
Lighting Research at Bungie

Hao Chen

Natalya Tatarchuk

Advances in Real-Time Rendering in 3D Graphics and Games,

Siggraph 2009, New Orleans, LA

Talk Outline

• Introduction

• Real-time Lighting

• Pre-computed Lighting

Pre-computed Global Illumination

Real-time Lighting

in Games

Trends

• Pipeline quality == graphics quality

• Artistic style over photo-realism

• Real time lighting is getting more GI

• GPGPU is tangible and real

R&D Focus

• Content Pipeline

• Artistic Vision And Style

• End-user Experience

• Scalable Technology

Two Research Directions
GPU Pre-computation

Real-time Lighting

Real-Time Lighting

Sky and Atmosphere

Advances in Real-Time Rendering in 3D Graphics and Games

Previous Model

• [PSS99][PreethamHoffman03]

• Offline pre-computed sky texture

• Real-time scattering

• Single scattering only

• Viewable from ground

only

Current Model

• [BrunetonNeyret2008]

• Single and multiple scattering

• Pre-computation on the GPU

• Viewable from space

• Light shafts

Raleigh Scattering

Raleigh Scattering

• Small particles scattering (air): where

• Chromatic dependency:

where

• Depends on altitude, wavelength, molecular density
at sea level, and atmospheric density

[Elek08]



r
x

2
 1x

 
 

RH

h

S

R e
N

n
h




4

223

3

18
,






   21
16

3



 RP

 cos

Mie Scattering

Mie Scattering
• Light scattering on larger particles

 Achromatic – λ-independence

• Phase function is strongly
anisotropic

• Analytical approximation by
Cornette-Shanks:

[Elek08]

1x

    MH

h

S

M

S

M eh


  ,0,

 
  

   2/322

22

212

11

8

3








ggg

g
PM






Rendering Equation for the Atmosphere

• x – viewer, v – view direction, s – sun direction

• Account for:
• Direct sun light L0

• Reflected light at point being shaded (x0) R[L]

• Inscattered light S[L] (toward the viewer)

• Accurate solution is non-trivial to compute in real-time
still

       svxsvx ,,,, 0 LSLRLL 

Direct Sun Light Computation

• Direct sunlight is attenuated by transmittance

function before reaching the viewer

• Accounts for occlusions

    0or ,,,, 00 sunLTL xxsvx 

Reflected Light

• Reflected light is attenuated by the transmittance

• Depends on the light I[L] reflected at x0

• Reflected light is null on the top atmosphere

boundary

       sxxxsvx ,,,, 00 LITLR 

Inscattered Light

• Light scattered towards the viewer between the

point being shaded and the viewer

• Depends on the transmittance T and the radiance J

of light scattered toward the viewer

       
0

,,,,,

x

x

svyyxsvx dyLJTLS

Pre-computation

• Store pre-computed look-up tables as textures

• Use GPU to generate the textures

Irradiance (r, muS)

Irradiance (r, muS)

Inscatter (r, mu, muS, nu)Transmittance (r, mu)

Different Atmospheres

Time Of Day

Atmosphere Seen From Space

Sky Light
• [BrunetonNeyret2008] used a single color for sky

irradiance

• For distant mountains / objects, just use that

• Better approximation for close-up geometry:

• Use CIE sky luminance distribution

• Scale by the pre-computed irradiance

• Project to SH per azimuth angle

• Fit the coefficients with a polynomial

• Render with PRT for GI look

CIE Standard Luminance Distribution

Direct Illumination Only

CIE Sky Illumination in SH

Sky Light with PRT

Shadows

Shadow Mapping in Games

• Shadow mapping is now fairly common in latest video
games

• A number of practical production issues remain for high
quality stable shadows:
• Managing aliasing due to resolution and projection

• Open-world scenarios now frequently resort to a variant of
cascade shadow mapping
• Used for resolution management

• Unfortunately, cascading doesn‟t solve projection, or sampling,
aliasing artifacts

Sampling Aliasing
- Currently, sampling approached are typically resolved

via PCF [Reeves et al. 1987] for soft shadows results

- Filter shadow test results

- Often combined with a rotated Poisson disk filter

- Expensive at run-time

- Requires a lot of samples to hide visible

structure patterns

- Linear in cost in terms of # of samples

Shadow Mapping [RSC87]

• Heaviside step function: H(dr - do) where dr is the receiver depth, and do is the

occluder depth.

• 1 means no shadows (fully lit) and 0 means completely in shadow.

1

0

-1

0 0.5-0.5
(dr-do)

H

Shadow Prefiltering

• Linearly filterable shadow test

• Reformulate shadow filtering test to support
pre-filtering

• A number of recent techniques designed to
address this:

• Variance Shadow Maps [Donnelly / Lauritzen
06]

• Convolution Shadow Maps [Annen et al 2007]

• Exponential Shadow Maps [Annen et al 2008]
[Salvi 2008]

[Annen*08

]

[DonnellyLauritzen06]

[Salvi08

]

Shadow Test Reformulation

• Separate the terms for occluder and receiver

• Thus we can pre-filter occluder terms with hardware

mipmapping and with image-space blurs for soft

shadows

• Depth bias no longer necessary to alleviate

„shadow acne‟

• Due to the changed shadow test

Probabilistic Shadow Test

• Inspired by the Deep Shadow Maps

[LocovicVeach2000]

• Probability that a given sample is in shadow,

given current receiver & occluder depths

• do becomes a random variable

• Represents the occluder depth distribution function

• dr is the current receiver depth

 ror dddf  Pr)(

[LocovicVeach00]

• Binary test becomes a probability distribution function

• Probability current fragment is in shadow

• is derived from two moments:

and

)Pr(ro dd 

 odE    222

oo dEdE 

Variance-Based Shadow Test

• Use Chebyshev‟s inequality as upper bound for

the test:

 
 22

2

max)Pr(
r

rro
d

dpdd







Variance-Based Shadow Test

Variance Shadow Map Approach

Pros
• Image-space & hardware filtering for soft shadows

• Alleviates depth bias artifacts for polygons that

span depth ranges

• Especially when filtering

Variance Shadow Map Approach

Cons
• Twice the memory of the regular shadow map

• Light bleeding in areas of high depth complexity

• Exacerbated by filtering with large kernels

• Variance is increased with large blurs

Variance Shadow Maps: Light Bleeding

Light Bleeding Fix-up

• All shadow test results below some minimum

variance pmin get clamped to 0

• The rest of the range rescaled to [0..1]

• Removes light bleeding

• But similarly to dilation, this „fattens‟ up shadows

• Especially when applying large blurs

Can We Do Better?

• Two moments simply do not provide enough
information to fully reconstruct the shadow test

• We don‟t know the distribution function a priori

• Recall that nth moment can be expressed as

• However, we don‟t want to just render n moments

• 2 channels of 16F or 32F textures is hurtful enough

  



N

i

n

i

n

n x
N

xE
1

1


Exponential Shadow Map Test

• Assume

• Shadow test becomes

• Approximate by using a large positive constant c:

• Clamp result to [0..1] range to
ensure correct results
• Fixes up some regions where the assumption

does not hold

or dd 
   ro dd

ro eddf
,

lim,









   ro ddc

ro eddf


,

[Annen*08]

Exponential Shadow Map Prefiltering

• Separate terms which depend on occluder and
receiver depths:

• Convolving with a filter kernel :

• Allows filtering of only the occluder terms == prefiltering

    roro cdcdddc

ro eeeddf


,

     roro dfdfddf ,

 ro ddf ,
w

     roro cdcdddc

ro eewewddfw 


,

Exponential Shadow Map Benefits

1. Extremely easy to implement:

a) Render the exponential of occluder depth

b) Prefilter

c) Using mip maps and/or applying separable

Gaussian blurs

d) Reconstruct ESM test at run-time

ESM Shadow Test Computation
float ComputeESM(float2 vShadowMapUVs, float fReceiverDepth,

float fCascadeIndex)

{

// Filtered look up using mip mapping

float fOccluderExponential = tCascadeShadowMaps.Sample(

sShadowLinearClamp,

float3(vShadowMapUVs,fCascadeIndex)).r;

float fReceiverExponential = exp(-fESMExponentialMultiplier *

fReceiverDepth);

float fESMShadowTest = fOccluderExponential * fReceiverExponential;

return saturate(fESMShadowTest);

}

Exponential Shadow Map Benefits

2. Solves biasing problems („shadow acne‟) that

exist with regular shadow maps

3. Excellent soft shadows visual results with even

small filters

a) For example, a 5x5 separable Gaussian

Exponential Shadow Map Benefits

4. Only uses a single channel texture

5. Deals well with scene depth complexity

• Not based on variance

• Thus light bleeding due to depth variance
doesn‟t show up

• Doesn‟t get exacerbated with wider filter
kernels

Thought We’re Done?

• Not yet, unfortunately.

• Let‟s look at the shadow test again:

[Annen*08]

Thought We’re Done?

• Small values for c only work in scenes with low

depth complexity

• Otherwise we see a lot

of light leaking artifacts

[Annen*08]

Thought We’re Done?

• However, larger values of c such as c = 80 demand

high precision floating-point buffers

• c ~= 88 is the maximum value for 32F; otherwise

overflow

ESM Light Leaking Example

ESM Logarithmic Space Filtering

• Render linear depth instead of the exponential

• Filter in log space

• Let‟s expand the filtering operation on occluder

depths:

  N
ooo

i
o cd

N

cdcd
N

i

cd

io ewewewewdfw  


...10

10

0

ESM Logarithmic Space Filtering

• For 3 samples, we have:

• Since we can write:

 210

210

ooo cdcdcd

ewewew

    02010

210

ooooo
ddcddccd

ewewwe




pe p ln

 






















 






 



02
2

01
10

0

ln
ododcododc

o

eweww
cd

o eedfw

ESM Logarithmic Space Filtering

• Generalizing to N samples:

• This replaces the standard Gaussian or box filter

summation

• Weights are from the Gaussian filter kernel

• Instead of regular summation, compute the result above, summing

over the samples

 

























 N

i

od
i

odc

i
o

eww
cd

o eedfw
1

0
0

0

ln

ESM Logarithmic Space Filtering

• Allows us to use 16F texture format with high values

for c

• During the actual filtering operation we have at least 24

bit precision (on consoles) and 32 bit on most recent PC

hardware

• Every little bit helps

• Pun intended!

Thought We’re Done?TM

• Furthermore, ESM shadow test has the following
limitation:

• As ,

• Thus we see contact light leaking
with ESM
• In places where the occluder is near the receiver

• Turns out this is a fairly frequent occurrence

   ro dd

ro eddf
,

lim,









ro dd    1, ro ddf

[Annen*08]

Contact Leaking Reduction

• A brute-force solution is to over-darken the results of

shadow test based on occluder-receiver proximity

ESM Over Darkening

• That works fine – so long as we do not prefilter

shadows

ESM Over Darkening with Filtering

• Results in “fat & stylized shadows”

Cascade Shadow Maps & Prefiltered

Shadow Formulations

• At first glance, cascade shadow maps are orthogonal

to prefiltered shadow maps

• One manages shadow map resolution, the other – filtering /

sampling

• However, in practice we encounter the need for

additional fix-ups for using VSM / ESM with cascades

• Specifically with regards to selection of cascade frustum

Typical Cascade Frustum Selection
int GetInitialFrustumIndex(float3 vPositionWS)
{

float fPosZ = -mul(mCascadeViewMatrix, float4(vPositionWS,1.0f)).z;

int nFrustumIndex= 0;

if (fPosZ <= vFarBounds[0])
{

nFrustumIndex = 0;
}
else if (fPosZ <= vFarBounds[1])
{

nFrustumIndex = 1;
}
else if (fPosZ <= vFarBounds[2])
{

nFrustumIndex = 2;
}
else
{

nFrustumIndex = 3;
}
nFrustumIndex = min(nFrustumIndex, NUM_CASCADES);
return nFrustumIndex;

}

Prefiltered Shadow Cascade Selection

• Need to make sure that every fragment in a pixel quad

chooses the same cascade frustum

• This is required so that derivatives are meaningful and mip

selection is correct

• Necessary for ESM / VSM whenever we use mip mapping

• Want to select the same frustum index for all fragments in

the same quad

Artifacts Due to Incorrect Cascade

Selection with Prefiltered Shadows

A ”traveling” line of „flipped‟ shadow test result along the boundary of cascade frustums

A ”traveling” line of „flipped‟ shadow test result along the boundary of cascade frustums

Artifacts Due to Incorrect Cascade

Selection with Prefiltered Shadows

Prefiltered Shadow Cascade Selection
float4 ComputePrefilteredCascadesShadowPositionAndFrustumIndex (float3 vPosWS)

{

int nFrustumIndex = GetInitialFrustumIndex(vPositionWS);

const int aLog2LUT[8] = { 0, 1, 1, 2, 2, 2, 2, 3 };

int n2PowFrustumIndex = 1 << nFrustumIndex;

// Now determine the difference across pixels in the quad:

int nFrustumIndexDX = abs(ddx(n2PowFrustumIndex));

int nFrustumIndexDY = abs(ddy(n2PowFrustumIndex));

int nFrustumIndexDXDY = abs(ddx(nFrustumIndexDY));

// This quantity will be _the same_ for all pixels across the quad,

// which is what allows us to consistently select frustum index for

// all pixels in the quad:

int nMaxDifference = max(nFrustumIndexDXDY, max(nFrustumIndexDX,

nFrustumIndexDY));

// If the derivatives are zero across the quad, we can simply use the original

// frustum index. If there are differences, we will recover the desired

// frustum index by looking up into the log table:

nFrustumIndex = nMaxDifference > 0 ? aLog2LUT[nMaxDifference-1]:nFrustumIndex;

return ComputeCascadeSamplingParameters(vPositionWS, nFrustumIndex)

}

Let’s Fix Contact Leaking – Round 2

• Another thing we can try is to have tighter depth

range for each cascade

• Clamp the depth / z range to the bounding volume of the

cascade frustum in light space

• What happen to occluders outside the bounds?

Let’s Make Pancakes –
Shadow Pancakes, Of Course!

• As we clamp, the occluders

outside of the bounding volume

are flattened onto the near / far

plane of the frustum bounding

box

• Aka the „shadow pancakes‟

Let’s Make Pancakes –
Shadow Pancakes, Of Course!

 When the occluder object is outside the viewing

frustum we don‟t care about the actual depth of the

occluder

 Just need to know its effect on the rest of the scene

 Is it going to shadow the objects within the cascade frustum?

 Can‟t see these occluders any way

ESM Z-Range Clamping Comparison: Off

ESM Z-Range Clamping Comparison: On

ESM with Z-Range Clamping and NO filtering

• Discover a new problem… with filtering

ESM with Z-Range Clamping and Filtering

Artifacts due to filtering!

EVSM with Depth Warps

• Can we do better? Yes, we can – using Exponential
Variance Shadow Maps (EVSM)

• Combines the benefits of ESM and VSM

• Significantly alleviates contact leaking artifacts

• At increased memory cost (4X!)

• Light bleeding at high variance areas re-appears
• However, this can be easily reduced (especially as compared to VSMs)

• No need to clamp the depth range

EVSM
float ComputeEVSM(float2 vShadowMapUVs, float fReceiverDepth, float fCascadeIndex) {

//depth should be 0 to 1 range.
float2 warpedDepth = WarpDepth(fReceiverDepth);
float posDepth = warpedDepth.x;
float negDepth = warpedDepth.y;

float4 occluder = tCascadeShadowMaps.Sample(sShadowLinearClamp,
float3(vShadowMapUVs, fCascadeIndex));

float2 posMoments = occluder.xz;
float2 negMoments = occluder.yw;

// compute derivative of the warping function at depth of pixel and use it to scale min
// variance
float posDepthScale = fESMExponentialMultiplier * posDepth;
float posMinVariance = VSM_MIN_VARIANCE * posDepthScale * posDepthScale;
float negDepthScale = fESMExponentialMultiplier2 * negDepth;
float negMinVariance = VSM_MIN_VARIANCE * negDepthScale * negDepthScale;

//compute two Chebyshev bounds, one for positive and one for negative, and takes the
// minimum
float shadowContrib1= ComputeChebyshevBound(posMoments.x, posMoments.y, posDepth,

posMinVariance);
float shadowContrib2= ComputeChebyshevBound(negMoments.x, negMoments.y, negDepth,

negMinVariance);
return min(shadowContrib1, shadowContrib2);
}

EVSM Without Depth Range Clamping

EVSM with Depth Range Clamping

Conclusions on Shadows

• No perfect and inexpensive solution exists at the

moment (at least not yet)

• Presented a grab-bags of techniques – pick and

choose to suit the needs of your game

• Tried to provide the intuition behind the solutions

and hacks

GPU Pre-computed Lighting

Motivation

• Exploit massive parallelism of GPU architecture

• Take advantage of GPGPU advances

• Integrated workflow

• High quality global illumination

• Possible path to the future

Goals/Requirements

• Handle large scenes (5 to 7 million triangles)

• Support all kinds of light sources

• Fast performance

• Real time preview

• User controlled quality-time tradeoff

• General purpose

CPU Photon Mapping Farm

Initialization
Direct

Illumination
Photon Cast

Radiance
Estimate

Exit
Illumination

Final Gather

Signal
Compression

DXT
Compression Slow!

Speeding up the slow parts

• Direct Illumination
• Fast ray-cast using GPU KD tree

• Final Gather
• Fast ray-cast using GPU KD tree

• Photon Illumination Cut

• Cluster sample points for indirect

illumination

Core Algorithm

GPU K-D Tree Construction

• [Zhou2008]: General purpose KD - tree in GPU

• Fast

• High quality

• High Peak Memory

• [Zhou2009]: Memory scalable KD-Tree

• Bounded memory usage

Direct Illumination

• Generate shading points

• For preview, ray trace

• For light map, use texels

• Cast shadow rays towards

light source

• Area light source

• Multiple rays per light

Indirect Illumination Sampling

• Indirect Illumination is low
frequency
• Don‟t need to sample at

every shading point

• Cluster samples using
geometry and normal
variation

• Sample at cluster center

• Coarse to fine interpolation
[WZPB2009]

Photon Illumination Cuts

• Similar to light cuts

• Estimate irradiance at

each node of photon tree

• Compute “cut” through the

tree

• Interpolate using RBF

basis

Photon Distribution

Cut Nodes

Direct Only

Indirect Only

Direct + Indirect

Direct Only

Indirect Only

Direct + Indirect

Result

Conclusions

• Direct illumination is still not a “solved” problem

• Gap closing up on interactive global illumination

• Different methods converging towards that goal

• Choose right technique for the right job

Acknowledgements and Thanks

• Adrian Perez, Shi Kai Wang, Chris Barrett, Ryan Ellis, Mark Goldsworthy and

Paul Vosper at Bungie for their awesome work on the demos shown

• Marco Salvi, Andrew Lauritzen, Aaron Lefohn, Nicolas Thibieroz & Holger Grun

for many discussions on the imperfect nature of shadows, their ideas and

existing work (especially Marco and Andrew!)

• Kun Zhou and his group at Zhezhiang University for GPU LightMapper

collaboration

Is Hiring!

www.bungie.net/jobs

Selected References: Atmosphere

• Bruneton, E. and Neyret, F. 2008. Precomputed Atmospheric Scattering. EGSR

2008. Computer Graphics Forum, 27(4), June 2008, pp. 1079-1086.

• Habel, R., Mustata, B., Wimmer, M. Efficient Spherical Harmonics Lighting with the

Preetham Skylight. Model. In Eurographics 2008 - Short Papers, pages 119-122.

April 2008.

• Preetham, A. J., Shirley, P., and Smits., B. E.: A Practical Analytic Model for Daylight.

In Siggraph 1999, Computer Graphics Proceedings (Los Angeles, 1999), Rockwood

A., (Ed.), Addison Wesley Longman, pp. 91–100.

• [HP03] Hoffman, N., and Preetham, A. J.: Real-time Light-Atmosphere Interactions

for outdoor scenes. Graphics Programming Methods (2003), pp. 337–352.

Selected References: Shadows
• Reeves, W. T., Salesin, D. H., and Cook, R. L. 1987. Rendering antialiased shadows with depth maps. In

Proceedings of the 14th Annual Conference on Computer Graphics and interactive Techniques

SIGGRAPH '87. ACM, New York, NY, 283-291.

• Donnelly, W. and Lauritzen, A. 2006. Variance shadow maps. In Proceedings of the 2006 Symposium

on interactive 3D Graphics and Games (Redwood City, California, March 14 - 17, 2006). I3D '06. ACM,

New York, NY, 161-165

• Salvi, M. 2008. Rendering Filtered Shadows with Exponential Shadow Maps, ShaderX6, Charles River

Media

• Annen, T., Mertens, T., Seidel, H., Flerackers, E., and Kautz, J. 2008. Exponential shadow maps. In

Proceedings of Graphics interface 2008 (Windsor, Ontario, Canada, May 28 - 30, 2008). GI, vol. 322.

Canadian Information Processing Society, Toronto, Ont., Canada, 155-161.

• Lauritzen, A. and McCool, M. 2008. Layered variance shadow maps. In Proceedings of Graphics

interface 2008 (Windsor, Ontario, Canada, May 28 - 30, 2008). GI, vol. 322. Canadian Information

Processing Society, Toronto, Ont., Canada, 139-146.

Selected References: GPU LightMapping

• Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. 2009. An efficient GPU-

based approach for interactive global illumination. ACM Trans. Graph. 28, 3 (Jul.

2009), 1-8

• Zhou, K., Hou, Q., Wang, R., and Guo, B. 2008. Real-time KD-tree construction

on graphics hardware. ACM Trans. Graph. 27, 5 (Dec. 2008), 1-11.

• Hou, Q., Zhou, K., and Guo, B. 2008. BSGP: bulk-synchronous GPU

programming. In ACM SIGGRAPH 2008 Papers (Los Angeles, California, August

11 - 15, 2008). SIGGRAPH '08. ACM, New York, NY, 1-12.

Thank you!

• These slides and course notes will be available

online

http://www.bungie.net/publications

http://www.bungie.net/publications

