Creating Content to Drive Destiny's Investment Game One Solution to Rule Them All

Natalya Tatarchuk Shiek Wang

BUNGE

Bungie's Game History

The Early Years

The Equalizer preerer (0/1).

Souls stolen!

Bungie's Game History

LIVE ONL

XOOX MIN

HAR

BUNGIE

Micro

Onst

REACH

The Last Decade

COMBAT EVOLVE.

Bearbox BUNGIE

DESTINY

Ο

Destiny Launch Trailer

 <u>http://www.bungie.net/7 Destiny-Launch-</u> <u>Gameplay-Trailer/en/News/News?aid=12050</u>

Destiny Pillars

- A world players want to be in
- A bunch of fun things to do
 Rewards players care about
 A new experience every night
 Shared with other people
- Enjoyable by all skill levels
- Enjoyable by the tired, impatient, and distracted

Destiny Pillars

- A world players want to be in
- A bunch of fun things to do
- Rewards players care about
- A new experience every night
- Shared with other people
- Enjoyable by all skill levels
- Enjoyable by the tired, impatient, and distracted

Aligning Investment Pillar and Art Direction

Aligning Investment Pillar and Art Direction

Investment Design

- Rewards players care about.
- create many pieces of Armor and Weapons, among other things, to provide players with compelling rewards and customization options

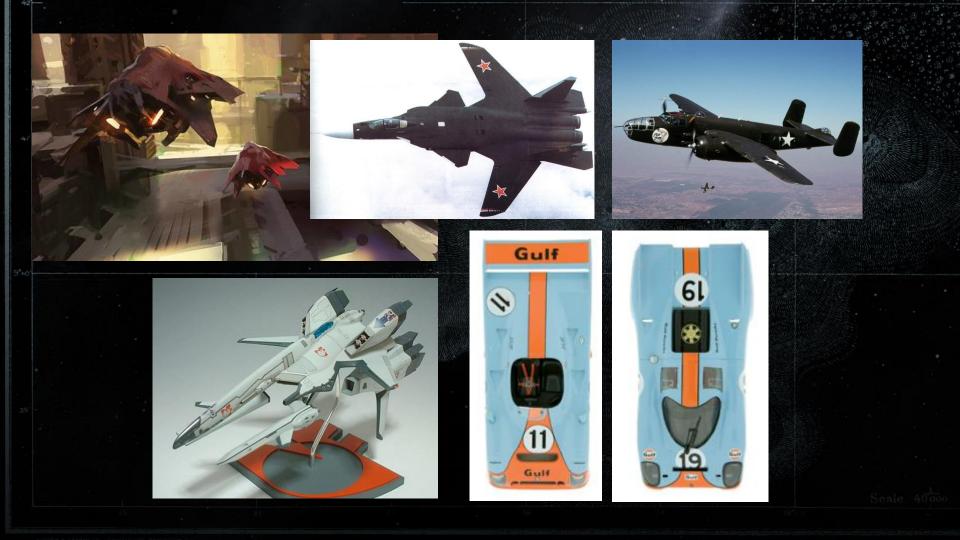
Art Direction

Hopeful idealized sci-mythic world that players want to be in

Titan Space Knight

Warlock

Space Wizard



PlayerShips

Scale 4000

Racer

Sinister

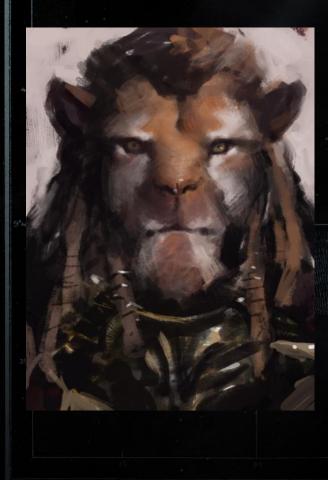
Bomber

Human

Relatable Tough Uncomplicated

Scale 4000

Awoken Exotic Beautiful Mysterious



Exo Powerful Tireless Sinister

Scale 400

Tiger Man

Furry Flexible Somber

Content Problem

- Need new content solutions, old methods do not scale
- New IP requires vast amount of compelling content in multiple areas of the player
- Production cycle within 2 years, and about 17 artists
- Scalable between last gen and next gen

 Shared experience: support many simultaneous unique avatars

- Shared experience: support many simultaneous unique avatars
- Predictable memory footprint

- Shared experience: support many simultaneous unique avatars
- Predictable memory footprint
- Powerful and extensible pipeline

- Shared experience: support many simultaneous unique avatars
- Predictable memory footprint
- Powerful and extensible pipeline
- Reuse to minimize disc / download size

Our Solution: Gear System

Our Solution: Gear System

- 1. Gear Slots
- 2. Arrangements and Bits
- 3. Plated Textures
- 4. Gear Dyes

Our Solution: Gear System

1. Gear Slots

Arrangements and Bits
 Plated Textures
 Gear Dyes

Gear Slot System

Gear Slot

What it is:

- A basic gear component
- Content creation and management unit
- Runtime component unit

Gear Slot

What it is *not*:

Customization and investment unit

Gear Slot System

- Support multiple gear asset types
 - Player armor
 - Player weapon
 - Player ships
 - Player heads
- Extensible: each asset type defines a set of gear slots

Gear Slots : Player Armor

• Combat: 5 gear slots

CLASS

ARMS

HELMET

CHEST

LEGS

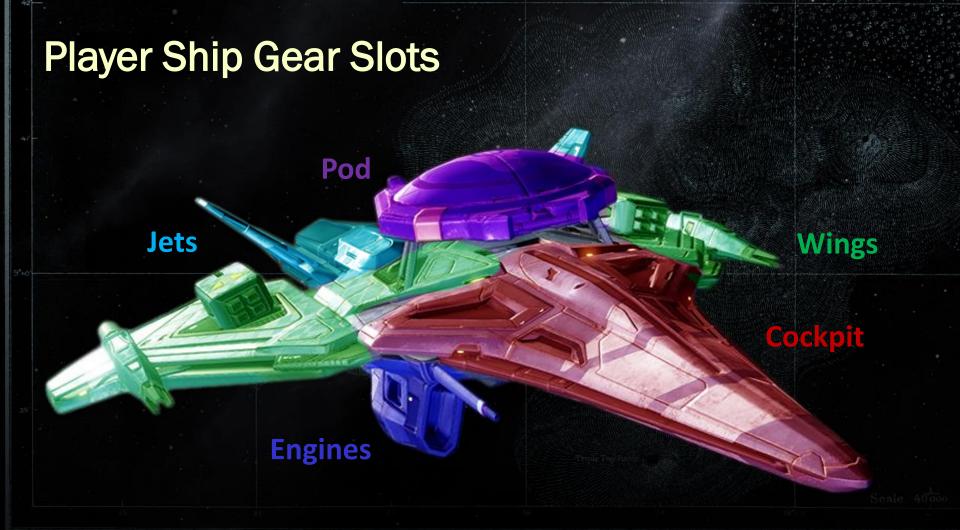
Weapon Gear Slots

Scope

HUD

Situation-Dependent Gear Slots

• Enabled in different game scenarios


Combat Space Gear

Social Spaces Gear

Weapon Gear Slots: ADS: Reticle

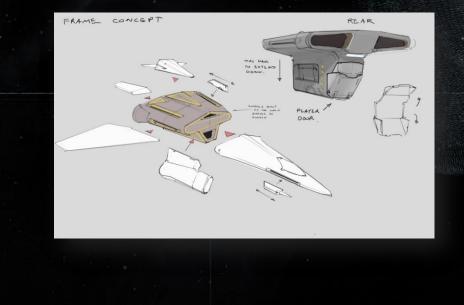
Player Head Gear Slots

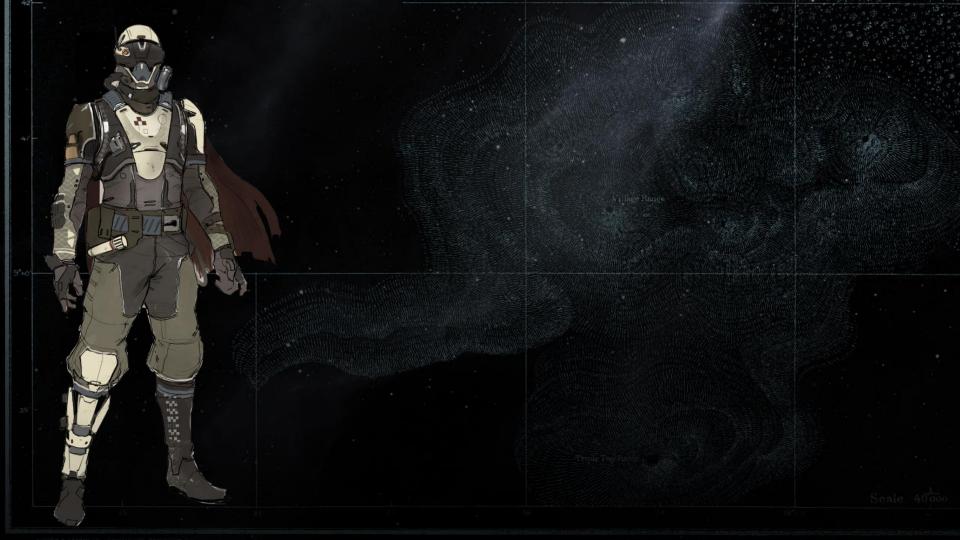
Eyebrows

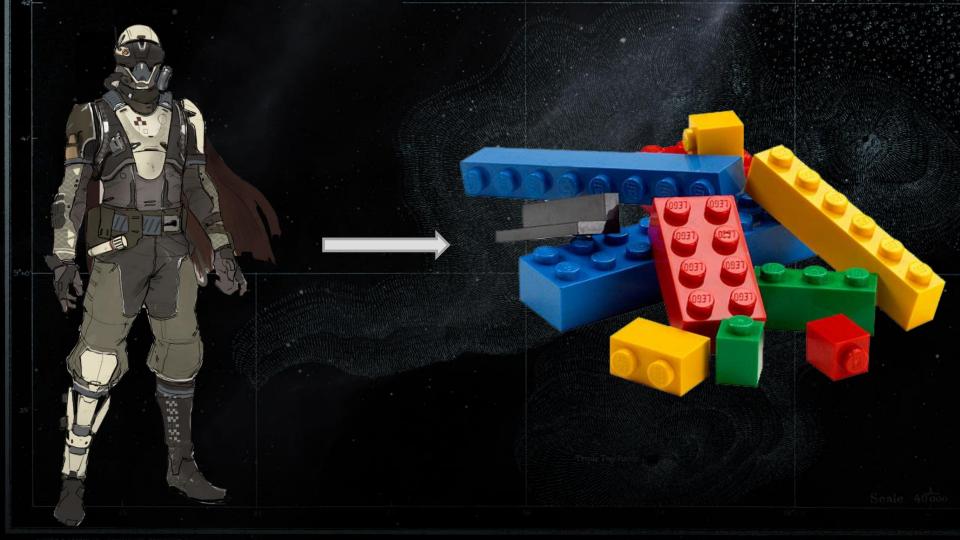
Marking

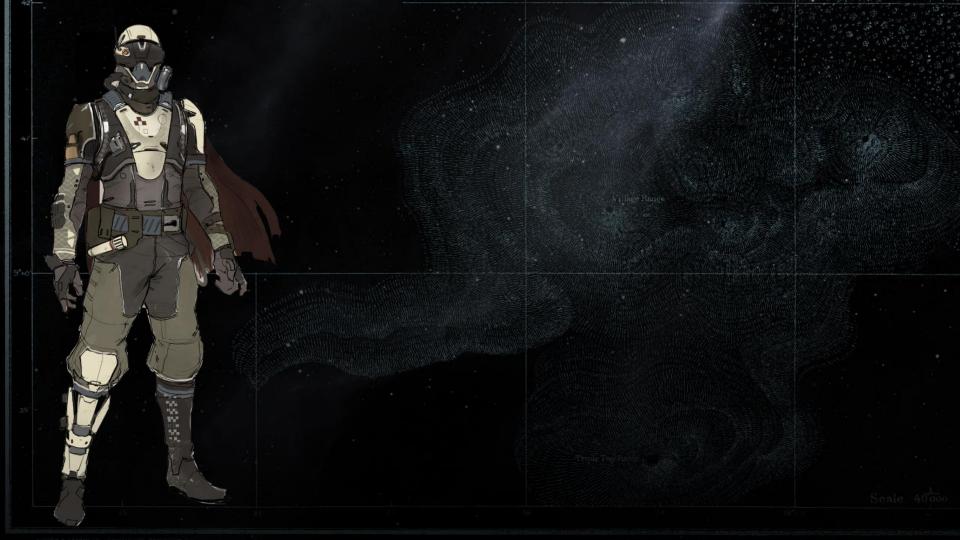
A4351

Hair


Head

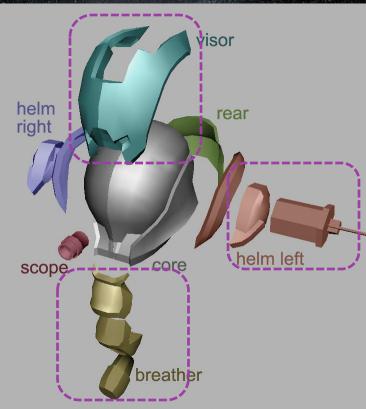

Our Solution: Gear System


- Gear Slots
 Arrangements and Bits
- 3. Plated Textures


4. Gear Dyes

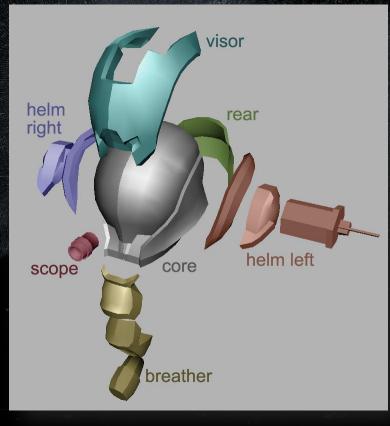
Gear Arrangements and Bits

Gear Arrangement


Gear Arrangement

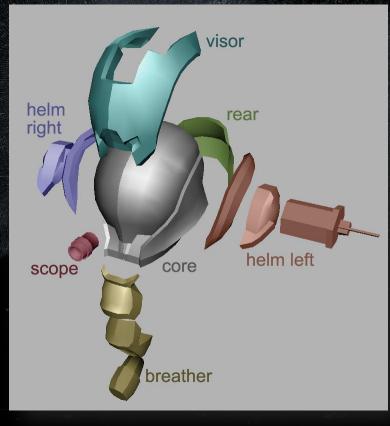
One arrangement to one gear slot An asset container for that slot

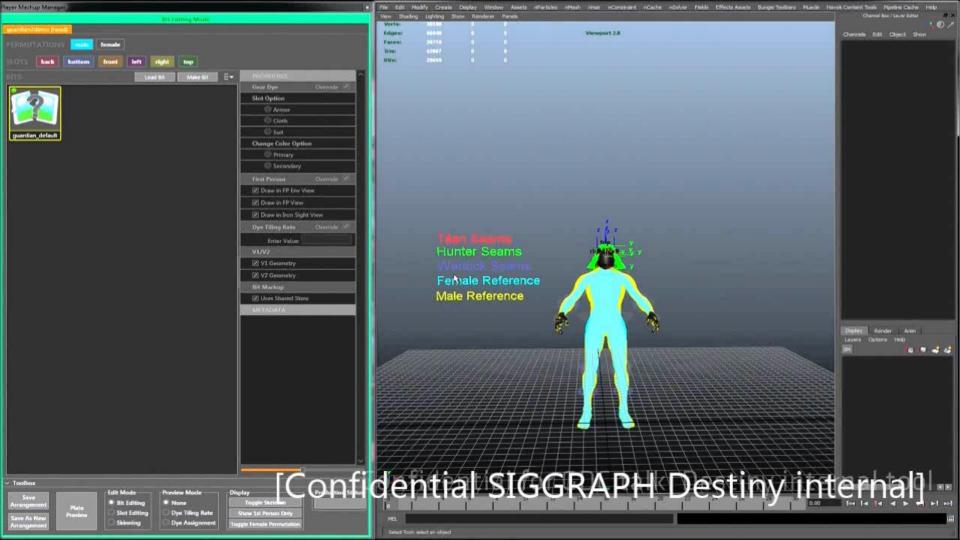
Gear Arrangement and Gear Bits



Scale 4000

Gear Arrangement and Gear Bits




Scale 4000

Gear Arrangement and Gear Bits

Scale 4000

Console Generations

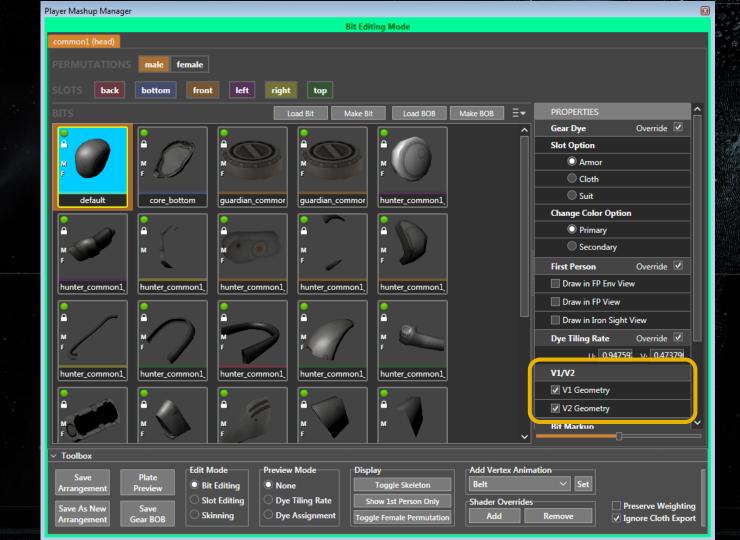
V1: PlayStation 3 and Xbox 360V2: PlayStation 4 and Xbox One

• Artist-perspective:

- Regular authoring process
- Normal object-space modeling and texturing

Artists assign properties to bits

- Shaders
- Gear dyes
- Textures
- Skinning


- Tech ensures bits assembly offline
- Don't make artists worry about drawcall or shader count
- Make the process transparent to content creators

Merge the bits during import

- Merge the bits during import
- Sort by state and merge geometry that has the same state into same drawcall containers

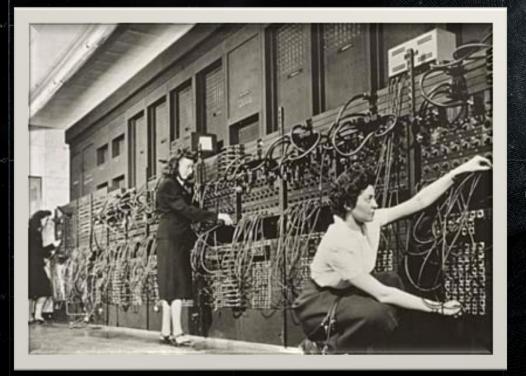
Future-Proofing Gear Geometry

- Artists author high-resolution detailed geometry for bits
- Scalability ensured via gear arrangement tagging and LOD system

9.00-

First-Person Geo to Third-Person

- Base LOD authored to first-person quality
- LOD system automatically drops down in third-person from base geo


Gear LOD Generation

- Auto-generate 2 additional LOD meshes offline from base
 - Separate geometry for each platform generation
- Medium LOD mesh memory is shared with base LOD (~30% base)
 - Same vertex buffer
 - Different index buffers

Gear LOD Generation

- Auto-generate 2 additional LOD meshes offline from base
- Medium LOD mesh memory is shared with base LOD (~30% base)
 - Same vertex buffer
 - Different index buffers
- Imposter LOD uses very simplified mesh formats (~10% base)
 - One to two bones per vertex only
 - No tangent space
 - Reduced skeleton

Budget and Budget Reporting

Gear Arrangement Geometry Profiler

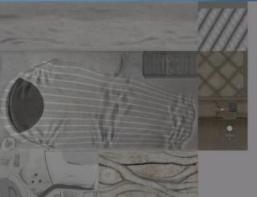
Maya Verts: 2952	Game Verts: 3738 • vi • v	Recalculate Recalculate Selection
• Gear Slot: Chest	Game Vert and Memory Estimate is -10%/+5%	Done <<<

Male Female

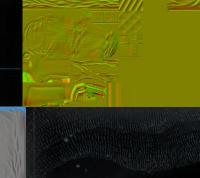
Mesh	~	Maya Verts	U	/s	Hard Edges	Shaders	1	Double Sided	G	SAME VERTS	I	% Increase	Vertex Color	Me	nory
	polySurface3		320	+19			+0	+(339	5%			12K
	ySurface 1		46	+20			+0	+(0		66	43%			2K
	olySurface17		46	+20			+0	+(66	43%			2K
	olySurface 13		113	+5			+0	+(118	4%			4K
P	olySurface 12		220	+45			+0	+(265	20%			9K
	stedpoly		200	+54			+0	+(254	27%			9K
pas	stedpoly		220	+45			+0	+(265	20%			9K
	stedpoly		86	+23			+0	+(109	26%			4K
	stedpoly		86	+23			+0	+(109	26%			4K
	stedpoly			+9			+0	+(24	60%			0K
	stedpoly		113	+5			+0	+(118	4%			4K
	stedpoly		52	+56			+0	+(115	121%			ЗК
	stedpoly		116	+54			+0	+(170	46%			6K
	stedpoly		88	+32			+0	+(120	36%			4K
pas	stedpoly		195	+15			+0	+(210	7%			7K
	nter_comm		124	+51			+0	+(175	41%			6K
	nter_comm		68	+28			+0	+(96	41%			3K
	ardian_com			+8			+0	+(18	80%			0K
	ardian_com		10	+8			+0	+(18	80%			0K
	ardian_com		10	+8			+0	+(18	80%			OK
	ardian_com			+8			+0	+(18	80%			OK
	eteme_pol		88	+46			+0	+(134	52%			4K
	ommon1_neck		102	+0			+0	+(102	0%			ЗК
che	estcore_de		84	+0			+0	+(84	0%			2K
	chest_trim		319	+134			+0	+(453	42%			15K
	buckles		36	+24			+0	+(60	66%			2K
	abdomencloth		127	+13			+0	+(140	10%			5K
	Mesh		48	+26		+0 ·	+0	+()		74	54%			2K

40.0

Our Solution: Gear System


Gear Slots
 Arrangements and Bits
 Plated Textures
 Gear Dyes

What Is a Gear Plated Texture?


- A special gear texture atlas
- All bits in an arrangement plate to this atlas

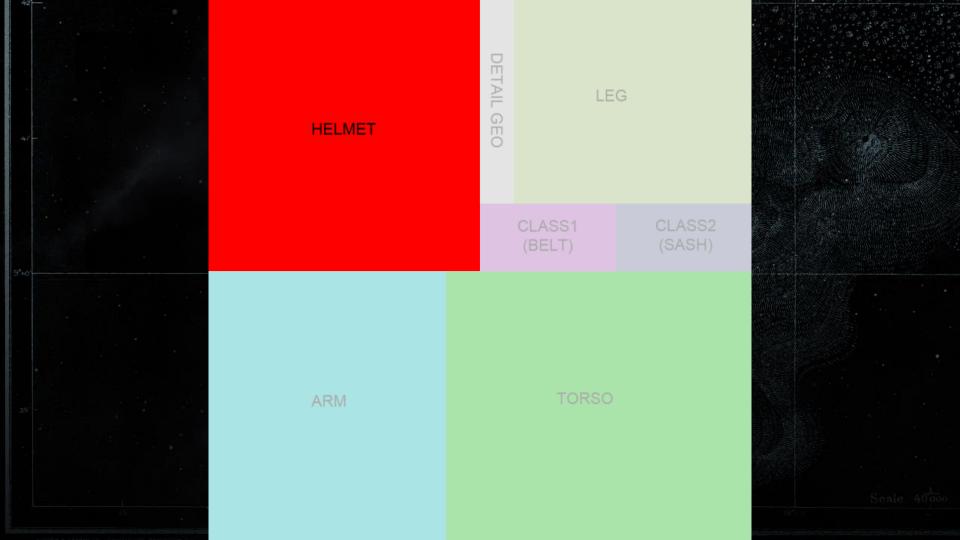
What Is a Gear Plated Texture?

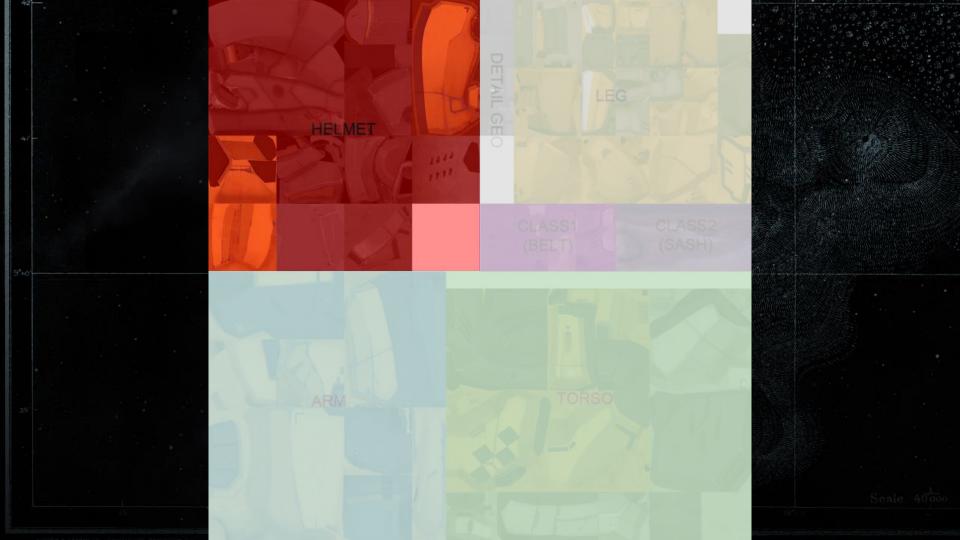
Gear Plates

Why Plate?

- Artists are freed up to author bits in intuitive UV layout for each bit
- No need to create custom UV layout for each gear arrangement

Why Plate?


- Artists are freed up to author bits in intuitive UV layout for each bit
- No need to create custom UV layout for each gear arrangement separately
- No need to switch textures at runtime within arrangement
 - Just setup the plate textures and render the whole gear arrangement


Constant Memory Footprint

- All bit textures must fit into a plate for each gear arrangements
- Artists get visual errors when bits don't fit – in DCC directly
 - Quick interactive preview

Constant Memory Footprint

- All bit textures must fit into a plate for each gear arrangements
- Artists get visual errors when bits don't fit – in DCC directly
 - Quick interactive preview
- Plates automatically scale across v1/v2



Plate Set: Titan

Plate Set: Titan

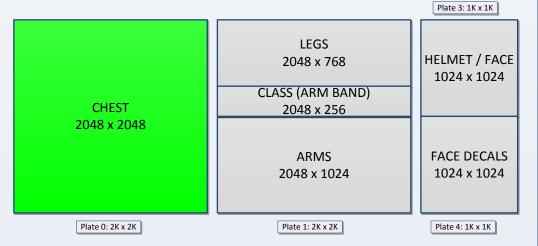


Plate Set: Warlock

Plate Set: Warlock

Gear Plating Process: Import

- Walk all bits in in an arrangement
- Pull out the textures
- Create texture descriptors structures (references + plated placements)
 - Do not bake off plate textures offline
- Modify geometry UVs to plated UV locations

Gear Plating Process: Runtime

- Load gear components
- Async stream in texture descriptors and gear bit textures
- Dynamically composite the plates at runtime
- Copy compressed bit textures blocks into plates
- Simple plating rules: no scale or rotation

Gear Slots
 Arrangements and Bits
 Plated Textures
 Gear Dyes

Gear Slots
 Arrangements and Bits
 Plated Textures
 Gear Dyes

- 1. Goals
 - L. Goals
 - 2. Tinting
 - 3. Material response
 - 4. Gearstack usage
 - 5. Advanced dyes and materials

Gear Slots
 Arrangements and Bits
 Plated Textures
 Gear Dyes

1.Goals

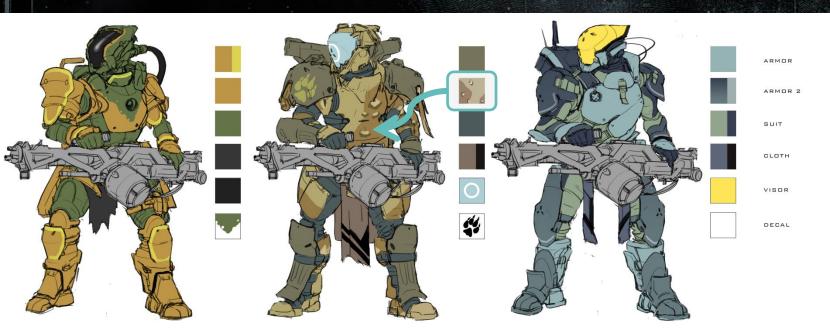
2. Tinting

- 3. Material response
- 4. Gearstack usage
- 5. Advanced dyes and materials

DYES AND DECALS

- Same content supports run-time material and tinting modifications
- Extensible and expressive artist controls
- A library of sharable materials
- A dye is a constant memory material container

- Consistent look across the entire character
- Sharable material settings


- Consistent look across the entire character
- Sharable material settings

- Consistent look across the entire character
- Sharable material settings

- Consistent look across the entire character
- Sharable material settings

Gear Dye Versatility

- Dyes are always the same data format
- Consistent materials across the game
 - Can be applied to any arrangement / any race / any class
 - Armor / Weapon / Ships, etc.
- Easy hook up for investment

Gear Dye as Material Container

Gear Dye

• A collection of material parameters

- Tinting
- Detail Textures
- Material response properties

Gear Slots
 Arrangements and Bits
 Plated Textures
 Gear Dyes

1. Goals

- 2. Tinting
- 3. Material response
- 4. Gearstack usage
- 5. Advanced dyes and materials

Tinting Gear

 Runtime colorization with artist-friendly Photoshop-like controls

Gear Dye Tint Compositing

 Start with base gear textures

Arrangement:	com
Permutation:	male
Plated Bitmaps Count:	19
Unplated Bitmaps Count:	
Arrangement Plate Size:	2048
Full Plate Size:	2048

x 1024 x 2048

non1 Texture: hunter_common1_abdomen_cloth_diffu V2 Resolution: 512 Arrangements Affected: 53

Change V2 Resolution on selected textures (0-65535):

Gear Dye Tint Compositing

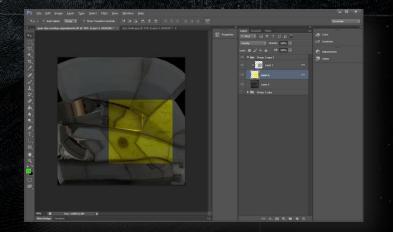
- Start with base gear textures
- Greyscale offers most freedom for dyes

PLATE PREVIEW INFORM			Repack
Arrangement: Permutation: Plated Bitmaps Count: Unplated Bitmaps Count: Arrangement Plate Size: Full Plate Size:	male 19	exture: hunter_common1_abdomen_cloth_diffuse 2 Resolution: 512 mangements Affected: 63 Change V2 Resolution on selected textures (0-65535):	OK

Dye Slot Setup For Gear Arrangements

- Unique dyes per gear arrangement
 - 3 regular dye slots
 - 2 change color options per dye Primary and secondary
 - One special dye for emblem decals usage

Armor Secondary Cloth Primary Cloth Secondary Suit Primary

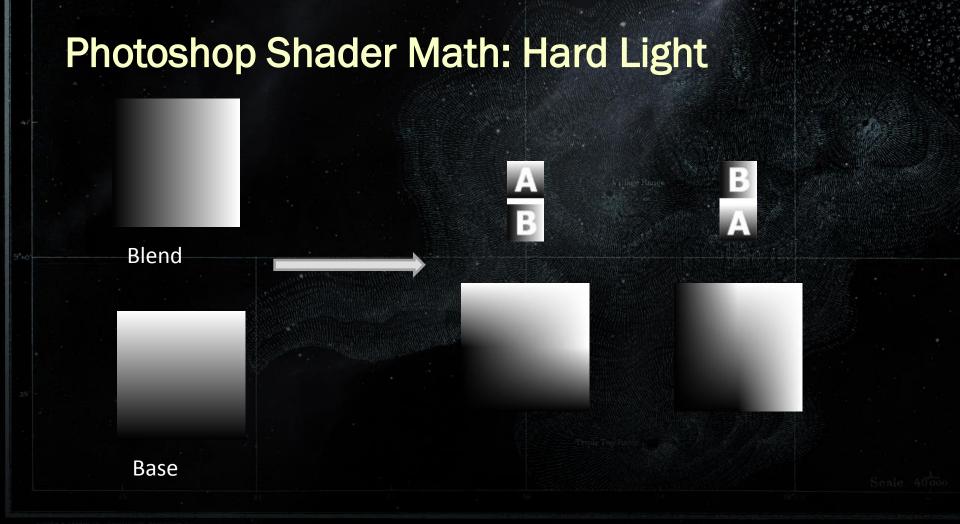

Suit Secondary

Gear Fixed-Function Shaders

- One unique gear dye per drawcall
 - Some plats didn't like shader flow control
- Except for heads
 - More on that later
- Constant amount of dye parameters

Use Photoshop Blend Modes

- Gear shaders always used the same blends for dyes
- Detail textures use *hard light* to blend with dye change color
- Dye change color uses overlay to blend with base textures



Photoshop Shader Math: Hard Light

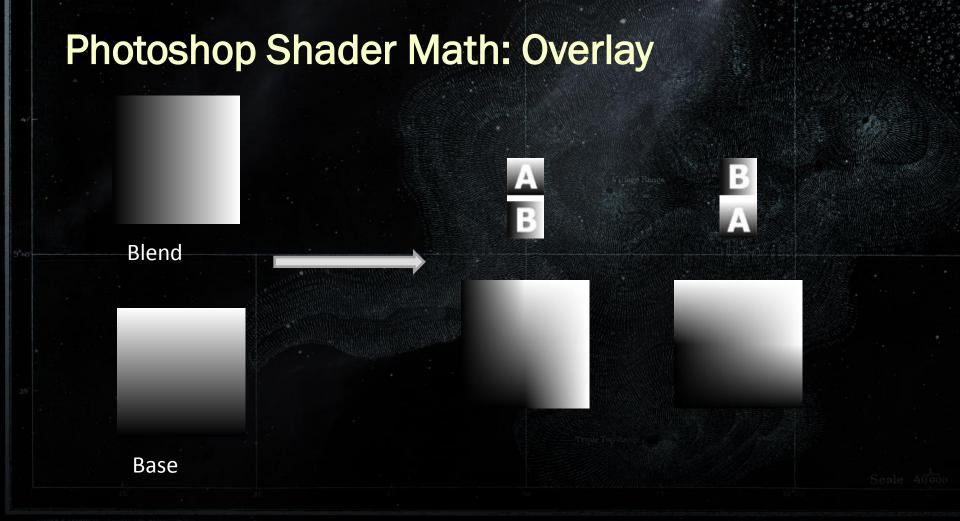
- Non-commutative
- if $Blend > \frac{1}{2}$

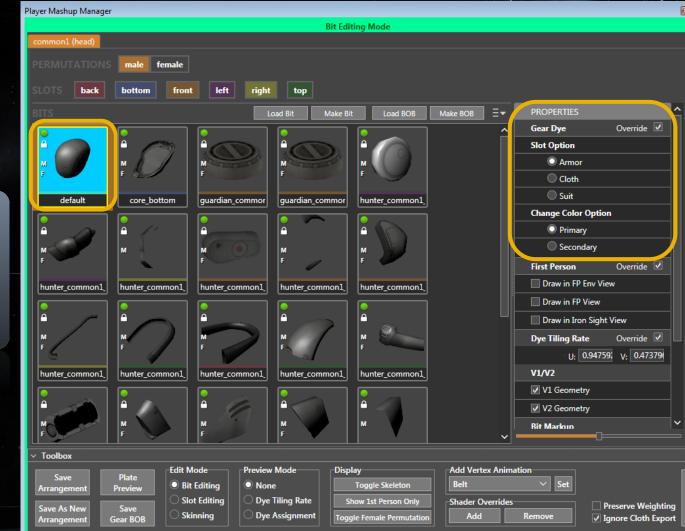
 $R = 1 - (1 - Base) * (1 - 2 * (Blend - \frac{1}{2}))$ • if $Base \le \frac{1}{2}$ R = Base * (2 * Blend) Blend

Base

Photoshop Shader Math: Overlay

Non-commutative


• if $Base > \frac{1}{2}$


 $R = 1 - \left(1 - 2 * (Base - \frac{1}{2})\right) * (1 - Blend)$

Blend

Base

• if $Base \leq \frac{1}{2}$ R = (2 * Base) * Blend

Gear Dye 0 Slot, Change Color 0 Gear Dye 1 Slot, Change Color 1 Gear Dye 1 Slot, Change Color 0 Gear Dye 1 Slot, Change Color 1 Gear Dye 2 Slot, Change Color 1 Gear Dye 2 Slot, Change Color 1 Multiple Gear Dye Slots Assigned Gear Dye 0 Slot, Change Color 0 Gear Dye 0 Slot, Change Color 1 Gear Dye 1 Slot, Change Color 0 Gear Dye 1 Slot, Change Color 1 Gear Dye 2 Slot, Change Color 1 Gear Dye 2 Slot, Change Color 1 Multiple Gear Dye Slots Assigned

60

Our Solution: Gear System

Gear Slots
 Arrangements and Bits
 Plated Textures
 Gear Dyes

- 1. Goals
- 2. Tinting
- 3. Material response
- 4. Gearstack usage
- 5. Advanced dyes and materials

Gear and Dye Specular Response

Destiny Deferred Renderer

- Flexible material model
- Customizable specular
- Dynamic time of day
- Complex atmosphere
- Scalability across last and current generation consoles

- Diffuse and specular computed as separate BRDFs
- Blend their contributions during shading pass

Nearly-Microfacet BRDFs:

l	Normalized Light Vector
v	Normalized View Vector
n	Normalized Surface Normal
h	Normalized Half Vector $(l + v)$
F	microfacet BRDF
G	Geometry term
D(h)	Normal distribution term

Nearly-Microfacet BRDFs:

 $f(l,v) = \frac{D(h)F(v \cdot h)G(l,v,h)}{4(n \cdot l)(n \cdot v)}$

Specular Lobe ID

Index: 0 Phong with glow _ slow diff falloff

1	Normalized Light Vector
v	Normalized View Vector
n	Normalized Surface Normal
h	Normalized Half Vector $(l + v)$
F	microfacet BRDF
G	Geometry term
D(h)	Normal distribution term

• Nearly-Microfacet BRDFs:

 $f(l,v) = \frac{D(h)F(v \cdot h)G(l,v,h)}{4(n \cdot l)(n \cdot v)}$

Specular Tint ID

Index: 0 default (diffuse tinted 12%)

l	Normalized Light Vector
v	Normalized View Vector
n	Normalized Surface Normal
h	Normalized Half Vector $(l + v)$
F	microfacet BRDF
G	Geometry term
D(h)	Normal distribution term

Nearly-Microfacet BRDFs:

l .	Normalized Light Vector
v	Normalized View Vector
n	Normalized Surface Normal
h	Normalized Half Vector $(l + v)$
F	microfacet BRDF
G	Geometry term
D(h)	Normal distribution term

Nearly-Microfacet BRDFs:

l	Normalized Light Vector
v	Normalized View Vector
n	Normalized Surface Normal
h	Normalized Half Vector $(l + v)$
F	microfacet BRDF
G	Geometry term
D(h)	Normal distribution term

• Our Fresnel term is different

- $f(l,v) = \frac{D(h)F(v \cdot \mathbf{n})G(l,v,h)}{4(n \cdot l)(n \cdot v)}$
- We use $F(v \cdot n)$ not $F(v \cdot h)$ or $F(l \cdot h)$

• Our Fresnel term is different

- $f(l,v) = \frac{D(h)F(v \cdot \mathbf{n})G(l,v,h)}{4(n \cdot l)(n \cdot v)}$
- We use $F(v \cdot n)$ not $F(v \cdot h)$ or $F(l \cdot h)$
- $F(l \cdot h)$ is a per-light, per-fragment calculation

• Our Fresnel term is different

- $f(l,v) = \frac{D(h)F(v \cdot \mathbf{n})G(l,v,h)}{4(n \cdot l)(n \cdot v)}$
- We use $F(v \cdot n)$ not $F(v \cdot h)$ or $F(l \cdot h)$
- $F(l \cdot h)$ is a per-light, per-fragment calculation
- $F(v \cdot n)$ drops the light dependency

Our Fresnel term is different

- $f(l,v) = \frac{D(h)F(v \cdot \mathbf{n})G(l,v,h)}{4(n \cdot l)(n \cdot v)}$
- We use $F(v \cdot n)$ not $F(v \cdot h)$ or $F(l \cdot h)$
- $F(l \cdot h)$ is a per-light, per-fragment calculation
- $F(v \cdot n)$ drops the light dependency
- Equivalent when specular is a perfect mirror

Our Fresnel term is different

- $f(l,v) = \frac{D(h)F(v \cdot \mathbf{n})G(l,v,h)}{4(n \cdot l)(n \cdot v)}$
- We use $F(v \cdot n)$ not $F(v \cdot h)$ or $F(l \cdot h)$
- $F(l \cdot h)$ is a per-light, per-fragment calculation
- $F(v \cdot n)$ drops the light dependency
- Equivalent when specular is a perfect mirror
- NOT equivalent for rough specularity
 - Not 'physical' either -- breaks reciprocity

- Table-based Fresnel:
- $F(v \cdot n) = Combine(LUT(n \cdot v, tint_id), RefColor)$

- Table-based Fresnel:
- $F(v \cdot n) = Combine(LUT(n \cdot v, tint_id), RefColor)$
 - Reference color is the per-pixel color produced by the G-buffer shaders

- Table-based Fresnel:
- $F(v \cdot n) = Combine(LUT(n \cdot v, tint_id), RefColor)$
 - Reference color is the per-pixel color produced by the G-buffer shaders

- Table-based Fresnel:
- $F(v \cdot n) = Combine(LUT(n \cdot v, tint_id), RefColor)$
 - Combine function (during shading) mixes the reference color with LUT-provided colors

- Combine is different for specular and diffuse BRDFs
- LUT table is not limited to 'standard' Fresnel approximations

Destiny Material Model: Distribution

- Table-based distribution:
- $D(h) = \overline{LUT(n \cdot h, roughness, lobe_id)}$
 - Artist-supplied distributions for (roughness = 0) per material ID

- Spherically blurred to generate roughness variations
- Normalized to be energy preserving with white Fresnel

Destiny Material Model: Distribution

- Table-based distribution:
- $D(h) = LUT(n \cdot h, roughness, lobe_id)$
 - We store diffuse and specular D(h) in the same LUT

- 'Standard' Lambertian diffuse is: $D(h) = \frac{1.0}{\pi}$
- But we don't limit the artists to this

<mark>05 00 08</mark> 00 00 00 04 04 <mark>00 05 05 05 05 05 08 08 08 05 00</mark> 00 00 08 00 00 06 06 <mark>06 00 08 00 00 00 00 04 04 04 0</mark>4 00 00 05 06 00 00 05 00 00 04 00 00 00 00 00 08-00 08 08 00 05 <mark>00 08 03</mark> 06 04 04 08 03 06 06 08 08 04 04 04 04 08 08 06 <u>05 00 06 00 08 04 04 04 05 05 05 05 05 06 00 00 05 06 05 05 05 00 00 06 06</u> JO OO OA AH OY OY OB OA OY OY OY OY OY OB JU OO HO YE OE OG UO JO <mark>HO OO</mark> OO 00 03 00 00 00 04 05 00 08 04 08 08 08 00 00 00 00 08 08 70 70 70 70 78 08 00

ERI SPO 001 001 001 001 001 001 001 951 951 951 951 001 001 001 001 001 001 001 001 001 550 410 550 550 550 510 ERI SIO SIO SIO SIO SIO SIO SIO SIO SEI OLO SEU SIO SIO SIO SIO SIO SII (KEU 060 801 620 SEE 601 000 900 900 000 ERI SIO SIO SIO SIO SIO SIO SIO SZI BIO SUN SCU GON SIO SUN PEL ERI FEL CON SUO SIO SIO 300 000 000 000 193 000 009 090 000 003 000 000 091 159 150 100 Uns ors 153 151 150 US3 150 100 100 100 100 000 000 1031 155 150 055 350 000 383 000 100 100 100 018 052 153 153 153 153 153 056 053 380 053 153 158 060 088 000 050 000 CRO RRG LES LET 221 221 225 EES CRI LEES 610 STI SUT SEL SET EEO DOV 200 FEO DIT STI SUE 280 000 CRS 138 400 018 100 442 001 011 010 112 101 112 338 400 412 141 900 008 000 085 155 188 180 388 080 000 יואר נאין באין באין באין <mark>באין מעט מאט מאט מאין באין באין באין באין באין מעט מעט אין מעט מעט מעט מעט מטט מטט מטט</mark>

Gear and Dye Specular Response

Specular Lobes

Index 0: Phong with glow

Index 2: Chrome

Gradient Ramp Texture Sources

Destiny Material Model: Geometry Terms

Diffuse Geometry term:

'Implicit' geometry term:

$$G(L,V,H) = 4.0 * (n \cdot l) * (n \cdot v)$$

 $f(l, v) = \frac{D(h)F(v \cdot \mathbf{n})G(l, v, h)}{4(n \cdot l)(n \cdot v)}$

Note: the Microfacet denominator cancels with parts of G()

Destiny Material Model: Geometry Terms

Specular Geometry term:

A modified Kelemin-Szirmay-Kalos approximation:

$$G(L,V,H) = 4.0 * \frac{(n \cdot l) * (n \cdot v)}{0.3 + (l + v)^2}$$

- Initially energy-preserving
 - By default we normalize D() and F() to ensure this

- Artists can override to modify the results beyond that
- Use spec roughness to improve per-pixel specular variation

Gear and Dye Spec Tint

Specular Tints

Index 21: White Overcoat

Index 83: Fallen Shell

Gradient Ramp Texture Sources

Gear and Dye Spec Tint

Specular Tints

Index 21: White Overcoat

Index 83: Fallen Shell

Gradient Ramp Texture Sources

Gear and Dye Specular Response

Gear and Dye Specular Response

bright/sharp highlight

bright specular texture

dim specular texture

dim/broad highlight

Gear and Dye Specular Response

Our Solution: Gear System

Gear Slots
 Arrangements and Bits
 Plated Textures
 Gear Dyes

1. Goals

- 2. Tinting
- 3. Material response
- 4. Gearstack usage
- 5. Advanced dyes and materials

gear dya display moda 1 tigar shading dabug 6

5

P.S.

Star .

-

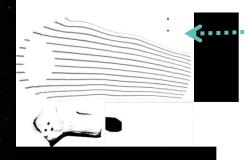
Scratching the Surface

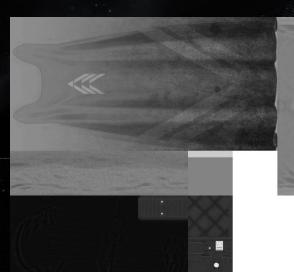
Many Visual Needs...

- Worn & varied materials
- Fringed, torn materials
- Varied specular response
- Transparent materials
- Subsurface scattering
- Custom masks

Yet - constant memory footprint

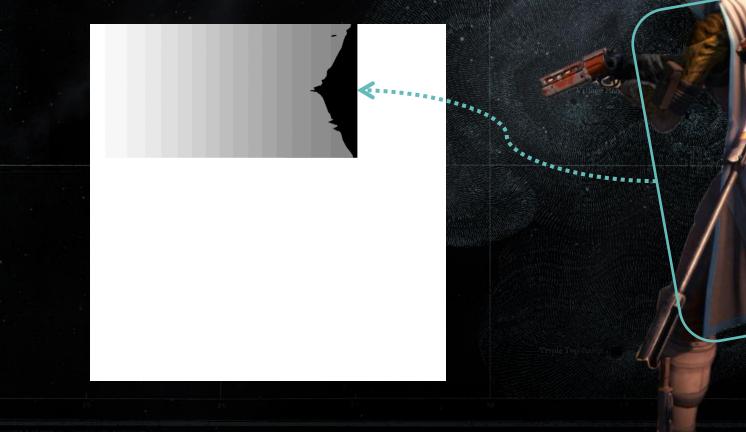
Gear Stack Texture

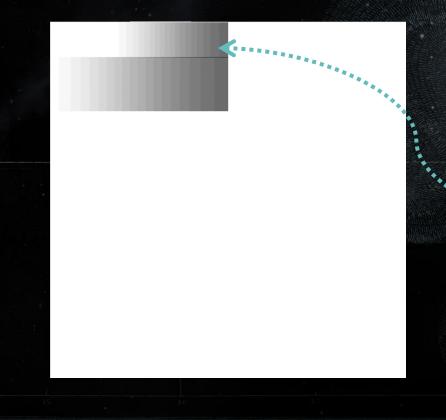




Gear Stack: Scratch Mask

Gear Stack: Specular Roughness





Gear Stack: Alpha Testing

Our Solution: Gear System

Gear Slots
 Arrangements and Bits
 Plated Textures
 Gear Dyes

- 1. Goals
- 2. Tinting
- 3. Material response
- 4. Gearstack usage
- 5. Advanced dyes and materials

Advanced Dye Materials

- Skin
- Hair
- Facial markings

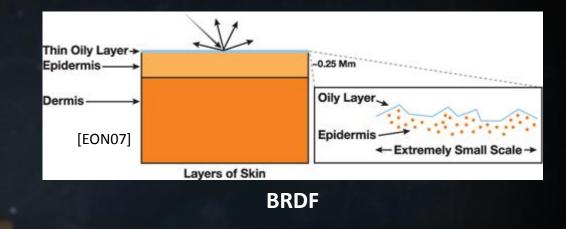
Gear Skin has custom gear stack

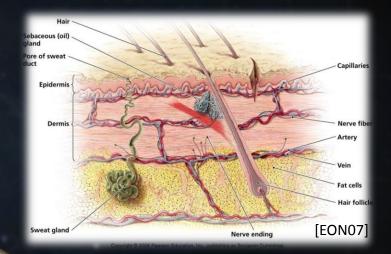
• Red: lips dye region

• Red: lips dye region

• Red: lips dye region

Gear Stack: Subsurface Scattering

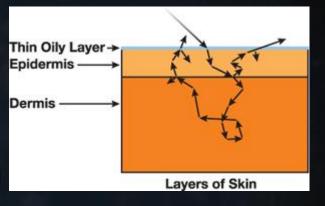

Per-face subsurface scattering control


Gear Stack: Subsurface Scattering

- Stream for each face independently
- Account for bone structure
- Awoken / Human differences

Subsurface Scattering

Subsurface Scattering



0

Subsurface Scattering

10

0

BSSRDF

Subsurface Scattering Breakdown

- Accumulate lighting and shadows
- Render subsurface prepass
- Scatter diffuse lighting
- Shade

A435

Diffuse Reference Color

Lighting and Shadows

- Accumulate shadow maps contributions
- Accumulate deferred lights diffuse contribution

A4351

 RGB: Custom dye-driven subsurface tint

	Spec Lobe ID		3:				
		ing					
⊗ ?	Spec Tint ID		23 :				
	Spec Roughness						
	Spec Roughness	1	-				
	Primary Change	1		51 173	255		
		•••••	31 0	31 0.42	1.00		
80?	Secondary Chan	2		68 160	255	- 1	
		0.	70 0.	.39 0.35	1.00		
801	SubsurfaceSeatt	140					
		1					
		1					
		1	-				

Awoken skin dye

 Alpha: Per-Pixel dye- and gearstack driven subsurface strength

 Alpha: Per-Pixel dye- and gearstack driven subsurface strength amount

• Dye provides subsurface scattering strength control

• Dye provides subsurface scattering strength control

0

• Dye provides subsurface scattering strength control

 Alpha: Per-Pixel dye- and gearstack driven subsurface strength amount

					Spec Lo	be ID		3 :		ong w	ith glov		ght roi $^{\sim}$
							5.						
					Spec Ti	nt ID		23	: wh				
				Spec	Roughn	ess		==					
				Spec	Roughn	ess							
				Prima	ry Char	1ge		151 0.31	151 0.31	173 0.42	255 1.00		
				Secon	dary Ch	an		218 0.70	168 0 39	160 0 35	255 1.00		
• •								0.70	0.39	0.35	1.00		
Ξ.	0	0	?	Subsu	face Sc	att	140				0	10	
								-			- 0		
	<u> </u>												4

- Setup stencil mask
- HiStencil optimization during screenspace scattering passes

Subsurface Scattering

 Run two screenspace separable scattering approximation passes

Previous work

- [D'Eon 07]
- [Jimenez 12]
- Implemented custom extended version

Subsurface Scattering

• With full scattering

Specular Reference Color

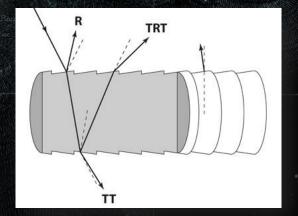
a

Specular Accumulation

 Kelemen-Szirmay-Kalos specular for bright specular response on rim lights

Final Shaded Result

Regular BDRF Shading


Final Shaded Result

Final Shaded Result

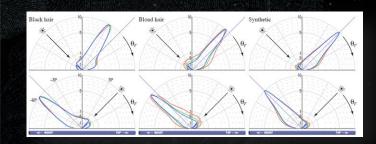
 Accumulate scattering for all skin and facial decoration layers

Deferred Hair Rendering Challenges

- Anisotropy depends on light direction
- Typically evaluated as forward-lit
- Problematic for production
 - Inconsistent lighting and shadowing
 - Requires custom lit materials
 - Complex to maintain and polish

[Marschner et al 03]

Destiny Material Model


- Diffuse and specular as separate BRDFs
- Averaged in the end
- Specular response is affected by reference color

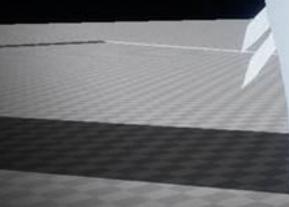
 Compute modified Marshner03 / Scheuermann04 terms

> Extended the shifted primary and secondary specular highlights terms computation

MAF

FIN

But... Light Direction?


- Need information about the light source
- But we're in G-buffer pass..
 - No light information available?

MAF

FIN

Houston, we have a problem!

Hm....

Plausible and Believable

MAF

FIN

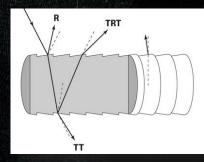
 Observation: anisotropy is perceivable in its presence

 But the exact anisotropy source is not easily distinguishable

Plausible and Believable!

- Dominant light source drives anisotropy
- Outdoors: sunlight
- Indoors: dynamic selection
- Feed to G-buffer shader via

channels


MAR

Accumulate diffuse lighting

4435

Accumulate specular lighting

MAF

- Combined final result
- Benefits
 - Fully integrated lighting and shadowing
 - Computed pre-subsurface scattering

Putting It All Together: Armor

How Did We Do?

Scale 400

Lessons Learned: What Went Right

- Flexible, diverse and scalable system
- Achieved art bar within design, production and engineering constraints

Challenges Encountered

The complexity of the system grew as the project matured
 Tools matured toward the end
 Managing the permutations of features was challenging

Thanks for attending our talk!

- Hope the talk was useful, and you guys got something out of it
- Thanks to our studio's talented engineers, tools, tech and art team for making this all possible.
- Please stay for more Destiny talks after the Q&A

Questions?

Destiny @ SIGGRAPH

Character Heads Creation Pipeline and Rendering in Destiny

Tuesday, 12 August 10:45 AM - 12:15 PM West Building, Ballroom C/D

Destiny Character-Animation System and Lessons Learned

Tuesday, 12 August 2:00 PM - 5:15 PM West Building, Rooms 211-214

Bungie was founded in 1991 with two goals:

- Combine brilliant technology and beautiful art with captivating gameplay
 - * Achieve World Domination

We're Hiring. Apply Now.

www.bungie.net/careers careers@bungie.com

