
Creating Content to Drive Destiny's Investment

Game
One Solution to Rule Them All

Natalya Tatarchuk

Shiek Wang

Bungie’s Game History
 The Early Years

Bungie’s Game History
 The Last Decade

Destiny Launch Trailer

• http://www.bungie.net/7_Destiny-Launch-

Gameplay-Trailer/en/News/News?aid=12050

http://www.bungie.net/7_Destiny-Launch-Gameplay-Trailer/en/News/News?aid=12050
http://www.bungie.net/7_Destiny-Launch-Gameplay-Trailer/en/News/News?aid=12050
http://www.bungie.net/7_Destiny-Launch-Gameplay-Trailer/en/News/News?aid=12050
http://www.bungie.net/7_Destiny-Launch-Gameplay-Trailer/en/News/News?aid=12050
http://www.bungie.net/7_Destiny-Launch-Gameplay-Trailer/en/News/News?aid=12050
http://www.bungie.net/7_Destiny-Launch-Gameplay-Trailer/en/News/News?aid=12050
http://www.bungie.net/7_Destiny-Launch-Gameplay-Trailer/en/News/News?aid=12050
http://www.bungie.net/7_Destiny-Launch-Gameplay-Trailer/en/News/News?aid=12050

Destiny Pillars
• A world players want to be in

• A bunch of fun things to do

• Rewards players care about

• A new experience every night

• Shared with other people

• Enjoyable by all skill levels

• Enjoyable by the tired,

 impatient, and distracted

Destiny Pillars
• A world players want to be in

• A bunch of fun things to do

• Rewards players care about

• A new experience every night

• Shared with other people

• Enjoyable by all skill levels

• Enjoyable by the tired,

 impatient, and distracted

Become Legend

Become Legend
 Aligning Investment Pillar and Art Direction

Pillars of Destiny’s World

• Hopeful and inviting

• Idealized reality

• Filled with mystery and adventure

• A place where you can become a legend

Become Legend

Pillars of Destiny’s World

• Hopeful and inviting

• Idealized reality

• Filled with mystery and adventure

• A place where you can become a legend

Become Legend
 Aligning Investment Pillar and Art Direction

Investment Design

• Rewards players care about

• create many pieces of Armor and Weapons, among other things, to provide

players with compelling rewards and customization options

Art Direction

• Hopeful idealized sci-mythic world that players want to be in

Key visual pillars

• LUT color correction

• Vignette

• Tone Mapping

• Chromatic Aberration

• Full-Screen Bloom

• Light Streaks

Classes

Titan
Space Knight

Hunter
Bounty Hunter

Warlock
Space Wizard

Key visual pillars

• LUT color correction

• Vignette

• Tone Mapping

• Chromatic Aberration

• Full-Screen Bloom

• Light Streaks

Key visual pillars

• LUT color correction

• Vignette

• Tone Mapping

• Chromatic Aberration

• Full-Screen Bloom

• Light Streaks

Weapons

Titan

Hunter

Warlock

Player Ships

Racer

Sinister

Cargo

Rogue

Bomber

Explorer

Races

Human
Relatable

Tough

Uncomplicated

Awoken
Exotic

Beautiful

Mysterious

Exo
Powerful

Tireless

Sinister

Tiger Man
Furry

Flexible

Somber

Content Problem

• Need new content solutions, old methods do not scale

• New IP requires vast amount of compelling content in

multiple areas of the player

• Production cycle within 2 years, and about 17artists

• Scalable between last gen and next gen

Tech Goals

• Shared experience: support many simultaneous

unique avatars

Tech Goals

• Shared experience: support many simultaneous

unique avatars

• Predictable memory footprint

Tech Goals

• Shared experience: support many simultaneous

unique avatars

• Predictable memory footprint

• Powerful and extensible pipeline

Tech Goals

• Shared experience: support many simultaneous

unique avatars

• Predictable memory footprint

• Powerful and extensible pipeline

• Reuse to minimize disc / download size

Our Solution: Gear System

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes

Gear Slot System

Gear Slot

What it is:

• A basic gear component

• Content creation and management unit

• Runtime component unit

Gear Slot

What it is not:

• Customization and investment unit

Gear Slot System

• Support multiple gear asset types
 Player armor

 Player weapon

 Player ships

 Player heads

• Extensible: each asset type defines a set

of gear slots

Gear Slots : Player Armor

CLASS

ARMS

LEGS

• Combat: 5 gear slots

HELMET

CHEST

Barrel

Frame

Scope

Magazine

Stock

Weapon Gear Slots

Weapon Gear Slots

Situation-Dependent Gear Slots

• Enabled in different game scenarios

Combat Space Gear

Social Spaces Gear

Reticle

Weapon Gear Slots: ADS: Reticle

Cockpit

Wings Jets

Pod

Engines

Player Ship Gear Slots

Player Head Gear Slots

Head

Hair

Eyebrows

Marking

Our Solution: Gear System

1. Gear Slots

2. Arrangements and

Bits

3. Plated Textures

4. Gear Dyes

Gear Arrangements and Bits

Gear Arrangement

Gear Arrangement

• One arrangement to one gear slot

• An asset container for that slot

Gear Arrangement and Gear Bits

Gear Arrangement and Gear Bits

Gear Arrangement and Gear Bits

Console Generations

• V1: PlayStation 3 and Xbox 360

• V2: PlayStation 4 and Xbox One

Gear Bits: From DCC to Runtime

• Artist-perspective:
 Regular authoring process

 Normal object-space modeling and texturing

• Artists assign properties to bits
 Shaders

 Gear dyes

 Textures

 Skinning

 …

Gear Bits: From DCC to Runtime

• A object can be rendered on
average 5 times a frame
 Opaque

 Decals

 Shadow map passes (several)

 Transparent passes

• Each gear object  4-9 runtime
components

• That could be a lot of drawcalls

Gear Bits: From DCC to Runtime

• Tech ensures bits assembly offline

• Don’t make artists worry about

drawcall or shader count

• Make the process transparent to

content creators

Gear Bits: From DCC to Runtime

• Merge the bits during import

Gear Bits: From DCC to Runtime

• Merge the bits during import

• Sort by state and merge geometry that

has the same state into same drawcall

containers

Future-Proofing Gear Geometry

• Artists author high-resolution detailed geometry for bits

• Scalability ensured via gear arrangement tagging and LOD

system

First-Person Geo to Third-Person

• Base LOD authored to first-person quality

• LOD system automatically drops down in third-person from

base geo

Gear LOD Generation

• Auto-generate 2 additional LOD meshes offline from

base
 Separate geometry for each platform generation

• Medium LOD mesh memory is shared with base LOD

(~30% base)
 Same vertex buffer

 Different index buffers

Gear LOD Generation

• Auto-generate 2 additional LOD meshes offline from base

• Medium LOD mesh memory is shared with base LOD (~30%
base)
 Same vertex buffer

 Different index buffers

• Imposter LOD uses very simplified mesh formats (~10%
base)
 One to two bones per vertex only

 No tangent space

 Reduced skeleton

+

Budget and Budget Reporting

Gear Arrangement Geometry Profiler

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes

What Is a Gear Plated Texture?

• A special gear texture atlas

• All bits in an arrangement plate to this

atlas

What Is a Gear Plated Texture?

Gear Plates

Why Plate?

• Artists are freed up to author bits in

intuitive UV layout for each bit

• No need to create custom UV layout for

each gear arrangement

Why Plate?

• Artists are freed up to author bits in

intuitive UV layout for each bit

• No need to create custom UV layout for

each gear arrangement separately

• No need to switch textures at runtime

within arrangement

 Just setup the plate textures and render the

whole gear arrangement

Constant Memory Footprint

• All bit textures must fit into a plate for

each gear arrangements

• Artists get visual errors when bits don’t

fit – in DCC directly

 Quick interactive preview

Constant Memory Footprint

• All bit textures must fit into a plate for

each gear arrangements

• Artists get visual errors when bits don’t

fit – in DCC directly

 Quick interactive preview

• Plates automatically scale across

v1/v2

Plate Set: Titan

HELMET / FACE
1024 x 1024

FACE DECALS
1024 x 1024

Plate 0: 2K x 2K Plate 1: 2K x 2K Plate 4: 1K x 1K

Plate 3: 1K x 1K

LEGS
2048 x 1024

CHEST
2048 x 1024

CLASS (BADGE)
2048 x 768

ARMS
2048 x 1280

HELMET / FACE
1024 x 1024

FACE DECALS
1024 x 1024

Plate 0: 2K x 2K Plate 1: 2K x 2K Plate 4: 1K x 1K

Plate 3: 1K x 1K

LEGS
2048 x 1024

CHEST
2048 x 1024

CLASS (BADGE)
2048 x 768

ARMS
2048 x 1280

Plate Set: Titan

CHEST
2048 x 2048

HELMET / FACE
1024 x 1024

FACE DECALS
1024 x 1024

Plate 0: 2K x 2K Plate 1: 2K x 2K Plate 4: 1K x 1K

Plate 3: 1K x 1K

LEGS
2048 x 768

ARMS
2048 x 1024

CLASS (ARM BAND)
2048 x 256

Plate Set: Warlock

CHEST
2048 x 2048

HELMET / FACE
1024 x 1024

FACE DECALS
1024 x 1024

Plate 0: 2K x 2K Plate 1: 2K x 2K Plate 4: 1K x 1K

Plate 3: 1K x 1K

LEGS
2048 x 768

ARMS
2048 x 1024

CLASS (ARM BAND)
2048 x 256

Plate Set: Warlock

Gear Plating Process: Import

• Walk all bits in in an arrangement

• Pull out the textures

• Create texture descriptors structures (references +

plated placements)
 Do not bake off plate textures offline

• Modify geometry UVs to plated UV locations

Gear Plating Process: Runtime

• Load gear components

• Async stream in texture descriptors and gear bit

textures

• Dynamically composite the plates at runtime

• Copy compressed bit textures blocks into plates

• Simple plating rules: no scale or rotation

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes
1. Goals

2. Tinting

3. Material response

4. Gearstack usage

5. Advanced dyes and materials

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes

1. Goals
2. Tinting

3. Material response

4. Gearstack usage

5. Advanced dyes and materials

Content Gear Dyes Goals

• Same content supports run-time material and tinting

modifications

• Extensible and expressive artist controls

• A library of sharable materials

• A dye is a constant memory material container

Content Gear Dyes Goals

• Consistent look across the entire character

• Sharable material settings

Content Gear Dyes Goals

• Consistent look across the entire character

• Sharable material settings

Content Gear Dyes Goals

• Consistent look across the entire character

• Sharable material settings

Content Gear Dyes Goals

• Consistent look across the entire character

• Sharable material settings

Gear Dye Versatility

• Dyes are always the same data format

• Consistent materials across the game
 Can be applied to any arrangement / any race / any class

 Armor / Weapon / Ships, etc.

• Easy hook up for investment

Gear Dye as Material Container

Gear Dye

• A collection of material parameters
 Tinting

 Detail Textures

 Material response

properties

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes
1. Goals

2. Tinting

3. Material response

4. Gearstack usage

5. Advanced dyes and materials

Tinting Gear

• Runtime colorization

with artist-friendly

Photoshop-like controls

Gear Dye Tint Compositing

• Start with base

gear textures

Gear Dye Tint Compositing

• Start with base

gear textures

• Greyscale offers

most freedom for

dyes

Dye Slot Setup For Gear Arrangements

• Unique dyes per gear

arrangement
 3 regular dye slots

 2 change color options per dye

Primary and secondary

 One special dye for emblem decals

usage

Gear Fixed-Function Shaders

• One unique gear dye per drawcall
 Some plats didn’t like shader flow control

• Except for heads
 More on that later

• Constant amount of dye parameters

Use Photoshop Blend Modes

• Gear shaders always used the same

blends for dyes

• Detail textures use hard light to

blend with dye change color

• Dye change color uses overlay to

blend with base textures

Photoshop Shader Math: Hard Light

• Non-commutative

• if 𝐵𝑙𝑒𝑛𝑑 >
1

2

𝑅 = 1 − 1 − 𝐵𝑎𝑠𝑒 ∗ (1 − 2 ∗ (𝐵𝑙𝑒𝑛𝑑 −
1

2
))

• if 𝐵𝑎𝑠𝑒 ≤
1

2

 𝑅 = 𝐵𝑎𝑠𝑒 ∗ 2 ∗ 𝐵𝑙𝑒𝑛𝑑

Base

Blend

Photoshop Shader Math: Hard Light

Base

Blend

Photoshop Shader Math: Overlay

• Non-commutative

• if 𝐵𝑎𝑠𝑒 >
1

2

𝑅 = 1 − 1 − 2 ∗ (𝐵𝑎𝑠𝑒 −
1

2
) ∗ (1 − 𝐵𝑙𝑒𝑛𝑑)

• if 𝐵𝑎𝑠𝑒 ≤
1

2

 𝑅 = 2 ∗ 𝐵𝑎𝑠𝑒 ∗ 𝐵𝑙𝑒𝑛𝑑

Base

Blend

Photoshop Shader Math: Overlay

Base

Blend

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes
1. Goals

2. Tinting

3. Material response

4. Gearstack usage

5. Advanced dyes and materials

Gear and Dye Specular Response

Destiny Deferred Renderer

• Flexible material model

• Customizable specular

• Dynamic time of day

• Complex atmosphere

• Scalability across last and current generation consoles

Destiny Material Model

• Diffuse and specular computed as separate BRDFs

• Blend their contributions during shading pass

Destiny Material Model

• Nearly-Microfacet BRDFs: 𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ h)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

𝑙 Normalized Light Vector

𝑣 Normalized View Vector

𝑛 Normalized Surface Normal

ℎ Normalized Half Vector (𝑙 + 𝑣)

𝐹 microfacet BRDF

𝐺 Geometry term

𝐷(ℎ) Normal distribution term

Destiny Material Model

• Nearly-Microfacet BRDFs: 𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ h)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

𝑙 Normalized Light Vector

𝑣 Normalized View Vector

𝑛 Normalized Surface Normal

ℎ Normalized Half Vector (𝑙 + 𝑣)

𝐹 microfacet BRDF

𝐺 Geometry term

𝐷(ℎ) Normal distribution term

Destiny Material Model

• Nearly-Microfacet BRDFs: 𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ h)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

𝑙 Normalized Light Vector

𝑣 Normalized View Vector

𝑛 Normalized Surface Normal

ℎ Normalized Half Vector (𝑙 + 𝑣)

𝐹 microfacet BRDF

𝐺 Geometry term

𝐷(ℎ) Normal distribution term

Destiny Material Model

• Nearly-Microfacet BRDFs: 𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ h)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

𝑙 Normalized Light Vector

𝑣 Normalized View Vector

𝑛 Normalized Surface Normal

ℎ Normalized Half Vector (𝑙 + 𝑣)

𝐹 microfacet BRDF

𝐺 Geometry term

𝐷(ℎ) Normal distribution term

Destiny Material Model

• Nearly-Microfacet BRDFs: 𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ h)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

𝑙 Normalized Light Vector

𝑣 Normalized View Vector

𝑛 Normalized Surface Normal

ℎ Normalized Half Vector (𝑙 + 𝑣)

𝐹 microfacet BRDF

𝐺 Geometry term

𝐷(ℎ) Normal distribution term

Destiny Material Model

• Our Fresnel term is different

 We use F(𝑣 ∙ 𝑛) not F(𝑣 ∙ ℎ) or F(l ∙ ℎ)

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model

• Our Fresnel term is different

 We use F(𝑣 ∙ 𝑛) not F(𝑣 ∙ ℎ) or F(l ∙ ℎ)

 F(l ∙ ℎ) is a per-light, per-fragment calculation

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model

• Our Fresnel term is different

 We use F(𝑣 ∙ 𝑛) not F(𝑣 ∙ ℎ) or F(l ∙ ℎ)

 F(l ∙ ℎ) is a per-light, per-fragment calculation

 F(𝑣 ∙ 𝑛) drops the light dependency

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model

• Our Fresnel term is different

 We use F(𝑣 ∙ 𝑛) not F(𝑣 ∙ ℎ) or F(l ∙ ℎ)

 F(l ∙ ℎ) is a per-light, per-fragment calculation

 F(𝑣 ∙ 𝑛) drops the light dependency

 Equivalent when specular is a perfect mirror

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model: Fresnel

• Our Fresnel term is different

 We use F(𝑣 ∙ 𝑛) not F(𝑣 ∙ ℎ) or F(l ∙ ℎ)

 F(l ∙ ℎ) is a per-light, per-fragment calculation

 F(𝑣 ∙ 𝑛) drops the light dependency

 Equivalent when specular is a perfect mirror

 NOT equivalent for rough specularity

 Not ‘physical’ either -- breaks reciprocity

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model: Fresnel

• Table-based Fresnel:

• 𝐹 𝑣 ∙ 𝑛 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝐿𝑈𝑇 𝑛 ∙ 𝑣, 𝑡𝑖𝑛𝑡_𝑖𝑑 , 𝑅𝑒𝑓𝐶𝑜𝑙𝑜𝑟)

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model: Fresnel

• Table-based Fresnel:

• 𝐹 𝑣 ∙ 𝑛 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝐿𝑈𝑇 𝑛 ∙ 𝑣, 𝑡𝑖𝑛𝑡_𝑖𝑑 , 𝑅𝑒𝑓𝐶𝑜𝑙𝑜𝑟)

 Reference color is the per-pixel color produced by the G-buffer

shaders

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model

Destiny Material Model

Destiny Material Model: Fresnel

• Table-based Fresnel:

• 𝐹 𝑣 ∙ 𝑛 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝐿𝑈𝑇 𝑛 ∙ 𝑣, 𝑡𝑖𝑛𝑡_𝑖𝑑 , 𝑅𝑒𝑓𝐶𝑜𝑙𝑜𝑟)

 Reference color is the per-pixel color produced by the G-buffer

shaders

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model: Fresnel

• Table-based Fresnel:

• 𝐹 𝑣 ∙ 𝑛 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝐿𝑈𝑇 𝑛 ∙ 𝑣, 𝑡𝑖𝑛𝑡_𝑖𝑑 , 𝑅𝑒𝑓𝐶𝑜𝑙𝑜𝑟)

 Combine function (during shading) mixes the reference color with

LUT-provided colors

 Combine is different for specular and diffuse BRDFs

 LUT table is not limited to ‘standard’ Fresnel approximations

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model: Distribution

• Table-based distribution:

• 𝐷 ℎ = 𝐿𝑈𝑇 𝑛 ⋅ ℎ, 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑙𝑜𝑏𝑒_𝑖𝑑

 Artist-supplied distributions for (roughness = 0) per material ID

 Spherically blurred to generate roughness variations

 Normalized to be energy preserving with white Fresnel

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model: Distribution

• Table-based distribution:

• 𝐷 ℎ = 𝐿𝑈𝑇 𝑛 ⋅ ℎ, 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑙𝑜𝑏𝑒_𝑖𝑑

 We store diffuse and specular 𝐷 ℎ in the same LUT

 ‘Standard’ Lambertian diffuse is: 𝐷 ℎ =
1.0

𝜋

 But we don’t limit the artists to this

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model

Destiny Material Model

Destiny Material Model

Destiny Material Model

Destiny Material Model

Destiny Material Model

Gear and Dye Specular Response

Destiny Material Model: Geometry Terms

Diffuse Geometry term:
 ‘Implicit’ geometry term:

𝐺 𝐿, 𝑉, 𝐻 = 4.0 ∗ (𝑛 ⋅ 𝑙) ∗ (𝑛 ⋅ 𝑣)

• Note: the Microfacet denominator cancels with parts of G()

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model: Geometry Terms

Specular Geometry term:

 A modified Kelemin-Szirmay-Kalos approximation:

𝐺 𝐿, 𝑉, 𝐻 = 4.0 ∗
(𝑛 ⋅ 𝑙) ∗ (𝑛 ⋅ 𝑣)

0.3 + (𝑙 + 𝑣)2

𝑓 𝑙, 𝑣 =
𝐷 ℎ 𝐹(𝑣 ⋅ n)𝐺 𝑙, 𝑣, ℎ

4(𝑛 ⋅ 𝑙)(n ⋅ v)

Destiny Material Model

• Initially energy-preserving

 By default we normalize D() and F() to ensure

this

Destiny Material Model

• Artists can override to

modify the results

beyond that

• Use spec roughness to

improve per-pixel

specular variation

Gear and Dye Spec Tint

Gear and Dye Spec Tint

Gear and Dye Specular Response

Gear and Dye Specular Response

Gear and Dye Specular Response

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes
1. Goals

2. Tinting

3. Material response

4. Gearstack usage

5. Advanced dyes and materials

Scratching the Surface

Many Visual Needs…

• Worn & varied materials

• Fringed, torn materials

• Varied specular response

• Transparent materials

• Subsurface scattering

• Custom masks

• …

• Yet - constant memory footprint

Gear Stack Texture

Gear Stack: Scratch Mask

Gear Stack: Specular Roughness

Gear Stack: Alpha Testing

Gear Stack: Transparency

Our Solution: Gear System

1. Gear Slots

2. Arrangements and Bits

3. Plated Textures

4. Gear Dyes
1. Goals

2. Tinting

3. Material response

4. Gearstack usage

5. Advanced dyes and

materials

Advanced Dye Materials

• Skin

• Hair

• Facial markings

Gear Stack: Lip Customization

• Gear Skin has custom gear stack

Gear Stack: Lip Customization

• Red: lips dye region

Gear Stack: Lip Customization

• Red: lips dye region

Gear Stack: Lip Customization

• Red: lips dye region

Gear Stack: Subsurface Scattering

• Per-face subsurface scattering

control

Gear Stack: Subsurface Scattering

• Stream for each face

independently

• Account for bone structure

• Awoken / Human differences

Subsurface Scattering

BRDF

[EON07]

Subsurface Scattering

[EON07]

Subsurface Scattering

BSSRDF

[EON07]

Subsurface Scattering Breakdown

• Accumulate lighting and shadows

• Render subsurface prepass

• Scatter diffuse lighting

• Shade

Diffuse Reference Color

Lighting and Shadows

• Accumulate shadow maps

contributions

• Accumulate deferred lights

diffuse contribution

Subsurface Prepass

• RGB: Custom dye-driven

subsurface tint

Awoken skin dye

Subsurface Prepass

• Alpha: Per-Pixel dye- and gear-

stack driven subsurface

strength

• Alpha: Per-Pixel dye- and gear-

stack driven subsurface

strength amount

Subsurface Prepass

• Dye provides subsurface

scattering strength control

Subsurface Prepass

Subsurface Prepass

• Dye provides subsurface

scattering strength control

Subsurface Prepass

• Dye provides subsurface

scattering strength control

Subsurface Prepass

• Alpha: Per-Pixel dye- and gear-

stack driven subsurface

strength amount

Subsurface Prepass

• Setup stencil mask

• HiStencil optimization during

screenspace scattering passes

Subsurface Scattering

• Run two screenspace

separable scattering

approximation passes

• Previous work
 [D’Eon 07]

 [Jimenez 12]

• Implemented custom extended

version

• With full scattering

Subsurface Scattering

Specular Reference Color

Specular Accumulation

• Kelemen-Szirmay-

Kalos specular for bright

specular response on rim lights

Final Shaded Result

Regular BDRF Shading

Final Shaded Result

Final Shaded Result

• Accumulate scattering for all

skin and facial decoration

layers

Deferred Hair Rendering Challenges

• Anisotropy depends on light direction

• Typically evaluated as forward-lit

• Problematic for production
 Inconsistent lighting and shadowing

 Requires custom lit materials

 Complex to maintain and polish

[Marschner et al 03]

Destiny Material Model

• Diffuse and specular as separate BRDFs

• Averaged in the end

• Specular response is affected by reference color

Deferred Anisotropy

• Compute modified Marshner03 /

Scheuermann04 terms

 Extended the shifted primary and

secondary specular highlights terms

computation

But… Light Direction?

• Need information about the light

source

• But we’re in G-buffer pass..
 No light information available?

• Houston, we have a problem!

Hm….

Aha!

• Plausible and Believable

• Observation: anisotropy is

perceivable in its presence

• But the exact anisotropy source is

not easily distinguishable

Plausible and Believable!

• Dominant light source drives

anisotropy

• Outdoors: sunlight

• Indoors: dynamic selection

• Feed to G-buffer shader via

 channels

Deferred Anisotropy

• Accumulate diffuse lighting

Deferred Anisotropy

• Accumulate specular lighting

Deferred Anisotropy

• Combined final result

• Benefits
 Fully integrated lighting and shadowing

 Computed pre-subsurface scattering

Putting It All Together: Armor

How Did We Do?

Lessons Learned: What Went Right

o Flexible, diverse and scalable

system

o Achieved art bar within design,

production and engineering

constraints

Challenges Encountered

o The complexity of the system

grew as the project matured

o Tools matured toward the end

o Managing the permutations of

features was challenging

Thanks for attending our talk!

• Hope the talk was useful, and you guys got something out

of it

• Thanks to our studio’s talented engineers, tools, tech and

art team for making this all possible.

• Please stay for more Destiny talks after the Q&A

Questions?

Destiny @ SIGGRAPH

Character Heads Creation Pipeline and Rendering

in Destiny
Tuesday, 12 August 10:45 AM - 12:15 PM

West Building, Ballroom C/D

Destiny Character-Animation System and Lessons

Learned
Tuesday, 12 August 2:00 PM - 5:15 PM

West Building, Rooms 211-214

