub-

licly available on Maven Central Repo and applicable to arbitrary

Java project under Maven/Gradle build systems (not just Defects4J)

and even projects in other JVM languages.

5.4 RQ4: APR Tools on Additional Bugs

To further reduce the threats to external validity, we have applied

PraPR and the publicly available recent APR tools (i.e., JAID, Sketch-

Fix, SimFix and CapGen) on an additional 192 bugs from Defects4J

V1.4.0 (ğ4). Unfortunately, we were unable to successfully apply the

other studied APR tools in our first try. Thus, we actively worked

with all the authors to address those issues. For the time being, we

choose to report the results of experimenting with only SimFix and

CapGen because (1) they are the most recent and effective tools,
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Table 10: Recent APR tools on additional bugs
PraPR SimFix CapGen

Sub. #Gen.(Top-1) #Plau.(µ) F/TO #Gen.(Top-1) #Plau.(µ) F/TO #Gen.(Top-1) #Plau.(µ) F/TO

Cli 3(1) 7(4.6) 0/0 0(0) 0(0) 0/1 0(0) 7(4.9) 0/0

Codec 1(1) 6(8.3) 0/0 0(0) 0(0) 0/0 1(1) 8(91.1) 0/0

Csv 1(1) 2(8) 0/0 0(0) 0(0) 0/0 0(0) 2(8) 0/0

JXPath 1(0) 4(10.5) 0/0 0(0) 0(0) 0/0 0(0) 5(304.8) 0/0

Core 0(0) 10(28.5) 0/0 0(0) 0(0) 0/13 0(0) 6(80.3) 0/0

Databind 4(2) 16(6.4) 0/0 0(0) 0(0) 0/32 0(0) 15(55.1) 1/1

Xml 0(0) 0(0) 0/0 0(0) 0(0) 0/2 0(0) 0(0) 0/0

Jsoup 2(2) 12(4.3) 0/0 0(0) 0(0) 0/4 1(0) 14(19.9) 0/0

Table 11: PraPR results on Kotlin projects

BugId LoC #P Fixes 1-T(s) Mutator

kog-1 3804 307 2(1) 18 MR

Simple-MsgPack-1 1565 1445 1(1) 104 AO

rapier-2 414 501 2(1) 82 IC,CO

jenjin-1 22261 1057 1(1) 44 MR

seven-wonders-1 10318 11 1(1) 5 CO

thrifty-3 7256 4148 14(14) 231 TR

thrifty-4 7956 2588 4(4) 226 AP

rimu-kt-1 2291 3076 1(1) 296 CO

patchtools-2 1171 2692 1(1) 616 MG

icfpc2016-2 6173 315 2(2) 18 MC

Kartvelang-1 1252 1130 5(1) 36 MC

lambda-1 1066 220 6(6) 74 CO

parallel-feature-selection-1 7371 560 10(10) 16 CO

UltimateTTT-1 2296 603 4(1) 153 MR

and (2) we received eager cooperation from the authors. Together

with the authors, we were able to run SimFix and CapGen. It is

worth noting that, we reported several bugs to the CapGen authors

and also directly contributed to enable CapGen to work on more

projects; we also managed to write our own code to produce all the

information that SimFix needs for fixing arbitrary Java programs,

which was confirmed by the authors of SimFix. Table 10 summarizes

the results of our experiments. For each technique, Column ł#Gen.

(Top-1)ž presents the number of bugs with genuine patches (with

the number of bugs with genuine patches ranked at Top-1 inside

parentheses), Column ł#Plau.(µ)ž represents the total number of

bugs with plausible patches (with the average number of plausible

patches for each bug inside parentheses), Column łF/TOž reports

the number of times each tool crashed, and the number of times

each tool has timed out within the allotted 5-hour limit.

According to the table, PraPR is able to generate genuine patches

for 12 bugs that 7 appear in Top-1 positions. Meanwhile, CapGen

produces genuine patches for only 2 bugs (1 within Top-1), while

SimFix was unable to generate any plausible patch, despite the fact

that it exhausted its search space for most cases and timed out in 52

bugs. We attribute the slight performance drop of PraPR (c.f. ğ5.1) to

the fact that these bugs mostly need multiple edits to fix. The huge

performance drop of CapGen on the new dataset is because, for per-

formance reasons, the tool applies only a subset of its mutators that

happen to be ineffective on the new bugs. Lastly, as also confirmed

by SimFix authors, SimFix was unable to locate reusable code snip-

pets in the new dataset. We also observed that the studied tools are

rather robust except for one case, where CapGen crashed due to

a failure of the Understand tool [75] that CapGen uses for slicing.

Another interesting finding is CapGen generates much more false

positives than PraPR on this new dataset. To our knowledge, this is

the first study demonstrating recent advanced APR techniques may

suffer from the overfitting problem in case of unexpected bugs, while

a simplistic approach shows a decent level of consistency.

5.5 RQ5: PraPR Repair for Real Kotlin Bugs

We applied PraPR to fix all the 225 Defexts Kotlin bugs, out of

which 118 bugs are PraPR-compatible, i.e., exclusively using JU-

nit/TestNG tests or using Spek [9] tests with JUnit runners. These

buggy projects range from 248 LoC to 170,789 LoC. Of the 118 bugs,

14 were correctly repaired by PraPR. Table 11 summarizes the data

for the bugs with genuine patches. In this table, Column ‘̀BugIdž

presents the identifiers of the bugs as recorded inside Defexts data-

base, Column łLoCž presents the project size, Column ł#Pž presents

the total number of patches PraPR performed on the project, Col-

umn łFixesž presents the number of plausible fixes PraPR generated

alongside the rank of genuine patches among plausible fixes (in

parentheses), Column ł1-T (s)ž presents PraPR’s execution time

with 1 thread, and Column łMutatorž presents the mutators which

produced the genuine fix. To our knowledge, this is the first repair

study for Kotlin systems; the similar ratio of fixed bugs for Kotlin

systems also reduces our threats to external validity.

6 DISCUSSION

Limitation. Bytecode mutation clearly cannot fix all types of bugs.

At the level of bytecode, we do not have access to lots of information

(such as detailed typing and contextual information) useful for

fixing bugs beyond simple mutations. Also, fixing complex bugs at

the bytecode level can be challenging and tedious. Despite this fact,

our experimental results demonstrate that the sheer speed of patch

generation/validation and language agnosticism of bytecode-level

APR can complement existing source-code level APR techniques.

Threats to internal validity. Understanding patch reports for

some JVM-based languages might be challenging. We emphasize

that based on our experience with PraPR, the PraPR patch reports

for Java and all the Kotlin programs that we have experimented

with, can easily be reconstructed with simple manual inspection.

Note that PraPR also supports automatically decompiling bytecode

patches via Eclipse Class Decompiler [6]. Furthermore, during the

manual inspection for patch correctness, there might be mistakes

in judging whether a particular patch is indeed a genuine fix. To

minimize such mistakes, we have confined ourselves to syntactic

equality and simple semantic equivalence. Furthermore, we also

released all our patches in PraPR website.

Threats to external validity. Our claims about any of the studied

APR techniques might be biased because of the limited number of

benchmark programs that we have considered. To this end, we have

tried our best to apply the studied techniques to a newer version of

Defects4J that has not been studied for APR before, and have also

applied PraPR on Defexts, a new Kotlin bug dataset.

7 CONCLUSION

We have implemented PraPR, the first practical APR tool at the

JVM bytecode level. The experimental results on the widely used

Defects4J V1.2.0 benchmark show that PraPR can generate genuine

patches for 43 Defects4J bugs, significantly outperforming state-of-

the-art Java repair techniques, while being over 10X faster; with

no learning/search information, PraPR also avoids the overfitting

problem of existing techniques on additional bugs from a newer

version of Defects4J; finally, PraPR successfully fixed 14 of the 118

studied bugs for Kotlin systems.
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