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Introduction

Nowadays, dealing with massive amounts of data described by a huge num-

ber of characteristics is an everyday issue: computer scientist, physicists,

economists, mathematicians, political scientists, bio-informaticists, sociolo-

gists, and many others, are gaining more and more access to huge collections

of information. This is made possbile by new technologies that allows to col-

lect and store data much more easily than in the past: in [48] it was estimated

that during 2007, 2.9× 1020 compressed bytes were stored, almost 2× 1021

bytes were transmitted, and 6.4× 1018 instructions per second were carried

out on general-purpose computers, whereas general-purpose computing ca-

pacity grew at an annual rate of 58%, followed by the increase in globally

stored information at 23%.

To better understand these numbers, some practical cases could come at

hand: as an example,Wal-Mart Stores Inc. controls more than 1 million cus-

tomer transactions every hour, which are then transferred into a database

working with over 2.5 petabytes of information; the LHC experiments at

Cern generated 40 terabytes every second; in bioinformatics one single mi-

croarray that measures gene expression is composed up to ten thousand of

features; in climate analysis it’s expected that the new systems for data

collection would generate exabytes of information.

It is straightforward from these examples that the key issue today is how

to deal with such an overabundant quantity of data, in other words, how

to infer, extract and visualize meaningful information in an efficient and

effective way. Even with techniques that can deal with these data in linear

complexity in time and space, is still difficult to overcome the limitations

that arise with an huge amount of data.

A viable way to handle these problems is to find a coherent representation

of data, which has to be at the same time the most compact and the most

informative possible.

5



6 INTRODUCTION

One potential method to obtain this representation is to reduce the num-

ber of characteristics that describe the data, i.e. to reduce the data dimen-

sionality. It is tempting to project the data to very few dimension, to two

or three dimensions for the sake of visualization for example, but doing so

could lead in information loss: having points sampled from the unit cube,

that is points laying in the interval [0, 1]3, and linearly projecting them to

two dimensions will result in breaking the original spatial relationship be-

tween them (see figure 1).

Figure 1: On the left: two well separated sets of points sampled from the

unitary cube. On the right: the same sets linearly projected in two dimen-

sions. The original spatial relationship between them is lost.

Even using a transformation that preserve the data dimension could

wreck the data structure: taking points sampled from two bidimensional

normal distribution with the same standard deviation but opposite means

(i.e. µ and−µ), and applying to them a simple function as the absolute value

will result in the overlap of the points coming from different distributions

(see figure 2).

The aforementioned examples tell us that we need some insight on the

data structure to perform a data transformation that retains valuable infor-

mation.

The first step in order to obtain a reliable description of the data struc-

ture is to determinate its dimension. To identify the dimension of the struc-

ture from the analysis of a given dataset XN ≡ {xi}Ni=1 ⊂ <D, one useful

information is the minimum number of parameters needed to represent the

data without information loss, which is generally referred as Intrinsic

Dimensionality (i.d.). To estimate the i.d. of XN the data is gener-

ally viewed as composed by points constrained to lie on a low dimensional
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Figure 2: On the left: points sampled from two bidimensional normal distri-

bution with opposite mean ((0, 2) and (0,−2)) and same standard deviation.

On the right: the same points transformed by means of the absolute value

function.

smooth or locally smooth manifold1 M ⊂ <d embedded in a higher di-

mensional space <D by means of a linear or non linear map, where the

dimensionality d of M is the i.d. value to be estimated. In more general

terms, XN is said to have i.d. equal to d ∈ {1, · · · , D} if its elements lie

entirely within a d-dimensional subspace of <D.

We can think at the i.d. as the minimum number of parameters needed

to describe points sampled from the data structure, that is a lower bound

on the dimension on which it is possible to project data without wrecking

its structure. Therefore, to perform an accurate reduction of dimensionality,

knowing the Intrinsic Dimension is a mandatory requirement.

Due to its usefulness in many theoretical and practical problems, in the

last decades the concept of Intrinsic Dimension has gained considerable

attention in the scientific community; this motivated a great deal of research

effort devoted to the realization of reliable i.d. estimators, resulting in the

large number of related techniques proposed in literature. However, despite

all these studies, the state-of-the-art techniques for estimating the i.d.

suffers from various limitations. For example, methods like the ones related

to the Principal Component Analysis (PCA) assume that the embedding

1A topological space S is called locally Euclidean if there is a non-negative integer n

such that every point in S has a neighborhood which is homeomorphic to the Euclidean

space En. A topological manifold is a locally Euclidean second-countable Hausdorff space

The dimension of a manifold is the dimension of the Euclidean space which every neigh-

borhood is homeomorphic to; a manifold of dimension n is called a n-dimensional manifold

or n-manifold.



8 INTRODUCTION

of the data structure is done by means of a linear mapping. When these

techniques are applied to a dataset which is composed by points sampled

from a data structure which is non linearly embedded they generally produce

an overestimate of the i.d.. Other estimators fail to provide reliable results

when the i.d. is relatively high, i.e. when i.d.> 12. This is due to the

fact that these techniques are based on statistic or geometric properties that

can’t describe the phenomena that occurs in high dimensional spaces, like

norm compression, angle compression, empty space phenomena, and many

others which will be described in Chapter 3.

The aim of this thesis is to present novel i.d. estimators that could pro-

vide reliable results overcoming the aforementioned limitations. The analy-

sis of the drawbacks that affect the other methods gave us the bases for the

creation of these i.d. estimators, called MiNDML∗,MiNDKL and DANCo, that

can deal whit high dimensional values of i.d. of data structures that are

non linearly embedded.

We also note that there is no standard framework available to assess

the performance and compare the results of the i.d. estimators. For this

reason, we propose a new standard benchmark framework in order to ob-

jectively perform comparison of novel methods with the ones present in

the literature. This framework is composed by synthetic and real publicly

available datasets; we choose this particular set of datasets either because

they are challenging or historically used in the i.d. estimation field. The

proposed framework is equipped with methods and techniques in order to

determine the quality of the estimators based on their results obtained on

the datasets in the framework, along with robustness tests on the choice of

the relative parameters and on the influence of the noise on the i.d. esti-

mate. Methods for a statistical analysis and comparison of the estimators’

results are also provided.

This thesis is organized as follows: in Chapter 1, notable state-of-the-

art i.d. estimators will be surveyed, pointing out their advantages and

limitations; in Chapter 2, the novel estimators MiNDML∗, MiNDKL and DANCo

will be described; in Chapter 3, a benchmark framework for experimental

settings will be presented, and used to assess the quality of the estimators

and compare their results; in Chapter 4, conclusions and open research

problems will be outlined; in Appendix A, the pseudo-code of the estimators

presented in Chapter 1 will be reported.



Chapter 1

State of the art

In this chapter we are going to survey the most interesting, widespread used,

advanced state-of-the-art methodologies, pointing out the most important

characteristics that depict them, and underlining their drawbacks and limi-

tations.

In the first section some of the application domains in which the i.d.

could be profitably used will be reported; they range from biology, to statis-

tics, machine learning, physics, chemistry, genetics, finance, and many oth-

ers.

After this, we are going to describe the state-of-the-art i.d. estimators,

following a general categorization of the considered techniques. It’s worth

noting that is very complex to create a taxonomy in order to univocally

group each method in different and well separated sets; this is due to the

fact that in literature exists an huge collection of techniques, each of them

sharing features with different methods. Hence, we choose five general cat-

egories, namely Projective, Fractal, Topological, Neighborhood-based, and

Graph-based, which we believe underline the main ideas that inspired the

development of the reported i.d. estimators.

Finally, for the sake of good order, a table summarizing all the described

techniques, along with the corresponding categories, will be reported in the

last part of the chapter.

1.1 Application Domains

In this section we motivate the increasing research interest aimed at the de-

velopment of automatic i.d. estimators, and we recall different application

9



10 CHAPTER 1. STATE OF THE ART

contexts where the knowledge of the i.d. of the available input datasets

is a profitable information. As pointed out in the introduction, the i.d. is

one of the first and fundamental information required by several dimension-

ality reduction techniques [105], which try to represent the data in a more

compact, but still informative, way.

According to the statistical learning theory [106], the capacity and gen-

eralization capability of a given classifier may depend on the i.d.. More

specifically, in the particular case of linear classifiers where the data are

drawn from a manifold embedded through an identical map, the Vapnik-

Chervonenkis (VC) dimension of the separation hyperplane is d+1 (see [106],

pp. 156-158). Since the generalization error depends on the VC dimension, it

follows that the generalization capability may depend on the i.d. value d.

Moreover, in [39] the authors mark that, in order to balance a classifier gen-

eralization ability and its empirical error, the complexity of the classification

model should also be related to the i.d. of the available dataset. When

using an auto-associative neural network to perform a nonlinear feature ex-

traction, the i.d. value d can suggest a reasonable value for the number of

hidden neurons [59]. Indeed, a network with a single hidden layer of neurons

with linear activation functions has an error function with a unique global

minimum and, at this minimum, the network performs a projection on the

subspace spanned by the first d principal components [53] estimated on the

dataset (see 8.6.2 of [5]), being d the number of hidden neurons. Further-

more, since complex objects can be considered as structures composed by

multiple manifolds that must be clustered to be processed separately, the

knowledge of the local i.d.s characterizing the considered object is an useful

parameter in order to obtain a proper clustering [15].

In the field of gene expression analysis, the work proposed in [61] shows

that the i.d. estimate computed by the nearest neighbor estimator [82]

is a lower bound for the number of genes to be used in supervised and

unsupervised class separation of cancer and other diseases. This information

is crucial since generally used datasets contain large number of genes and

the classification results strongly depend on the number of genes employed

to learn the separation criteria.

In [13], the authors show that i.d. estimation methods being derived

from the basis theory of fractal dimensions ( [41, 58, 65]), can be successfully

used to evaluate the model order in signals and time series, which is the
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number of past samples required to model the time series adequately and is

crucial to make reliable predictions. This comparative work employs fractal

dimension estimators, since the domain of attraction of nonlinear dynamic

systems has a very complex geometric structure, which could be captured

by closely related studies on fractal geometry and fractal dimensions.

A noteworthy research work in the field of crystallography [104] employs

an i.d. estimator [41]; the experimental results show that i.d. is a useful

information to be exploited when analyzing crystal structures. This study

not only proves that i.d. estimates are especially useful when dealing with

practical tasks concerning real data, but also underlines the need to compute

reliable estimates on datasets drawn from manifolds characterized by high

i.d. and embedded in spaces of much greater dimensionality.

The work of Carter [16] is very interesting and notable because it is one

of the first considering that the input data might be drawn from a multi-

manifold structure, where each sub-manifold has a (possibly) different i.d..

To separate the manifolds, the authors compute local i.d. estimates, by

applying both a fractal dimension estimator and a nearest neighbor-based

estimator on properly defined data neighborhoods. The authors then show

that the computed local i.d.s might be helpful for the following interest-

ing applications: (1) “Debiasing global i.d. estimates”: the negative bias

caused both by the limited number of available sample points and by the

curse of dimensionality (see Chapter 2) is reduced by computing global

i.d. estimates through a weighted average of the local ones, which assign

greater importance to the points away from the boundaries. However the

authors themselves note that this method is only applicable for data with

a relatively low i.d., since in high dimensions the points lye nearby the

boundaries [3]. (2) “Statistical Manifold Learning”: the local i.d. esti-

mates are used to reduce the dimension of statistical manifolds [17], that is

manifolds whose points represent a pdf. When this step is applied as the

first step of document classification applications, and analysis of patients’

samples acquired in the field of flow cytometry, it allows to obtain lower

dimensional points showing a good class separation. (3) “Network Anomaly

Detection”: considering that the overall complexity of a router network is

decreased when few sources account for a disproportionate amount of traffic,

a decrease in the i.d. of the entire network is searched for. (4) “Cluster-

ing”: problems of data clustering and image segmentation are dealt with
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by assuming that different clusters and image patches belong to manifold

structures characterized by different complexity (and i.d.s).

In the field of Geophysical signal processing, hyperspectral images, whose

pixels represent spectra generated by the combination of an unknown set of

independent contributions, called endmembers, often require to estimate the

number of endmembers. To this aim, the proposal in [47] is to substitute

state-of-the-art algorithms specifically designed to solve this task, with i.d.

estimators. After motivating the idea by describing the relation between the

i.d. of a dataset and the number of endmembers, the authors tested various

i.d. estimators obtaining reliable results.

In [64], the authors use the information related to the i.d. to describe

object representation in the anterior inferotemporal (AIT) cortex, based on

responses of a large sample of cells stimulated with photographs of diverse

objects. In this work, the authors reported that the dimensionality of AIT

object representations is much lower than the dimensionality of the stim-

uli, and that various value of i.d. pertain to different representations in

separated area of the visual system.

Finally, other noteworthy examples of research works that profitably

exploit i.d., concern financial time series prediction [89], biomedical sig-

nal analysis [21, 76, 30], analysis of ecological time series [51], radar clutter

identification [44], speech analysis [93], data mining and low dimensional rep-

resentation of (biomedical) time series [50], plant traits representation [62].

1.2 Intrinsic Dimension Estimators

A taxonomy composed by well separated classes is not suitable to describe

i.d. estimators by means of the main ideas they are based on: the high

variety of methods present in literature, as well as the common features

shared by many techniques, demands a “rough” subdivision based more on

a bunch of general categories than on “hard” well separated classes. We

selected the following categories, as the most representative and general

ones:

• Projective:

Projective estimators are the ones that explicitly compute the mapping

that projects the input dataset XN ⊂ <D to the subspace M ⊂ <d

minimizing the information loss, and therefore view the i.d. as the
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minimal number of vectors linearly spanning the subspaceM. It must

be noted that projective techniques were originally designed for ex-

ploratory data analysis and dimensionality reduction, and generally

required the i.d. as a parameter. The projective i.d. estimators

arise from their extensions, that automatically calculate i.d..

• Neighborhood-based:

Methods that estimate the i.d. by means of data neighborhoods

fall in this category. More specifically, these techniques describe data

neighborhoods distribution as a function f(d) of the i.d. d, usually

assuming that close points could be modelled as uniformly drawn from

small d-dimensional hyperspheres Bd(xc, r) having radius r → 0 ∈ <+

and being centered on xc ∈M.

• Graph-based:

Techniques that exploit various types of graph structures for i.d. esti-

mation have been proposed in literature. Among them, the most used

structures are the kNN graph, the minimum spanning tree (MST) and

its variation related to the geodesic, the geodesice minimum spanning

tree (GMST), the sphere of influence graph (SIG), and its generalization,

the k-sphere of influence graph (kSIG).

• Fractal:

Fractal estimators are based on the assumption that the manifold M
from which the data points are sampled, has a somehow fractal struc-

ture (see [33] for an exhaustive description of fractal sets). Even if the

i.d. estimators defined as fractal are based on different definitions

of the dimension of a fractal structure, they share the basis concept

that the volume of a d-dimensional ball of radius r scales with its size

as rd [33, 97]. According to this, all fractal dimension estimators are

based on the idea of counting the number of observations in a neigh-

borhood of radius r to estimate the rate of growth of this number. If

the estimated growth is rd , then the estimated i.d. of the data is

considered to be equal to d.

• Topologic:

Estimators that are defined as topological consider the i.d. to be

estimated as equivalent to the topological dimension of the manifold



14 CHAPTER 1. STATE OF THE ART

or the equivalent Lebesque’s Covering Dimension, defined by means

of topological covering and their refinement. More formally, the topo-

logical dimension of the topological space X , is d if every finite cover1

of X admits a refinement C′ such that no subset of X has more than

d + 1 intersecting open sets in C′. If no such minimal integer value

exists, X is said to be of infinite topological dimension

For the last category, the topological one, it is worth noting that there is

some ambiguity in the use of this term in literature: estimators that provide

an integer value for the i.d. are marked as topological, due to the fact that

they provide an i.d. value that is considered equivalent to the topological

dimension of the manifold. In this work we follow a more strict convention,

in which we consider as topological only the i.d. estimators that are based

on the construction of a covering, or an approximation of it.

1.2.1 Projective Estimators

Among the projective i.d. estimators, PCA [53, 68] is one of the most cited

and well known technique for exploratory data analysis and linear dimen-

sionality reduction, often used as the first step of several pattern recogni-

tion problems, to compute low dimensional representations of the available

datasets. When PCA is used for i.d. estimation, the estimate is the number

of “most relevant” eigenvectors of the sample covariance matrix, also called

principal components (PCs). Due to the promising dimensionality-reduction

results, several PCA-based approaches, both deterministic and probabilistic,

have been published. Among deterministic approaches, we recall the Kernel

PCA (KPCA [90]), the local PCA (LPCA [40]) and its extensions to automati-

cally select the number of PCs [107, 12]. We observe that the work presented

in [12] is one of the first that estimates i.d. by considering an underlying

topological structure, and therefore applies LPCA on data neighborhoods.

The authors of this method state that their approach is more efficient and

less sensitive to noise w.r.t. the PCA-based approaches. However they do

not show any experimental comparison and, besides, their algorithm em-

ploys critical thresholds and a data clustering technique whose result heavily

influences the precision of the computed estimate [65].

1Given a topological space X , a cover set Y ⊆ X is a countable collection C = {Ci} of

open sets such that each Ci ⊂ X and ∪iCi ⊇ Y. A refinement of a cover C of a set Y is

another cover C′ such that each set in C′ is contained in some sets of C.
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The usage of a probabilistic approach has been firstly introduced by Tip-

ping and Bishop in [99]. Considering that deterministic methodologies lack

an associated probabilistic model for the observed data, their Probabilistic

PCA (PPCA) reformulates PCA as the maximum likelihood solution of a spe-

cific latent variable model. PPCA and its extensions to both mixture and

hierarchical mixture models have been successfully applied to several real

problems; but they still provide an i.d.-estimation mechanism depending

on critical thresholds. This motivates its subsequent variants [32] and de-

velopments, whose examples are Bayesian PCA (BPCA [6]), and two Bayesian

model order selection methods introduced in [86, 77]. In [8] the asymptotic

consistency of i.d. estimation by a (constrained) isotropic version of PPCA

is shown with numerical experiments on simulated and real datasets.

While the aforementioned methods have been simply recalled since their

i.d. estimation results have shown to be unreliable [58, 65], in the following

recent and promising proposals are described with more details.

The Simple Exponential Family PCA (SePCA [67]) has been developed to

overcome the assumption of Gaussian-distributed data that makes it diffi-

cult to handle all types of practical observations, e.g. integers and binary

values. SePCA achieves promising results by using exponential family distri-

butions; however, it is highly influenced by critical parameter settings and

it is successful only if the data distribution is known, which is often not the

case, specially when highly non-linear manifold structures must be treated.

In [42] the authors propose the Sparse Probability PCA (SPPCA) as a

probabilistic version of the Sparse PCA (SPCA [112]). Precisely, SPCA selects

i.d. by forcing the sparsity of the projection matrix, that is the matrix

containing the PCs. However, based on the consideration that the level of

sparsity is not automatically determined by SPCA, SPPCA employs a Bayesian

formulation of SPCA, achieving sparsity by employing a different prior and

automatically learning the hyper-parameter related to the constraint weight

through Evidence Approximation ([7]-Section 3.5). The authors’ results and

also the results of the comparative evaluation proposed in [18] show that

this method seems to be less affected by the problems of the aforementioned

techniques.

An alternative method (MLSVD, [69]) that applies Singular Value Decom-

position (SVD) instead of PCA, locally and in a multi-scale fashion to estimate

the i.d. characterizing D-dimensional datasets drawn from non-linearly
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embedded d-dimensional manifolds M corrupted by Gaussian noise. Pre-

cisely, exploiting the same ideas of the theoretical PCA-based i.d. estimator

presented in [57], the authors note that the best way to avoid the effects of

the curvature (induced by the non-linearity of the embedding) is to apply

SVD locally, that is in hyperpheres B(x, r) centered on the data points x and

having radius r. However, the choice of r is constrained by the following con-

siderations: (1) r must be big enough to have at least k ≥ d neighbors, (2) r

must be small enough to ensure thatM ∩ B is linear (or at least smooth) (3)

r must be big enough to ensure that the effect of noise are negligible. When

these three constraints are met, the tangent space T dM(x, r), computed by

applying SVD on the k neighbors, is a good approximation of the tangent

space of M∩ B and the number of its relevant eigenvalues correspond to

the (local) i.d. of M. To find a proper value for r, the authors propose

a multi-scale approach that applies SVD on neighborhoods B(x, rs) whose

radius varies in a range rs ∈ {rL..rH}. This allows to compute D scale-

dependent, local singular values λ1(x, rs) ≥ . . . ≥ λD(x, rs); using a least

squares fitting procedure the SVs can be expressed as functions of r whose

analysis allows to identify the range of scales [rmin, ..., rmax] not influenced

by either noise or curvature. Finally, in the range rs = [rmin, ..., rmax] the

squared SVs are analyzed to get the i.d. estimate d̂ that maximizes the

gap ∆(j) = λj(x, rs)− λj+1(x, rs) for the largest range of rs. The proposed

algorithm has been evaluated on unit d-dimensional hyperpheres and cubes

embedded in <100 and affected by Gaussian noise. The reported results are

very good, while other well known methods [41, 65, 27, 45, 43, 20, 16] show

that the i.d.s estimated on the same datasets are unreliable also in the

absence of noise.

1.2.2 Fractal Estimators

The first and one of the most cited, especially for historical reasons, fractal

estimator of the i.d. is presented in [41]. It is an estimator of the Corre-

lation Dimension (dimCorr), and will be referred as CD in the following;

the formal definition of Correlation Dimension is based on the correlation

integral defined as, given a finite sample set XN :

CN (r) =
2

N(N − 1)

N∑
i=1,i<j

I(r − ‖xi − xj‖)
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where ‖ · ‖ is the Euclidean norm, and I(·) is the step function used to

simulate a closed ball of radius r centred on each xi (I(y) = 0 if y < 0, and

I(y) = 1 otherwise). Then, for a countable set, the correlation dimension

dimCorr is defined as:

dimCorr = lim
r→0

lim
N→∞

logCN (r)

log r

In practice CD computes an estimate, d̂, of dimCorr by computing CN (r)

for different ri and applying least squares to fit a line through the points

(log ri; log CN (ri)). It has to be noted that, to produce correct i.d.

estimates, this estimator needs a very large number of data points [104],

which is never available for practical applications; however the computed

unreliable estimations can be corrected by the correction method proposed

in [14].

The relevance of the CD estimator is shown by its several variants and

extensions. An example is the work proposed in [97], where the authors

propose a normalized CD estimator for binary data, and achieve estimates

approximating those computed by CD.

Since CD is heavily influenced by the setting of the scale parameters,

in [96] the authors estimate the i.d. by computing the expectation value

of dimCorr through Maximum Likelihood estimate of the distribution of

distances among points. The estimated d̂ is computed as:

d̂ = −

 1

|Q|

|Q|∑
k=1

rk

−1

where Q is the set Q = {rk|rk < r}, and rk is the Euclidean distance between

two generic data points and r is a real value, called cut-off radius.

To develop an estimator more efficient than CD, in [2] the authors choose

a different definition of the fractal dimension, namely the Information

Dimension dimI defined as:

dimI = − lim
δ→0

∑N (δ)
i=1 pri(log pri)

log δ
.

where N (δ) is the minimum number of δ-sized hypercubes covering a topo-

logical space and pri is the probability of finding a point in the ith hypercube.

Noting that, when the scale δ in the above equation is big enough the differ-

ent coverings used to estimate dimI could produce different values for N (δ),
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the author look for the covering composed by the minimum number Nmin(δ)

of nonempty sets. Similar to the CD algorithm, the estimated i.d. based

on dimI is the average slope of the curve obtained by fitting the points with

coordinates
(

log δ;
∑Nmin(δ)

i=1 pri log pri

)
.

This algorithm is compared with the CD estimator, and the experimental

tests shows that both methods compute the same estimates. However the

achieved computation time is much lower than that of CD.

Considering that CD can severely underestimate the correct value of i.d.

if the data distribution on the manifold is nearly non-uniform, in [58] the

author proposes the Packing Number (PN), an i.d. estimator that approx-

imates the Capacity Dimension (dimCap). To formally define dimCap,

the ε-covering number N (ε) of a set S ⊂ X must be defined; N (ε) is the

minimum number of open balls B(x0, ε) = {x ∈ X : ‖x0 − x‖ < ε} whose

union is a covering of S, where ‖ · ‖ is a distance metric. The definition

of dimCap of S ⊂ X is based on the observation that the covering number

N (ε) of a d-dimensional set is proportional to ε−d:

dimCap = − lim
ε→0

logN (ε)

log ε
.

Since the estimation of N (ε) is computationally expensive, based on the

relation N (ε) ≤ Npack(ε) ≤ N ( ε2), the authors employ the ε-Packing number

Npack(ε), defined in [100] as the maximum cardinality of an ε-separated

set. Employing a greedy algorithm to compute Npack(ε), the estimate, d̂, of

dimCap is computed as:

d̂ (ε1, ε2) = −
logNpack(ε1)− logNpack(ε2)

log ε1 − log ε2

To estimate d̂ a greedy algorithm is used; however, as noted by the author,

the dependency of d̂ w.r.t. the order in which the points are visited by the

greedy algorithm introduces a high variance. To avoid this problem, the

algorithm iterates the procedure M times on random permutations of the

data, and considers the average as the final i.d. estimate. The comparative

evaluation with the CD estimator make the authors assert that PN “seems

more reliable if data contains noise or the distribution on the manifold is

not uniform”. Unfortunately, also this method is scale-dependent.

To avoid any scale-dependency in [45] the authors propose an estimator

(Hein) based on the asymptotes of a smoothed version of the correlation
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integral, obtained by replacing the step function I(·) with a suitable kernel

function. Precisely, they define:

U(N,h, d) =
2

N(N − 1)

N∑
1≤i<j≤N

1

hd
Kh(‖xi − xj‖/h2).

where Kh is a kernel function with bandwidth h, and d is the assumed di-

mensionality of the manifold from which the points are sampled. Note that,

to guarantee the converge of the above equation, the bandwidth h has to ful-

fill the constraint limN→∞(Nhd) =∞. For this reason the authors formalize

h as a function of N and, to achieve scale-independency, propose a method

that estimates the i.d. by analyzing the convergence of U(N,h, d) when

varying the parameters N and d. Precisely, the dataset is sub-sampled to

create sets of different cardinalities nsub ∈ Nsub = {N,N/2, N/3, N/4, N/5}
and the D curves whose points have coordinates (U(nsub, h(nsub), d), nsub)

are considered. Employing this information the following i.d. estimator is

proposed:

Slope(d) = max
nsub∈Nsub

∣∣∣∣∂U(nsub, h(nsub), d)

∂n

∣∣∣∣
d̂ = arg min

d∈{1..D}
Slope(d)

This work is notable since the empirical tests are performed on synthetic

datasets specifically designed to study the influence of high curvature as

well as noise on the proposed estimator. The usefulness of these datasets is

confirmed by the fact that they have been also employed to assess several

subsequent methods [11, 18].

In [85] the authors present an estimator derived by the analysis of a

vector quantizer applied to datasets XN ⊆ <D. Considering the code-

book Y = {y1..yk} ⊂ <D containing k code-vectors yi, a k-point quan-

tizer is defined by a measurable function Qk : <D → Y, which brings each

data point to one of the code-vectors in Y. This partitions the dataset

into k so-called quantizer cells Si = {xi ∈ XN : Qk(xi) = yi}, where

log2(k) is called the rate of the quantizer. Being X a random vector dis-

tributed according to a probability distribution ν, the quantization error is

er(Qk|ν) = (Eν [‖X − Qk(X)‖r])
1
r , where r ∈ [1,∞) and ‖ · ‖ is the Eu-

clidean norm in <D. Given the set Qk of all D-dimensional k-point quan-

tizers, the performance achieved by an optimal k-point quantizer on X, is
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e∗r(Qk|ν) = infQk∈Qk(er(Qk|ν)). When the quantizer rate is high, the quan-

tizer cells can be well approximated by D-dimensional hyperspheres with

radius equal to ε and centered on each code-vector yi ∈ Y. In this case, the

regularity of ν ensures that the probability of such balls is proportional to

ε
1
d , and it can be shown [111] that e∗r(Qk|ν) ≈ k−

1
d . This is referred to as

the high-rate approximation, and motivates the definition of Quantization

Dimension of order r:

dr(ν) = − lim
k→∞

log k

log e∗r(k|ν)

The theory of high-rate quantization [111] confirms that, for a regular ν

supported on the manifold M, dr(ν) exists for each 1 ≤ r ≤ ∞ and equals

the i.d. of M. Furthermore, the limit k → ∞ allows to motivate the

relation between the quantization dimension and the Capacity Dimension.

Indeed, according to the theory of high-rate quantization [111, 54], there

exists a decreasing sequence {εk}, such that for sufficiently large values of k

(i.e., in the high-rate regime that is when k →∞) the ratio − log k
log e∗r(k|ν) can

be approximated increasingly finely, both from below and from above, by

quantities converging to the common value dimCap. To practically compute

an estimate of the quantization dimension, having fixed the value of r, the

authors select a range k1 ≤ k ≤ k2 of codebook sizes, and design a set

of quantizers {Qk}k2k=k1
giving good approximations êr(k|ν) of e∗r(k|p) over

the chosen range of k. An i.d. estimate is obtained by fitting the points

with coordinates (log(k);− log êr(k|ν)) and measuring the average slope over

the chosen range k. Though the authors mention that their algorithm is

less affected by underestimation biases than neighborhood-based methods,

in [16] this statement is confuted with theoretical arguments.

It must be underlined that all the derived estimators described so far

have the fundamental limitation that in order to get an accurate estimation,

the size N of the dataset with i.d. d has to satisfy the inequality proved

by Eckmann in [31] for the CD estimator:

d <
2

log(1
ρ)
∗ logN, being ρ =

r

D
<< 1 and

1

2
N2(

r

D
)d >> 1

This will lead to a large value of N , even for a data set with lower i.d..
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1.2.3 Topological Estimators

To our knowledge, at the state-of-the-art only two estimators have been ex-

plicitly designed to estimate the Topological Dimension: the Tensor Voting

Framework (TVF, [75]) and the method presented in [66].

TVF and its variants [70] relies on the usage of an iterative information

diffusion process based on Gestalt principles of perceptual organization [110].

TVF iteratively diffuses local information describing, for each xi ∈ XN , the

tangent space approximating the underlying neighborhood of M. To this

aim, the information diffused at each iteration are second order symmetric

positive definite tensors whose eigenvectors span the local tangent space.

Practically, during the initialization step a ball tensor T0
i , which is an iden-

tity matrix representing the absence of orientation, is used to initialize a

token xi for each point xi as {xi = (xi,T
0
i )}Ni=1. During iteration t each

token xi “generate” the set of tensors
{
Tt
i,j

}
j 6=i

that enact as votes cast

to neighboring tokens; precisely, Tt
i,j is sent to the jth neighbor, it encodes

informations related to the local tangent space estimate in xi at time t, and

decays as the curvature and the distance from the jth neighbor increase. On

the other side, at iteration t each token xj receives votes that are summed

to update the xj ’s tensor as Tt+1
j =

∑
i 6=j T

t
i,j ; this essentially refines the

estimate of the local tangent space in xj . TVF can be employed to estimate

the local i.d.s by identifying the number of most relevant eigenvalues of the

computed second order tensors. Although interesting, this method has a too

high computational cost, which makes it unfeasible for spaces of dimension

D ≥ 4.

From the definition of Lebesgue Covering Dimension it can be derived [87]

that the topological dimension of any M⊆ <d coincides with the affine di-

mension d of a finite simplicial complex2 coveringM. This essentially means

that a d-dimensional manifold could be approximated by a collection of d-

dimensional simplexes (each having at most d + 1 vertices); therefore, the

topological dimension ofM could be practically estimated by analyzing the

number of vertices of the collection of simplexes estimated on XN .

To this aim, in [66] a method is proposed to find the number of relevant

positive coefficients that are needed to reconstruct each xi ∈ XN from a

linear combination of its k neighbors, where k is a parameter to be manu-

2A simplicial complex in <d has affine dimension d if it is a collection of affine simplexes

in <d, having at most dimension d, or having at most d+ 1 vertices.



22 CHAPTER 1. STATE OF THE ART

ally set in the range d < k ≤ D + 1. This algorithm is based on the fact

that neighbors with positive reconstruction coefficients are the vertices of a

simplex with dimension equal to the dimension ofM. Practically, to ensure

that k > d, its value is set to D, the reconstruction coefficients are calcu-

lated by means of an optimization problem constrained to be non negative,

and the coefficients bigger than a user-defined threshold are considered as

the relevant ones. The i.d. estimate is then computed by employing two

alternative approaches: the first one simply computes the mode of the num-

ber of relevant coefficients for each neighborhood; the second one sorts in

descending order the coefficients computed for each neighborhood, computes

the mean c̄ of the sorted coefficients, and estimates i.d. as the number of

relevant values in c̄. Note that, since k > d, this method is strongly affected

by the curvature of the manifold when the i.d. is big enough. Indeed,

the results of the reported experimental evaluation make the authors assert

that the method works well only on noisy-free data of low i.d. (i.d.≤ 6),

under the assumption that the sampling process is uniform and the data

points are sufficient.

As well as TVF, this approach has shown to be effective only for manifolds

of low curvature as well as low i.d. values.

1.2.4 Neighborhood-based Estimators

As one of the first estimator to exploits neighborhood informations, Trunk’s

method [101] is often cited. It formulates the distribution function, f(d),

with an ad-hoc statistic based on geometric considerations concerning an-

gles; in practice, having fixed a threshold γ and a starting value for the

parameter k, it applies kNN to find the neighbors of each xi ∈ XN , and cal-

culates the angle νi between the (k+1)th-nearest neighbor and the subspace

spanned by the k-nearest neighbors. Considering a threshold parameter γ,

if 1
N

∑N
i=1 νi ≤ γ, then k is considered as the i.d. estimate, otherwise k is

incremented by 1 and the process is repeated. The main limitation of this

method is the difficult choice of a proper value for the γ.

With the same base idea, the work presented by Pettis [82] is notable

since it is one of the first providing a mathematical motivation for the use

of nearest-neighbor distances.

To this end, the authors consider that the probability p(x ∈ Bd(x0, r))

of a point x to be in the d-dimensional hypersphere Bd(x0, r) with radius r
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and centered on a point x0 is:

p(x ∈ Bd(x0, r)) = rd
∫
z∈Bd(0,1)

g(rz + x0)dσ(z) = rdµ(x0, r)

where g(·) is the point distribution function, and σ is the Lebesgue measure

ofM defined from its volume form. For small values on r, µ(x0, r) could be

considered a constant µ0, thus obtaining:

p(x ∈ Bd(x0, r)) = rdµ0 ⇒ log(p(x ∈ Bd(x0, r))) = d log(r) + log(µ0)

Exploiting this relation, local i.d. estimates d̂i are computed for each

xi ∈ XN , and the results are then averaged to get the global i.d. esti-

mate d. More precisely, considering each xi ∈ XN as the center of a ball

Bd(xi, r), the authors compute the distance ri between xi and its k th-

nearest neighbor (being k a parameter to be fixed). Then, since p(x ∈
Bd(xi, r

(k)
i )) ' k

N and similarly, by considering a number k
2 of nearest

neighbors, p(x ∈ Bd(xi, r
( k
2

)

i )) ' k
2N , the relations log( kN ) ' d log(r

(k)
i ) +

log(µ0) and log( k
2N ) ' d log(r

( k
2

)

i ) + log(µ0) can be used to deduce log(2) '

d log

(
rki

r
k
2
i

)
, so that a local estimate d̂i is computed as

d̂i =
log(2)

log

(
rki

r
k
2
i

)

Therefore, the global i.d. estimate d̂ is:

d̂ =
N log(2)∑N
i=1

(
rki

r
k
2
i

)

Since this algorithm is limited by the choice of a suitable value for param-

eter k, in [107] the authors propose a variant which considers a range of

neighborhood sizes [kmin, kmax]. However, in the same work the authors

themselves show that this technique generally yields an underestimate of

the i.d. when its value is high.

Taking into account the relation

k

N
' p(x)V (d)rd
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in [34] the number NBd of data points in Bd(x, r) is described by a poly-

nomial f(r) =
∑d

s=0 βsr
s of degree d. In practice, considering xi,xk ∈

XN , calling rik = ‖xi − xk‖ the inter-point distances, and being r =

minNi,k=1 rik, and R a parameter adaptively estimated, a set of n radius

values r =
{
rj = r + j(R−r)

n

}n
j=1

is selected and used to calculate n pairs{(
rj , f̂(rj)

)}n
j=1

, where f̂(rj) = # [rik < rj ]
N
i,k=1 is the number of inter-

point distances strictly lower than rj . To estimate the coefficients {βj}Dj=1,

the computed pairs are fit by a least squares fitting procedure that estimates

exactly D + 1 coefficients. Since by hypothesis the degree of f is d, the sig-

nificance test described in [39] is used to estimate the degree d̂ of f̂ , which is

considered as the i.d. estimate. Maximum Likelihood Estimator, MLE [65],

one of the most cited estimators, treats the neighbors of each point xi ∈ XN

as events in a Poisson process and the distance r(j)(xi) between the query

point xi and its jth nearest neighbor as the event’s arrival time. Since this

process depends on d, MLE estimates i.d. by maximizing the log-likelihood

of the observed process. In practice a local i.d. estimate is computed as:

d̂(xi, k) =

1

k

k∑
j=1

log
r(k+1)(xi)

r(j)(xi)

−1

Averaging the d̂(xi, k)s, the global i.d. estimate is d̂(k) = 1
N

∑N
i=1 d̂(xi, k).

The theoretical stability of the proposed i.d. estimator for data living

in C1 submanifold of <D, d ≤ D, and for data in an affine subspace of <D

has been proved respectively in [81, 4]. Though the authors’ comparative

evaluation shows the superior performance of the proposed estimator w.r.t.

the CD estimator [41] and the NN estimator [82], they further improve it by

removing its dependency from the parameter k; to this end, different values

for k are adopted and the computed results are averaged to obtain the final

i.d. estimate: d̂ = 1
t

∑
k∈{k1..kt} d̂(k).

Considering that, in practice, MLE is highly biased both for large and

small values of k, a variant of MLE is proposed in [73], where the arithmetic

mean is substituted with the harmonic average, leading to the following

estimator: d̂(k) =
(

1
N

∑N
i=1

1
d̂(xi,k)

)−1
.

Though the proposal in [73] seems to achieve more accurate results, it

is based on the assumption that neighbors surrounding each xi are inde-

pendent, which is clearly incorrect. To cope with this problem, in [29] an
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interesting regularized version of MLE applies a regularized maximum likeli-

hood technique to distances between neighbors. The comparative evaluation

with the aforementioned MLE methods [65, 73] make the authors state that,

though the method might be the first to converge to the actual estimate

given enough data points, its estimation accuracy is comparable to that

achieved by the competing schemes.

In [56, 55] a further improvement of MLE is presented; it achieves a better

performance by substituting euclidean distances with geodesic ones.

1.2.5 Graph-based Estimators

As noted in [11], the work of [84] has cleared that theories underlying graphs

can be applied to solve a variety of statistical problems; indeed, also in the

field of i.d. estimation various types of graph structures have been pro-

posed [11, 46, 26, 25] and used for i.d. estimation. Among them, the most

used structures are the kNN graph, the minimum spanning tree (MST) and

its variation related to the geodesic, the geodesice minimum spanning tree

(GMST), the sphere of influence graph (SIG), and its generalization, the k-

sphere of influence graph (kSIG). More precisely, a kNN(XN ) is built employ-

ing a distance function to weight the arcs connecting each xi to its kNNs. A

MST(XN ) is the spanning tree minimizing the sum of the edge weights. When

the weights approximate geodesic distances, a GMST(XN ) is obtained. A

SIG(XN ) is defined by connecting nodes xi and xj iff ‖xi−xj‖ ≤ ρ(i)+ρ(j),

where ρ(i) is the distance between xi and its nearest neighbor in XN ; in

other words, two vertices are connected if their corresponding neighborhood

hyperspheres intersect. The generalization kSIG(XN ) of SIG(XN ) use as

the intersecting hyperspheres the ones generated by kNN In [26, 27], after

defining the length functional L(GN (XN )) =
∑
|ei,j |γ , γ ∈ (0, d), to build

either the GMST(XN ) or the MST(XN ) of kNNG(XN ), graph theories are ex-

ploited to estimate both the i.d. of the underlying manifold structure M
and its intrinsic Rènyi α-entropy HM. To this aim, the authors derive the

linear model: logL(MST(PN )) = a log d+ b, a = (d− γ)/d, b = log c+HM,

being c an unknown constant, and exploit it to define an estimator of both

d and HM. Briefly, a set of cardinalities {nk}Kk=1 is chosen and, for each nk,

the MST(Xnk) is constructed on the set Xnk , which contains nk points ran-

domly sampled from XN , to obtain a set of K pairs (logL (MST(Xnk)) , nk).

Fitting them with a least squares procedure the estimates â ' a and b̂ ' b
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are computed. Recalling that a = (d − γ)/d, the i.d. is calculated as

d̂ = round
{
γ/(1 − â)

}
' d. This process is iterated to produce the final

estimate as the average of the obtained results.

The aforementioned kNNG based algorithm [27, 26] is exploited in [25],

where the authors consider data sets sampled from a union of disjoint mani-

folds with possibly different i.d.s. To estimate the local i.d.s, the authors

propose an heuristic, which is not described here, to automatically deter-

mine the local neighborhoods with similar geometric structures without any

prior knowledge on the number of manifolds, their i.d.s, and their sampling

distributions.

In [11] the authors present three i.d. estimation approaches, defined as

“graph theoretic methods” since the statistics they compute are functions

only of graph properties (such as vertex degrees, vertex eccentricities, and

so on) and do not directly depend from the inter-point distances.

The first statistic, denoted as S1
N (XN ) = r̄j(kNNG(XN )) in the following,

is based on the reach3 of vertices in the kNNG(XN ). Considering that the

reach of each vertex xi ∈ kNNG(XN ) grows as the i.d. increases, in [10]

the average reach r̄j(kNNG) in j steps of vertices in kNNG(XN ) is employed:

S1
N (XN ) = r̄j(kNNG(XN )) = 1

N

∑N
i=1 rj,i(xi, kNNG(XN )).

The second statistic, denoted with S2
N (XN ) = MN (MST(XN )), is com-

puted by considering the degree of vertices in the MST(XN ). Recalling that,

for datasets XN obtained from a continuous distribution on <d, the ra-

tio of nodes with a given degree j in MSTN (XN ) converges a.s. to a limit

depending only on j and d [95], and that the average degree in a tree

is a constant depending only on the number of vertices, the authors em-

pirically observe a dependency between the average degree and the i.d..

This leads to the definition of an i.d. estimator employing the statistic

S2
N = MN (MST(XN )) = 1

N

∑N
i=1(degMST (XN )(xi))

2.

The third statistic, denoted as S3
N (XN ) = UkN (kSIG(XN )), is motivated

by studies in the literature [91] showing that the expected number of neigh-

bors shared by a given pair of points depends on the i.d. of the underlying

manifold. Accordingly, calling Ni,j the number of samples in the intersec-

tion of the two kNN hyperspheres centered on xi and xj , intuitions similar to

those considered for r̄j(kNNG) lead to define S3
N (XN ) = UkN (kSIG(XN )) =

3The reach rj,i(xi, G), in j steps of a node xi ∈ G, is the total number of vertices which

are connected to xi by a path composed of j arcs or less in G.
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1
n

∑
i≤j Ni,j .

Based on their theoretical results and empirical tests on synthetically

generated datasets characterized by i.d. values dj in a finite range F ⊆ N+

(where F = {dj}12
dj=2 in the reported experiments), the authors propose an

approximate Bayesian estimator that could indistinctly employ each of the

three statistics S1
N , S2

N , and S3
N , denoted by S∗N in the following. To this aim,

they assume that each statistic can be approximated by a Gaussian density

fdj (·) = N (µ(dj), σ
2(dj)); to estimate µ(dj) and σ2(dj), for each dj ∈ F, L

datasets of large size are synthetically generated by random sampling from

the Uniform distribution on the unit dj-cube. These datasets are then used

to estimate the parameters µ̃(dj) ' µ(dj) and σ̃2(dj) ' σ2(dj) that define

the approximation f̃dj (·), computed on a generic sample set with size N and

i.d. = dj , of the Gaussian density fdj (·) of S∗N .

At this stage, given a new input dataset XN having unknown i.d., the

statistic S∗N (XN ) = sX is computed and used to calculate the approximated

value f̃dj (sX) = N (µ̃2(dj),
σ̃2(dj)
N ) ' fdj (sX). Assuming equal a priori prob-

ability for all the dj ∈ F, the posterior probability P [dj |S∗N ] is given by:

P [dj |S∗N ] =
f̃dj (sX)∑

dj∈F f̃dj (sX)
, dj ∈ F

and employed to compute an “a posteriori expected value” of the i.d.:

d̂ = round
{ ∑
dj∈F

djP [dj |S∗N ]
}
.

The authors evaluate the performance of their methods on synthetic datasets,

some of which have been used by similar studies in literature [45], while the

others (challenging ones) are proposed by the authors to have manifolds

with non-constant curvature. The comparison of the achieved results with

those obtained by the estimators proposed in [65, 35, 25, 94] has lead to

the conclusion that none of the methods has a good performance on all

the tested datasets. However, graph theoretic approaches would appear to

behave better when manifolds of non-constant curvature are processed.

1.3 Summary

The i.d. estimators described so far are listed in table 1.1, along with

their relative categories; we also inserted in the last two columns a different
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taxonomy which was commonly used by several authors in the past. It

viewed methods as global, when i.d. estimation is performed by considering

a dataset as a whole, or local, when all the data neighborhoods are analyzed

separately and an estimate is computed by combining all the local results.

We can note that the majority of the recent methods have abandoned the

global approach since the analysis of a dataset at its biggest scale could

produce unreliable results. as we’ll explain in the next chapter. In the next

chapter we are also going to present novel estimators of the i.d., precisely

MiNDML∗,MiNDKL, and DANCo, which are local neighborhood-based methods.

Projective Topologic Fractal Neighborhood-based Graph-based

PCA [53, 68] ?

KPCA [90] ?

LPCA [40] ?

PPCA [99] ?

BPCA [6] ?

SePCA [67] ?

SPPCA [42] ?

MLSVD [69] ?

CD [41] ?

INFOdim [2] ?

PN [58] ?

Hein [45] ?

Quantization Dimension [85] ?

TVF [75] ?

Simplicial based [66] ?

Trunk [101] ?

NN [82] ?

Polynomial [34] ?

MLE [65] ? ?

GMST [26, 27, 25] ?

kNNG [26, 27, 25] ?

Global Local

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Table 1.1: i.d. estimation techniques reported in section §1.2 along with

their relative categories



Chapter 2

Novel intrinsic dimension

estimators

In the previous chapter we have presented state-of-the-art estimators of the

i.d., as well as their drawbacks and limitations. We are now going to

describe novel techniques that overcomes the shortcomings that affects the

presented methods.

In the first section of this chapter we are going to discuss a local approach

for i.d. estimators, named MiNDML∗ (Minimum Neighbor Distance based

on Maximum Likelihood), that are based on the maximum likelihood of

distributions related to neighborhood distances.

After underling the limitations of these estimators when confronted with

high dimensional spaces, we will introduce a pdf comparison approach to

overcome the flaws of the previous techniques. More precisely, we will

present MiNDKL [88, 71] which uses a Kullback-Leibler divergence between

distance-related pdfs estimated locally on the dataset and on synthetic gen-

erated data of various dimensions (d ∈ {1, · · · , D}).

In the last section DANCo [18] will be introduced; this i.d. estimator im-

proves MiNDKL through the addition of angle-related information, obtaining

even more precise results. An efficient version of DANCo (called FastDANCo) is

also presented, together with a more feasible technique for the construction

of the kNN.

29
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2.1 A Local Approach Model

In the previous chapter we described various techniques for i.d. estimation.

Among them, the more accurate and reliable resulted to be the ones based

on a local analysis of data. These methods, in order to provide an i.d.

estimate, exploit the local properties of a small neighborhood of a point

of the dataset, under the assumption that these properties are the ones

that characterize the manifold from which the data are sampled. More

specifically, consider a manifoldM≡ <d embedded in an higher dimensional

space <D through a locally isometric non-linear smooth map ψ : <d → <D,

from which the data points are sampled by means of a smooth non-uniform

sampling pdf f :M→ <+; with a local approach for i.d. estimation we are

willing to find local manifold proprieties depending only on d, that could be

calculated by looking at the neighborhood of finite sets of data points in <D.

This requires a model of the data points neighborhood that is representative

of the corresponding point neighborhood on the manifold, according to the

property of a manifold to be locally euclidean. In this work, in order to

estimate manifold properties by means of local information, we model each

neighborhood of a point in the dataset as a set of points uniformly sampled

from a d-dimensional hypersphere, where d is the dimension of the manifold,

having radius equal to the neighborhood size, and centred on the given

point. The first problem of this model arises when considering that the

sampling distribution by means of which the data points are extracted from

the manifold, i.e. f :M→ <+, is generally not uniform; this is the opposite

of our model assumption that the points are uniformly sampled inside the

hypersphere. The following theorem states that this assumption is indeed

correct, when considering neighborhoods of very small size. First of all, we

define, without loss of generality, the center of the hypersphere to be in 0d,

and we show that any smooth pdf f is locally uniform where the probability

is not zero. To this aim, assuming f(0d) > 0 and z ∈ <d, we denote with

fε the pdf obtained by setting fε(z) = 0 when ‖z‖ > 1, and fε(z) ∝ f(εz)

when ‖z‖ ≤ 1. More precisely, denoting with χBd(0d,1) the indicator function

on the ball Bd(0d, 1), we obtain:

fε(z) =
f(εz)χBd(0d,1)∫
Bd(0d,1) f(εt)dt

Theorem 2.1. Given {εi} → 0+, fε(z) describes a sequence of pdfs having
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the unit d-dimensional ball as support; such sequence converges uniformly

to the uniform distribution Bd in the ball Bd(0d, 1).

Proof. Evaluating the limit for ε → 0+ of the distance between fε and Bd

in the supremum norm we get:

lim
ε→0+

‖fε(z)−Bd(z)‖sup = lim
ε→0+

∥∥∥∥∥ f(εz)χBd(0d,1)∫
Bd(0d,1)

f(εt)dt
−

χBd(0d,1)∫
Bd(0d,1)

dt

∥∥∥∥∥
sup

= lim
ε→0+

∥∥∥∥∥ f(εz)∫
Bd(0d,1)

f(εt)dt
− 1∫
Bd(0d,1)

dt

∥∥∥∥∥
supBd(0d,1)

settingV =

∫
Bd(0d,1)

dt = lim
ε→0+

∥∥∥∥∥V f(εz)−
∫
Bd(0d,1)

f(εt)dt

V
∫
Bd(0d,1)

f(εt)dt

∥∥∥∥∥
supBd(0d,1)

= lim
ε→0+

∥∥∥∥∥V f(εz)−
∫
Bd(0d,1)

f(εt)dt

∥∥∥∥∥
supBd(0d,1)

Defining:

min(ε) = min
Bd(0d,1)

f(εz) max(ε) = max
Bd(0d,1)

f(εz)

and noting that min(ε) > 0 definitely since f(0d) > 0, we have:

V ·min(ε) ≤ V f(εz) ≤ V ·max(ε)

V ·min(ε) ≤
∫
Bd(0,1) f(εt)dt ≤ V ·max(ε)

thus their difference is bounded by V (max(ε)−min(ε)) −−−→
ε→0+

0+.

This theorem states that if a neighborhood of a point in the dataset is

small enough, we can think at it as a representative of a neighborhood of

the same point on the manifold.

The problem is that having a finite set of points we can not guaran-

tee that the hypersphere model can describe the neighborhood. The base

technique for selecting the neighbors of a given point is the k-Nearest

Neighbor, which simple selects the nearest k points by means of Euclidean

distance. The value of k, that is the number of neighbors, is a parameter

that has to be choose very carefully. First of all, the above theorem, as well

as theorem 1 and theorem 4 in [27] guarantees that the hypersphere model

is true only when k → ∞, and this requirement is often translated into

practice by several i.d. estimators by requiring the number k of available

empirical neighboring samples to be sufficiently high. Taking as much points
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as possible is not a good way to fulfil this requirement, due to the fact that

in most practical case this means that the neighborhood’s size is very large

compared to the manifold diameter, that could results in an incorrect i.d.

estimate (see figure 2.1)

Figure 2.1: At very small scales (a) the dataset seems zero-dimensional; in

this example, when the resolution is increased until including all the dataset

(b) the i.d. looks larger and seems to equal the embedding space dimension;

the same effect happens when it is estimated at noise level (d); the correct

i.d. estimate is obtained at an intermediate resolution

Even selecting a neighborhood with a correct size could lead in improper

results: as the numbers of neighbors k increases, the probability of selecting

points which are not neighbors on the manifold’s surface grows correspondly

(see figure 2.2).

To better explain this, we informally define a geodesic path as the min-

imum path that connects two manifold’s points and lies entirely on the

manifold’s structure, and we define an euclidean path as the minimum path

measured in terms of euclidean distance. The increment of the neighbor-

hood’s radius will often lead into a discrepancy between the geodesic path

and the euclidean path, resulting in neighborhood that are no longer rep-

resentative of the manifold’s structure: the theorem 4 in [27] proves that

geodetic paths converge to euclidean paths with probability 1 only in the

infinitesimal neighborhood.

Assuming that the neighborhood is properly chosen, we are now going to

describe the hypersphere model in details. Our aim is to exploit this model
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Figure 2.2: The solid line is the geodesic path between two points on the

Swiss Roll dataset. The dashed line is the euclidean distance between the

considered points. The discrepancy between the geodesic path and the eu-

clidean path could lead in the construction of neighborhoods which are not

representative of the structure of the manifold.

to infer an estimate for the i.d.; we are going to do so by means of the

probabilistic density function relative to the distances of points uniformly

sampled on the hypersphere from its center. More formally, considering the

unit hypershpere Bd(0d, 1) ⊂ <d centerd in the origin and k points {zi}ki=1

uniformly drawn from it, our aim is to find the pdf related to the minimum

distance between the k points and 0d. Call p(r) the pdf for the event

‖zi‖ = r (r ∈ [0, 1]), where ‖ · ‖ is the L2 norm operator, and denote with

P (r̃ < r) the probability for the event ‖zi‖ < r; being zi uniformly drawn it

is possible to evaluate these probabilities by means of hypersphere volume

ratios. The volume of a d dimensional hypersphere of radius r is:

Vr = rd
πd/2

Γ(d2 + 1)
= rdV1

where Γ(·) is the Gamma function and V1 is the volume of the unit d-

dimensional hypersphere. The quantity P (r̃ < r) is given by the volume

ratio V1
Vr

= rd; moreover, being P (r̃ < r) the cumulative density function

(cdf) related to the pdf p(r), it is p(r) = ∂ VrV1 /∂r = drd−1.

The pdf g(r; d, k) related to the event mini∈{1,··· ,k} ‖zi‖ = r (i.e. the

minimum distance between the points {zi}ki=1 and the hypersphere center

equals to r) is proportional to the probability of drawing one point with

distance r multiplied by that of drawing k − 1 points with distance r̃ > r,
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that is:

g(r; d, k) ∝ g̃(r; d, k) = p(r)(1− P (r̃ < r))k−1 =
∂Vr
∂V1

∂r

(
1− Vr

V1

)k−1

=
1

V1
drd−1(1− rd)k−1

Normalizing by
∫ 1

0 g̃(r; d, k)dr = (V1k)−1 we finally get:

g(r; d, k) =
g̃(r; d, k)∫ 1

0 g̃(r; d, k)dr
= kdrd−1(1− rd)k−1.

2.2 MinimumNeighbor Distance Estimators Based

on Maximum Likelihood

Having g(r; d, k) we can exploit it to obtain an i.d. estimate from a neigh-

borhood of the dataset. Consider a sample set Xn = {xi}ni=1 = {ψ(zi)}Ni=1 ⊂
<d, where zi are independent identically distributed points drawn from a

manifold M ≡ <d embedded in an higher dimensional space <D through

a locally isometric non-linear smooth map ψ : M → <D; these points are

sampled by means of a non-uniform smooth pdf f : M → <+. For each

point xi ∈ XN we find the set of k + 1 (1 ≤ k ≤ N − 1) nearest neighbors

X̂k+1 = X̂k+1(xi) = {xj}k+1
j=1 ⊂ XN .

Calling x̂ = x̂k+1(xi) ∈ X̂k+1 the most distant point from xi, we cal-

culate the distance between xi and the nearest neighbor in X̂k+1 and we

normalize it by means of the distance between xi and x̂. More precisely, we

have:

ρ(xi) = min
xj∈X̂k+1

‖xi − xj‖
‖xi − x̂‖

.

For xi 6= x̂, the quantities ρ(xi) are samples drawn from the pdf g(r; d, k) =

kdrd−1(1−rd)k−1, where the parameter k is known and the parameter dmust

be estimated. A simple approach for the estimation of d is the maximization

of the log-likelihood function:

ll(d) =
∑

xi∈XN

log g(xi; d, k)

= N log k +N log d+ (d− 1)
∑

xi∈XN

log ρ(xi)

+ (k − 1)
∑

xi∈XN

log(1− ρ(xi)
d).
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To select an integer value d̂ ∈ {1, · · · , D} as the estimated i.d., it suffices

to evaluate

d̂ = arg max
d∈{1,··· ,D}

ll(d);

we call this estimator MiNDMLi. On the other side, if a real value is required

as a fractal i.d. estimation, the maximal value in [1, D] must be found.

To this aim we compute the first derivative of ll(d) and we determine the

solutions of ∂ll
∂d = 0, thus obtaining:

N

d
+
∑

xi∈XN

(
log ρ(xi)− (k − 1)

ρd(xi) log ρ(xi)

1− ρd(xi)

)
= 0

We recall that the MLE technique adopts a similar derivation since it extracts

distance information from all the first k nearest neighbors. We note that, in

the particular case of k = 1, the solution of the previous equation is:

d̂ = −

 1

N

∑
xi∈XN

log ρ(xi)

−1

that is exactly the MLE estimator proposed in [65] for k = 1; we call this

estimator MiNDML1 and its time complexity is O(DN logN). For k > 1 we

numerically solve the following optimization problem:

d̂ = arg max
1≤d≤D

ll(d).

To solve this optimization problem we employed the constrained optimiza-

tion method proposed in [23] with the initial integer value

d0 = arg max
d∈{1,··· ,D}

ll(d)

We call this estimator MiNDMLk; its time complexity is O(D2N logN).

2.2.1 Drawbacks of Local Approaches in High Dimensional

Spaces

Unfortunately the number of sample points required to perform the pre-

vious dimensionality estimation grows exponentially with the value of the

i.d.. For this reason, when the dimensionality is too high, the number of

sample points practically available is insufficient to compute an acceptable

estimation. Moreover, the fraction between the points on (or close to) the
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edge of the manifold, and the other points (inside the manifold) increases in

probability when the dimensionality increases (the so-called “edge-effect”,

see [107]), thus affecting the results achieved by estimators based on statis-

tics related to the behaviour of point neighborhoods, such as the algorithms

proposed before (MiNDMLi and MiNDMLk) and MLE. To formally show this fact,

consider a sample xi ∈ XN and its k-nearest neighbors, we can prove that xi

has a very low probability to be located at the center (or to be at least very

close to the center) of the hypersphere from which its k-nearest neighbors

are supposed to be uniformly drawn. To this aim, we consider k̂ = k + 1

points uniformly sampled from the centered unit hypersphere; if at least

one of these samples is very close to the hypersphere center, that can be

referred as xc, it would be a sample point such that its k-nearest neighbors

can be assumed to be uniformly drawn from the unit hypersphere whose

center is in (or very close) to xc itself. Therefore, we must compute the

probability of finding at least one sample, among the k̂ we are drawing,

which falls at a distance r̃ < r < 1 from the hypersphere center 0d. To

this purpose, calling h(k̂; r, d) the probability that the k̂th sampled point is

the first point drawn at a distance r̃ < r from the hypersphere center, we

recall that h(k̂; r, d) is a geometric probability distribution function whose

parameter is pgeom = P (r̃ < r). According to this, we get the following pdf:

h(k̂; r, d) = (1− rd)k̂−1rd.

A first insight is provided by the consideration that h(k̂; r, d) is an exponen-

tial function w.r.t. d, and with base r < 1. This means that, having fixed

the value of k̂ and r, as d grows the probability to get the k̂th sample near the

center decreases. Similarly, having fixed the value of k and d, as r becomes

smaller the probability to get the k̂th sample at a distance r̂ < r from the

center decreases. A further consideration is raised by the observation that

the expectation of h(k̂; r, d) is (1
r )d; this highlights the fact that, on average,

the number k̂ of neighbors required to finally get the k̂th point at distance

r̂ < r from the hypersphere center grows exponentially with d. Moreover,

we note that the cumulative distribution related to h(k̂; r, d), that is the

probability to draw k̂ samples such that one of them is a point at distance

r̂ < r from the hypersphere center, is:

H(k̂; r, d) =

k̂∑
i=0

h(i; r, d) = 1− (1− rd)k̂.
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Exploiting this equation, and fixing the values of r and k̂ (that is r = 0.1

and k̂ = 30), and increasing the i.d. value (that is d = {2, 5, 10, 50}) we

see that the value of H(30; 0.1, d) becomes lower and lower:

H(30; 0.1, 2) ≈ 2.603e−02

H(30; 0.1, 5) ≈ 2.999e−004

H(30; 0.1, 10) ≈ 3.000e−009

H(30; 0.1, 50) ≈ 0

On the other hand, the value of H increases when the values of k̂ and d

are fixed, and the value of r is increased. This means that, as the i.d.

increases, all the sampled point are far from the center, which essentially

means that there is no point that could be considered as the center of the

hypersphere from which k = k̂ − 1 nearest neighbors are supposed to be

uniformly drawn. To further support our conjecture, we can solve H(k̂; r, d)

to compute the number of k̂ of nearest neighbors required to sample a point

in <d at a distance r̂ < r with probability H; more precisely, we obtain:

k̂(r,H, d) =
log(1−H)

log(1− rd)

Evaluating this function with fixed values of r and H (that is r = 0.1, H =

0.9), and increasing the i.d. value (d = {2, 5, 10, 30}), we obtain increas-

ingly high values of the required number k̂ of nearest neighbors:

k̂(0.1, 0.9, 2) ≈ 229

k̂(0.1, 0.9, 5) ≈ 230257

k̂(0.1, 0.9, 10) ≈ 23025849023

k̂(0.1, 0.9, 50) ≈ ∞

This theoretical and empirical results show that, given a sample point

xc, it can be assumed to be the center of the hypersphere from which its

k-nearest neighbors are supposed to be uniformly drawn only when the i.d.

value is low and the available number of nearest neighbors is high.
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2.3 MiNDKL: a pdf Comparison Approach

The discussion reported so far shows that neighborhood-based i.d. es-

timators which assume that the normalized k-nearest neighbors distances

resemble the distances between nearest neighbors uniformly sampled from

the unit hypersphere, have a well founded theory but lack a proper statistical

model. According to the aforementioned results, an i.d. estimator exploit-

ing the normalized k-nearest neighbors distances should adopt a different

probability distribution that, to our knowledge, has not been formalized

yet.

For these reasons, to obtain a more reliable estimate of the i.d. we

propose a novel approach based on the minimization of the Kullback-Leibler

divergence between the pdf of the distances of the neighbors points of the

dataset and those calculated on synthetic data of known dimensionality.

Notice that, once k is fixed, g(r; k, d) represents a finite family of D

pdfs for all the parameters values 1 ≤ d ≤ D. Exploiting this fact, another

approach for the estimation of the missing parameter d is the comparison

between the D possible theoretical pdfs and a density function estimated

by means of the given data.

Consider M to be a d-dimensional hypersphere embedded in the Eu-

clidean space <D; moreover, denote whit ĝ(r; k) an estimation of g(r; k, d)

computed by solely using the sample data points and therefore independent

from d. The estimation d̂ is computed by choosing the dimensionality which

minimizes the Kullback-Leibler divergence between g and ĝ:

d̂ = arg min
1≤d≤D

∫ 1

0
ĝ(r; k) log

(
ĝ(r; k)

g(r; k, d)

)
dr

The function ĝ can be obtained by means of a set of sample data points

as a parametric model; nevertheless, as stated before, the number of sample

points required to perform dimensionality estimation grows exponentially

with the value of the i.d.. To reduce the bias between the analytical pdf

g and the estimated one ĝ, for each value 1 ≤ d ≤ D we learn a test pdf

ğd(r; k) by means of points uniformly draw from the d-dimensional unit

hypersphere.

Moreover, to best resemble the point density of the given dataset XN

of cardinality N , we draw exactly N points per dimensionality. Finally,

we numerically estimate the Kullback-Leibler divergence by means of the
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estimated ĝ and ğd. More precisely, given a sample set XN = {xi}Ni=1 =

{ψ(zi)}Ni=1 ⊂ <D where zi are independent identically distributed points

drawn from a manifoldM according to a non uniform smooth pdf f :M→
<+, we compute a vector of normalized distances r̂ = {r̂i}Ni=1 = {ρ(xi)}Ni=1

using

ρ(xi) = min
xj∈X̂k+1

‖xi − xj‖
‖xi − x̂‖

.

For each dimensionality d ∈ {1, · · · , D} we uniformly drawn a set of N

points YNd = {yi}Ni=1 from the unit d-dimensional hypersphere, and we

similarly compute a vector of normalized distances

r̆d = {r̆id}Ni=1 = {ρ(yi)}Ni=1.

Notice that, a d-dimensional vector randomly sampled from a d dimensional

hypersphere according to the uniform pdf, can be generated by drawing a

point ȳ from a standard normal distribution N (·|0d, 1) and by scaling its

norm (see Section 3.29 of [37]):

y =
u

1
d

‖ȳ‖
ȳ, ȳ ∼ N (|̇0d, 1)

where u is a random sample drawn from the uniform distribution U(0, 1).

Given a set of values rNi=1 ⊂ [0, 1] distributed according to the pdf p,

in [109] the following estimator is proposed:

p̂(r) =
N−1

2ρ(r)

where ρ(r) is the distance between r and its nearest neighbor. In our prob-

lem, considering a distance r̂i ∈ r̂, the pdf estimates ĝ and ğd can be com-

puted as follows:

ĝ(r̂i; k) =
1/(N − 1)

2ρ̂(r̂i)
ğd(r̂i; k) =

1/N

2ρ̆d(r̂i)

where ρ̂(r̂i) and ρ̆d(r̂i) are the distances between r̂i and its first neighbor in

r̂ and in r̂d respectively. In [109] a Kullback-Leibler divergence estimator

based on the nearest neighbor search is proposed; moreovers, the authors

show that their method is more effective than partitioning-based techniques,

especially when the number of samples is limited. Employing this estimator
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between ĝ and ğd we obtain:

KL(ĝ, ğd) =
1

N

N∑
i=1

log
ĝ(r̂i; k)

ğd(r̂i; k)

=
1

N

N∑
i=1

log

1/(N−1)
2ρ̂(r̂i)

1/N
2ρ̆d(r̂i)

= log
N

N − 1
+

1

N

N∑
i=1

log
ρ̆d(r̂i)

ρ̂(r̂i)

Employing the above equation, the estimated i.d. value d̂ is computed as

follows:

d̂ = arg min
d∈{1,··· ,D}

(
log

N

N − 1
+

1

N

N∑
i=1

log
ρ̆d(r̂i)

ρ̂(r̂i)

)
We call this estimator MiNDKL (Minimum Neighbor Distance based on

Kullback-Leibler divergence); its time complexity is O(D2N logN).

Even if MiNDKL obtains reliable results, being able to overcome the limi-

tations of other state-of-the-art methods, it still produces biased estimates

when confronted with very high i.d. values (i.e. d > 30). In order to

reduce this shortcoming, in the next paragraph we are going to present the

joint use of information related to norms and angles for i.d. estimation.

Exploiting information related to angles, in addition to the ones related to

norms, has proven to provide more precise estimations of the i.d. even

when this is very high. It is also worth noting that for k neighbors there

are
(
k
2

)
pairwise angles that could be used for derive angle-based properties;

this permits to reduce the number of required neighbors for having sufficient

samples for i.d. estimation, thus resulting in neighborhood of smaller size

which, as stated before, are more representative of the manifold structure.

2.4 DANCo: Combining Angle and Norm Compres-

sions

So far we described estimators that exploit the information conveyed by

the concentration of norms, which still suffer from bias; to overcome this

limitation we include the use of the information derived by the concentration

of angles. The method that exploits this conjoint information is named

DANCo (Dimensionality from Angles and Norms Compression) and, like

MiNDKL, is based on a pdf comparison approach by means of Kullback-Leibler

divergences.
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2.4.1 A Closed Form of the Distance-Based Kullback-Leibler

Divergence

Though the Kullback-Leibler estimation approach proposed by Wang et

al. [109] has shown to produce reliable approximation, under our settings

the closed-form Kullback-Leibler divergence between two minimum neigh-

bor distance pdfs can be analytically identified. More specifically, once the

parameter k is fixed, we firstly need to identify the two pdfs by provid-

ing an estimate of the parameter d of g(·; ·, d); to accomplish this task, we

decided to employ the maximum likelihood estimator MiNDMLi described be-

fore. Calling d̂ML the ML estimation obtained on the dataset, and ďd,ML the

ML estimations computed by means of points sampled from d-dimensional

hyperspheres1 (for d ∈ {1..D}), and plugging d̂ML and ďd,ML in g, we obtain

two fully defined pdfs whose dissimilarity is measured by computing their

Kullback-Leibler divergence. Although there exist distributions which do

not admit a closed form of the Kullback-Leibler divergence, its analytical

expression for the minimum neighbor distances may be obtained by integra-

tion as follows:

KLd = KL(g(·; k, d̂ML), g(·; k, ďd,ML)) =

∫ 1

0
g(r; k, d̂ML) log

(
g(r; k, d̂ML)

g(r; k, ďd,ML)

)
dr

= Hk
ďd,ML

d̂ML

−1−Hk−1−log
ďd,ML

d̂ML

−(k−1)
k∑
i=0

(−1)i
(
k

i

)
Ψ

(
1 +

id̂ML

ďd,ML

)

where KL(·, ·) is the Kullback-Leibler divergence operator, Hk represents the

k-th harmonic number
(
Hk =

∑k
i=1

1
i

)
, and Ψ(·) is the digamma function.

2.4.2 Angle Compression in High Dimensional Spaces

As it happens for norms, for ε → 0+, we consider the points of each neigh-

borhood of M as uniformly drawn from the unit hypersphere. Under these

settings, we observe that in high dimensions mutual angles among k uni-

formly distributed unitary vectors {xi}ki=1 on a (d− 1)-dimensional surface

Sd−1 of a hypersphere in <d are subject to the concentration of their values.

1Note that, even if the ML estimates ďd,ML are biased w.r.t. the real value d employed

in the sampling process, due to the kNN bias effect described above, a comparable bias

can also be observed in the estimated d̂ML; this is the reason why the Kullback-Leibler

estimation approach is not affected by this distortion.
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The common belief that in high dimensions such vectors tend to be orthog-

onal to each other has found partly justification in the past [74], but only

in the last decades an even deeper investigation has allowed a more precise

characterization of this fact [92].

Dealing with angles subtended by bidimensional vectors in a circle, or

more generally with directions of unit vectors in <d, opens the way to

the field of circular and directional statistics. In particular, two of the

most adopted distributions therein are the von Mises distribution (VM) and

its high-dimensional generalization termed von Mises-Fisher distribution

(VMF, [74]). More precisely, for x ∈ Sd−1, the VMF distribution with pa-

rameters ν and τ has the following density function:

q(x; ν, τ) = Cd(τ) exp
(
τνTx

)
where the unit vector ν denotes the mean direction, and the concentration

parameter τ ≥ 0 gets high values in case of a high concentration of the

distribution around the mean direction. In particular, τ = 0 when points

are uniformly distributed on Sd−1. Moreover, the normalization constant

Cd(τ) in the above equation takes the following form:

Cd(τ) =
τd/2−1

(2π)d/2Id/2−1(τ)

where Iv is the modified Bessel function of the first kind with order v. Due

to the normalization factor, this pdf is difficult to be used in theoretical

derivations; moreover, following our assumptions, no information about d

may be estimated by the knowledge of the parameters ν and τ , being ν

uninformative when the hyper-solid angles are uniformly distributed (τ = 0),

as in uniformly sampled hyperspheres.

Therefore, to infer the i.d. of M by exploiting angular information,

we focus on the distribution of the angles θ computed between independent

pairs of random points chosen in the neighborhoods of <d and sampled from

the uniform distribution in the hypersphere (which will be referred to as

pairwise angles in the following). Note that working on pairwise angles

allows both to exploit the concentration factor τ , which is strictly related

to the dimensionality d as we will show, and to rely on the VM distribution,

which is more tractable compared to the VMF pdf.

Considering the angle θ ∈ [−π, π] between two vectors, the VM pdf of θ
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reads as:

q(θ; ν, τ) =
eτ cos(θ−ν)

2πI0(τ)
χ[−π,π](θ)

with the same parameters and notation adopted for the VMF pdf. Intuitively,

the VM distribution is the circular counterpart of the normal distribution on a

line, sharing with the latter many interesting properties [9]. To understand

the link between τ and d, we recall that q(θ; ν, τ) is unimodal for τ > 0,

as a Gaussian random variable peaked around its mean. Furthermore, we

introduce a theorem to show that increasing values of τ are expected for

points uniformly drawn from hyperspheres with increasing dimensionality

d.

Theorem 2.2. Given two independent random unit vectors (x1,x2) in <d,
drawn from a uniform distribution on Sd−1, for increasing values of the

dimensionality d, the concentration parameter τ of the VM distribution de-

scribing the angle θ between x1 and x2 converges asymptotically to the di-

mensionality d.

Proof. Consider the following results:

1. for d → ∞, the random variable θ̃ =
√
d(θ − π

2 ) converges in distri-

bution to a standard normal pdf (see Lemma 3.1 in [92]). In other

words, θ converges in distribution to a Gaussian random variable with

mean π
2 and standard deviation 1√

d
;

2. for large concentration values τ , a VM distribution with parameters ν

and τ can be approximated by a Gaussian distribution with mean ν

and standard deviation 1√
τ

[102]. Several approximations have been

proposed since the mid-century, all of which are based on the observa-

tion that, thanks to the asymptotic forms of the Bessel function [1], for

values of τ > 10 the distribution of the random variable θ
√
τ may be

approximated by a standard normal distribution [74]. More accurate

approximations [49] sharing the same asymptotic behavior have been

introduced by considering further terms in the power series expansion

of cos(θ − ν) in q(θ; ν, τ).

Item 1 guarantees that θ converges in distribution to a Gaussian random

variable with mean π
2 and standard deviation 1√

d
. Since limd→+∞

1√
d

= 0,

we can assume that, for sufficiently high values of d, the angles θ concentrate



44 CHAPTER 2. NOVEL INTRINSIC DIMENSION ESTIMATORS

on their mean. Therefore, we could describe the distribution of θ by means

of a VM distribution whose concentration parameter τ takes large values. At

this point, we can apply item 2 ensuring that θ converges in distribution to

a Gaussian pdf with mean π
2 and standard deviation 1√

τ
. It follows that

τ � d, namely limd→+∞
τ
d = 1.

This theorem has both a general and a specific value. At first, it for-

mally proves the existence of the concentration of angles in high dimensions,

stating both an asymptotic linear relation between concentration and dimen-

sionality, and the orthogonality between any couple of infinite-dimensional

vectors. Secondly, it allows to estimate the i.d. of the observed points

through the estimation of the concentration parameter τ .

As a further advantage, it suggests that, having to cope with high di-

mensional manifolds, the i.d. estimate computed by exploiting the con-

centration of angles is reliable and can be used to enforce the i.d. estimate

obtained by employing the concentration of norms. Unfortunately, the same

finiteness of the sample size which prevents nearest distance-based estima-

tors from performing well in practical scenarios, limits the aforementioned

advantage, even though here we may rely on a more considerable number
(
k
2

)
of pairwise angles within each kNN upon which to base our estimate. This is

why the novel estimator we are going to propose, called DANCo employs both

the ML estimation of the VM parameters ν and τ , and the Kullback-Leibler

divergence between the VM pdf estimated from the observed dataset and

those computed on synthetic data of known i.d.s.

2.4.3 A Closed Form of the Angle-Based Kullback-Leibler

Divergence

Assuming that {θ1, . . . , θN} is a sample drawn from a VM distribution with

parameters ν and τ , the ML of ν equals the sample mean direction, that is:

ν̂ = atan2

(
N∑
i=1

sin θi,

N∑
i=1

cos θi

)

where atan2(x, y) is the standard operator computing the arc tangent of

y/x, taking into account which quadrant the point (x, y) lies in. This kind

of non euclidean mean operator is commonly used when circular quantities

are involved in the computation.
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Likewise, the ML of τ equals the concentration parameter τ̂ calculated as

a solution of η = I1(τ)
I0(τ) ≡ A(τ), being η the norm of the sample mean vector

defined by Upton [103] as:

η =

√√√√( 1

N

N∑
i=1

cos θi

)2

+

(
1

N

N∑
i=1

sin θi

)2

Being A a non invertible function, we rely on the well-known and quali-

fied method proposed in [36], which approximates A−1(η) by:

τ̂ = Ã−1(η) =


2η + η3 + 5η5

6 η < 0.53

−0.4 + 1.39η + 0.43
1−η 0.53 ≤ η < 0.85

1
η3−4η2+3η

η ≥ 0.85

Once an estimate of the VM pdf is obtained, we need to compare it with

those computed on synthetic data of known i.d.s. To this aim, a closed-

form of the Kullback-Leibler divergence between two VM pdfs of parameters

ν1, τ1, and ν2, τ2 is defined in [108] as:

KLν,τ = KL(q(·; ν1, τ1), q(·; ν2, τ2)) =

∫ π

−π
q(θ; ν1, τ1) log

(
q(θ; ν1, τ1)

q(θ; ν2, τ2)

)
dθ

= log
I0(τ2)

I0(τ1)
+
I1(τ1)− I1(−τ1)

2I0(τ1)
(τ1 − τ2 cos(ν2 − ν1))

Note that the introduced framework can be applied for i.d. estimation

only if the pdf of angles θ in the embedding space <D converges to the pdf q

related to the VM distribution. This is guaranteed by the local isometry of the

map φ : <d → <D embedding a dataset drawn from a manifoldM = <d in a

higher dimensional space <D. In fact, the local isometry of φ guarantees its

conformality with constant dilation factor equal to 1 [78], which intuitively

means that a distance preserving map has also the property of preserving

angles, as long as the overall area is maintained.

2.4.4 A pdf Comparison Approach Expoliting Norms and

Angles

Unfortunately, even informations related on angles suffer from a severe bias

strictly connected with the employment of the kNN method (on a finite set

of points) which, in turn, violate almost in part the assumptions introduced

in the previous sections. This behavior is intuitively depicted in figure 2.3,
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where we observe a systematic positive bias in the angle-based i.d. esti-

mation which is only loosely counterbalanced by a regular i.d. underes-

timation based on norms (see figure 2.3 (a)). We may read this duality in

terms of an opposite behaviour of the sensitivity of the angles’ compression

w.r.t. the dataset i.d. when compared to the norm one, especially in high

dimensions (see figure 2.3 (b)).

Figure 2.3: Comparison between: (a) the i.d. estimates based on angles

(gray curve) and norms (black curve) with the exact i.d. values (dashed

curve), and (b) the finite differences of the i.d. estimates.

In search of an unbiased i.d. estimator, a profitable joint use of the

information derived by both angles and norms demands special attention

and requires techniques which goes beyond suitable aggregations of the two

estimates. Namely, a successful strategy consists in comparing the joint pdf

ĥ(r, θ) of the nearest neighbor distances r and pairwise angles θ related to the

real dataset with the D pdfs computed on samples drawn from hyperspheres

of increasing dimensionality, which will be referred to as hd(r, θ) in the

following (for d ∈ {1..D}). Summarizing, the i.d. estimate we want to

compute is:

d̂ = arg min
d∈{1..D}

∫ π

−π

∫ 1

0
hd(r, θ) log

(
hd(r, θ)

ĥ(r, θ)

)
drdθ

Since the norm distribution g(r; k, d) and the angle distribution q(θ; ν, τ)

are independent when the data are uniformly drawn from a spherical distri-

bution [72], the joint pdf factorizes in the product of the two marginals, i.e.

hd(r, θ) = g(r; k, d)q(θ; ν, τ), so that the Kullback-Leibler divergence KLd,ν,τ

between hd(r, θ) and ĥ(r, θ) may be split in the sum of the two closed-form
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divergences reported before, as follows:

KLd,ν,τ = KL(hd(r, θ), ĥ(r, θ)) = KLd +KLν,τ

Therefore, an i.d. estimator based on the the above equation is ob-

tained by finding the dimensionality d minimizing the Kullback-Leibler di-

vergence KLd,ν,τ , hence:

d̂ = arg min
d∈{1..D}

KLd,ν,τ

2.4.5 DANCo

Under the same theoretical setting as before, we realized an i.d. estimator,

called DANCo, which exploits the information conveyed by the compression

of norms and angles. We firstly extract the information conveyed by the

concentration of norms by working on the neighborhood of each point in the

dataset. More specifically, for each xi ∈ XN , we extract the set of its k + 1

(1 ≤ k ≤ N − 2) nearest neighbors X̄k+1 = X̄k+1(xi) = {xj}k+1
j=1 ⊂ XN .

Calling x̂ = x̂k+1(xi) ∈ X̄k+1 the farthest neighbor of xi, we calculate the

distance between xi and its nearest neighbor in X̄k+1, and we normalize it

by means of the distance between xi and x̂, that is:

ρ(xi) = min
xj∈X̄k+1

‖xi − xj‖
‖xi − x̂‖

This equation is used to compute the vector r̂ = {r̂i}Ni=1 = {ρ(xi)}Ni=1 of nor-

malized distances. After this, we compute the ML estimation by numerically

solving the optimization problem as seen before,

d̂ML = arg max
1≤d≤D

ll(d)

where:

ll(d) = N log kd+ (d− 1)
∑

xi∈XN

log ρ(xi) +

(k − 1)
∑

xi∈XN

log
(

1− ρd(xi)
)

To this aim we employ the constrained optimization method proposed

in [23] with the initial (integer) value d0 = arg maxd∈{1..D} ll(d).
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Similarly, we analyze local neighborhoods of the dataset to capture the

information provided by the concentration of pairwise angles; in particular,

for each point xi ∈ XN we find its k nearest neighbors X̄i
k and we center

them by means of a translation to obtain X̂i
k =

{
xj − xi : ∀ xj ∈ X̄i

k

}
.

Next, we employ the following function:

θ(xz,xj) = arccos
xz · xj
‖xz‖‖xj‖

to calculate the
(
k
2

)
angles of all the possible pairs of vectors in X̂i

k; in this

way, for each neighborhood, we compute a vector θ̂i = {θ(xz,xj) : ∀ xz, xj ∈
X̂i
k}1≤z<j≤k.

Since each component of θ̂i follows a VM pdf of parameters ν and τ , for

each set of neighbors we estimate their values by employing the ML approach

described before, thus obtaining the vectors ν̂ = {ν̂i}Ni=1 and τ̂ = {τ̂i}Ni=1.

Finally, we compute their means µ̂ν = atan2(
∑N

i=1 sin ν̂i,
∑N

i=1 cos ν̂i) and

µ̂τ = N−1
∑N

i=1 τ̂i.

At this point, the statistics extracted from the input dataset must be

compared with those computed on synthetic datasets of known i.d.. There-

fore, for each dimensionality d ∈ {1..D} we uniformly draw a set of N points

YNd = {yi}Ni=1 from the unit d-dimensional hypersphere (named hsd-sample

in the following), and we employ them to compute the vector of normalized

distances řd = {řid}Ni=1 = {ρ(yi)}Ni=1 and its ML estimation ďd,ML. Next,

we calculate the vectors of the VM distribution parameters ν̌d = {νi}Ni=1 and

τ̌d = {τi}Ni=1 together with their means µ̌dν and µ̌dτ .

Finally, we compose the Kullback-Leibler divergences, thus obtaining the

following i.d. estimate:

d̂ = arg min
d∈{1..D}

KL(g(·; k, d̂ML), g(·; k, ďd,ML)) +KL(q(·; µ̂ν , µ̂τ ), q(·; µ̌dν , µ̌dτ ))

For the sake of clarity, we report its pseudo-code in the Appendix A. As

shown therein, a further conditional statement has been introduced in order

to check whether the i.d. estimate computed through the sole normalized

nearest neighbor distances falls below 2. In such case, as no pairwise angles

can be computed in domains of dimension less than 2, we solely rely on

the i.d. estimate provided by the aforementioned distances, which can be

profitably used in estimating low i.d.s without suffering from the usual

drawbacks affecting high dimensions.
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The time complexity of DANCo is O(D2N logN) and it is dominated

by the time complexity of the kNN algorithm (O(DN logN)). The square

dependency on the embedding space dimension D is due to the computation

of the kNN on each hsd-sample of growing dimensionality d ∈ {1..D}.

2.4.6 A Fast Implementation of DANCo

Although outperforming state-of-the-art algorithms, as shown in [18], a

drawback of DANCo is the long time spent for computing the kNN graph

on the hsd-samples for d = {1..D}, especially for large values of the embed-

ding space dimension D. As the overall procedure relies on the kNN graph,

the only way to reduce it (apart from either speeding up the kNN computa-

tion through fast algorithms or relying on parallel implementations which

exploit, for instance, the high flexibility of modern GPUs) is to avoid, or at

least limit, the computation of the kNN on all the hsd-samples.

To this end, we firstly note that the connection between the dataset

in question and the hsd-samples is extremely loose. In fact, being each

hsd-sample uniformly drawn from the unit d-dimensional hypersphere, to

generate it we only need to know the neighboring size k, the sample size

N , and the dimensionality d of the hypersphere. As DANCo proves to be

robust against changes in k, after having fixed its value we can generate hsd-

samples for different dimensionalities d and sample sizes N , precomputing

the associated statistics [ďd,ML, µ̌
d
ν , µ̌

d
τ ] according to the procedure depicted

in the previous section. As shown in figure 2.4, the regularity of the trend of

[ďd,ML, µ̌
d
ν , µ̌

d
τ ] w.r.t. d and N may be fruitfully described through suitable

fitting functions.

This not only has the obvious advantage of reducing the time spent in

computing the aforementioned statistics, but has also the merit of avoiding

those estimate oscillations we observe in DANCo which, though rare, would

pose a threat to its performances. In fact, the smoothness of the fitting sur-

face is further enforced by the generation of a given number of hsd-samples

for each dimension d and sample size N (in our case we used 35 replicas),

and by the subsequent averaging to obtain more regular hsd-samples.

Regarding the selection of the fitting function, we are free to choose any

function general enough to approximate the data, and sufficiently smooth

to avoid overfitting; the data regularity and several tests on robustness,

generalization, and accuracy of the extrapolation, lead us to work with cubic
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Figure 2.4: The cubic smoothing splines fitting the points: (a) ďd,ML, (b)

µ̌dν , and (c) µ̌dτ w.r.t. the dimensionality d and the sample size N for k = 10,

and averaging over 35 replicas of each hsd-sample.

smoothing splines. Figure 2.4 shows the splines sk
ďd,ML

, sk
µ̌dν

, and sk
µ̌dτ

fitting,

respectively, ďd,ML, µ̌dν , and µ̌dτ for different dimensionalities d and sample

sizes N .

The introduction of the fitting functions allows to bypass all these steps

used in DANCo to both generate the hsd-samples and compute the related

statistics. As a result, excluding from the time analysis the precomputa-

tion of the fitting functions that may be performed once for all (once k is

fixed) in an off-line mode, the time complexity of this fast technique, called

FastDANCo, is O(DN logN) (its pseudo-code is reported in Appendix A).

Note that the use of the fitting functions does not affect the system effec-

tiveness since the results achieved by FastDANCo are comparable with those

of DANCo, and in some cases they prove to be even better.

Fast-kNN

It is possible to further reduce the time complexity of the proposed al-

gorithms optimizing the method employed to build the kNN graph, since

the kNN graph construction technique by brute-force has time complexity

O(DN2), thus representing the most computationally expensive part of our

methods. To this aim, some interesting approaches have been proposed in

literature, including two methods proposed by Paredes et al. [80], where

the authors presented a kNN graph construction for general metric spaces,

whose empirical time complexity is low. Unfortunately, both the proposed

methods require a global data structure and are therefore difficult to be

parallelized across machines. Other two efficient methods for the Euclidean
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metric space, have been recently developed, which are based on space filling

curves [24] and recursive data partitioning [19].

The last approach is particularly suited for our goal, since it allows to re-

duce the time complexity according to the value of a parameter t. More pre-

cisely, Chen et al. propose two divide and conquer methods (called kNNglue

and kNNoverlap) for computing an approximate kNN graph that has time com-

plexity O(DN t). The exponent t ∈ (1, 2) is an increasing function of an

internal parameter α which governs the size of the common region in the

divide step. Experiments proposed by the authors show that a high quality

graph can usually be obtained with small overlaps, that is, for small values

of t.

These algorithms are structured as follows: the divide step uses an inex-

pensive Lanczos procedure to perform recursive spectral bisection, and then,

after each conquer step, an additional refinement is performed to improve

the accuracy of the graph. Note that a hash table is continuously updated to

avoid repeating distance calculations during the divide and conquer process.

The strong difference between the two algorithms is in the divide step;

indeed, while kNNglue splits the set into three subsets, kNNoverlap divides the

set into two subsets. Both of these novel kNN constructions don’t affect the

quality of our estimators, markedly reducing the time needed to execute

them.
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Chapter 3

Comparison and Benchmark

As shown in Chapter 1, i.d. estimators proposed in literature have been

evaluated on different datasets, making the comparison of their performance

almost impossible. This highlights the need of a benchmark framework to

objectively assess and compare different techniques in terms of robustness,

w.r.t. parameter settings, large dimensional datasets, noisy datasets, and

so on. In this chapter, after recalling experimental datasets and evaluation

procedures introduced in literature, we choose some of them to propose a

benchmark framework that allows for reproducible and comparable exper-

imental setups. The usefulness of the proposed benchmark is then shown

by employing it to compare relevant state-of-the-art i.d. estimators whose

code is publicly available, with the techniques that we described so far.

This chapter is organized as follows: in section §3.1 and section §3.2

datasets and methods used to evaluate the performance of the i.d. esti-

mators are described. In section §3.3 the standard framework is proposed,

while in section §3.4 the benchmark framework is exploited to evaluate some

of the cited methods which are either well-known or recent and promising.

A statistical analysis of the experimental results is also given.

3.1 Datasets

In the literature both synthetically generated datasets and real dataset are

used to evaluate the i.d. estimate of the proposed methods. Synthetic

datasets are generated by drawing samples from manifolds (M) of known

dimension linearly or non-linearly embedded in higher dimensional spaces.

It’s worth noting that for some real datasets the value of i.d. is not known

53
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but only evaluated in a specific range, based on a consensus of previous

results of i.d. estimators. In the following we describe those we choose to

use in our benchmark study.

Synthetic Datasets

The publicly available tool1 proposed by Hein in [45] allows to generate 13

kinds of synthetic datasets by uniformly drawing samples from 13 manifolds

of known i.d.; they are schematically described in table 3.1, where they are

referred to as MH
∗ . These manifolds are embedded in higher dimensional

spaces through both linear and non-linear maps and are characterized by

different curvatures. We note that manifoldMH
8 is particularly challenging

for its high curvature; indeed, when it is used for testing, most relevant

i.d. estimators compute pronounced i.d. overestimates (see also the

results reported in [88]).

Another interesting dataset [11] is generated by sampling a d-dimensional

paraboloid,MPd, non-linearly embedded in an higher (3(d+1)) dimensional

space, according to a multivariate Burr distribution with parameter α =

1. Tests on this dataset are particularly challenging since the underlying

manifold is characterized by a non-constant curvature.

To perform tests on datasets generated by employing a smooth non-

uniform pdf, we propose the dataset Mbeta, obtained as follows: we sample

N points in [0, 1)10, according to a beta distribution β0.5,10 with parameters

0.5 and 10 respectively (high skewness), and store them in a matrix XN ∈
<N×10; multiply each point of XN (XN (i, j)) by sin(cos(2πXN (i, j))), thus ob-

taining a matrix D1 ∈ <N×10; multiply each point of XN by cos(sin(2πXN (i, j))),

thus obtaining another matrix D2 ∈ <N×10; append D1 and D2 to generate

a matrix D3 ∈ <2500×20; append D3 to its duplicate to finally generate a

test dataset containing N points in <40.

To further test estimators’ performance on nonlinearly embedded mani-

folds of high i.d., we propose to generate two datasets, referred to as MN1

and MN2 in the following. To generate MN1 we uniformly draw N points

in [0, 1]18, we transform each point by means of tan(xi cos(x18−i+1)) where

i = 1, · · · , 18, we obtain points in <36 by appending each transformed x to

arctan(x18−i+1 sin(xi)), we duplicate the coordinates of each point to finally

generate points in <72. The i.d. of MN1 is 18, and its points are drawn

1http://www.ml.uni-saarland.de/code/IntDim/IntDim.htm
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Dataset Underlying Description d D

Manifold Name

Syntethic

d-dimensional sphere User

MH
1 linearly embedded. D− 1 Defined

MH
2 Affine space. 3 5

Concentrated figure, mistakable

MH
3 with a 3-dimensional one. 4 6

MH
4 Non-linear manifold. 4 8

MH
5 2-dimensional Helix 2 3

MH
6 Non-linear manifold. 6 36

MH
7 Swiss-Roll. 2 3

Non-linear

MH
8 (highly curved) manifold. 12 72

User

MH
9 Affine space. D Defined

User

MH
10 d-dimensional hypercube. D− 1 Defined

MH
11 Möebius band 10-times twisted. 2 3

User

MH
12 Isotropic multivariate Gaussian. D Defined

MH
13 1-dimensional Helix Curve. 1 User Defined

Table 3.1: The 13 types of synthetic datasets generated with the tool pro-

posed in [45].

from a manifold nonlinearly embedded in <72. To generate MN2 contain-

ing N points in <96, we applied the same procedure on vectors sampled in

[0, 1]24.

Real Datasets

Real datasets employed in literature generally concern problems in the fields

of image analysis, signal processing, time series prediction, and biochemistry.
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Among them, the most known and used are: ISOMAP face database [98],

MNIST database [63], Isolet dataset [38], D2 Santa Fe [83] dataset, and

DSVC1 time series [13]. Recently, the Crystal Fingerprint space for the chem-

ical compound silicon dioxide dataset has also been proposed [104].

ISOMAP face database consists in 698 gray-level images of size 64 × 64

depicting the face of a sculpture. This dataset has three degrees of freedom:

two for the pose and one for the lighting direction (see figure 3.1, first row).

MNIST database consists in 70000 gray-level images of size 28×28 of hand-

written digits (see figure 3.1, second row). The real i.d. of this database

is not actually known, but some works [45, 28] propose similar estimates for

the different digits; as an example, the proposed i.d. values for the digit

‘1’ are in the range {8..11}.
Isolet dataset has been generated as follows: 150 subjects spoke the

name of each letter of the alphabet twice, thus producing about 52 training

examples from each speaker, for a total of 7797 samples. The speakers are

grouped into 5 sets of 30 speakers each, and are referred to as isolet1, isolet2,

isolet3, isolet4, and isolet5. The real i.d. value characterizing this dataset

is not actually known, but a study reported in [60] shows that the correct

estimate could be in the range {16..22}.
The version D2 of Santa Fe dataset is a time series of 50000 one-

dimensional points having nine degrees of freedom (i.d. = 9) and being

generated by a simulation of particle motion. In order to estimate the at-

tractor dimension of this time series, it is possible to employ the method

of delays described in [79], which generates D-dimensional vectors by par-

titioning the original dataset in blocks containing D consecutive values; as

an example, by choosing D = 50 a dataset containing 1000 points in <50 is

obtained.

DSVC1 is a time series composed by 5000 samples measured from a hard-

ware realization of Chua’s circuit [22]. Employing the method of delays

with D = 20, a dataset containing 250 points in <20 is obtained. The i.d.

characterizing this dataset is ∼ 2.26 [13].

Crystal Fingerprint spaces, or Crystal Fingerspaces, have been recently

proposed in crystallography [104] with the aim of representing crystalline

structures; these spaces are built starting from the measured distances be-

tween atoms in the crystalline structure. The theoretical i.d. of one Crystal

Fingerspace consists in 3Na + 3 crystal degrees of freedom, where Na is the
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number of atoms in the crystalline unitary cell.

Figure 3.1: (First row) Samples from ISOMAP face database. (Second row)

Samples from digit ‘0’ to digit ‘9’ in MNIST database.

3.2 Estimator Evaluation Methods

At the-state-of-the-art, two approaches have been mainly used to assess i.d.

estimators on datasets of known i.d..

The first one subsamples the test dataset to obtain T subsets of fixed

cardinality and computes the percentage of correct estimations. To analyze

estimators’ behavior w.r.t. the cardinality of input datasets, this procedure

may be repeated by using different cardinality values [45, 27, 26, 28], thus

obtaining a distinct performance evaluation measure for each cardinality.

The second approach estimates the i.d. on T permutations of the same

dataset and averages the T i.d. estimates to obtain the final one [71, 88,

65, 18]. This value is then compared with the real one to assess the i.d.

estimator.

To also test the estimator’s robustness w.r.t. its parameter settings,

in [65, 71, 88] the authors apply a further test, originally proposed by Levina

et al. in [65]. Particularly, sample sets with different cardinalities are drawn

from the standard Gaussian pdf in <5 and, for each set, the estimator is

applied varying the values of its parameters in fixed ranges; this allows to

analyze the behavior of the i.d. estimate as a function of both the dataset’s

cardinality and the parameter settings.

Note that, since i.d. estimators are usually tested on different datasets

to evaluate their reliability when confronted by different dataset structures

and configurations, in [71] an overall evaluation measure is proposed. This

indicator, called Mean Percentage Error (MPE), summarizes all the obtained

results in a unique value computed as: MPE = 100
#M

∑
M
|d̂M−dM|

dM
, where #M

is the number of tested datasets, d̂M is the i.d. estimated on the dataset



58 CHAPTER 3. COMPARISON AND BENCHMARK

M, and dM is the real i.d. of M. To apply this technique to real datasets

whose i.d. belongs to the range {dmin..dmax}, the associated MPE’s term

is calculated as: mind∈{dmin..dmax}

(
|d̂M−d|
dM

)
, where dM is the mean of the

range.

Finally, to test the significance of differences in performance of the tested

methods, we rely on the safe and robust non-parametric Friedman test (FT)

followed by a wide family of post-hoc tests to effectively check if and which

technique overperform the examined competitor algorithms.

3.3 A New Standard Framework

In this section we propose an evaluation approach which can be used as a

standard framework to assess estimators performance, comparing it to rele-

vant i.d. estimators whose code is publicly available. In this benchmark,

we suggest to use the following estimators: Hein, MLE, kNNG, MLSVD, BPCA,

CD, MiNDKL, and DANCo2.

The benchmark is composed by following steps:

1. Test all the considered estimators on both the synthetic and real

datasets described below. We highlight that the synthetic datasets

whose i.d. is a user-defined parameter should be created with suffi-

ciently high i.d. values (i.d. ≥ 12).

2. Comparative Evaluation steps:

a) compute the MPE indicator both for synthetic and real datasets.

b) compute a ranking test with control methods; to this aim we

suggest the Friedman test with Bonferroni-Dunn post-hoc anal-

yses [52].

c) perform the tests proposed in [65] to evaluate the robustness,

w.r.t different cardinalities and parameter settings.

2The source code of the mentioned methods is available at:

Hein: http://www.ml.uni-saarland.de/code.shtml,

MLE: http://www.stat.lsa.umich.edu/˜elevina/mledim.m,

kNNG: http://www.eecs.umich.edu/˜hero/IntrinsicDim/,

MLSVD: http://www.math.duke.edu/˜mauro/code.html]MSVD,

BPCA: http://research.microsoft.com/en-us/um/cambridge/projects/infernet/blogs/bayesianpca.aspx

CD: http://cseweb.ucsd.edu/˜lvdmaaten/dr/download.php,

MiNDKL, and DANCo: http://www.mathworks.it/matlabcentral/fileexchange/40112-intrinsic-

dimensionality-estimation-techniques



3.4. EXPERIMENTAL RESULTS 59

The 21 synthetic datasets used in the benchmark, referred to as M∗ in

the following, are listed in table 3.2 with their relevant characteristics (N, d,

and D). The first 15 datasets are generated with the tool proposed in [45];

they include 4 instances, M10∗, of dataset M10, which are drawn fromMH
10

after its embedding in <D by setting D = {11, 18, 25, 71}. Note that we did

not include the dataset sampled fromMH
8 (see table 3.1) since relevant and

recent i.d. estimators have similarly produced highly overestimated results

when tested on it [88]. Indeed, dealing with highly curved manifolds is still

a quite challenging problem in the field.

The last six synthetic datasets are MN1, MN2, Mbeta, and 3 instances

of dataset MP∗, which are sampled from paraboloids MPd whose i.d. is,

respectively, d = {3, 6, 9}.
To perform multiple tests, 20 instances of each dataset have been gener-

ated, and the achieved results have been averaged.

Regarding the real datasets we used the DSVC1 time series [13] (MDSVC1,

i.d. ∼ 2.26), the ISOMAP face database [98] (MISOMAP, i.d. = 3), the Santa

Fe dataset [83] (MSantaFe, i.d. = 9), the MNIST database [63] (MMNIST1,

i.d. ∈ {8..13}), the Isolet dataset [38] (MIsolet, i.d. ∈ {16..22}), and

the Crystal Fingerprint space for the chemical compound silicon dioxide SiO2

structure with 3 atoms (this allows to obtain the MSiO2 dataset containing

4738 points embedded in <1800, and being characterized by an i.d. equal

to 12).

To run multiple tests also on MMNIST1, MSiO2 , and MIsolet, for each

of them we generated 5 instances by extracting random subsets containing

2500 points each and we averaged the achieved results.

The parameter values we employed for different estimators are summa-

rized in table 3.3. Note that, to relax the dependency of the kNNG algo-

rithm from the setting of its parameter k, we performed multiple runs with

k1 ≤ k ≤ k2 and we averaged the achieved results. Furthermore, we tested

two versions of the algorithm (referred to as kNNG1 and kNNG2) obtained by

varying the parameters M and N .

3.4 Experimental Results

results
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Dataset Dataset Name N d D

Syntethic

M1 2500 10 11

M2 2500 3 5

M3 2500 4 6

M4 2500 4 8

M5 2500 2 3

M6 2500 6 36

M7 2500 2 3

M9 2500 20 20

M10a 2500 10 11

M10b 2500 17 18

M10c 2500 24 25

M10d 2500 70 71

M11 2500 2 3

M12 2500 20 20

M13 2500 1 13

MN1 2500 18 72

MN2 2500 24 96

Mbeta 2500 10 40

MP3 2500 3 12

MP6 2500 6 21

MP9 2500 9 30

Real

MDSCV1 250 2.26 20

MISOMAP 698 3.00 4096

MSantaFe 1000 9.00 50

MMNIST1 70000 8.00− 11.00 784

MSiO2 4738 12.00 1800

MIsolet 7797 16.00− 22.00 617

Table 3.2: Synthetic datasets and real datasets suggested by the benchmark;

N is the dataset cardinality, d is the i.d., and D is the embedding space

dimension.

The results obtained by the compared estimators on the synthetic datasets

are summarized in table 3.4 summarizes, while in table 3.5 the results ob-

tained on the real datasets are reported.

Looking at the number of correct estimations computed by each algo-

rithm (highlighted in boldface), we have the following ranking: MLSVD is

correct on 13 out of 21 synthetic datasets, DANCo (correct on 10 out of 21

datasets), Hein (correct on 6 out of 21), MiNDKL (6 out of 21), BPCA (4 out

of 21), and MLE (1 out of 21). It can be further noted that kNNG∗, CD, MLE,

and Hein obtain good estimates only for low i.d. manifolds, while they
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Dataset Method Parameters

Synthetic

MLE k1 = 6 k2 = 20

DANCo k = 10

kNNG1 k1 = 6, k2 = 20, γ = 1,M = 1, N = 10

kNNG2 k1 = 6, k2 = 20, γ = 1,M = 10, N = 1

BPCA iters = 2000, α = (2.0, 2.0) π = (2.0, 2.0) µ = (0.0, 0.01)

Hein None

CD None

MLSVD None

MiNDKL k = 10

Real

MLE k1 = 3 k2 = 8

DANCo k = 5

kNNG1 k1 = 3, k2 = 8, γ = 1,M = 1, N = 10

kNNG2 k1 = 3, k2 = 8, γ = 1,M = 10, N = 1

BPCA iters = 2000, α = (2.0, 2.0) π = (2.0, 2.0) µ = (0.0, 0.01)

Hein None

CD None

MLSVD None

MiNDKL k = 5

Table 3.3: Parameter settings for the different estimators: k represents the

number of neighbors, γ the edge weighting factor for kNN, M the number of

Least Square (LS) runs, N the number of re-sampling trials per LS iteration,

α and π represent the parameters (shape and rate) of the Gamma prior

distributions, which describe the hyper-parameters and the observation noise

model of BPCA, µ contains the mean and the precision of the Gaussian prior

distribution describing the bias inserted in the inference of BPCA.

produce underestimated values when processing datasets of high i.d..

By observing the MPE indicator, which accounts for the precision of the

achieved estimates, we obtain a different ranking: DANCo, MiNDKL, kNNG1 and

kNNG2, MLE, Hein, CD, and MLSVD. This difference is due to the fact that

algorithms, such as kNNG1 and kNNG2, MLE, and Hein, most of the times

produce results close to the correct value.

Regarding the real datasets, all the algorithms achieve a much worse

MPE indicator, and again DANCo is the best performing. Surprisingly DANCo

is also able to provide correct estimate even on MDSCV1, which is known to

have a fractal structure.

Furthermore, we compute the Friedman ranking test with the Bonferroni-

Dunn post-hoc analysis to state the quality of the achieved results on both



62 CHAPTER 3. COMPARISON AND BENCHMARK

Dataset d MLE kNNG1 kNNG2 BPCA Hein CD MiNDKL DANCo MLSVD

M1 10.00 9.10 9.16 9.89 5.45 9.45 9.12 10.30 10.09 10.00

M2 3.00 2.88 2.95 3.03 3.00 3.00 2.88 3.00 3.00 3.00

M3 4.00 3.83 3.75 3.82 4.00 4.00 3.23 4.00 4.00 2.08

M4 4.00 3.95 4.05 4.76 4.25 4.00 3.88 4.15 4.00 8.00

M5 2.00 1.97 1.96 2.06 2.00 2.00 1.98 2.00 2.00 2.00

M6 6.00 6.39 6.46 11.24 12.00 5.95 5.91 6.50 7.00 12.00

M7 2.00 1.96 1.97 2.09 2.00 2.00 1.93 2.07 2.00 2.35

M9 20.00 14.64 15.25 10.59 13.55 15.50 13.75 19.15 19.71 20.00

M10a 10.00 8.26 8.62 10.21 5.20 8.90 8.09 9.85 9.86 10.00

M10b 17.00 12.87 13.69 15.38 9.46 13.85 12.30 16.25 16.62 17.00

M10c 24.00 16.96 17.67 21.42 13.3 17.95 15.58 22.55 24.28 24.00

M10d 70.00 36.49 39.67 40.31 71.00 38.69 31.4 64.38 70.52 70.00

M11 2.00 2.21 1.95 2.03 1.55 2.00 2.19 2.00 2.00 1.00

M12 20.00 15.82 16.40 24.89 13.7 15.00 11.26 19.35 19.90 20.00

M13 1.00 1.00 0.97 1.07 5.70 1.00 1.14 1.00 1.00 1.00

MN1 18.00 12.25 14.26 19.8 36.00 14.10 10.40 17.76 18.76 18.00

MN2 24.00 14.72 17.62 26.87 48.00 17.76 12.43 23.76 25.76 24.00

Mbeta 10.00 6.36 6.45 14.77 19.7 4.00 3.05 7.00 7.00 10.00

MP3 3.00 2.89 2.93 3.12 7.00 2.00 2.43 3.00 3.00 1.00

MP6 6.00 4.96 4.98 5.82 7.00 2.66 3.58 5.04 6.00 1.00

MP9 9.00 6.35 6.89 8.04 10.95 2.85 4.55 7.00 8.00 1.00

MPE 17.29 14.50 16.79 62.62 19.92 25.96 5.55 3.70 26.34

Table 3.4: Results achieved on the synthetic datasets. The bottom row

reports the MPE achieved by each algorithm; anyhow, for each test dataset

the best approximation results are highlighted in boldface.

Dataset i.d. MLE kNNG1 kNNG2 BPCA Hein CD MiNDKL DANCo MLSVD

MDSCV1 2.26 2.03 1.77 1.86 6.00 3.00 1.92 2.50 2.26 1.75

MISOMAP 3.00 4.05 3.60 4.32 4.00 3.00 3.37 3.9 4.00 1.00

MSantaFe 9.00 7.16 7.28 7.43 18.00 6.00 4.39 7.60 8.19 1.00

MMNIST1 8.00-11.00 10.29 10.37 9.58 11.00 8.00 6.96 11.00 9.98 1.00

MSiO2 12.00 39.28 10.24 10.36 3.00 4.80 1.05 17.20 12.60 1.00

MIsolet 16.00-22.00 15.78 6.50 8.32 19.00 3.00 3.65 20.00 19.00 1.00

MPE 53.83 27.41 26.76 71.68 34.50 43.34 27.00 15.14 75.17

Table 3.5: Results achieved on the real datasets by the compared approaches.

The bottom row reports the MPE achieved by each algorithm; anyhow, for

each test dataset the best approximation results are highlighted in boldface

(when the real i.d. takes values in a range, we highlighted the results that

best approximate the mean value of the range).

the synthetic and real datasets. table 3.6 and table 3.7 summarize the rank-

ing results.

Finally, we performed the tests proposed in [65] to evaluate the robust-

ness of MiNDKL, MLE, DANCo, and kNNG∗ w.r.t. the settings of their k param-
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Method Ranking

DANCo 2.40

MiNDKL 3.46

Hein 4.67

kNNG2 5.11

MLSVD 5.17

kNNG1 5.17

MLE 5.70

CD 6.63

BPCA 6.68

Table 3.6: Friedman Ranking results achieved on all the datasets. The null

hypothesis that the algorithms perform comparably is rejected with p-value

< 0.00001.

MiNDKL Hein kNNG1 kNNG2 MLE CD MLSVD BPCA

DANCo 0.1567 0.0024 0.0003 0.0002 0.0002 0.0000 0.0000 0.0000

MiNDKL *** 0.0801 0.0303 0.0244 0.0055 0.0020 0.0000 0.0000

Hein *** *** 0.7528 0.6366 0.1564 0.1474 0.0034 0.0018

kNNG1 *** *** *** 0.8557 0.3443 0.2301 0.0164 0.0071

kNNG2 *** *** *** *** 0.9314 0.3894 0.1113 0.0282

MLE *** *** *** *** *** 0.3428 0.1876 0.0307

CD *** *** *** *** *** *** 0.7337 0.1961

Table 3.7: Hypothesis testing of significance between techniques.

Bonferroni-Dunn‘s procedure rejects those hypotheses that have a p-value≤
0.0125.

eter; these tests employ synthetic datasets sub-sampled from the standard

Gaussian pdf in <5 (i.d. = 5). We repeated the tests for datasets with car-

dinalities N ∈ {200, 500, 1000, 2000} varying the parameter k in the range

{5..100}.

As shown in figure 3.2 many of the tested techniques are strongly influ-

enced by the parameter settings; therefore, studying the variability of the

algorithms’ behavior when changing their parameter settings is of utmost

importance. The reported results shown how i.d. estimators are strongly

biased due to the effects related to high value of the i.d.
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Figure 3.2: Behavior of: (a) MLE, (b) DANCo , (c) kNNG1 , (d) kNNG2, and

(e) MiNDKL applied to points drawn from a 5-dimensional standard normal

distribution; in this test N ∈ {200, 500, 1000, 2000} and k ∈ {5..100}.



Chapter 4

Conclusion and Future

Works

In this thesis we present novel estimators for the intrinsic dimension (i.d.)

of a given dataset. This problem is a subject matter of many research efforts

during the past decades, as we show in Chapter 1, where we survey the most

notable i.d. estimators present in the literature, pointing out their main

strength as well as their limitations and drawbacks. From this analysis it

appeared that the best and most reliable techniques are the ones that are

based on a local approach. Therefore, we develop algorithms based on the

maximum likelihood of the distribution of the minimum neighbor distances

of each local neighborhood, named MiNDML∗. Unfortunately, these techniques

suffer from severe bias when facing high values of the i.d. (i.e. d > 12).

To overcome these limitations we introduce a novel approach based on the

use of Kullback-Leibler divergence between distance-related pdfs estimated

locally both on the given dataset and on synthetic generated data of various

dimensions (d ∈ {1, · · · , D}). This approach forms the basis of a novel

estimator, named MiNDKL, able to cope with high i.d. values. Even if

MiNDKL provides reliable results, it still encounters some difficulties when

facing very high values of i.d. (i.e. d > 30). Consequently, we choose to

add angle-related information to be exploited for i.d. estimation, due to

the fact that the distribution of pairwise angles in a point neighborhood has

proven to be more robust when used to estimate very high values of i.d..

This i.d. estimator, named DANCo, obtains more precise results, improving

MiNDKL through the addition of a jointly comparision of distance-related

65
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distribution and pairwise angle-related distribution by means of Kullback-

Leibler divergence.

Since i.d. estimators proposed in literature have been evaluated on

different datasets, we propose a new standard benchmark framework to per-

form fair comparison between estimators in order to assess their quality.

As far as we know, no benchmark framework existed in literature before,

especially one entirely composed by public available datasets. To make

comparison with our techniques possible, we also make publicly available1

the code of MiNDKL and DANCo, along with their optimized implementations.

The overall results show that methods based on the pdf comparison,

namely MiNDKL and DANCo, are promising and valuable techniques for i.d.

estimation since they provide either the best i.d. estimates or values that

are strongly comparable to the best ones. Moreover, these algorithms have

shown to be robust in terms of their capability to: i) deal with both high and

low i.d.s, ii) manage both linearly and nonlinearly embedded manifolds,

and iii) deal with noisy datasets.

The strength of these methods relies in the use of the Kullback-Leibler

divergences for the comparison of the pdfs related to norms and angles, lo-

cally estimated for each neighborhood both on the dataset and on generated

hypersphere of growing dimensionality (i.e., d ∈ {1, · · · , D}), being D the

embedding dimensionality). Indeed, by means of the pdfs comparison it’s

possible to estimate a correct i.d. value overcoming the limitations of a

local model based on neighborhood applied to an high dimensional space,

such as the ones deriving from angle compression, norm compression, edge

effect, and so on, as described in Chapter 1. It’s worth noting that the

exploitation of pairwise angles allows to use smaller neighborhoods, thus

less prone to misrepresentation of the manifold structure, since the number

of available samples is now equal to
(
k
2

)
, being k the number of neighbors.

Finally, the derived closed form of the Kullback-Leibler divergences allow to

use directly the distribution parameters estimated by means of maximum

likelihood, instead of relying on samples that could be affected by noise.

During the development of these techniques, we also laid the foundations

for further research work, with the aim to improve and extend these proposed

estimators.

1http://www.mathworks.it/matlabcentral/fileexchange/40112-intrinsic-

dimensionality-estimation-techniques
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In the previous chapter, empirical results shown that DANCo is able to

provide a fractal value of the i.d. as the mean of several runs on the same

dataset; further research work will be dedicated to formalize the capability

to deal with non integer value of the i.d., investigate the relations with the

definitions of fractal dimension stated in Chapter 1 and eventually providing

a bound on the number of runs needed to obtain an unbiased result of a

fractal dimension.

We also noted that employing finite sets of data drawn from strongly

non-uniform pdf could reduce the performance of our estimators as well

as other state-of-the-art techniques. For this reason further studies in this

direction will be part of our future works.

Moreover, a major improvement, that is under current research, is the

relaxation of the single manifold assumption: our future research work is

devoted to an extension or modification of these techniques, in order to

cope with dataset sampled from more than one manifold, still providing a

reliable estimate of the i.d. for each of them.

Finally, most of the novel and advanced state-of-the-art techniques for

dimensionality reduction by means of manifold learning are based on the con-

struction of local neighborhoods. Unfortunately, in general these methods

don’t consider a measure for assessing the quality of the generated neigh-

borhoods, and the lack of this preliminary step could lead in a reduction

of dimension that doesn’t preserve the manifold structure. For this reason,

we are currently testing the local information exploited in our techniques

as a measure of how the neighborhood matches the manifold structure. We

believe that we’ll obtain promising results on this task, since we observed

improvements in terms of clustering accuracy using these informations as

features [15].
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Appendix A:

Implementations

In this appendix the pseudo-codes of the presented algorithms are reported.

We show here the psuedo-code of MiNDMLi, MiNDKL, DANCo and its optimiza-

tion FastDANCo. In the following pseudo-codes kNN(XN ,x, k) is the pro-

cedure that employs a k-nearest neighbor search returning the set of the k

nearest neighbors of x in XN , whereas in the pseudo-code for FastDANCo

[sk
ďd,ML

, sk
µ̌dν
, sk
µ̌dτ

] : N2
+ → R3

+ are the fitting functions that, given the dimen-

sionality d of the uniform hypersphere and the cardinality N of the vectors

sampled from it, computes the values of [ďd,ML, µ̌
d
ν , µ̌

d
τ ] used for estimating

the i.d..

Listing 4.1: Pseudocode for the MiNDMLi algorithm.

1 Input:

2 XN : The dataset points {xi}Ni=1.

3 k: The kNN parameter.

4 Output:

5 d̂: The estimated intrinsic dimensionality.

6 {Compute for each point the normalized radii}
7 for i :=1 to N do begin

8 X̄k+1 = kNN(XN ,xi, k) ; {Finding the k neighbors of xi .}
9 ρ(xi) = minxj∈X̄k+1

‖xi − xj‖/maxx̂∈X̄k+1
‖xi − x̂‖ ;

10 end

11 {Choosing d̂ ∈ {1..D} that maximizes the log likelihood}
12 d̂ = arg maxd∈{1..D}

(
(d− 1)

∑
xi∈XN

log ρ(xi) + (k − 1)
∑

xi∈XN
log
(
1− ρd(xi)

))
;
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Listing 4.2: Pseudocode for the MiNDKL algorithm.

1 Input:

2 XN : The dataset points {xi}Ni=1.

3 k: The kNN parameter.

4 Output:

5 d̂: The estimated intrinsic dimensionality.

6 {Compute for each point the normalized radii}
7 for i :=1 to N do begin

8 X̄k+1 = kNN(XN ,xi, k) ; {Finding the k neighbors of xi in XN .}
9 r̂i = ρ(xi) = minxj∈X̄k+1

‖xi − xj‖/maxx̂∈X̄k+1
‖xi − x̂‖ ;

10 {Computing the distance between r̂i and the NN}
11 ρ̂(r̂i) = |r̂i −NN({r̂j}j 6=i, r̂i)| ;
12 end

13 {Estimate the Kullback Leibler divergences}
14 for d :=1 to D do begin

15 {Uniformly sampling from the unit ball}
16 YNd = {yi = ȳu1/d/‖ȳ‖; ȳ ∼ N (·|0d, 1), u ∼ U(0, 1)}Ni=1 ;

17 {Compute for each point the normalized radii}
18 for i :=1 to N do begin

19 Ȳk+1 = kNN(YNd,yi, k) ;

20 ři = ρ(yi) = minyj∈Ȳk+1
‖yi − yj‖/maxŷ∈Ȳk+1

‖yi − ŷ‖ ;

21 end

22 {Computing the distances ρ̌d(r̂i)}
23 for i :=1 to N do begin

24 {Computing the distance between ři and the NN}
25 ρ̌d(r̂i) = |ři −NN({řj}Nj=1, r̂i)| ;
26 end

27 end

28 {Estimating the intrinsic dimensionality}
29 d̂ = arg mind∈{1..D}

(
log N

N−1 + 1
N

∑N
i=1 log ρ̌(r̂i)

ρ̂d(r̂i)

)
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Listing 4.3: Pseudocode for the DANCo algorithm.

1 Input:

2 XN : The dataset points {xi}Ni=1.

3 k: The kNN parameter.

4 Output:

5 d̂: The estimated intrinsic dimensionality.

6

7 {Compute for each point the normalized radii and the pairwise angles}
8 [r̂, ν̂, τ̂ ] = AngleNormInfo(XN , k) ;

9

10 {Choose dML ∈ [1, D] that maximizes the log likelihood}
11 d̂ML = arg max1≤d≤D

(
N log kd+ (d− 1)

∑N
i=1 log r̂i + (k − 1)

∑N
i=1 log

(
1− r̂di

))
;

12 if ( d̂ML < 2 ) ; d̂ = round(d̂ML) ; return ;

13

14 {Average the VM parameters}
15 µ̂ν = atan2(

∑N
i=1 sin ν̂i,

∑N
i=1 cos ν̂i) ;

16 µ̂τ = N−1
∑N
j=1 τ̂j ;

17

18 for d=1:D

19 {Uniformly sample from the unit ball obtaining a hsd−sample}
20 YNd = {yi = ȳ/‖ȳ‖u1/d; ȳ ∼ N (·|0d, 1), u ∼ U(0, 1)}Ni=1 ;

21

22 {Compute for each point the normalized radii and the pairwise angles}
23 [řd, ν̌d, τ̌d] = AngleNormInfo(YNd, k) ;

24

25 {Choose dML ∈ [1, D] that maximizes the log likelihood}
26 ďd,ML = arg max1≤d≤D

(
N log kd+ (d− 1)

∑N
i=1 log ři + (k − 1)

∑N
i=1 log

(
1− řdi

))
;

27

28 {Average the VM parameters}
29 µ̌dν = atan2(

∑N
i=1 sin ν̌i,

∑N
i=1 cos ν̌i) ;

30 µ̌dτ = N−1
∑N
i=1 τ̌i ;

31 end

32

33 {Estimate the intrinsic dimensionality}
34 d̂ = arg mind∈{1..D}KL(g(·; k, d̂ML), g(·; k, ďd,ML)) +

KL(q(·; µ̂ν , µ̂τ ), q(·; µ̌dν , µ̌dτ )) ;
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Listing 4.4: Pseudocode for the FastDANCo algorithm.

1 Input:

2 XN : The dataset points {xi}Ni=1.

3 k: The kNN parameter.

4 [sk
ďd,ML

, skµ̌dν
, skµ̌dτ

] : N2
+ → R3

+: The functions fitting hsd-samples, i.e. [ďML, ν̌, τ̌ ]

w.r.t. the dimensionality d and the sample size N .
5

6 Output:

7 d̂: The estimated intrinsic dimensionality.

8

9 {Compute for each point the normalized radii and the pairwise angles}
10 [r̂, ν̂, τ̂ ] = AngleNormInfo(XN , k) ;

11

12 {Choose dML ∈ [1, D] that maximizes the log likelihood}
13 d̂ML = arg max1≤d≤D

(
N log kd+ (d− 1)

∑N
i=1 log r̂i + (k − 1)

∑N
i=1 log

(
1− r̂di

))
;

14 if ( d̂ML < 2 ) ; d̂ = round(d̂ML) ; return ;

15

16 {Average the VM parameters}
17 µ̂dν = atan2(

∑N
i=1 sin ν̂i,

∑N
i=1 cos ν̂i) ;

18 µ̂τ = N−1
∑N
j=1 τ̂j ;

19 for d=1:D

20 {Invoke the fitting functions to obtain dML and the VM parameters}
21 ďd,ML = sk

ďd,ML
(N, d) ;

22 µ̌dν = skµ̌dν
(N, d) ;

23 µ̌dτ = skµ̌dτ
(N, d) ;

24 end

25

26 {Estimate the intrinsic dimensionality}
27 d̂ = arg mind∈{1..D}KL(g(·; k, d̂ML), g(·; k, ďd,ML)) +

KL(q(·; µ̂ν , µ̂τ ), q(·; µ̌dν , µ̌dτ )) ;
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Listing 4.5: Pseudocode for the function AngleNormInfo.

1 Input:

2 XN : The dataset points {xi}Ni=1.

3 k: The kNN parameter.

4 Output:

5 r: The normalized distance.

6 ν: The mean angle of a VM distribution.

7 τ : The concentration paramater of a VM distribution.

8

9 {Compute for each point the normalized radii and the pairwise angles}
10 for i=1:N

11 {Compute the normalized distances}
12 X̄k+1 = kNN(XN ,xi, k) ; {Find the k neighbors of xi in XN .}
13 ri = ρ(xi) = minxj∈X̄k+1

‖xi − xj‖/maxx∈X̄k+1
‖xi − x‖ ;

14

15 {Compute the pairwise Angles}
16 T = 1 ;

17 for j=1:k

18 xj = xj − xi ;

19 for z=j+1:k

20 θT = arccos
xz·xj
‖xz‖‖xj‖ ;

21 T = T + 1 ;

22 end

23 end

24

25 {Calculate the VM parameters that maximizes the log likelihood}
26 νi = atan2

(∑T
j=1 sin θj ,

∑T
j=1 cos θj

)
;

27 η =

√(
1
T

∑T
j=1 cos θj

)2

+
(

1
T

∑T
j=1 sin θj

)2

;

28 if (η < 0.53 ) ; τi = 2η + η3 + 5η5

6 ; end ;

29 elseif ((0.53 ≤ η)&&(η < 0.85) ) ; τi = −0.4 + 1.39η + 0.43
1−η ; end ;

30 else τi = 1
η3−4η2+3η ; end ;

31 end
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