
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

End-to-End Speech Recognition
Sequence Training with
Reinforcement Learning
ANDROS TJANDRA1, 2 (Nonmember), SAKRIANI SAKTI1, 2(MEMBER, IEEE), AND SATOSHI
NAKAMURA1, 2 (Fellow, IEEE)
1Nara Institute of Science and Technology (e-mail: andros.tjandra.ai6@is.naist.jp)
2RIKEN, Center for Advanced Intelligence Project AIP, Japan

Corresponding author: Andros Tjandra (e-mail: andros.tjandra.ai6@is.naist.jp).

ABSTRACT End-to-end sequence modeling has become a popular choice for automatic speech recog-
nition (ASR) because of the simpler pipeline compared to the conventional system and its excellent
performance. However, there are several drawbacks in the end-to-end ASR model training where the current
time-step prediction on the target side are conditioned with the ground truth transcription and speech
features. In the inference stage, the condition is different because the model does not have any access to
the target sequence ground-truth, thus any mistakes might be accumulated and degrade the decoding result
over time. Another issue is raised because of the discrepancy between training and evaluation objective.
In the training stage, maximum likelihood estimation criterion is used as the objective function. However,
ASR systems quality is evaluated based on the word error rate via Levenshtein distance. Therefore, we
present an alternative for optimizing end-to-end ASR model with one of the reinforcement learning method
called policy gradient. The model trained the proposed approach has several advantages: (1) the model
simulates the inference stage by free sampling process and uses its own sample as the input, (2) optimize
the model with a reward function correlated with the ASR evaluation metric (e.g., negative Levenshtein
distance). Based on the result from our experiment, our proposed method significantly improve the model
performance compared to a model trained only with teacher forcing and maximum likelihood objective
function.

INDEX TERMS End-to-end sequence model, speech recognition, policy gradient optimization, reinforce-
ment learning

I. INTRODUCTION

ENd-to-end sequence modeling has been successfully
developed into many different applications, such as:

image captioning [39], [32], machine translation [27], [1],
abstractive summarization [17], speech synthesis [33] and
speech recognition [2], [3]. Because of their performance
and flexibility, sequence-to-sequence models can be applied
to many different applications without significant modifica-
tion from their original structures. Equipped by recurrent
or convolutional neural networks on both the source and
target sides, we can encode and conditionally generate a
dynamic length sequence directly without extra modules
such as fertility [13] for machine translation or duration
modeling [40] for speech synthesis. By using sequence-to-
sequence architecture, we are able to substitute all the sepa-

rated modules into a single end-to-end system. For example,
in the conventional speech recognition system (ASR), there
are several modules such as feature extraction, an acoustic
model, sub phones and phonemes modeling (GMM-HMM
[4], DNN-HMM [7]) and a language model where each of
these components is optimized independently. By using end-
to-end sequence modeling, we could reduce the effort of
constructing sub-modules and making a simpler pipeline.

End-to-end sequence models are typically composed of
three different components: encoder, decoder, and attention.
The encoder part extracts features from the source sequence.
The decoder part forms an autoregressive model, which con-
ditionally generates the target sequence step-by-step based on
the previous output, current state, and encoder features. The
attention part is used to calculate the relevance between the

VOLUME 4, 2016 1

Tjandra et al.: End-to-End ASR Sequence Training with RL

current decoder state and encoder features. For training an
autoregressive decoder model, the most popular approach is
by using teacher forcing [36]. In teacher forcing, the decoder
generates output prediction by using the ground-truth input
for current time-step. However, in the inference stage, the
decoder has no access to the ground-truth transcription. The
decoder needs to rely on its own previous prediction as to
the input. As the decoding steps going further, any mistakes
from the decoder might be accumulated into the future and
the predicted target sequence are diverging from the optimal
solution.

Besides the difference between the generation method, the
mismatch between the objective in the training and the metric
for evaluation could also been problematic [21], [37]. In
the training stage, the probability predicted by teacher forc-
ing are trained via maximum likelihood estimation (MLE).
Therefore, the loss are usually calculated based on the log-
probability for each time-step. However, a models are usu-
ally evaluated with different objective or metric such as
Levenshtein distance for speech recognition and BLEU [18]
for machine translation. Therefore, optimizing the model
parameters with the correct metric is necessary to obtain its
best performance in the inference stage.

Here, we introduce an alternative method for optimizing
the ASR model by utilizing the concept from reinforcement
learning (RL). To be more precise, we apply one of the RL
methods called a policy gradient (REINFORCE) [35] to solve
the problem arising from teacher forcing and MLE objective.
We assume the ASR autoregressive decoder as an RL agent
that produces an action for each time-step, thus we could (1)
generate the target sequence transcription with the model’s
own prediction instead of teacher forcing, thus simulates the
prediction in the inference stage, and (2) construct a reward
function that is highly correlated with Levenshtein distance
and maximize the expected reward with respect to the agent.
By incorporating the RL method for optimizing our model,
the model is still able to be trained end-to-end and also
optimized exactly towards ASR evaluation metric.

II. SEQUENCE-TO-SEQUENCE ASR
A sequence-to-sequence (seq2seq) is an end-to-end neural
network model that map a dynamic length sequence X =
[x1, x2, ..., xS] with length S to another dynamic length
sequence Y = [y1, y2, ..., yT] with length T time-step [27].
In the basic form, seq2seq could be formulated as Pθ(Y |X)
parameterized by model parameters θ. In ASR case, we
build a seq2seq model that generate a text transcription Y
(e.g., character or phoneme) given a speech features X (e.g.,
MFCC or Mel-spectrogram).

We show our complete structure for seq2seq ASR in
Figure 1. There are three main parts in this model: encoder,
attention, and decoder modules. Given an input sequence x,
the encoder produces a high level representation encoded in
the continuous vector HE = [hE1 , h

E
2 , ..., h

E
S]. The attention

bridges the information between encoder representation HE

and the current decoder’s states hDt [1]. Given a pair of

FIGURE 1: Attention-based encoder-decoder architecture.

encoder state hEs and decoder state hDt , the attention scoring
module calculate the relevance score with:

ct =

S∑
s=1

at(s)h
E
s (1)

at(s) = Align(hEs , h
D
t) (2)

=
exp(Score(hEs , h

D
t))∑S

s=1 exp(Score(hEs , hDt))
. (3)

The alignment between an encoder state and decoder state
is calculated with Align(·, ·) function, which is written as a
normalized score function Score(·, ·). The scoring function
can be written in several different forms:
• Dot product:

Score(hEs , h
D
t) =

M∑
m=1

hEs [m]hDt [m], (4)

where hEs , h
D
t ∈ RM and without additional free pa-

rameter.
• Bilinear product:

Score(hEs , h
D
t) = hEs WhDt , (5)

where hEs ∈ RM , hDt ∈ RN and trainable parameter
W ∈ RM×N .

2 VOLUME 4, 2016

Tjandra et al.: End-to-End ASR Sequence Training with RL

• Multi-layer perceptron (MLP) attention:

Score(hEs , h
D
t) =W3 tanh(W1h

E
s +W2h

D
t), (6)

where hEs ∈ RM , hDt ∈ RN and trainable parameters
W1 ∈ RP×M ,W2 ∈ RP×N ,W3 ∈ R1×P .

We denote M is the hidden unit size from the encoder
representation, N is the hidden unit size from the decoder
representation and P is the intermediate projection unit size
for MLP attention.

The final component for seq2seq is a decoder module. The
decoder task is to generate a target discrete sequence Y :

P (Y |X; θ) =

T∏
t=1

P (yt|ct, hDt , yt−1; θ), (7)

where ct is the relevant context generated by the attention
module. This equation represent an conditional autoregres-
sive model that produces current time-step target probability
yt given the previous time-step output yt−1, a decoder state
hDt (which consists of a compressed representation for de-
coder from time 1 to t− 1) and a context vector ct.

Training seq2seq model mostly done by using maximum
likelihood estimation (MLE):

θ∗ = argmax
θ

P (Y |X; θ)

= argmax
θ

T∏
t=1

P (yt|ct, hDt , yt−1; θ). (8)

Based on the maximum likelihood criterion, we obtained
optimal model θ∗ by minimizing the negative log-likelihood
(NLL) calculated by the teacher-forcing generation method:

LNLL = − logP (y|x; θ),

= − log

T∏
t=1

P (yt|ct, hDt , yt−1; θ),

= −
T∑
t=1

logP (yt|ct, hDt , yt−1; θ). (9)

For each time-step, the teacher-forcing approach generates
the label probability based on the ground-truth label at time-
t. In Fig. 2, we illustrate the generation process based on the
teacher-forcing method. Loss function NLL is described as
follows:

NLL(yt, p(yt)) = −
∑
c

1{yt = c} log p(yt = c), (10)

where p(yt) = P (yt|ct, hDt , yt−1; θ).
However, in the inference stage, since we have no access

to the ground-truth transcription, our model must rely on its
own previous prediction as input for the current time-step.
We illustrated the decoding process with a greedy approach
by taking the label index based on the highest probability
mass on p(yt) in Fig. 3.

FIGURE 2: Training stage: generation via teacher-forcing
method sets the model input with ground-truth transcrip-
tion. For each time-step, decoder generates probability vec-
tor p(yt), and we calculate negative log-likelihood between
p(yt) and ground-truth y(n)t .

FIGURE 3: Testing/inference stage: decoder doesn’t have
access to ground-truth transcription. Therefore, for each
time-step t, decoder input depends on model prediction
from previous time-step t − 1. For greedy decoding (1-
best search), we took the label from highest probability
ỹt−1 = argmax

yt−1

P (yt−1|hD(n)
1) and use selected label ỹt−1

for current decoder input.

III. REINFORCEMENT LEARNING
In this section, we briefly discuss reinforcement learning,
which is an area of machine learning where the agent learns
by interacting inside a specific environment. In the learning
stage, the agent receives a state and sequentially generates
an action through multiple time-steps and eventually the
environment returns a reward as a signal feedback for the
agent. If agents get a high reward value, it means that they
are doing a good job related to their given tasks. Our final
goal is to make agents that can choose a series of optimal
actions that maximize the reward in that environment.

The RL method can be described formally by the Markov
Decision Process (MDP) [28]. Here the agent and environ-
ment interact in discrete time-steps t = [1, 2, .., T]. We
formulate a MDP property as a tuple: (S,A,P,R) where

• S = {S1, S2, .., Sn} is a set of the environment’s states

VOLUME 4, 2016 3

Tjandra et al.: End-to-End ASR Sequence Training with RL

FIGURE 4: Interaction between agent and their environment
inside an MDP. Given current state st, the agent choose an
action at. The environment responds to the selected action
and generates a new state st+1 and a reward rt+1.

and ∀t ∈ [1..T], st ∈ S;
• A = {A1, A2, .., Am} is a set of possible actions for the

agent and ∀t ∈ [1..T], at ∈ A;
• P : S × S × A → [0, 1] is a state transition probability

where P(s′|s, a) is the probability of transitioning to
state s′ given state s and action a;

• R : S×A → R is a reward function that returns a value
given a state and an action.

In Fig. 4, we illustrated the interaction between an agent
and its environment within MDP notation. The MDP process
starts from state s1 as the initial agent’s state. The initial
state s1 is defined by the environment (e.g., s1 is the location
of robot starting point inside certain arena). Based on the
initial state s1, the agent chooses actions a1 ∈ A. Given
current state s1 ∈ S and selected action a1, new state s2
is drawn or generated based on state transition probabilities
s2 ∼ P(s2|s1, a1) where s2 ∈ S. We repeat the process and
generate a sequence of states and action from time t ∈ [1..T]:

s1
a1−→ s2

a2−→ s3
a3−→ ...

aT−2−−−→ sT−1
aT−1−−−→ sT . (11)

For each trajectory s1, a1, s2, a2, .., the environment re-
turns a series of rewards as a signal feedback:

R(s1, a1) + γR(s2, a2) + γ2R(s3, a3) + .., (12)

where γ ∈ [0, 1) is the discount factor for future rewards.
RL’s main target is to optimize an agent that chooses the most
optimal actions over time to maximize the expected reward:

Eat∼π[R(s1, a1) + γR(s2, a2) + γ2R(s3, a3) + ..]
(13)

Policy function π : S → A maps a state to an action.
Given state st, the policy function returns feasible action
at = π(st). Value function V π(s) : S → R is defined:

V π(s) = Eat∼π[R(s1, a1)+γR(s2, a2)+ ..|s1 = s]. (14)

The value function calculates the expected reward given state
s and action at ∼ π taken from policy π. We got the
following optimal value function

V ∗(s) = max
π

V π(s) ∀s ∈ S. (15)

Given optimal value function V ∗(s), optimal policy π∗ be-
comes

π∗ = argmax
π

V ∗(s) ∀s ∈ S. (16)

To extend the value function, a Q-function predicts the ex-
pected reward given state-action pairQ : S×A → R defined:

Qπ(s, a) = Eat∼π[R(s1, a1)+γR(s2, a2)+..|s1 = s, a1 = a].

(17)

The optimal Q-function Q∗(s, a) is the maximum action
value-function over policies

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S,∀a ∈ A. (18)

We retrieved best policy π∗(s) given state s:

π∗(s) = argmax
a

Q∗(s, a) ∀s ∈ S. (19)

Reinforcement learning can be solved in several ways. First,
we can directly optimize policy function π to maximize the
expected reward in Eq. 13. Policy gradient [35] is one of
the algorithm that optimizes parameterized policy πθ with
respect to the expected reward. Parameterized policy πθ can
also be represented with a neural network and optimized di-
rectly by first-order optimization such as stochastic gradient
descent (SGD). Second, we can find the optimal policy based
on Eq. 19 based on the Q-function. Q-learning [34] learns a
policy and informs the agent of the expected reward given a
certain state and action pair. If we have discrete states and
actions, Q-learning can be implemented with a simple table
where the state and action pairs are defined by columns and
rows and the expected reward value is in the cell. However,
when we have high-dimensional states and action spaces, we
can replace the table with a function that approximates the
Q-function, such as simple linear regression or a deep neural
network [22].

IV. POLICY GRADIENT TRAINING FOR
SEQUENCE-TO-SEQUENCE ASR
We present our proposed method to incorporate policy opti-
mization with seq2seq ASR architecture. First, we present an
overview about policy gradient (REINFORCE) optimization
strategy. Later, we describe several reward functions that we
used to optimize our agent in the reinforcement learning
environment.

A. POLICY GRADIENT
Policy gradient is a method based on policy function formu-
lation. The policy πθ(a|s) optimized directly by adapting the
parameters θ to increase the expected reward E[Rt|πθ] [28].
The parameters θ depends on the function that we use to

4 VOLUME 4, 2016

Tjandra et al.: End-to-End ASR Sequence Training with RL

approximate the policy. Here, we use deep neural network to
parameterized the policy function and θ denotes a collections
of neural network weight matrices. To bridge the ASR with
reinforcement learning optimization, we need to formulate
within an MDP tuple (S,A,P,R), where S is the state
space, A is the action space, P is the transition probability
between a state to another state, andR is the reward function.

We define our RL agent as a seq2seq ASR model where
the agent function is to predict the transcription given a
sequence of speech features. We describe the state st ∈ S as
a temporary state st = [ct, h

D
t] from seq2seq decoder at time

t ∈ {1..T}. Action state at ∈ A is the discrete output token
from the decoder such as character or phoneme symbols. The
transition probability P are implied by the operation from
RNN cell inside the decoder. Lastly, reward function R are
designed to be highly correlated with the quality measure for
an ASR system. We provide the detail in Section V.

We assume
(
X(n), Y (n)

)
is a pair between speech features

and their groundtruth transcription. The reward R(n) calcu-
lated between the groundtruth Y (n) and sampled transcrip-
tion Ỹ (n,·). We are looking to maximize the expected reward
EY [R(n)|πθ] with respect to seq2seq parameters θ where
πθ(at|st) = P (yt|hD(n)

t , c
(n)
t ; θ) = P (yt|y<t, X(n); θ).

In order to optimize θ, we calculate the expected reward
gradient with respect to the parameters θ:

∇θEY
[
R(n)|πθ

]
= ∇θ

∫
P (Y |X(n); θ)R(n) dY

=

∫
∇θP (Y |X(n); θ)R(n) dY

=

∫
P (Y |X(n); θ)

∇θP (Y |X(n); θ)

P (Y |X(n); θ)
R(n) dY

=

∫
P (Y |X(n); θ)∇θ logP (Y |X(n); θ)R(n) dY

= EY
[
∇θ logP (Y |X(n); θ)R(n)

]
≈ 1

M

M∑
m=1

R(n,m)∇θ logP (Ỹ (n,m)|X(n); θ), (20)

where M is the number of samples, Ỹ (n,m) ∼ P (Y |X(n); θ)
is the m-th sample from model θ conditioned on input X(n),
and R(n,m) is the calculated reward between ground-truth
Y (n) and sample Ỹ (n,m). From another perspective, Eq. 20 is
a bit identical with the gradient from Minimum Risk Training
(MRT) [24].

Occasionally using only a single reward signal for a whole
sequence of sample Ỹ (m,n) is not sufficient. For example,
Eq. 20 can be expanded as:

1

M

M∑
m=1

M∑
m=1

R(n,m)∇θ
T∑
t=1

logP (ỹ
(n,m)
t |X(n); θ)

(21)

which is we distribute the sequence reward R(n,m) to all
time-step equally. There might be a sub-optimal case where

the reward is negative caused by several time-step action,
but we penalize all time-step with negative reward instead.
Therefore, we could substitute the reward R(n) with time-
distributed reward R(n)

t ∈ R,∀t ∈ {1..T}. The reward R(n)
t

might have different value between different time-step, thus it
could provide more informative feedback for each time-step.
Mathematically, we substitute Eq. 20 t = [1, .., T] with:

∇θEY

[
T∑
t=1

R
(n)
t |πθ

]

= ∇θ
∫
P (Y |X(n); θ)

(
T∑
t=1

R
(n)
t

)
dY

=

∫
P (Y |X(n); θ)

∇θP (Y |X(n); θ)

P (Y |X(n); θ)

(
T∑
t=1

R
(n)
t

)
dY

=

∫
P (Y |X(n); θ)∇θ logP (Y |X(n); θ)

(
T∑
t=1

R
(n)
t

)
dY

= EY

[(
T∑
t=1

R
(n)
t

)
∇θ logP (Y |X(n); θ)

]

= EY

[(
T∑
t=1

R
(n)
t

)
T∑
t=1

∇θ logP (yt|y<t, X(n); θ)

]

≈ EY

[
T∑
t=1

R
(n)
t ∇θ logP (yt|y<t, X(n); θ)

]
(22)

≈ 1

M

M∑
m=1

T (m)∑
t=1

R
(n,m)
t ∇θ logP (ỹ(n,m)

t |ỹ(n,m)
<t , X(n); θ),

(23)

where T is the length of transcription Y , R(n)
t is the gener-

alized reward based on the current state and action at time-
t. In Eq. 23, R(n,m)

t is the reward from m-th sample, time-
step t-th and compared with n-th utterance groundtruth, and
T (m) denotes the sample Ỹ (n,m) length. To calculate the
expected reward from Eq. 20 and Eq. 23, we need to integrate
all possible transcription across random variable Y . It is
unrealistic because the search space are growing exponential
for each time-step. Therefore, we do Monte-carlo sampling
M times per sequence Ỹ (n,m) ∼ P (Y |X(n); θ) for each
utterance X(n) to get an approximated expected reward.

To summarize our explanation, we compared the differ-
ences between teacher-forcing and policy gradient loss cal-
culation from Figs. 2 and 5. In the teacher-forcing method,
the model predictions are generated based on the ground-
truth transcription. However, in the policy gradient method,
first we sample M sequences by Monte Carlo sampling and
stop after getting an </s> symbol. Then we calculate dis-
counted rewardR(n,m)

t for each time-step based on the future
rewards. We provide pseudocode to complete our explanation
in Alg. 1.

VOLUME 4, 2016 5

Tjandra et al.: End-to-End ASR Sequence Training with RL

FIGURE 5: Policy gradient set decoder input to be condi-
tioned on its own prediction sampled from previous time-
step to predict current time-step output probability. There-
fore, decoder doesn’t rely on a ground-truth transcription
like teacher-forcing method. Expected rewards for model
transcription are approximated by the average from multiple
sample trajectories.

V. REWARD CONSTRUCTION FOR ASR TASKS
One important component for optimizing an agent using an
reinforcement learning approach is to design a good reward
function that closely corresponds to the metric that we used to
evaluate our agent performance. In our case, our agent is ASR
systems that were evaluated based on the edit-distance or the
Levenshtein distance algorithm. Therefore, we composed our
reward function with a modified edit-distance algorithm and
divided the reward into two different types:

A. SENTENCE-LEVEL REWARD
Based on Eq. 20, we need to calculate the reward by com-
paring ground-truth transcription Y (n) and sampled tran-
scription Ỹ (n,m). In this case, we designed reward function
R(Ỹ (n,m), Y (n)) to calculate R(n,m):

R(n,m) = R(Ỹ (n,m), Y (n)) = −ED(Ỹ (n,m), Y (n))

|Y (n)|
, (24)

where ED(·, ·) is an edit-distance function. In practice,
we would like to minimize the edit-distance between the
sample and the ground-truth transcription. However, for the
reinforcement learning environment, we design a reward
function with the opposite output. For example, if our model
produces two samples, Ỹ (n,1) and Ỹ (n,2), the first Ỹ (n,1)

is “closer" to Y (n) than the second Ỹ (n,2), then the reward
function must fulfill: R(Ỹ (n,1), Y (n)) > R(Ỹ (n,2), Y (n)).

Algorithm 1 Pseudocode for sampling text on sequence-to-
sequence ASR

1: procedure SAMPLE(Speech features x, sample size M,
vocab size V)

2: y_in = [<S>,..,<S>] ∈ RM . init with start
token <S>M times

3: l_sample_logp = [[] for _ in [1..M]]
4: l_sample_act = [[] for _ in [1..M]]
5: l_sample_len = [-1,..,-1] . init sample

length
6: tt = 0
7: model.encode(x) . encode speech into hE

8: finished = False
9: repeat

10: p_y = model.decode(y_in) ∈ RM×V
11: log_p_y = log(p_y)
12: for m in [1..M] do
13: a_y ∼ Categorical (p_y[m]) . sample

action from Categorical distribution
14: y_in[m] = a_y . set next decoder input
15: if l_sample_len[m] == -1 then
16: l_sample_logp[m].add(

log_p_y[m, a_y]))
17: l_sample_act[m].add(a_y)
18: if a_y == <\s> then
19: l_sample_len[m] = tt+1
20: end if
21: end if
22: end for
23: finished = all(l_sample_len 6= -1)
24: until finished == True . all samples meet

</s>
25: return l_sample_logp, l_sample_act
26: end procedure

Therefore, we multiply the edit-distance result by -1 to fulfill
the requirement of the reward function.

Since the REINFORCE gradient estimator is usually too
noisy and might hinder our learning process, there are several
tricks to reduce the variance [6], [15]. Here we normalize
reward R(n,m):

µn =
1

M

M∑
m=1

R(Ỹ (n,m), Y (n))

σ2
n =

1

M

M∑
m=1

(
R(Ỹ (n,m), Y (n))− µn

)2
R(n,m) =

R(Ỹ (n,m), Y (n))− µn
σn

. (25)

We normalize our reward across M samples into zero mean
and unit variance. We provide the pseudocode for calculating
sentence-level reward in Algorithm 2.

6 VOLUME 4, 2016

Tjandra et al.: End-to-End ASR Sequence Training with RL

B. TOKEN-LEVEL REWARD
Rather than having only a single reward attributed to the
whole sequence, we could also construct a better reward
function which give a feedback for every time-step. Here we
design a reward function that could provide an intermediate
reward before the sample transcription finished. This reward
function R(Ỹ , Y (n), t) calculate R(n)

t by utilizing the edit-
distance algorithm. We define rewardR(Ỹ , Y (n), t):

R(Ỹ (n,m), Y (n), t) =
|Y (n)| − ED(Ỹ

(n,m)
1:t , Y (n)) if t = 1

ED(Ỹ
(n,m)
1:t−1 , Y

(n))− ED(Ỹ
(n,m)
1:t , Y (n)) if 1 < t < T

−ED(Ỹ (n,m), Y (n)) if t = T

(26)

where ED(·, ·) is the edit-distance function between two
transcriptions, Ỹ (n,m)

1:t is a substring of Ỹ (n,m) from index
1 to t, |Y (n)| is the ground-truth length, and T is the sample
transcription Ỹ (n,m) length. Intuitively, we calculate whether
the current new transcription at time-t decreases the edit-
distance compared to previous transcriptions and multiply it
by -1 for a positive reward if our new edit-distance at time t
is smaller than the previous t − 1 edit-distance. Also, at the
end-of-sentence at time-T , we give a penalty based on the
final edit-distance between the sample and the ground-truth
transcription. In Fig. 6, we illustrate our reward scoring at
each time-step from different trajectory samples.

In most cases, the current selected action affects future
states and actions as well. Therefore, we should also account
for some of the future rewards in the current time-step.
Reward R(n)

t can be written:

R
(n,m)
t =R(Ỹ (n,m), Y (n), t)

+ γR(Ỹ (n,m), Y (n), t+ 1)

+ γ2R(Ỹ (n,m), Y (n), t+ 2) + ...

+ γT−tR(Ỹ (n,m), Y (n), T), (27)

where γ is the discount factor.
Additionally, since the REINFORCE estimator has high

variance and could cause instability in the training stage, we
apply the following normalization for reward R(n,m):

R
(n,m)
t =

R(Ỹ (n,m), Y (n), t)− µ(n,t)

σ(n,t)
if 1 ≤ t < T

R(Ỹ (n,m), Y (n), t)− µ(n,</s>)

σ(n,</s>)
if t = T ,

(28)

where µ(n,t), σ(n,t) is the reward mean and standard devia-
tion for all samples at the t-th timestep, µ(n,</s>), σ(n,</s>)

is the reward mean and standard deviation for all the samples

FIGURE 6: Based on Eq. 26, we provide an example for how
to calculate the reward for each sample trajectory.

at the end of the transcription (denoted with <\s>), and T
is the sample transcription Ỹ (n,m) length. We separate the
mean and the standard deviations between <\s> and non-
<\s> labels because the reward function (Eq. 26) has differ-
ent ways to calculate the reward. We provide the pseudocode
for calculating token-level reward in Algorithm 3.

Algorithm 2 Pseudo-code for policy gradient with sentence-
level reward R

1: procedure LOSSPGSENTENCE(Speech features x,
ground-truth text y_gold, sample size M, vocab size V)

2: l_s_logp, l_s_act = Sample(x, M, V)
. Algorithm 1

3: l_r = []
4: for m in [1..M] do
5: # Calculate reward between ground-truth and

each sample
6: l_r.add(R(y_gold, l_s_act[m])) .

Eq. 24
7: end for
8: # Reward normalization
9: l_r = (l_r - mean(l_r)) / std(l_r) . Eq. 25

10: # Calculate loss and update θASR model
11: L = 0
12: for m in [1..M] do
13: for t in [1..len(l_s_act[m])] do
14: L += -l_s_logp[m, t] * l_r[m]
15: end for
16: end for
17: θASR = Optim(θASR,∇θASR

L) . update ASR
parameters

18: end procedure

VI. EXPERIMENT

VOLUME 4, 2016 7

Tjandra et al.: End-to-End ASR Sequence Training with RL

Algorithm 3 Pseudocode for policy gradient with token-level
reward Rt

1: procedure LOSSPGTOKEN(Speech features x, ground-
truth text y_gold, sample size M, discount factor γ,
vocab size V)

2: l_s_logp, l_s_act = Sample(x, M, V)
. Algorithm 1

3: l_r = [[] for _ in [0..M]]
4: for m in [1..M] do
5: for t in [1..len(l_s_act[m])] do
6: # Calculate reward between ground-truth

and each sample at time-t
7: l_r[m].add(R(l_s_act[m],

y_gold, t)) . Eq. 26
8: end for
9: end for

10: # Calculate discounted reward
11: for m in [1..M] do
12: R = 0
13: for t in [len(l_s_act[m]) .. 1] do
14: R = l_r[m, t] + γ * R
15: l_r[m, t] = R
16: end for
17: end for
18: # Reward normalization
19: l_r = normalization(l_r) . Eq. 28
20: # Calculate loss and update θASR model
21: for m in [1..M] do
22: for t in [1..len(l_s_act[m])] do
23: L += -l_s_logp[m, t] * l_r[m, t]
24: end for
25: end for
26: θASR = Optim(θASR,∇θASR

L) . update ASR
parameters

27: end procedure

A. SPEECH DATASET AND FEATURE EXTRACTION
We evaluate our proposed method using Wall Street Journal
dataset (WSJ) [19]. Following Kaldi s5 recipe [20], we use
same training, validation and test sets partition. For the
training, we a smaller set (train_si84) for preliminary and
faster experiment, then later we use full set (train_si284). The
speech features are computed with 80-dimension log Mel-
filterbank with 25 ms window width and 10 ms window step.
The text transcription are tokenized into characters, which
contains alphabet, space, dashes, periods, apostrophes, noise
and end-of-sentence (</s>). We describe the details for such
as number of utterances, duration and unique speakers for
each set on WSJ in Table 1.

B. MODEL ARCHITECTURE
Our encoder input is a sequence of Mel-frequency spec-
trogram with 80 dimensions. For each frame, the input is
projected by a dense linear layer with 512 output units and
transformed by leaky rectifier unit (LeakyReLU) [38] as the

TABLE 1: WSJ subset information

Subset Utterances Duration Speakers
train_si84 7138 16 h 83
train_s284 38154 80 h 282
eval_dev93 503 65 m 10
eval_test92 333 42 m 8

non-linear activation function. Later, the output from dense
linear layer was processed by three bi-directional LSTMs [8]
(bi-LSTM) with 512 hidden units (256 hidden units for each
direction). We apply hierarchical sub-sampling [5], [2] by a
factor of 2 for all bi-LSTM output and the final encoder states
has T/8 length compared to the original speech features. This
trick is useful to reduce the computation time and memory
usage for seq2seq model.

Our decoder has an autoregressive form which takes the
character output from the previous time-step as the current
time-step input. Every character is projected by a continu-
ous vector via character embedding with 128 dimensions.
Later, one uni-directional LSTM with 512 units project the
character vector. The attention module with MLP scorer
(256 units projection layer) calculates the context vector ct,
concatenated with the LSTM output and finally projected into
a categorical probability distribution with a softmax layer. To
optimize our seq2seq ASR model, we use Adam [11] with
learning rate lr = 0.0005.

We have two steps of training seq2seq ASR. First, we pre-
train seq2seq ASR by minimizing NLL criterion (Eq. 10)
via teacher forcing generation until the loss is stable and
converged. Later, we continue the training by summing the
RL objective with the NLL criterion at the same time until
the character error rate (CER) in the dev set stops decreasing.

We use beam-search (beam-size = 5) decoding to transcript
the speech utterance in the testing step. Each beam score
is calculated by their log probability logP (Y |X; θ) and
divided by the hypothesis length to prevent the top-K beams
promoting shorter hypothesis. In this work, we did not utilize
any lexicon dictionary or language model. We use Pytorch 1

library to implement our model and loss function.

1PyTorch https://github.com/pytorch/pytorch/

8 VOLUME 4, 2016

Tjandra et al.: End-to-End ASR Sequence Training with RL

VII. RESULTS AND DISCUSSION

TABLE 2: Character error rate (CER) report from WSJ
train_si84 set (small set), comparing the result between base-
line (without RL) and proposed method (NLL + RL). All
decoding results were produced without additional language
model or lexicon dictionary.

Models Results
WSJ-SI84 CER (%)

NLL
CTC [10] 20.34 %
Seq2Seq Content [10] 20.06 %
Seq2Seq Location [10] 17.01 %
Joint CTC+Att (MTL) [10] 14.53 %
Seq2Seq (ours) 17.68 %

NLL + RL
Seq2Seq + RL
(sentence-level R, M = 5) 16.88 %

Seq2Seq + RL
(sentence-level R, M = 10) 15.38 %

Seq2Seq + RL
(sentence-level R, M = 15) 15.21 %

Seq2Seq + RL
(token-level Rt, M = 5, γ = 0) 15.17 %

Seq2Seq + RL
(token-level Rt, M = 5, γ = 0.5) 15.34 %

Seq2Seq + RL
(token-level Rt, M = 5, γ = 0.95) 14.75 %

Seq2Seq + RL
(token-level Rt, M = 10, γ = 0) 15.08 %

Seq2Seq + RL
(token-level Rt, M = 10, γ = 0.5) 14.45 %

Seq2Seq + RL
(token-level Rt, M = 10, γ = 0.95) 14.29 %

Seq2Seq + RL
(token-level Rt, M = 15, γ = 0) 14.99 %

Seq2Seq + RL
(token-level Rt, M = 15, γ = 0.5) 14.25 %

Seq2Seq + RL
(token-level Rt, M = 15, γ = 0.95) 13.92 %

Table 2 shows the ASR performance on the WSJ-SI84. Here,
we compare our proposed model (NLL + RL) with the
baseline (without RL). Our baseline model is an attention
encoder-decoder that was only trained with the NLL objec-
tive. In addition, we also compared our results with several
published models, including CTC, standard seq2seq, and the
Joint CTC-Attention model trained with the NLL objective.
The main difference between our seq2seq model with others
is that our decoder calculates the attention probability and
context vector based on the current hidden state instead of
the previous hidden state. Furthermore, we also reused the
previous context vector by concatenating it with the input
embedding vector.

We ran various experiments with different scenarios:
• Reward types:

1) sentence-level reward (Sec. V-A)
2) token-level reward (Sec. V-B)

• Sample sizes:

FIGURE 7: CER (%) comparisons between different sample
sizes M

FIGURE 8: CER (%) comparison between different reward
types and discount factors γ.

1) M = 5
2) M = 10
3) M = 15

• Discount factors (for token-level reward):
1) γ = 0
2) γ = 0.5
3) γ = 0.95

To show the effect of different sample sizes, we plotted
the performances into different lines with respect to the
CER in Fig. 7. From another perspective, we also provided
Fig. 8 to compare the performances within different reward
formulations and discount factors.

Based on the result in Table 2, we observed the following:
1) Increasing sample size M from 5 to 10 and 10 to

15 generally improved the performance. Unfortunately,
the training time also increased linearly with sample

VOLUME 4, 2016 9

Tjandra et al.: End-to-End ASR Sequence Training with RL

size M .
2) Token-level reward improved the performance more

than the model trained with the sentence-level reward.
3) Discount factor γ = 0.95 provided a better result than

γ = 0.5 and γ = 0.0 in most cases.
Next we extended our experiment on WSJ train_si284,

which is much larger than train_si84. Since our previous ob-
servation about the train_si84 dataset concluded that sample
M = 15 gave a better result than any smaller sample size, we
fixed our sample size to M = 15.

TABLE 3: Character error rate (CER) report from WSJ
train_si284 set (large set), comparing the result between
baseline (without RL) and proposed method (NLL + RL). All
decoding results were produced without additional language
model or lexicon dictionary.

Models Results
WSJ-SI284 CER (%)

MLE
CTC [10] 8.97 %
Seq2Seq Content [10] 11.08 %
Seq2Seq Location [10] 8.17 %
Joint CTC+Att (MTL) [10] 7.36 %
Seq2Seq (ours) 7.69%

MLE+RL
Seq2Seq + RL
(sentence-level R) 7.26%

Seq2Seq + RL
(token-level Rt, M = 15, γ = 0) 6.64 %

Seq2Seq + RL
(token-level Rt, M = 15, γ = 0.5) 6.37 %

Seq2Seq + RL
(token-level Rt, M = 15, γ = 0.95) 6.10 %

We provide the result from WSJ train_si284 in Table 3.
From the table, we could observe that the combination be-
tween NLL teacher forcing and RL objective significantly
improve the seq2seq ASR performance compared to a model
trained by NLL teacher forcing only. For both train_si84 and
train_si284 dataset, the best discount factor for token-level
reward is γ = 0.95.

VIII. RELATED WORK
Reinforcement learning is one of important types of machine
learning where an agent that interacts with its environment
learns how to maximize the rewards using feedback signals.
Reinforcement learning have been successfully applied in
many applications, including building an agent that can learn
how to behave in environment and play a game without
having any explicit knowledge [16], [25], control tasks in
robotics [12], and dialogue system agents [26], [14].

Not limited to those areas, reinforcement learning has
also been adopted for improving end-to-end deep learning
architecture. To date, Ranzato et al. [21] proposed to com-
bine REINFORCE with an MLE training objective called
MIXER. In the early stage of training, the first s steps
were trained with MLE and the remaining T -s steps with
REINFORCE. They decreased s as the training progress

over time. By using REINFORCE, they trained the model
using non-differentiable task-related rewards (e.g., BLEU for
machine translation). In this paper, we did not need to deal
with any scheduling or mix any sampling with the teacher-
forcing ground-truth. Furthermore, MIXER did not sample
multiple sequences based on the REINFORCE Monte Carlo
approximation.

In machine translation tasks, Shen et al. [24] could im-
prove the neural machine translation (NMT) model using
Minimum Risk Training (MRT). A Google NMT [37] sys-
tem combined MLE and MRT objectives to achieve better
results. In ASR tasks, Shanon et al. [23] performed WER
optimization by sampling paths from the lattices that were
used during sMBR training, which seemingly resembles the
REINFORCE algorithm. But the work was only applied to
a CTC-based model. From a probabilistic perspective, MRT
formulation resembles the expected reward formulation used
in reinforcement learning. Here, MRT formulation equally
distributed the sentence-level loss into all of the time-steps
in the sample. To the best of our knowledge, we are the first
to publish the work on optimizing attention-based encoder-
decoder ASR with reinforcement learning approach [31].
Later on, similar work is also published by Karita et al. [9].
The main difference between our work and their work is the
design of the reward function and the sampling process.

This paper is the extension from our previous work [30],
[29]. On this paper, we provide a more detailed description
of our proposed method and more comparison to observe
the correlation between RL hyperparameters and the perfor-
mance improvement. Finally, we found that using token-level
reward is more effective for training our system compared to
sentence-level reward or loss. Therefore, we proposed a tem-
poral structure and applied token-level rewardRt. Our results
demonstrate that we improved our performance significantly
compared to the baseline system.

IX. CONCLUSION
This paper introduced an alternative strategy for training
end-to-end ASR models by integrating an idea from rein-
forcement learning. Our proposed method integrates: (1) the
power of sequence-to-sequence approaches to learn mapping
between speech signals and text transcription; and (2) the
strength of reinforcement learning to directly optimize the
model with ASR performance metrics. Here, several different
scenarios for training with RL-based objectives are explored
with various reward functions, sample sizes, and discount
factors. Experimental results reveal that by combining RL-
based objectives with MLE objectives, our model perfor-
mance could significantly improve in comparison to the
model that just trained with MLE objectives. The best system
achieved up to 6.10% CER in WSJ-SI284 using token-level
rewards, sample size M = 15, and discount factor γ = 0.95.

X. ACKNOWLEDGEMENT
Part of this work was supported by JSPS KAKENHI Grant
Numbers JP17H06101 and JP17K00237.

10 VOLUME 4, 2016

Tjandra et al.: End-to-End ASR Sequence Training with RL

REFERENCES
[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[2] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-
to-end attention-based large vocabulary speech recognition,” in Proc.
ICASSP, 2016. IEEE, 2016, pp. 4945–4949.

[3] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,” in
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE Interna-
tional Conference on. IEEE, 2016, pp. 4960–4964.

[4] M. Gales, S. Young et al., “The application of hidden markov models
in speech recognition,” Foundations and Trends R© in Signal Processing,
vol. 1, no. 3, pp. 195–304, 2008.

[5] A. Graves et al., Supervised sequence labelling with recurrent neural
networks. Springer, 2012, vol. 385.

[6] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction techniques
for gradient estimates in reinforcement learning,” Journal of Machine
Learning Research, vol. 5, no. Nov, pp. 1471–1530, 2004.

[7] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural networks
for acoustic modeling in speech recognition,” IEEE Signal processing
magazine, vol. 29, 2012.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] S. Karita, A. Ogawa, M. Delcroix, and T. Nakatani, “Sequence training
of encoder-decoder model using policy gradient for end- to-end speech
recognition,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), April 2018, pp. 5839–5843.

[10] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based end-to-
end speech recognition using multi-task learning,” in Acoustics, Speech
and Signal processing (ICASSP), 2017 IEEE International Conference on.
IEEE, 2017.

[11] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[12] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey,” in
Reinforcement Learning. Springer, 2012, pp. 579–610.

[13] P. Koehn, Statistical machine translation. Cambridge University Press,
2009.

[14] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky,
“Deep reinforcement learning for dialogue generation,” arXiv preprint
arXiv:1606.01541, 2016.

[15] A. Mnih and K. Gregor, “Neural variational inference and learning in
belief networks,” in Proceedings of the 31st International Conference on
International Conference on Machine Learning-Volume 32. JMLR. org,
2014, pp. II–1791.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 02
2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[17] R. Nallapati, B. Zhou, C. dos Santos, C. Gulcehre, and B. Xiang, “Abstrac-
tive text summarization using sequence-to-sequence rnns and beyond,” in
Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning, 2016, pp. 280–290.

[18] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting on association for computational linguistics. Association
for Computational Linguistics, 2002, pp. 311–318.

[19] D. B. Paul and J. M. Baker, “The design for the Wall Street Journal-
based CSR corpus,” in Proceedings of the Workshop on Speech and
Natural Language, ser. HLT ’91. Stroudsburg, PA, USA: Association
for Computational Linguistics, 1992, pp. 357–362. [Online]. Available:
http://dx.doi.org/10.3115/1075527.1075614

[20] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer,
and K. Vesely, “The Kaldi speech recognition toolkit,” in IEEE 2011
Workshop on Automatic Speech Recognition and Understanding. IEEE
Signal Processing Society, Dec. 2011, iEEE Catalog No.: CFP11SRW-
USB.

[21] M. A. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level
training with recurrent neural networks,” arXiv preprint arXiv:1511.06732,
2015.

[22] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85–117, 2015.

[23] M. Shannon, “Optimizing expected word error rate via sampling for
speech recognition,” arXiv preprint arXiv:1706.02776, 2017.

[24] S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu, “Minimum
risk training for neural machine translation,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL
2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.
[Online]. Available: http://aclweb.org/anthology/P/P16/P16-1159.pdf

[25] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al.,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[26] S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker, “Reinforcement
learning for spoken dialogue systems,” in Advances in Neural Information
Processing Systems, 2000, pp. 956–962.

[27] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in neural information processing systems,
2014, pp. 3104–3112.

[28] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[29] A. Tjandra, S. Sakti, and S. Nakamura, “Sequence-to-sequence asr opti-
mization via reinforcement learning,” in 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), April 2018,
pp. 5829–5833.

[30] ——, “Attention-based wav2text with feature transfer learning,” in 2017
IEEE Automatic Speech Recognition and Understanding Workshop,
ASRU 2017, Okinawa, Japan, December 16-20, 2017, 2017, pp. 309–315.
[Online]. Available: https://doi.org/10.1109/ASRU.2017.8268951

[31] ——, “Sequence-to-sequence asr optimization via reinforcement learn-
ing,” arXiv preprint arXiv:1710.10774, 2017.

[32] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3156–3164.

[33] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-
end speech synthesis,” arXiv preprint arXiv:1703.10135, 2017.

[34] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[35] R. J. Williams, “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp.
229–256, 1992.

[36] R. J. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networks,” Neural computation, vol. 1, no. 2, pp.
270–280, 1989.

[37] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural ma-
chine translation system: Bridging the gap between human and machine
translation,” arXiv preprint arXiv:1609.08144, 2016.

[38] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” arXiv preprint arXiv:1505.00853,
2015.

[39] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International Conference on Machine Learning,
2015, pp. 2048–2057.

[40] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech
synthesis,” Speech Communication, vol. 51, no. 11, pp. 1039–1064, 2009.

ANDROS TJANDRA received a B.E. degree in
Computer Science (cum laude) from the Faculty
of Computer Science, Universitas Indonesia, In-
donesia in 2014 and a M.S. (cum laude) in 2015
from the same faculty and university. He is cur-
rently a doctoral student at the Graduate School
of Information Science, Nara Institute of Technol-
ogy, Japan. He is a student member of ASJ. His
research interests include machine learning (deep
learning), speech recognition, speech synthesis,

and natural language processing.

VOLUME 4, 2016 11

Tjandra et al.: End-to-End ASR Sequence Training with RL

SAKRIANI SAKTI is a research associate pro-
fessor at the Augmented Human Communication
Laboratory, NAIST, Japan, as well as a research
scientist at RIKEN, Center for Advanced Intel-
ligent Project AIP, Japan. She received her B.E.
degree in Informatics (cum laude) from Bandung
Institute of Technology, Indonesia, in 1999. In
2000, she received DAAD-Siemens Program Asia
21st Century Award to study in Communication
Technology, University of Ulm, Germany, and re-

ceived her MSc degree in 2002. During her thesis work, she also worked
with Speech Understanding Department, aimlerChrysler Research Center,
Ulm, Germany. Between 2003-2009, she worked as a researcher at ATR
SLC Labs, Japan, and during 2006-2011, she worked as an expert researcher
at NICT SLC Groups, Japan. While working with ATR-NICT, Japan, she
continued her study (2005-2008) at University of Ulm, Germany, and
received her PhD degree in 2008. She was actively involved in collaboration
activities such as Asian Pacific Telecommunity Project (2003-2007), A-
STAR and U-STAR (2006-2011). In 2009-2011, she served as a visiting
professor of Computer Science Department, University of Indonesia (UI),
Indonesia. From 2011, she has been an assistant professor at the Augmented
Human Communication Laboratory, NAIST, Japan. She served also as a
visiting scientific researcher of INRIA Paris-Rocquencourt, France, in 2015-
2016, under “JSPS Strategic Young Researcher Overseas Visits Program for
Accelerating Brain Circulation”. In 2011-2017, she served as an assistant
professor at the Augmented Human Communication Laboratory, NAIST,
Japan. Now she is a research associate professor at the Augmented Human
Communication Laboratory, NAIST, Japan, as well as a research scientist
at RIKEN, Center for Advanced Intelligent Project AIP, Japan. She is a
member of JNS, SFN, ASJ, ISCA, IEICE and IEEE.

SATOSHI NAKAMURA is Professor at the Grad-
uate School of Information Science, Nara Institute
of Science and Technology, Japan, Honorarpro-
fessor of Karlsruhe Institute of Technology, Ger-
many, and ATR Fellow. He received his B.S. from
Kyoto Institute of Technology in 1981 and Ph.D.
from Kyoto University in 1992. He was Associate
Professor of Graduate School of Information Sci-
ence at Nara Institute of Science and Technology
in 1994-2000. He was Director of ATR Spoken

Language Communication Research Laboratories in 2000-2008 and Vice
president of ATR in 2007-2008. He was Director General of Keihanna
Research Laboratories and the Executive Director of Knowledge Creating
Communication Research Center, National Institute of Information and
Communications Technology, Japan in 2009-2010. He is currently Director
of Augmented Human Communication laboratory and a full professor of
Graduate School of Information Science at Nara Institute of Science and
Technology. He is interested in modeling and systems of speech-to-speech
translation and speech recognition. He is one of the leaders of speech-
to-speech translation research and has been serving for various speech-
to-speech translation research projects in the world including C-STAR,
IWSLT and A-STAR. He received Yamashita Research Award, Kiyasu
Award from the Information Processing Society of Japan, Telecom System
Award, AAMT Nagao Award, Docomo Mobile Science Award in 2007,
ASJ Award for Distinguished Achievements in Acoustics. He received the
Commendation for Science and Technology by the Minister of Education,
Science and Technology, and the Commendation for Science and Tech-
nology by the Minister of Internal Affairs and Communications. He also
received LREC Antonio Zampoli Award 2012. He has been Elected Board
Member of International Speech Communication Association, ISCA, since
June 2011, IEEE Signal Processing Magazine Editorial Board Member since
April 2012, IEEE SPS Speech and Language Technical Committee Member
since 2013, and IEEE Fellow since 2016.

12 VOLUME 4, 2016

