
Lighting Research at Bungie

Hao Chen

Natalya Tatarchuk

Advances in Real-Time Rendering in 3D Graphics and Games,

Siggraph 2009, New Orleans, LA



Talk Outline

• Introduction

• Real-time Lighting

• Pre-computed Lighting



Pre-computed Global Illumination



Real-time Lighting

in Games



Trends

• Pipeline quality == graphics quality

• Artistic style over photo-realism

• Real time lighting is getting more GI

• GPGPU is tangible and real



R&D Focus

• Content Pipeline

• Artistic Vision And Style

• End-user Experience

• Scalable Technology



Two Research Directions
GPU Pre-computation

Real-time Lighting



Real-Time Lighting



Sky and Atmosphere

Advances in Real-Time Rendering in 3D Graphics and Games



Previous Model

• [PSS99][PreethamHoffman03]

• Offline pre-computed sky texture

• Real-time scattering

• Single scattering only

• Viewable from ground 

only



Current Model

• [BrunetonNeyret2008]

• Single and multiple scattering

• Pre-computation on the GPU

• Viewable from space

• Light shafts



Raleigh Scattering



Raleigh Scattering

• Small particles scattering (air):               where 

• Chromatic dependency: 

where 

• Depends on altitude, wavelength, molecular density
at sea level, and atmospheric density

[Elek08]
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Mie Scattering



Mie Scattering
• Light scattering on larger particles 

 Achromatic – λ-independence

• Phase function is strongly 
anisotropic 

• Analytical approximation by 
Cornette-Shanks:

[Elek08]
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Rendering Equation for the Atmosphere

• x – viewer, v – view direction, s – sun direction

• Account for:
• Direct sun light L0

• Reflected light at point being shaded (x0) R[L]

• Inscattered light S[L] (toward the viewer)

• Accurate solution is non-trivial to compute in real-time 
still

       svxsvx ,,,, 0 LSLRLL 



Direct Sun Light Computation

• Direct sunlight is attenuated by transmittance 

function before reaching the viewer

• Accounts for occlusions 
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Reflected Light

• Reflected light is attenuated by the transmittance

• Depends on the light I[L] reflected at x0

• Reflected light is null on the top atmosphere 

boundary
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Inscattered Light

• Light scattered towards the viewer between the 

point being shaded and the viewer

• Depends on the transmittance T and the radiance J

of light scattered toward the viewer
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Pre-computation

• Store pre-computed look-up tables as textures

• Use GPU to generate the textures

Irradiance (r, muS)

Irradiance (r, muS)

Inscatter (r, mu, muS, nu)Transmittance (r, mu)



Different Atmospheres



Time Of Day



Atmosphere Seen From Space



Sky Light
• [BrunetonNeyret2008] used a single color for sky 

irradiance

• For distant mountains / objects, just use that

• Better approximation for close-up geometry:

• Use CIE sky luminance distribution

• Scale by the pre-computed irradiance

• Project to SH per azimuth angle

• Fit the coefficients with a polynomial

• Render with PRT for GI look



CIE Standard Luminance Distribution



Direct Illumination Only



CIE Sky Illumination in SH



Sky Light with PRT



Shadows



Shadow Mapping in Games

• Shadow mapping is now fairly common in latest video 
games

• A number of practical production issues remain for high 
quality stable shadows:
• Managing aliasing due to resolution and projection

• Open-world scenarios now frequently resort to a variant of 
cascade shadow mapping
• Used for resolution management

• Unfortunately, cascading doesn‟t solve projection, or sampling, 
aliasing artifacts



Sampling Aliasing
- Currently, sampling approached are typically resolved 

via PCF [Reeves et al. 1987] for soft shadows results

- Filter shadow test results

- Often combined with a rotated Poisson disk filter

- Expensive at run-time 

- Requires a lot of samples to hide visible 

structure patterns

- Linear in cost in terms of # of samples



Shadow Mapping [RSC87]

• Heaviside step function: H(dr - do) where dr is the receiver depth, and do is the   

occluder depth. 

• 1 means no shadows (fully lit) and 0 means completely in shadow.
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Shadow Prefiltering 

• Linearly filterable shadow test

• Reformulate shadow filtering test to support 
pre-filtering

• A number of recent techniques designed to 
address this:

• Variance Shadow Maps [Donnelly / Lauritzen
06]

• Convolution Shadow Maps [Annen et al 2007]

• Exponential Shadow Maps [Annen et al 2008] 
[Salvi 2008]

[Annen*08

]

[DonnellyLauritzen06]

[Salvi08

]



Shadow Test Reformulation

• Separate the terms for occluder and receiver 

• Thus we can pre-filter occluder terms with hardware 

mipmapping and with image-space blurs for soft 

shadows

• Depth bias no longer necessary to alleviate 

„shadow acne‟

• Due to the changed shadow test



Probabilistic Shadow Test

• Inspired by the Deep Shadow Maps 

[LocovicVeach2000]

• Probability that a given sample is in shadow, 

given current receiver & occluder depths

• do becomes a random variable

• Represents the occluder depth distribution function

• dr is the current receiver depth

 ror dddf  Pr)(

[LocovicVeach00]



• Binary test becomes a probability distribution function

• Probability current fragment is in shadow 

• is derived from two moments:

and 
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Variance-Based Shadow Test



• Use Chebyshev‟s inequality as upper bound for 

the test:
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Variance Shadow Map Approach 

Pros
• Image-space & hardware filtering for soft shadows

• Alleviates depth bias artifacts for polygons that 

span depth ranges

• Especially when filtering



Variance Shadow Map Approach 

Cons
• Twice the memory of the regular shadow map

• Light bleeding in areas of high depth complexity

• Exacerbated by filtering with large kernels

• Variance is increased with large blurs



Variance Shadow Maps: Light Bleeding



Light Bleeding Fix-up

• All shadow test results below some minimum 

variance pmin get clamped to 0

• The rest of the range rescaled to [0..1]

• Removes light bleeding 

• But similarly to dilation, this „fattens‟ up shadows

• Especially when applying large blurs



Can We Do Better?

• Two moments simply do not provide enough 
information to fully reconstruct the shadow test

• We don‟t know the distribution function a priori

• Recall that nth moment can be expressed as 

• However, we don‟t want to just render n moments 

• 2 channels of 16F or 32F textures is hurtful enough
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Exponential Shadow Map Test

• Assume 

• Shadow test becomes

• Approximate by using a large positive constant c:

• Clamp result to [0..1] range to 
ensure correct results
• Fixes up some regions where the assumption

does not hold
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Exponential Shadow Map Prefiltering

• Separate terms which depend on occluder and 
receiver depths:

• Convolving                  with a filter kernel    : 

• Allows filtering of only the occluder terms == prefiltering
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Exponential Shadow Map Benefits

1. Extremely easy to implement:

a) Render the exponential of occluder depth

b) Prefilter

c) Using mip maps and/or applying separable 

Gaussian blurs

d) Reconstruct ESM test at run-time



ESM Shadow Test Computation
float ComputeESM( float2 vShadowMapUVs, float fReceiverDepth,

float fCascadeIndex )

{

// Filtered look up using mip mapping

float fOccluderExponential = tCascadeShadowMaps.Sample( 

sShadowLinearClamp, 

float3(vShadowMapUVs,fCascadeIndex)).r;

float fReceiverExponential = exp( -fESMExponentialMultiplier * 

fReceiverDepth );

float fESMShadowTest = fOccluderExponential * fReceiverExponential;

return saturate(fESMShadowTest);

}



Exponential Shadow Map Benefits

2. Solves biasing problems („shadow acne‟) that 

exist with regular shadow maps 

3. Excellent soft shadows visual results with even 

small filters 

a) For example, a 5x5 separable Gaussian



Exponential Shadow Map Benefits

4. Only uses a single channel texture 

5. Deals well with scene depth complexity

• Not based on variance 

• Thus light bleeding due to depth variance 
doesn‟t show up

• Doesn‟t get exacerbated with wider filter 
kernels



Thought We’re Done? 

• Not yet, unfortunately.

• Let‟s look at the shadow test again:

[Annen*08]



Thought We’re Done? 

• Small values for c only work in scenes with low 

depth complexity

• Otherwise we see a lot 

of light leaking artifacts

[Annen*08]



Thought We’re Done? 

• However, larger values of c such as c = 80 demand 

high precision floating-point buffers

• c ~= 88 is the maximum value for 32F; otherwise 

overflow



ESM Light Leaking Example 



ESM Logarithmic Space Filtering

• Render linear depth instead of the exponential

• Filter in log space

• Let‟s expand the filtering operation on occluder 

depths:
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ESM Logarithmic Space Filtering

• For 3 samples, we have:

• Since                     we can write: 
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ESM Logarithmic Space Filtering

• Generalizing to N samples:

• This replaces the standard Gaussian or box filter 

summation 

• Weights are from the Gaussian filter kernel

• Instead of regular summation, compute the result above, summing 

over the samples
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ESM Logarithmic Space Filtering

• Allows us to use 16F texture format with high values 

for c 

• During the actual filtering operation we have at least 24 

bit precision (on consoles) and 32 bit on most recent PC 

hardware

• Every little bit helps 

• Pun intended! 



Thought We’re Done?TM

• Furthermore,  ESM shadow test has the following 
limitation:

• As                 ,

• Thus we see contact light leaking 
with ESM
• In places where the occluder is near the receiver

• Turns out this is a fairly frequent occurrence
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Contact Leaking Reduction 

• A brute-force solution is to over-darken the results of 

shadow test based on occluder-receiver proximity



ESM Over Darkening

• That works fine – so long as we do not prefilter 

shadows



ESM Over Darkening with Filtering

• Results in “fat & stylized shadows”



Cascade Shadow Maps & Prefiltered 

Shadow Formulations

• At first glance, cascade shadow maps are orthogonal 

to prefiltered shadow maps

• One manages shadow map resolution, the other – filtering / 

sampling

• However, in practice we encounter the need for 

additional fix-ups for using VSM / ESM with cascades

• Specifically with regards to selection of cascade frustum



Typical Cascade Frustum Selection
int GetInitialFrustumIndex( float3 vPositionWS )
{

float fPosZ = -mul( mCascadeViewMatrix, float4(vPositionWS,1.0f)).z;

int nFrustumIndex= 0;

if ( fPosZ <= vFarBounds[0] )
{

nFrustumIndex = 0;
}
else if ( fPosZ <= vFarBounds[1] )
{

nFrustumIndex = 1;
}
else if ( fPosZ <= vFarBounds[2] )
{

nFrustumIndex = 2;
}
else
{

nFrustumIndex = 3;
}
nFrustumIndex = min( nFrustumIndex, NUM_CASCADES );
return nFrustumIndex;

}



Prefiltered Shadow Cascade Selection 

• Need to make sure that every fragment in a pixel quad 

chooses the same cascade frustum

• This is required so that derivatives are meaningful and mip 

selection is correct

• Necessary for ESM / VSM whenever we use mip mapping

• Want to select the same frustum index for all fragments in 

the same quad



Artifacts Due to Incorrect Cascade 

Selection with Prefiltered Shadows

A ”traveling” line of „flipped‟ shadow test result along the boundary of cascade frustums



A ”traveling” line of „flipped‟ shadow test result along the boundary of cascade frustums

Artifacts Due to Incorrect Cascade 

Selection with Prefiltered Shadows



Prefiltered Shadow Cascade Selection 
float4 ComputePrefilteredCascadesShadowPositionAndFrustumIndex ( float3 vPosWS )

{

int nFrustumIndex = GetInitialFrustumIndex( vPositionWS );

const int aLog2LUT[8] = { 0, 1, 1, 2, 2, 2, 2, 3 };

int n2PowFrustumIndex  = 1 << nFrustumIndex;

// Now determine the difference across pixels in the quad:

int nFrustumIndexDX = abs( ddx( n2PowFrustumIndex ));

int nFrustumIndexDY = abs( ddy( n2PowFrustumIndex ));

int nFrustumIndexDXDY = abs( ddx( nFrustumIndexDY ));

// This quantity will be _the same_ for all pixels across the quad,

// which is what allows us to consistently select frustum index for 

// all pixels in the quad:

int nMaxDifference = max( nFrustumIndexDXDY, max( nFrustumIndexDX,   

nFrustumIndexDY ) );

// If the derivatives are zero across the quad, we can simply use the original 

// frustum index. If there are differences, we will recover the desired 

// frustum index by looking up into the log table:

nFrustumIndex = nMaxDifference > 0 ? aLog2LUT[nMaxDifference-1]:nFrustumIndex;  

return ComputeCascadeSamplingParameters( vPositionWS, nFrustumIndex )

}



Let’s Fix Contact Leaking – Round 2

• Another thing we can try is to have tighter depth 

range for each cascade

• Clamp the depth / z range to the bounding volume of the 

cascade frustum in light space

• What happen to occluders outside the bounds?



Let’s Make Pancakes –
Shadow Pancakes, Of Course!

• As we clamp, the occluders 

outside of the bounding volume 

are flattened onto the near / far 

plane of the frustum bounding 

box 

• Aka the „shadow pancakes‟



Let’s Make Pancakes –
Shadow Pancakes, Of Course!

 When the occluder object is outside the viewing 

frustum we don‟t care about the actual depth of the 

occluder

 Just  need to know its effect on the rest of the scene

 Is it going to shadow the objects within the cascade frustum?

 Can‟t see these occluders any way



ESM Z-Range Clamping Comparison: Off



ESM Z-Range Clamping Comparison: On



ESM with Z-Range Clamping and NO filtering

• Discover a new problem… with filtering



ESM with Z-Range Clamping and Filtering

Artifacts due to filtering!



EVSM with Depth Warps

• Can we do better? Yes, we can – using Exponential 
Variance Shadow Maps (EVSM)

• Combines the benefits of ESM and VSM

• Significantly alleviates contact leaking artifacts 

• At increased memory cost (4X!)

• Light bleeding at high variance areas re-appears
• However, this can be easily reduced (especially as compared to VSMs)

• No need to clamp the depth range 



EVSM
float ComputeEVSM( float2 vShadowMapUVs, float fReceiverDepth, float fCascadeIndex ) { 

//depth should be 0 to 1 range.
float2 warpedDepth = WarpDepth(fReceiverDepth);
float  posDepth = warpedDepth.x;
float  negDepth = warpedDepth.y;

float4 occluder = tCascadeShadowMaps.Sample( sShadowLinearClamp,  
float3( vShadowMapUVs, fCascadeIndex ));

float2 posMoments = occluder.xz;
float2 negMoments = occluder.yw;

// compute derivative of the warping function at depth of pixel and use it to scale min 
// variance
float posDepthScale = fESMExponentialMultiplier * posDepth;
float posMinVariance = VSM_MIN_VARIANCE * posDepthScale * posDepthScale;
float negDepthScale = fESMExponentialMultiplier2 * negDepth;
float negMinVariance = VSM_MIN_VARIANCE * negDepthScale * negDepthScale;

//compute two Chebyshev bounds, one for positive and one for negative, and takes the  
// minimum
float shadowContrib1= ComputeChebyshevBound(posMoments.x, posMoments.y, posDepth, 

posMinVariance);
float shadowContrib2= ComputeChebyshevBound(negMoments.x, negMoments.y, negDepth, 

negMinVariance);
return min(shadowContrib1, shadowContrib2);
}



EVSM Without Depth Range Clamping



EVSM with Depth Range Clamping



Conclusions on Shadows

• No perfect and inexpensive solution exists at the 

moment (at least not yet)

• Presented a grab-bags of techniques – pick and 

choose to suit the needs of your game

• Tried to provide the intuition behind the solutions 

and hacks



GPU Pre-computed Lighting



Motivation

• Exploit massive parallelism of GPU architecture

• Take advantage of GPGPU advances

• Integrated workflow

• High quality global illumination

• Possible path to the future



Goals/Requirements

• Handle large scenes (5 to 7 million triangles)

• Support all kinds of light sources

• Fast performance

• Real time preview

• User controlled quality-time tradeoff

• General purpose



CPU Photon Mapping Farm

Initialization
Direct 

Illumination
Photon Cast

Radiance 
Estimate

Exit 
Illumination

Final Gather

Signal 
Compression

DXT 
Compression Slow!



Speeding up the slow parts

• Direct Illumination
• Fast ray-cast using GPU KD tree

• Final Gather
• Fast ray-cast using GPU KD tree

• Photon Illumination Cut 

• Cluster sample points for indirect 

illumination



Core Algorithm



GPU K-D Tree Construction

• [Zhou2008]: General purpose KD - tree in GPU

• Fast

• High quality

• High Peak Memory

• [Zhou2009]: Memory scalable KD-Tree

• Bounded memory usage



Direct Illumination

• Generate shading points

• For preview, ray trace

• For light map, use texels

• Cast shadow rays towards 

light source

• Area light source

• Multiple rays per light



Indirect Illumination Sampling

• Indirect Illumination is low 
frequency
• Don‟t need to sample at 

every shading point

• Cluster samples using 
geometry and normal 
variation

• Sample at cluster center

• Coarse to fine interpolation
[WZPB2009]



Photon Illumination Cuts

• Similar to light cuts

• Estimate irradiance at 

each node of photon tree

• Compute “cut” through the 

tree

• Interpolate using RBF 

basis

Photon Distribution

Cut Nodes



Direct Only



Indirect Only



Direct + Indirect



Direct Only



Indirect Only



Direct + Indirect



Result



Conclusions

• Direct illumination is still not a “solved” problem

• Gap closing up on interactive global illumination

• Different methods converging towards that goal

• Choose right technique for the right job
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Thank you!

• These slides and course notes will be available 

online

http://www.bungie.net/publications

http://www.bungie.net/publications

