Toward Practical Automatic Program Repair”

Ali Ghanbari
University of Texas at Dallas, TX 75080, USA
ali.ghanbari @utdallas.edu

Abstract—Automated program repair (APR) reduces the bur-
den of debugging by directly suggesting likely fixes for the
bugs. We believe scalability, applicability, and accurate patch
validation are among the main challenges for building practical
APR techniques that the researchers in this area are dealing with.
In this paper, we describe the steps that we are taking toward
addressing these challenges.

Index Terms—Program Repair, JVM Bytecode, Mutation Test-
ing

I. INTRODUCTION

Software debugging is a notoriously difficult activity that
consumes over 50% of the development time/effort [1], [2]. So
far, a large body of research has been dedicated to automati-
cally localize [3] or fix software bugs [4]. Automated Program
Repair (APR) [5] aims to directly fix software bugs with
minimal human intervention which has been under intense
research despite being a young research area [4], [6].

Based on the actions taken for fixing a bug, state-of-the-
art APR techniques can be divided into two main classes: (1)
techniques that monitor the dynamic execution of a program
to find deviations from certain specifications, and heal the
program by modifying its runtime state in case of any ab-
normal behavior [7], [8]; (2) generate-and-validate techniques
that modify program code representations based on various
rules/techniques, and use either tests or formal specifications
as the oracle to validate each generated candidate patch for
finding plausible patches (i.e., the patches that can pass all the
tests/checks). Plausible patches are further checked to identify
correct (or genuine) patches (i.e., the patches semantically
equivalent to developer patches) [9]-[23].

Scalability, applicability, and accurate patch validation are
often cited as the main challenges for building practical APR
techniques that the researchers are dealing with [24]. Scalabil-
ity refers to the ability of an APR technique in handling large,
realistic programs. Applicability is the ability of the technique
in handling different programming idioms, languages, or even
different programming paradigms. Finally, patch validation
refers to the process of classifying the patches generated by
the APR tool into genuine and plausible patches.

In this paper, we describe our achievements in addressing
each of the aforementioned challenges (§II) and discuss related
work (§III), before presenting our plans for future work (§1V).

II. PRAPR

We introduce a practical, general-purpose APR technique,
named PraPR (Practical Program Repair) [25], that is operat-

This Ph.D. thesis is being supervised by Dr. Lingming Zhang at the
University of Texas at Dallas.

ing at the level of JVM bytecode [26]. PraPR is based on three
classes of mutators that can be seen as a spectrum of mutators
ranging from traditional mutators (e.g., changing a>=b into
a>b) to simplistic program-fixing mutators that have been
widely explored in the program repair literature [9], [14], [27].
In particular, we have adopted 18 mutators from traditional
mutation testing [28], 12 replacement mutators (e.g., replacing
field accesses or method invocations), and 14 mutators that
are responsible for inserting checks in the vicinity of field
dereferences and method calls. Table I illustrates two examples
from each class of mutators wherein the white block contains
examples from traditional mutators, light-gray block contains
examples from augmented mutators that replace a field name
or a method name with another, and the dark-gray part shows
examples from augmented mutators that insert nullity checks
before dereferences or virtual method calls and use default
values [26] instead of triggering NullPointerException.
PraPR, besides bringing TABLE I: Mutators examples
a simple, yet effective, idea D Wiotior Tiostaton
into the limelight, offers a =2 [y=ommw—y=
I-click APR tool publicly RV | retum xretum x+l

K FR int x=o.fl—int x=0.f2
available on Maven Cen- MR int y=o.ml(x)—int y=o.m2(x)

tral Repo [29]. Being com- Eﬁ; :2: ;:22;;23:(;:::2;31%2m(x))
patible with a variety of testing frameworks (e.g., JUnit,
TestNG, and Spek), PraPR is readily applicable to arbitrary
Java projects under Maven/Gradle build systems (not just
Defects4]) and even projects in other JVM languages in a
hassle-free manner, thereby allowing researchers replicate our
experiments.

In what follows, we elaborate on the challenges mentioned
in §I and discuss the contributions of design decisions made
in the implementation of PraPR toward attaining APR goals.

A. Scalability

An important goal in constructing a practical, industrial-
strength APR technique is to make it scalable to large, real-
world programs. Such a technique should be able to produce
genuine patches, otherwise it might mislead the developers
rather than helping them [24], [30], [31].

PraPR does not need any kind of complicated computation
(e.g., symbolic execution and constraint solving) that limits
scalability. Thanks to this fact and the bytecode-level manip-
ulation, PraPR with only single thread can already be over
an order of magnitude faster than state-of-the-art SimFix [9],
CapGen [14], JAID [19] (that reduces compilation overhead
by bundling patches in meta-programs), and SketchFix [27]
(that curtails compilation overhead via sketching [32]).

The speed of patch generation and validation makes it
possible for PraPR to apply a larger set of mutators to
exhaustively mutate every suspicious location in the buggy
program which in turn enables the tool explore a larger search
space in a reasonable amount of time. Our experiments show
that PraPR successfully fixes 43/395 bugs from Defects4]
V1.2.0 [33], significantly outperforming state-of-the-art APR
techniques (e.g., the recent CapGen fixes only 22 bugs). We
further applied PraPR on 192 additional bugs from Defects4]J
V1.4.0 [34] from which the tool successfully fixed 12 bugs.
Meanwhile, CapGen produces genuine patches for only 2
bugs, while SimFix was unable to generate any plausible
patches, in spite of exhausting its search space for most cases,
and timed out (a 5-hour time limit) in 52 bugs. Furthermore,
in the case of CapGen, we observed a sharp increase in the
number of plausible but incorrect patches for Defects4] V1.4.0
bugs, while PraPR shows a decent level of consistency both
in the number of fixed bugs and also false positives [25].

This indicates that simplistic bytecode-level mutation could
be a viable approach for constructing a scalable APR tool.

B. Applicability

Program source code contains a wealth of information
that researchers might exploit to develop more effective APR
techniques. However, the process of mutation and/or extraction
of fixing ingredients can be significantly different from one
programming language to another. This makes APR tech-
niques to be hardwired to work with a specific programming
language. With the advent of more expressive, and less ver-
bose, JVM-based programming languages such as Java 8 [35]
(which adds many syntactic sugars to the older versions of
the language), Kotlin [36], Scala [37], and Groovy [38] the
need for applicability is especially pronounced for nowadays
many real-world projects are written in a combination of these
languages [39], so the APR techniques should be applicable
in a uniform fashion.

PraPR works at the level of JVM bytecode that makes the
tool JVM language agnostic and readily applicable to more
than 6 popular programming languages [40]. We have applied
PraPR on 118 Kotlin bugs from Defexts database [39], and the
tool successfully fixed 14 bugs. To our knowledge, this is the
first study on repairing Kotlin bugs. A similar ratio of fixed
bugs for the Kotlin systems reduces the threats to external
validity of our work, and shows that simplistic bytecode-
level mutation alleviates the applicability challenge in the
development of practical APR techniques.

C. Accurate Patch Validation

In a practical situation, we usually lack any kind of formal
specifications. Thus, virtually every APR technique depends
on test cases so as to verify the generated patches. However,
since test cases are usually only partial specifications of the
desired behavior of the system, we end up with a large number
of plausible but incorrect patches (a.k.a. overfitted patches
[41]). In the absence of an effective automatic classifier, the
developer has to examine each and every one of the plausible
patches to verify their correctness.

Lately, several techniques for identification of test case
overfitted patches, ranging from manual [30], [42] to fully
automatic [31], [41], [43], has been proposed. Unfortunately,
none of the automatic techniques were applicable in our case;
this is mainly due to two reasons: (1) PraPR makes tiny
changes to the program that is difficult to be distinguished
by the syntactic and semantic heurisitcs studied in [43]; (2)
PraPR targets JVM-based languages, so the idea of fuzzing
[31] is not suitable [43]. Furthermore, we realized that anti-
patterns [30] are also not applicable in our research since it is
highly dependent on the C programming language.

We have mined HD-Repair dataset [44] to find the frequency
in which our mutators appear in real-world bug fix commits.
We prioritize our mutators based on the frequency of their ap-
pearance in the dataset. After ranking the patches according to
the Ochiai [45] suspiciousness values of the mutated locations,
we break the ties with regard to the priority of the mutators.
This results in ranking 30/43 patches in Top-1 position.

Backed by our experimental results, we argue that ranking
based on the frequencies of the bytecode-level mutators is
generalizable to Java and Kotlin. Applying this technique
in our experiments with the Kotlin systems also shows an
improvement in the number of patches appearing in the Top-1
position. However, we emphasize that any reliable claim about
the effectiveness of a new automatic patch validation technique
deserves a more fundamental research, e.g., the findings of
Gopinath et al. [46] suggest that mutator frequencies might be
different for different programming languages.

III. RELATED WORK

Ma et al. leveraged domain knowledge to fix cryptography
misuses in Android apps at the level of bytecode [47]. Schulte
et al. discusses the possibility to fix bugs through evolution of
assembly code [48]. In their paper [49], Staples et al. introduce
SABRE, an industrial-strength, semi-automatic framework for
mitigating security problems by wrapping vulnerable programs
at the level of JVM bytecode. PraPR is the first general-
purpose APR technique at the bytecode level.

IV. FUTURE WORK

Despite the fast JVM-level patch generation and valida-
tion, the repair process can still be expensive for large-scale
programs and PraPR can still fix only a small ratio of real-
world bugs. We are pushing the envelope by improving PraPR
in several directions: (1) reducing the number of candidate
patches by leveraging and integrating with state-of-the-art fault
localization [50]-[53]; (2) working on effective techniques to
reorder the test executions [54], thereby improving the chances
of dropping non-plausible patches sooner; and (3) runtime
optimization for program executions.

REFERENCES

[1] Undo Software, “Increasing software development productivity with re-
versible debugging,” https://tinyurl.com/y3qea8go, 2016, accessed June-
12-2019.

[2] C. Boulder, “University of cambridge study: Failure to adopt
reverse debugging costs global economy $41 billion annually,”
https://tinyurl.com/y24ds5op, 2013, accessed Jun-8-2019.

[4]
[5]
[6]
[7]

[8]

[10]

(11]

(12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

[28]
[29]
[30]
[31]

[32]

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE TSE, pp. 707-740, 2016.

L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE TSE, 2017.

M. Harman, “Automated patching techniques: the fix is in: technical
perspective,” CACM, pp. 108-108, 2010.

M. Monperrus, “Automatic software repair: A bibliography,” ACM
Comput. Surv., vol. 51, no. 1, pp. 17:1-17:24, Jan. 2018.

F. Long, S. Sidiroglou-Douskos, and M. C. Rinard, “Automatic runtime
error repair and containment via recovery shepherding,” in PLDI, 2014,
pp. 227-238.

J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan,
W. Wong, Y. Zibin, M. D. Ernst, and M. C. Rinard, “Automatically
patching errors in deployed software,” in SOSP, 2009, pp. 87-102.

J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in ISSTA, 2018.
C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE TSE, vol. 38, no. 1,
pp. 54-72, 2012.

V. Debroy and W. E. Wong, “Using mutation to automatically suggest
fixes for faulty programs,” in /CST, April 2010, pp. 65-74.

T. Ji, L. Chen, X. Mao, and X. Yi, “Automated program repair by using
similar code containing fix ingredients,” in COMPSAC, 2016, pp. 197-
202.

S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software
regressions,” in ICSE, 2015, pp. 471-482.

M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in /CSE, 2018,
pp. 1-11.

F. Long and M. Rinard, “Staged program repair with condition synthe-
sis,” in FSE, 2015, pp. 166-178.

, “Automatic patch generation by learning correct code,” in POPL,
2016, pp. 298-312.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
program repair via semantic analysis,” in /CSE, 2013, pp. 772-781.

J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE TSE, vol. 43,
no. 1, pp. 34-55, 2017.

L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without
the contracts,” in ASE, 2017, pp. 637-647.

S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: scalable multiline
program patch synthesis via symbolic analysis,” in /CSE, 2016, pp. 691—
701.

Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” IEEE TSE, pp. 427—
449, 2014.

V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from object
behavior anomalies,” in ASE. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 550-554.

D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based pro-
gram repair using sat,” in TACAS. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 173-188.

X. B. D Le, “Overfitting in automated program repair: Challenges and
solutions,” Ph.D. dissertation, Singapore Management University, 2018.
A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via
bytecode mutation,” in ISSTA, 2019, pp. 19-30.

T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual Ma-
chine Specification, Java SE 8 Edition. Addison-Wesley Professional,
2014.

J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in ICSE, 2018,
pp. 12-23.

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE TSE, pp. 649-678, 2011.

A. Ghanbari, S. Benton, and L. Zhang, “Prapr
https://github.com/prapr/prapr, 2019, accessed June-12-2019.
S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in FSE, 2016, pp. 727-738.
J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for better
automated program repair,” in FSE, 2017, pp. 831-841.

A. Solar-Lezama, “Program sketching,” International Journal on Soft-
ware Tools for Technology Transfer, vol. 15, no. 5-6, pp. 475-495, 2013.

website,”

[34]
(35]
[36]
[37]
(38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]
[52]
[53]

[54]

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in ISSTA.
New York, NY, USA: ACM, 2014, pp. 437-440.

Gregdcr, ‘“Defects4j — version 1.4.0,” https://github.com/Greg4cr/
defects4j/tree/additional-faults-1.4, 2018, accessed June-11-2019.

J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley, The Java
Language Specification, Java SE 8 Edition, 2014.

JetBrains, “Kotlin language documentation,” http://kotlinlang.org/, 2018,
accessed June-12-2019.

M. Odersky, “The scala language specification,” http://www.scala-
lang.org, 2014, accessed June-12-2019.

A. S. Foundation, “Groovy programming language,” http:/groovy-
lang.org/, 2019, accessed June-12-2019.

S. Benton, A. Ghanbari, and L. Zhang, “Defexts: A curated dataset of
reproducible real-world bugs for modern jvm languages,” in /CSE, 2019,
pp- 47-50.

”Wikipedia”, “List of JVM Languages,” https://tinyurl.com/cgy8pqv,
2019, accessed May-19-2019.

Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus,
“Alleviating patch overfitting with automatic test generation: a study
of feasibility and effectiveness for the nopol repair system,” Empirical
Software Engineering, pp. 1-35, 2018.

Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches through
test case generation,” in ISSTA, 2017, pp. 226-236.

Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based program repair,” in /CSE, 2018, pp. 789-799.
X.B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in SANER, vol. 1. IEEE, 2016, pp. 213-224.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART-MUTATION. IEEE,
2007, pp. 89-98.

R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they
to real faults?” in ISSRE. IEEE, 2014, pp. 189-200.

S. Ma, D. Lo, T. Li, and R. H. Deng, “Cdrep: Automatic repair of
cryptographic misuses in android applications,” in Asia CCS, 2016, pp.
711-722.

E. Schulte, S. Forrest, and W. Weimer, “Automated program repair
through the evolution of assembly code,” in ASE, 2010, pp. 313-316.
J. Staples, C. Endicott, L. Krause, P. Pal, P. Samouelian, R. Schantz,
and A. Wellman, “A semi-autonomic bytecode repair framework,” IEEE
Software, vol. 36, no. 2, pp. 97-102, 2019.

X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple
fault diagnosis dimensions for deep fault localization,” in ISSTA, 2019,
pp. 169-180.

J. Sohn and S. Yoo, “Fluccs: using code and change metrics to improve
fault localization,” in ISSTA. ACM, 2017, pp. 273-283.

M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in ISSTA, 2017, pp. 261-272.

X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” OOPSLA, pp. 92:1-92:30, 2017.

L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired
by test prioritization and reduction,” in ISSTA, 2013, pp. 235-245.

