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Abstract

We consider deep policy learning with only batched historical trajectories. The
main challenge of this problem is that the learner no longer has a simulator or
“environment oracle” as in most reinforcement learning settings. To solve this
problem, we propose a monotonic advantage reweighted imitation learning strategy
that is applicable to problems with complex nonlinear function approximation
and works well with hybrid (discrete and continuous) action space. The method
does not rely on the knowledge of the behavior policy, thus can be used to learn
from data generated by an unknown policy. Under mild conditions, our algorithm,
though surprisingly simple, has a policy improvement bound and outperforms most
competing methods empirically. Thorough numerical results are also provided to
demonstrate the efficacy of the proposed methodology.

1 Introduction

In this article, we consider the problem of learning a deep policy with batched historical trajectories.
This problem is important and challenging. As in many real-world tasks, we usually have numerous
historical data generated by different policies, but is lack of a perfect simulator of the environment. In
this case, we want to learn a good policy from these data, to make decisions in a complex environment
with possibly continuous state space and hybrid action space of discrete and continuous parts.

Several existing fields of research concern the problem of policy learning from batched data. In
particular, imitation learning (IL) aims to find a policy whose performance is close to that of the
data-generating policy [Abbeel and Ng, 2004]. On the other hand, off-policy reinforcement learning
(RL) concerns the problem of learning a good (or possibly better) policy with data collected from a
behavior policy [Sutton and Barto, 1998]. However, to the best of our knowledge, previous methods
do not have satisfiable performance or are not directly applicable in a complex environment as ours
with continuous state and hybrid action space.

In this work, we propose a novel yet simple method, to imitate a better policy by monotonic advantage
reweighting. From theoretical analysis and empirical results, we find the proposed method has several
advantages that

• From theoretical analysis, we show that the algorithm as proposed has policy improvement
lower bound under mild condition.

• Empirically, the proposed method works well with function approximation and hybrid action
space, which is crucial for the success of deep RL in practical problems.

• For off-policy learning, the method does not rely on the knowledge of action probability of
the behavior policy, thus can be used to learn from data generated by an unknown policy,
and is robust when current policy is deviated from the behavior policy.

In our real-world problem of a complex MOBA game, the proposed method has been successfully
applied on human replay data, which validates the effectiveness of the method.
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The article is organized as follows: We firstly state some preliminary notations (Sec. 2) and related
works (Sec. 3). Then we present our main method of imitating a better policy (Sec. 4). The strengths
of the proposed method are discussed with theoretical analysis (Sec. 5) and empirical experiments
(Sec. 6). Finally we conclude our analysis (Sec. 7).

2 Preliminaries

Consider a Markov decision process (MDP) with infinite-horizon, denoted by M =
(S,A, P, r, d0, γ), where S is the state space, A is the action space, P is the transition probability de-
fined on S×A×S → [0, 1], r is the reward function S×A → R, d0 is the distribution of initial state
s0, and γ ∈ (0, 1) is the discount factor. A trajectory τ is a sequence of triplets of state, action and
reward, i.e., τ = {(st, at, rt)}t=1,...,T , where T is the terminal step number. A stochastic policy de-
noted by π is defined as S×A → [0, 1]. We use the following standard notation of state-value V π(st),
action-value Qπ(st, at) and advantage Aπ(st, at), defined as V π(st) = Eπ|st

∑∞
l=0 γ

lr(st+l, at+l),
Qπ(st, at) = Eπ|st,at

∑∞
l=0 γ

lr(st+l, at+l), and Aπ(st, at) = Qπ(st, at) − V π(st), where Eπ|st
means al ∼ π(a|sl), sl+1 ∼ P (sl+1|sl, al), ∀l ≥ t, and Eπ|st,at means sl+1 ∼ P (sl+1|sl, al),
al+1 ∼ π(a|sl+1), ∀l ≥ t. As the state space S may be prohibitively large, we approximate the
policy and state-value with parameterized forms as πθ(s, a) and V πθ (s) with parameter θ ∈ Θ. We
denote the original policy space as Π = {π|π(s, a) ∈ [0, 1],

∑
a∈A π(s, a) = 1,∀s ∈ S, a ∈ A} and

parametrized policy space as ΠΘ = {πθ|θ ∈ Θ}.
To measure the similarity between two policies π and π′, we consider the Kullback–Leibler divergence
defined as

Dd
KL(π′||π) =

∑
s

d(s)
∑
a

π′(a|s) log
π′(a|s)
π(a|s)

and total variance as

Dd
TV(π′, π) = (1/2)

∑
s

d(s)
∑
a

|π′(a|s)− π(a|s)|

where d(s) is a probability distribution of states.

The performance of a policy π is measured by its expected discounted reward:

η(π) = Ed0,π
∞∑
t=0

γtr(st, at)

where Ed0,π means s0 ∼ d0, at ∼ π(at|st), and st+1 ∼ P (st+1|st, at). We omit the subscript d0

when there is no ambiguity. In [Kakade and Langford, 2002], a useful equation has been proved that

η(π′)− η(π) =
1

1− γ
∑
s

dπ′(s)
∑
a

π′(a|s)Aπ(s, a)

where dπ is the discounted visiting frequencies defined as dπ(s) = (1− γ)Ed0,π
∑∞
t=0 γ

t1(st = s)
and 1(·) is an indicator function. In addition, define Ld,π(π′) as

Ld,π(π′) =
1

1− γ
∑
s

d(s)
∑
a

π′(a|s)Aπ(s, a)

then from [Schulman et al., 2015, Theorem 1], the difference of η(π′) and η(π) can be approximated
by Ldπ,π(π′), where the approximation error is bounded by total variance Ddπ

TV(π′, π), which can be
further bounded by Ddπ

KL(π′||π) or Ddπ
KL(π||π′).

In the following sections, we mainly focus on maximizing Ldπ,π(πθ) as a proxy for optimizing policy
performance η(πθ), for πθ ∈ ΠΘ.

3 Related Work

Off-policy learning [Sutton and Barto, 1998] is a broad region of research. For policy improvement
method with performance guarantee, conservative policy iteration [Kakade and Langford, 2002] or
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safe policy iteration [Pirotta et al., 2013] has long been an interesting topic in the literature. The
term “safety” or “conservative” usually means the algorithm described is guaranteed to produce a
series of monotonic improved policies. Exact or high-probability bounds of policy improvement are
often provided in these previous works [Thomas and Brunskill, 2016, Jiang and Li, 2016, Thomas
et al., 2015, Ghavamzadeh et al., 2016]. We refer readers to [Garcıa and Fernández, 2015] for a
comprehensive survey of safe RL. However, to the best of our knowledge, these prior methods cannot
be directly applied in our problem of learning in a complex game environment with large scale replay
data, as they either need full-knowledge of the MDP or consider tabular case mainly for finite states
and discrete actions, with prohibitive computational complexity.

Constrained policy optimization problems in the parameter space are considered in previous works
[Schulman et al., 2015, Peters et al., 2010]. In [Peters et al., 2010], they constrain the policy on the
distribution of pπ(s, a) = µπ(s)π(a|s), while in [Schulman et al., 2015], the constraint is on π(a|s),
with fixed state-wise weight d(s). Also, in [Schulman et al., 2015], the authors have considered
Ddπ

KL(π||πθ) as a policy divergence constraint, while in [Peters et al., 2010] the authors considered
DKL(µππ||q). The connection with our proposed method is elaborated in Appendix B.1. A closely
related work is [Abdolmaleki et al., 2018] which present the exponential advantage weighting in an
EM perspective. Independently, we further generalize to monotonic advantage re-weighting and also
derive a lower bound for imitation learning.

Besides off-policy policy iteration algorithm, value iteration algorithm can also be used in off-policy
settings. For deep reinforcement learning, DQN [Mnih et al., 2013], DQfD [Hester et al., 2018] works
primarily with discrete actions, while DDPG [Lillicrap et al., 2016] works well with continuous
actions. For hybrid action space, there are also works combining the idea of DQN and DDPG
[Hausknecht and Stone, 2016]. In our preliminary experiments, we found value iteration method
failed to converge for the tasks in the HFO environment. It seems that the discrepancy between
behavior policy and the target policy (arg max policy in DQN) should be properly restrained, which
we think worth further research and investigation.

Also, there are existing related methods in the field of imitation learning. For example, when expert
data is available, we can learn a policy directly by predicting the expert action [Bain and Sommut,
1999, Ross et al., 2011]. Another related idea is to imitate an MCTS policy [Guo et al., 2014, Silver
et al., 2016]. In the work of [Silver et al., 2016], the authors propose to use Monte-Carlo Tree Search
(MCTS) to form a new policy π̃ = MCTS(π) where π is the base policy of network, then imitate
the better policy π̃ by minimizing DKL(π̃||πθ). Also in [Guo et al., 2014], the authors use UCT
as a policy improvement operator and generate data from π̃ = UCT(π), then perform regression
or classification with the dataset, which can be seen as approximating the policy under normal
distribution or multinomial distribution parametrization.

4 Monotonic Advantage Re-Weighted Imitation Learning (MARWIL)

To learn a policy from data, the most straight forward way is imitation learning (behavior cloning).
Suppose we have state-action pairs (st, at) in the data generated by a behavior policy π, then we can
minimize the KL divergence between π and πθ. To be specific, we would like to minimize

Dd
KL(π||πθ) = −Es∼d(s),a∼π(a|s)(log πθ(a|s)− log π(a|s)) (1)

under some state distribution d(s). However, this method makes no distinction between “good” and
“bad” actions. The learned πθ simply imitates all the actions generated by π. Actually, if we also have
reward rt in the data, we can know the consequence of taking action at, by looking at future state
st+1 and reward rt. Suppose we have estimation of the advantage of action at as Âπ(st, at), we can
put higher sample weight on the actions with higher advantage, thus imitating good actions more
often. Inspired by this idea, we propose a monotonic advantage reweighted imitation learning method
(Algorithm 1) which maximizes

Es∼dπ(s),a∼π(a|s) exp(βÂπ(s, a)) log πθ(a|s) (2)

where β is a hyper-parameter. When β = 0 the algorithm degenerates to ordinary imitation learning.
Ideally we would like to estimate the advantage function A(st, at) = Eπ|st,at(Rt − V π(st)) using
cumulated discounted future reward Rt =

∑T
l=t γ

l−trl. For example, one possible solution is to
use a neural network to estimate A(st, at), by minimizing Eπ|st,at(Aθ(st, at) − (Rt − Vθ(st)))2
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Algorithm 1 Monotonic Advantage Re-Weighted Imitation Learning (MARWIL)
Input: Historical data D generated by π, hyper-parameter β.
For each trajectory τ in D, estimate advantages Âπ(st, at) for time t = 1, · · · , T .
Maximize

∑
τ∈D

∑
(st,at)∈τ exp(βÂπ(st, at)) log πθ(at|st) with respect to θ.

for Rt computed from different trajectories, where Vθ(st) is also estimated with a neural network
respectively. In practice we find that good results can be achieved by simply using a single path
estimation as Â(st, at) = (Rt − Vθ(st))/c, where we normalize the advantage by its average norm
c2 in order to make the scale of β stable across different environments. We use this method in our
experiments as it greatly simplifies the computation.

Although the algorithm has a very simple formulation, it has many strengths as

1. Under mild conditions, we show that the proposed algorithm has policy improvement bound
by theoretical analysis. Specifically, the policy π̃ is uniformly as good as, or better than the
behavior policy π.

2. The method works well with function approximation as a complex neural network, as sug-
gested by theoretical analysis and validated empirically. The method is naturally compatible
with hybrid action of discrete and continuous parts, which is common in practical problems.

3. In contrast to most off-policy methods, the algorithm does not rely on importance sampling
with the value of π(at|st) – the action probability of the behavior policy, thus can be used
to learn from an unknown policy, and is also robust when current policy is deviated from the
behavior policy. We validate this with several empirical experiments.

In Section 5 we give a proposition of policy improvement by theoretical analysis. And in Section 6
we give experimental results of the proposed algorithm in off-policy settings.

5 Theoretical Analysis

In this section, we firstly show that in the ideal case Algorithm 1 is equivalent to imitating a new
policy π̃. Then we show that the policy π̃ is indeed uniformly better than π. Thus Algorithm 1 can
also be regarded as imitating a better policy (IBP). For function approximation, we also provide a
policy improvement lower bound under mild conditions.

5.1 Equivalence to Imitating a New Policy

In this subsection, we show that in the ideal case when we know the advantage Aπ(st, at), Algorithm
1 is equivalent to minimizing KL divergence between πθ and a hypothetic π̃. Consider the problem

π̃ = arg max
π′∈Π

((1− γ)βLdπ,π(π′)−Ddπ
KL(π′||π)) (3)

which has an analytical solution in the policy space Π [Azar et al., 2012, Appendix A, Proposition 1]

π̃(a|s) = π(a|s) exp(βAπ(s, a) + C(s)) (4)

where C(s) is a normalizing factor to ensure that
∑
a∈A π̃(a|s) = 1 for each state s. Then

arg min
θ

Dd
KL(π̃||πθ) = arg max

θ

∑
s

d(s)
∑
a

π̃(a|s) log πθ(a|s)

= arg max
θ

∑
s

d(s) exp(C(s))
∑
a

π(a|s) exp(βAπ(s, a)) log πθ(a|s)
(5)

Thus Algorithm 1 is equivalent to minimizing Dd
KL(π̃||πθ) for d(s) ∝ dπ(s) exp(−C(s)). 3

2In our experiments, the average norm of advantage is approximated with a moving average estimation, by
c2 ← c2 + 10−8((Rt − Vθ(st))2 − c2).

3In the implementation of the algorithm, we omit the step discount in dπ , i.e., using d′π(s) =

Ed0,π
∑T
t=0 1(st = s) where T is the terminal step. Sampling from dπ(s) is possible, but usually leads

to inferior performance according to our preliminary experiments.
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5.2 Monotonic Advantage Reweighting

In subsection 5.1, we have shown that the π̃ defined in 4 is the analytical solution to the problem 3. In
this section, we further show that π̃ is indeed uniformly as good as, or better than π. To be rigorous, a
policy π′ is considered uniformly as good as, or better than π, if ∀s ∈ S, we have V π

′
(s) ≥ V π(s).

In Proposition 1, we give a family of π̃ which are uniformly as good as, or better than π. To be
specific, we have
Proposition 1. Suppose two policies π and π̃ satisfy

g(π̃(a|s)) = g(π(a|s)) + h(s,Aπ(s, a)) (6)

where g(·) is a monotonically increasing function, and h(s, ·) is monotonically increasing for any
fixed s. Then we have

V π̃(s) ≥ V π(s), ∀s ∈ S. (7)
that is, π̃ is uniformly as good as or better than π.

The idea behind this proposition is simple. The condition (6) requires that the policy π̃ has positive
advantages for the actions where π̃(a|s) ≥ π(a|s). Then it follows directly from the well-known
policy improvement theorem as stated in [Sutton and Barto, 1998, Equation 4.8]. A short proof is
provided in Appendix A.1 for completeness.

When g(·) and h(s, ·) in (6) are chosen as g(π) = log(π) and h(s,Aπ(s, a)) = βAπ(s, a) + C(s),
then we recover the formula in 4. By Proposition (1) we have shown that π̃ defined in 4 is as good as,
or better than policy π.

We note that there are other choice of g(·) and h(s, ·) as well. For example we can choose g(π) =
log(π) and h(s,Aπ(s, a)) = log((βAπ(s, a))+ + ε) +C(s), where (·)+ is a positive truncation, ε is
a small positive number, and C(s) is a normalizing factor to ensure

∑
a∈A π̃(s, a) = 1. In this case,

we can minimizeDd
KL(π̃||πθ) =

∑
s d(s) exp(C(s))

∑
a π(a|s)((βAπ(s, a))+ +ε) log πθ(a|s)+C.

5.3 Lower bound under Approximation

For practical usage, we usually seek a parametric approximation of π̃. The following proposition
gives a lower bound of policy improvement for the parametric policy πθ.
Proposition 2. Suppose we use parametric policy πθ to approximate the improved policy π̃ defined
in Formula 3, we have the following lower bound on the policy improvement

η(πθ)− η(π) ≥ −
√

2

1− γ
δ

1
2
1 M

πθ +
1

(1− γ)β
δ2 −

√
2γεπ̃π

(1− γ)2
δ

1
2
2 (8)

where δ1 = min(Ddπ̃
KL (πθ||π̃), Ddπ̃

KL (π̃||πθ)), δ2 = Ddπ
KL (π̃||π), επ

′

π = maxs |Ea∼π′Aπ(s, a)|, and
Mπ = maxs,a |Aπ(s, a)| ≤ maxs,a |r(s, a)|/(1− γ).

A short proof can be found in Appendix A.2. Note that we would like to approximate π̃ under state
distribution dπ̃ in theory. However in practice we use a heuristic approximation to sample data from
trajectories generated by the base policy π as in Algorithm 1, which is equivalent to imitating π̃ under
a slightly different state distribution d as discussed in Sec.5.1.

6 Experimental Results

In this section, we provide empirical evidence that the algorithm is well suited for off-policy RL
tasks, as it does not need to know the probability of the behavior policy, thus is robust when learning
from replays from an unknown policy. We evaluate the proposed algorithm with HFO environment
under different settings (Sec. 6.1). Furthermore, we also provide two other environments (TORCS
and mobile MOBA game) to evaluate the algorithm in learning from replay data (Sec. 6.2, 6.3).

Denote the behavior policy as π, the desired parametrized policy as πθ, the policy loss Lp for the
policy iteration algorithms considered are listed as following: (C is a θ-independent constant)

• (IL) Imitation learning, minimizing Ddπ
KL(π||πθ).

Lp = Ddπ
KL(π||πθ) = −Es∼dπ(s),a∼π(a|s) log πθ(a|s) + C (9)
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• (PG) Policy gradient with baseline and Ddπ
KL(π||πθ) regularization.

Lp = −Es∼dπ(s),a∼π(a|s)(βA
π(s, a) + 1) log πθ(a|s) + C (10)

• (PGIS) Policy gradient with baseline and Ddπ
KL(π||πθ) regularization, with off-policy correc-

tion by importance sampling (IS), as in TRPO [Schulman et al., 2015] and CPO [Achiam
et al., 2017]. Here we simply use penalized gradient algorithm to optimize the objective,
instead of using delegated optimization method as in [Schulman et al., 2015].

Lp = Ddπ
KL(π||πθ)− (1− γ)βLdπ,π(πθ)

= −Es∼dπ(s),a∼π(a|s)

(
πθ(a|s)
π(a|s)

βAπ(s, a) + log πθ(s, a)

)
+ C

(11)

• (MARWIL) Minimizing Dd
KL(π̃||πθ) as in (5) and Algorithm 1.

Lp = Dd
KL(π̃||πθ) = −Es∼dπ(s),a∼π(a|s) log(πθ(a|s)) exp(βAπ(s, a)) + C (12)

Note that IL simply imitates all the actions in the data, while PG needs the on-policy assumption to be
a reasonable algorithm. Both PGIS and MARWIL are derived under off-policy setting. However, the
importance ratio πθ/π used to correct off-policy bias for PG usually has large variance and may cause
severe problems when πθ is deviated far away from π [Sutton and Barto, 1998]. Several methods are
proposed to alleviate this problem [Schulman et al., 2017, Munos et al., 2016, Precup et al., 2000].
On the other hand, we note that the algorithm MARWIL is naturally off-policy, instead of relying on
the importance sampling ratio πθ/π to do off-policy correction. We expect the proposed algorithm to
work better when learning from a possibly unknown behavior policy.

6.1 Experiments with Half Field Offense (HFO)

To compare the aforementioned algorithms, we employ Half Field Offense (HFO) as our primary
experiment environment. HFO is an abstraction of the full RoboCup 2D game, where an agent plays
soccer in a half field. The HFO environment has continuous state space and hybrid (discrete and
continuous) action space, which is similar to our task in a MOBA game (Sec. 6.3). In this simplified
environment, we validate the effectiveness and efficiency of the proposed learning method.

6.1.1 Environment Settings

Like in [Hausknecht and Stone, 2016], we let the agent try to goal without a goalkeeper. We follow
[Hausknecht and Stone, 2016] for the settings, as is briefed below.

The observation is a 59-d feature vector, encoding the relative position of several critical objects such
as the ball, the goal and other landmarks (See [Hausknecht, 2017]). In our experiments, we use a
hybrid action space of discrete actions and continuous actions. 3 types of actions are considered in
our setting, which correspond to {“Dash”, “Turn”, “Kick”}. For each type k of action, we require
the policy to output a parameter xk ∈ R2. For the action “Dash” and “Kick”, the parameter xk is
interpreted as (r cosα, r sinα), with r truncated to 1 when exceeding. Then α ∈ [0, 2π] is interpreted
as the relative direction of that action, while r ∈ [0, 1] is interpreted as the power/force of that action.
For the action “Turn”, the parameter xk is firstly normalized to (cosα, sinα) and then θ is interpreted
as the relative degree of turning. The reward is hand-crafted, written as:

rt = dt(b, a)− dt+1(b, a) + Ikickt+1 + 3(dt(b, g)− dt+1(b, g)) + 5Igoalt+1 ,

where dt(b, a) (or dt(b, g)) is the distance between the ball and the agent (or the center of goal).
Ikickt = 1 if the agent is close enough to kick the ball. Igoalt = 1 if a successful goal happens. We
leverage Winning Rate to evaluate the final performance:

Winning Rate =
NG

NG +NF
,

where NG is the number of goals (G) achieved, NF is the number of failures (F), due to either out-of-
time (the agent does not kick the ball in 100 frames or does not goal in 500 frames) or out-of-bound
(the ball is out of the half field).
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Algorithm 2 Stochastic Gradient Algorithm for MARWIL
Input: Policy loss Lp being one of 9 to 12. base policy π, parameter m, cv .
Randomly initialize πθ. Empty replay memory D.
Fill D with trajectories from π and calculate Rt for each (st, at) in D.
for i = 1 to N do

Sample a batch B = {(sk, ak, Rk)}m from D.
Compute mini-batch gradient∇θL̂p,∇θL̂v of B.
Update θ: −∆θ ∝ ∇θL̂p + cv∇θL̂v

end for

Table 1: Performance of PG and MARWIL in TORCS, where β = 0 is the case of IL. For consistent
performance, β should be inversely proportional to the scale of (normalized) Aπ. Different β are
tested in the experiments. The performance is evaluated on the sum of rewards per episode.

β 0.0 0.25 0.5 0.75 1.0
PG 2710 6396 6735 6758 7152

MARWIL (2710) 5583 6832 7670 9492

When learning from data, the historical experience is generated with a mixture of a perfect (100%
winning rate) policy πperfect and a random policy πrandom. For the continuous part of the action, a
Gaussian distribution of σ = 0.2 or 0.4 is added to the model output, respectively. The mixture
coefficient ε is used to adjust the proportion of “good” actions and “bad” actions. To be specific, for
each step, the action is taken as

at ∼
{
πperfect(·|st) +N(0, σ) w.p. ε
πrandom(·|st) +N(0, σ) w.p. 1− ε (13)

The parameter ε is adjusted from 0.1 to 0.5. Smaller ε means greater noise, in which case it is harder
for the algorithms to find a good policy from the noisy data.

6.1.2 Algorithm Setting

For the HFO game, we model the 3 discrete actions with multinomial probabilities and the 2
continuous parameters for each action with normal distributions of known σ = 0.2 but unknown µ.
Parameters for different types of action are modeled separately. In total we have 3 output nodes for
discrete action probabilities and 6 output nodes for continuous action parameters, in the form of

πθ((k, xk)|s) = pθ(k|s)N(xk|µθ,k, σ), k ∈ {1, 2, 3}, xk ∈ R2

where pθ(·|s) is computed as a soft-max for discrete actions and N(·|µθ, σ) is the probability density
function of Gaussian distribution.

When learning from data, the base policy (13) is used to generate trajectories into a replay memory
D, and the policy network is updated by different algorithms, respectively. We denote the policy loss
objective as Lp, being one of the formula (9) (10) (11) (12). Then we optimize the policy loss Lp
and the value loss Lv simultaneously, with a mixture coefficient cv as a hyper-parameter (by default
cv = 1). The value loss Lv is defined as Lv = Ed,π(Rt − Vθ(st))2. A stochastic gradient algorithm
is given in Algorithm 2. Each experiment is repeated 3 times and the average of scores is reported in
Figure 1. Additional details of the algorithm settings are given in Appendix B.2.

We note that the explicit value π(at|st) is crucial for the correction used by most off-policy policy
iteration methods [Sutton and Barto, 1998], including [Munos et al., 2016, Wang et al., 2016,
Schulman et al., 2017, Wu et al., 2017] and many other works [Geist and Scherrer, 2014]. Here for
a comparable experiment between policy gradient method and our proposed method, we consider
a simple off-policy correction by importance sampling as in (11). We test the performance of the
proposed method and previous works under different settings in Figure 1. We can see that the
proposed MARWIL achieves consistently better performance than other methods.

6.2 Experiments with TORCS

We also evaluate the imitation learning and the proposed method within the TORCS [Wymann et al.,
2014] environment. In the TORCS environment, the observation is the raw screen with image size of
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Figure 1: Left: Learning from data with additional noise σ = 0.2. Right: Learning from data with
additional noise σ = 0.4. The data is generated with a mixture of a perfect (100% winning rate)
policy πperfect and a random policy πrandom. For the continuous part of the action, a Gaussian noise
of σ = 0.2 (left) or 0.4 (right) is added to the model output, respectively. The mixture coefficient ε
is used to adjust the proportion of “good” actions and “bad” actions. Smaller ε means less “good”
actions and harder problem. The performance of the behavior policy is plotted in black. We see that
the performance of IL is stable, while PG and PGIS may be affected by the increasing noise in the
data. In all settings we see that the proposed algorithm MARWIL performs best in this task.

64× 64× 3, the action is a scalar indicating the steering angle in [−π, π], and the reward rt is the
momentary speed. When the car crushes, a −1 reward is received and the game terminates.

For the TORCS environment, a simple rule is leveraged to keep the car running and to prevent it
from crushing. Therefore, we can use the rule as the optimal policy to generate expert trajectories. In
addition, we generate noisy trajectories with random actions to intentionally confuse the learning
algorithms, and see whether the proposed method can learn a better policy from the data generated by
the deteriorated policy. We make the training data by generating 10 matches with the optimal policy
and another 10 matches with the random actions.

We train the imitation learning and the proposed method for 5 epochs to compare their performance.
Table 1 shows the test scores when varying the parameter β. From the results, we see that our
proposed algorithm is effective at learning a better policy from these noisy trajectories.

6.3 Experiments with King of Glory

We also evaluate the proposed algorithm with King of Glory – a mobile MOBA (Multi-player Online
Battle Arena) game popular in China. In the experiments, we collect human replay files in the size
of millions, equaling to tens of billions time steps in total. Evaluation is performed in the “solo”
game mode, where an agent fights against another AI in the opposite side. A DNN based function
approximator is adopted. In a proprietary test, we find that our AI agent, trained with the proposed
method, can reach the level of an experienced human player in a solo game. Additional details of the
algorithm settings for King of Glory is given in Appendix B.3.

7 Conclusion

In this article, we present an off-policy learning algorithm that can form a better policy from
trajectories generated by a possibly unknown policy. When learning from replay data, the proposed
algorithm does not require the bahavior probability π over the actions, which is usually missing in
human generated data, and also works well with function approximation and hybrid action space.
The algorithm is preferable in real-world application, including playing video games. Experimental
results over several real world datasets validate the effectiveness of the proposed algorithm. We note
that the proposed MARWIL algorithm can also work as a full reinforcement learning method, when
applied iteratively on self-generated replay data. Due to the space limitation, a thorough study of our
method for full reinforcement learning is left to a future work.
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A Proofs

In this section, we provide proofs for the propositions appeared in the main text.

A.1 Proof to Proposition 1

Proof. For a fixed s, consider A1 = {a ∈ A | π̃(a|s) ≥ π(a|s)}, A2 = {a ∈ A | π̃(a|s) < π(a|s)}. Since
g(·) and h(s, ·) is monotonically increasing, we have

h(s,Aπ(s, a1)) = g(π̃(a1|s))− g(π(a1|s))
≥ g(π̃(a2|s))− g(π(a2|s))
= h(s,Aπ(s, a2)), ∀a1 ∈ A1, a2 ∈ A2

which means that ∃ q(s) ∈ R s.t.
Qπ(s, a1) ≥ q(s) ≥ Qπ(s, a2), ∀a1 ∈ A1, a2 ∈ A2

Thus ∑
a

π̃(a|s)Qπ(s, a)−
∑
a

π(a|s)Qπ(s, a)

=
∑
a∈A1

(π̃(a|s)− π(a|s))Qπ(s, a) +
∑
a∈A2

(π̃(a|s)− π(a|s))Qπ(s, a)

≥
∑
a∈A1

(π̃(a|s)− π(a|s))q(s) +
∑
a∈A2

(π̃(a|s)− π(a|s))q(s)

= q(s)
∑
a

π̃(a|s)− q(s)
∑
a

π(a|s) = 0

Define

Vl(s) =

{
Ea∼π̃(s)

(
Es′,r|s,a(r + γVl−1(s′))

)
, l ≥ 1

V π(s), l = 0

that is, the value of state s if we follow π̃ in the first l steps, and then follow π in subsequent steps. So we have
just proved

V1(s) ≥ V0(s), ∀s ∈ S.
By induction, we assume that Vl(s) ≥ Vl−1(s), ∀s ∈ S, then

Vl+1(s) = Ea∼π̃
(
Es′,r|s,a(r + γVl(s

′))
)

Vl(s) = Ea∼π̃
(
Es′,r|s,a(r + γVl−1(s′))

)
we have Vl+1(s) ≥ Vl(s), ∀s ∈ S. For finite horizon MDP and infinite horizon MDP with γ < 1, we have

V π̃(s) ≥ V π(s), ∀s ∈ S

The proof is for discrete action space only. However it could be generalized to continuous actions and hybrid
actions without much difficulties.

A.2 Proof to Proposition 2

Proof. In [Kakade and Langford, 2002] a useful equation is proved that

η(π′)− η(π) = Ldπ′ ,π(π′) =
1

1− γ
∑
s

dπ′(s)
∑
a

π′(a|s)Aπ(s, a) (14)

From Corollary 1 in [Achiam et al., 2017], we have

η(π′)− η(π) ≥ Ldπ,π(π′)− 2γεπ
′
π

(1− γ)2
Ddπ

TV (π′, π) (15)

where επ
′
π = maxs |Ea∼π′Aπ(s, a)|. Similarly, we also have

|η(π′)− η(π)| =
1

1− γ
∑
s

dπ′(s)

∣∣∣∣∣∑
a

(π′(a|s)− π(a|s))Aπ(s, a)

∣∣∣∣∣ (16)

≤ 1

1− γ
∑
s

dπ′(s)
∑
a

|π′(a|s)− π(a|s)| |Aπ(s, a)| (17)

≤ 2

1− γD
dπ′
TV (π′, π)Mπ (18)
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where Mπ = maxs,a |Aπ(s, a)| ≤ maxs,a |r(s, a)|/(1− γ). Define

L(π′) = (1− γ)βLdπ,π(π′)−Ddπ
KL (π′||π) (19)

Then
π̃ = arg max

π′∈Π

L(π′) (20)

and L(π̃) ≥ L(π) = 0. Now consider
η(πθ)− η(π) = (η(πθ)− η(π̃)) + (η(π̃)− η(π)) (21)

≥ − 2

1− γD
dπ̃
TV (π̃, πθ)M

πθ + Ldπ,π(π̃)− 2γεπ̃π
(1− γ)2

Ddπ
TV (π̃, π) (22)

≥ − 2

1− γD
dπ̃
TV (π̃, πθ)M

πθ +
1

(1− γ)β
Ddπ

KL (π̃||π)− 2γεπ̃π
(1− γ)2

Ddπ
TV (π̃, π) (23)

From Pinsker’s inequality [Csiszar and Körner, 2011], we have

Dd
TV(π′, π) =

∑
s

d(s)DTV(π′(·|s), π(·|s)) (24)

≤
∑
s

d(s)

√
1

2
DKL(π′(·|s)||π(·|s)) ≤

√
1

2
Dd

KL(π′||π) (25)

where the last inequality comes from Jensen’s inequality. Denote δ1 = min(Ddπ̃
KL (πθ||π̃), Ddπ̃

KL (π̃||πθ)) and
δ2 = Ddπ

KL (π̃||π), we have

η(πθ)− η(π) ≥ −
√

2

1− γ δ
1
2
1 M

πθ +
1

(1− γ)β
δ2 −

√
2γεπ̃π

(1− γ)2
δ

1
2
2 (26)

B Discussion

B.1 Connection with regularized policy optimization

In this subsection, we show in a general form, the proposed procedure of Algorithm 1 can recover many interesting
algorithms, which are related to previous works. We consider a general regularized policy optimization problem
(RPO) as

max
θ∈Θ

(
(1− γ)Ldπ,π(πθ)−

1

β
Dapp(π, πθ)

)
(27)

whereDapp is a divergence use for approximation (e.g. KL divergenceDKL, Bregman divergenceDψ). A closely
related formulation of Algorithm 1 is

min
θ∈Θ

Dapp(O(π), πθ), where O(π) = arg max
π′∈Π

(
(1− γ)Ldπ,π(π′)− 1

β
DKL(π′||π)

)
(28)

We call this generalized method as imitating a better policy (IBP).

B.1.1 RPO, with Dapp(π, πθ) = Ddπ
KL(π||πθ)

When Dapp(π, πθ) is realized with Ddπ
KL (π, πθ), the RPO problem is equivalent to the constrained policy

optimization problem considered in [Schulman et al., 2015]. The optimization objective is

arg max
θ∈Θ

(1− γ)βLdπ,π(πθ)−Ddπ
KL (π||πθ) = arg max

θ∈Θ
Eπ(

πθ(a|s)
π(a|s) βA

π(a|s) + log πθ(a|s)) (29)

B.1.2 RPO, with Dapp(π, πθ) = Ddπ
KL(πθ||π)

When Dapp(π, πθ) in RPO is set to the forward KL divergence Ddπ
KL (πθ, π), the optimization objective becomes

arg max
θ∈Θ

(1− γ)βLdπ,π(πθ)−Ddπ
KL (πθ||π) = arg max

θ∈Θ
Eπ(

πθ(a|s)
π(a|s) (βAπ(a|s)− log

πθ(a|s)
π(a|s) )) (30)

B.1.3 IBP, with Dapp(π, πθ) = Dd
KL(π||πθ)

For IBP as in (28), when Dapp(π, πθ) = Dd
KL(π||πθ), the optimization objective becomes

arg max
θ∈Θ

−Dd
KL(O(π)||πθ) = arg max

θ∈Θ
Es∼d(s),a∼π(a|s) exp(βAπ(s, a) + C(s)) log(πθ(a|s)) (31)

This is the main algorithm 12 discussed in our work.
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Table 2: Connection between the proposed imitating a better policy (IBP) procedure and previous
policy optimization methods

Method Dapp = DKL(π||πθ) Dapp = DKL(πθ||π)

RPO ≈ TRPO (29) IBP with KL (30)
IBP (28) MARWIL (31) IBP with KL (30)

B.1.4 IBP, with Dapp(π, πθ) = Ddπ
KL(πθ||π)

When Dapp(π, πθ) = Ddπ
KL (π||πθ), the algorithm IBP is equivalent to RPO as in Formula (30). In general, for

a family of functions ψ(·) we define the Bregman divergence as Dd
ψ(π′, π) =

∑
s d(s)∆ψ(π′(·|s), π(·|s)),

where ∆ψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉, with the inner product 〈·, ·〉 taken on the action space A.
We then have

max
θ∈Θ

((1− γ)βLdπ,π(πθ)−Dψ(πθ, π)) (32)

equivalent to the problem

min
θ∈Θ

Dψ(πθ,O(π)), where O(π) = arg max
π′∈Π

((1− γ)βLdπ,π(π′)−Dψ(π′, π)) (33)

To summarize, the proposed procedure is closely related to existing methods like regularized policy optimization.
And for special cases, imitating a better policy is equivalent to regularized policy optimization. We present the
relationship with previous method in Table 2.

B.2 Additional Details of the Algorithm Settings for HFO

To parametrize the policy and value function, we use a neural network with multiple outputs and shared basic
layers. 3 fully connected layers are used as the shared base layers, each having 64 hidden nodes and followed by
an ELU [Clevert et al., 2015] activation layer. For outputting probability for discrete actions k = 1, 2, 3, a small
network of 2 fully connected layers with 32 hidden nodes and 3 soft-maxed outputting nodes are appended to
the base layers. For outputting the mean of normal distribution for each action’s parameter, we use a 32 × 6
fully connected 2 layer network after the base layers. We also use a third 32 × 1 network appended to the base
layers to output the state value V (st) for each state.

In our implementation, we distribute the algorithm over different servers to speed up the experiments. The
“worker” processes which are responsible for generating trajectories to be filled in the replay memory D are
deployed on a CPU server. A “trainer” process which is responsible for updating θ is deployed on a GPU server.
The replay memory is distributed over the cluster to collect trajectories from workers in parallel and provide
batches of data for the trainer.

For these experiments, we use 20 workers and 1 centralized trainer. The maximum capacity of the replay memory
for each actor is set to 32 episodes, meaning a total of 640 episodes. In each iteration we randomly sample a
batch of 1024 samples from D. The overall loss is the policy loss plus the squared Bellman error of V π . The
basic learning rate is set to 10−4, with β set to 1.0. The learning rate decreases proportional to 1/

√
0.0001T .

We use RMSProp with weight decay set to 10−5 and no momentum. In the experiment, each run is allowed to
iterate 100000 batches to converge.

B.3 Additional Details of the Algorithm Settings for King of Glory

The solo mode of King of Glory is similar to those in previous works [Jiang et al., 2018, Xiong et al., 2018],
except that we use the hero Diao Chan in our experiments. For quantitatively measure, we use a pool of AI agents
as opponents, and calculate the Elo ratings [Coulom, 2005] of the agents trained with/without the proposed
technique. Experimental results are summarized in Table 3. As can be seen, the agents trained with our proposed
method are significantly stronger than those trained with the baseline method (IL). Also, in a proprietary test
with colleagues, the Diao Chan AI can defeat experienced XingYao and WangZhe level 4 players in a solo game.
We conclude that the proposed method can be successfully used in training AI agents for complex video games
with hybrid action space in real-world.

Feature For each frame, we extract 4 types of feature to represent the game state:

1. Image-like Feature of Global View The image-like feature covers the whole map of solo mode, with
a resolution of 16× 64 and 6 channels of allied hero position, allied soldiers’ positions, allied towers’
defense region, enemy hero position, enemy soldiers’ positions, and enemy towers’ defense region.

4The level of a player in the mobile game is ranked (from lowest to highest) by QingTong(Bronze),
BaiYin(Silver), HuangJin(Gold), BoJin(Platium), ZuanShi(Diamond), XingYao(Starshine), and WangZhe(King).
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Table 3: Performance of the AI agents trained with/without the proposed technique. A total of 40 AI
agents trained with different methods are tested in roughly round-robin matches. For comparison,
MARWIL1 and IL1 use the same state-features, network structure, and algorithm settings, except
for the update formula when computing the gradient. Similarly, MARWIL2 and IL2 use the same
settings except for the update formula. The Elo score (higher is better) measures the strength of
agents, and the winning ratio is the percentage of games the agent has won. In the results, the best
agent is trained with MARWIL method, which reaches an Elo score (higher is better) of 126, and a
winning ratio of 64%.

AGENT ELO W.RATIO
MARWIL1 126 64%
MARWIL2 72 58%

IL1 -65 41%
IL2 -184 26%

2. Image-like Feature for Local View The image-like feature corresponds to the player’s screen size
of map. The resolution is 32× 48 with 12 channels of allied hero position, allied hero attack region,
allied soldiers’ positions, allied soldiers’ HP, allied towers’ defense region, allied bullets’ damage
region, enemy hero position, enemy hero attack region, enemy soldiers’ position, enemy soldiers’ HP,
enemy towers’ defense region, and enemy bullets’ damage region.

3. Dense Feature A 256 dimension dense feature is extracted for each frame. These features include
allied and enemy heroes’ basic attributes and properties, towers’ status and soldiers’ status, etc.

4. Sparse Feature Two sparse features are provided to indicate the allied and enemy hero types.

Action We use a hybrid of discrete and continuous action space. The action space is defined as A = K × R2,
where K = 6. The 6 discrete action types are: NoAction, Move, Attack, Skill1, Skill2, Skill3. For k ∈ {
Move, Skill1, Skill2 }, the environment also accepts a “direction” xk ∈ R2 as the action parameter.

Reward We craft 14 dimension rewards as the optimization target, namely ShortTimeGold, LongTimeGold,
InstantHP, ShortTimeHP, Kill, Death, Exp, LevelUp, Damage, DamageToHero, TowerDestruct,
HighTowerDestruct, CrystalDestruct, and WinLoss. Different rewards r(k) may have different discount
factors γ(k). A weighted sum of R(k)

t is used as the final cumulative reward Rt =
∑13
k=0 w

(k)R
(k)
t , where

R
(k)
t =

∑T
l=t(γ

(k))l−tr
(k)
l .

Network Structure We adopt a VGG [Simonyan and Zisserman, 2014] like structure for image-like features:
Each “block” consists of 5 layers in the order of Conv-ELU-Conv-ELU-Pooling, with kernel size of 3 for
convolution and stride of 2 for max-pooling. By default we use ELU [Clevert et al., 2015] as activation layer for
convolution layers and fully-connected layers. For global view image-like feature, 3 “blocks” of size 32×16×64
5 → 64×8×32→ 64×4×16 are stacked to extract information from raw image-like features. For local view
image-like feature, 3 “blocks” of size 32×16×24→ 64×8×12→ 64×4×6 are stacked. Each sparse feature is
embedded to a vector of 32 dimension and concatenated together with the dense feature, followed by 2 fully
connected layers with 512 hidden nodes. Then these preprocessed representations from image-like features
and dense features are all concatenated, followed by 5 fully connected layers of 2048 hidden nodes. 3 final
modules consisting of two fully-connected (FC) layers of hidden size 512 and 256 are appended for outputting
discrete action probabilities, continuous action parameters, and value estimation for each dimension of rewards,
respectively. The whole network structure is depicted as in Figure 2.

Figure 2: Network structure for our AI agent in King of Glory

5We write C ×H ×W for brevity, where C is the number of channels, H is the height, and W is the width.
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