-
Notifications
You must be signed in to change notification settings - Fork 15
/
snippet.go
385 lines (330 loc) · 11.2 KB
/
snippet.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// SPDX-License-Identifier: MIT OR Unlicense
package main
import (
"bytes"
str "github.com/boyter/go-string"
"sort"
"unicode"
)
const (
SnipSideMax int = 10 // Defines the maximum bytes either side of the match we are willing to return
// The below are used for adding boosts to match conditions of snippets to hopefully produce the best match
PhraseHeavyBoost = 20
SpaceBoundBoost = 5
ExactMatchBoost = 5
// Below is used to control CPU burn time trying to find the most relevant snippet
RelevanceCutoff = 10_000
)
type bestMatch struct {
StartPos int
EndPos int
Score float64
Relevant []relevantV3
}
// Internal structure used just for matching things together
type relevantV3 struct {
Word string
Start int
End int
}
type Snippet struct {
Content string
StartPos int
EndPos int
Score float64
LineStart int
LineEnd int
}
// Looks through the locations using a sliding window style algorithm
// where it "brute forces" the solution by iterating over every location we have
// and look for all matches that fall into the supplied length and ranking
// based on how many we have.
//
// This algorithm ranks using document frequencies that are kept for
// TF/IDF ranking with various other checks. Look though the source
// to see how it actually works as it is a constant work in progress.
// Some examples of what it can produce which I consider good results,
//
// corpus: Jane Austens Pride and Prejudice
// searchtext: ten thousand a year
// result: before. I hope he will overlook
//
// it. Dear, dear Lizzy. A house in town! Every thing that is
// charming! Three daughters married! Ten thousand a year! Oh, Lord!
// What will become of me. I shall go distracted.”
//
// This was enough to prove that her approbation need not be
//
// searchtext: poor nerves
// result: your own children in such a way?
//
// You take delight in vexing me. You have no compassion for my poor
// nerves.”
//
// “You mistake me, my dear. I have a high respect for your nerves.
// They are my old friends. I have heard you mention them with
// consideration these last
//
// The above are captured in the tests for this method along with extractions from rhyme of the ancient mariner
// and generally we do not want them to regress for any other gains.
//
// Please note that testing this is... hard. This is because what is considered relevant also happens
// to differ between people. Heck a few times I have been disappointed with results that I was previously happy with.
// As such this is not tested as much as other methods and you should not rely on the results being static over time
// as the internals will be modified to produce better results where possible
func extractRelevantV3(res *FileJob, documentFrequencies map[string]int, relLength int) []Snippet {
wrapLength := relLength / 2
var bestMatches []bestMatch
rv3 := convertToRelevant(res)
// if we have a huge amount of matches we want to reduce it because otherwise it takes forever
// to return something if the search has many matches.
if len(rv3) > RelevanceCutoff {
rv3 = rv3[:RelevanceCutoff]
}
// Slide around looking for matches that fit in the length
for i := 0; i < len(rv3); i++ {
m := bestMatch{
StartPos: rv3[i].Start,
EndPos: rv3[i].End,
Relevant: []relevantV3{rv3[i]},
}
// Slide left
j := i - 1
for {
// Ensure we never step outside the bounds of our slice
if j < 0 {
break
}
// How close is the matches start to our end?
diff := rv3[i].End - rv3[j].Start
// If the diff is greater than the target then break out as there is no
// more reason to keep looking as the slice is sorted
if diff > wrapLength {
break
}
// If we didn't break this is considered a larger match
m.StartPos = rv3[j].Start
m.Relevant = append(m.Relevant, rv3[j])
j--
}
// Slide right
j = i + 1
for {
// Ensure we never step outside the bounds of our slice
if j >= len(rv3) {
break
}
// How close is the matches end to our start?
diff := rv3[j].End - rv3[i].Start
// If the diff is greater than the target then break out as there is no
// more reason to keep looking as the slice is sorted
if diff > wrapLength {
break
}
m.EndPos = rv3[j].End
m.Relevant = append(m.Relevant, rv3[j])
j++
}
// If the match around this isn't long enough expand it out
// roughly based on how large a context we need to add
l := m.EndPos - m.StartPos
if l < relLength {
add := (relLength - l) / 2
m.StartPos -= add
m.EndPos += add
if m.StartPos < 0 {
m.StartPos = 0
}
if m.EndPos > len(res.Content) {
m.EndPos = len(res.Content)
}
}
// Now we see if there are any nearby spaces to avoid us cutting in the
// middle of a word if we can avoid it
sf := false
ef := false
m.StartPos, sf = findSpaceLeft(res, m.StartPos, SnipSideMax)
m.EndPos, ef = findSpaceRight(res, m.EndPos, SnipSideMax)
// Check if we are cutting in the middle of a multibyte char and if so
// go looking till we find the start. We only do so if we didn't find a space,
// and if we aren't at the start or very end of the content
for !sf && m.StartPos != 0 && m.StartPos != len(res.Content) && !str.StartOfRune(res.Content[m.StartPos]) {
m.StartPos--
}
for !ef && m.EndPos != 0 && m.EndPos != len(res.Content) && !str.StartOfRune(res.Content[m.EndPos]) {
m.EndPos--
}
// If we are very close to the start, just push it out so we get the actual start
if m.StartPos <= SnipSideMax {
m.StartPos = 0
}
// As above, but against the end so we just include the rest if we are close
if len(res.Content)-m.EndPos <= 10 {
m.EndPos = len(res.Content)
}
// Now that we have the snippet start to rank it to produce a score indicating
// how good a match it is and hopefully display to the user what they
// were actually looking for
m.Score += float64(len(m.Relevant)) // Factor in how many matches we have
// NB the below is commented out because it seems to make things worse generally
//m.Score += float64(m.EndPos - m.StartPos) // Factor in how large the snippet is
// Apply higher score where the words are near each other
//mid := rv3[i].Start + (rv3[i].End-rv3[i].End)/2 // match word midpoint
mid := rv3[i].Start
for _, v := range m.Relevant {
p := v.Start + (v.End-v.Start)/2 // comparison word midpoint
// If the word is within a reasonable distance of this word boost the score
// weighted by how common that word is so that matches like 'a' impact the rank
// less than something like 'cromulent' which in theory should not occur as much
if abs(mid-p) < (relLength / 3) {
m.Score += 100 / float64(documentFrequencies[v.Word])
}
}
// Try to make it phrase heavy such that if words line up next to each other
// it is given a much higher weight
for _, v := range m.Relevant {
// Use 2 here because we want to avoid punctuation such that a search for
// cat dog will still be boosted if we find cat. dog
if abs(rv3[i].Start-v.End) <= 2 || abs(rv3[i].End-v.Start) <= 2 {
m.Score += PhraseHeavyBoost
}
}
// If the match is bounded by a space boost it slightly
// because its likely to be a better match
if rv3[i].Start >= 1 && unicode.IsSpace(rune(res.Content[rv3[i].Start-1])) {
m.Score += SpaceBoundBoost
}
if rv3[i].End < len(res.Content)-1 && unicode.IsSpace(rune(res.Content[rv3[i].End+1])) {
m.Score += SpaceBoundBoost
}
// If the word is an exact match to what the user typed boost it
// So while the search may be case insensitive the ranking of
// the snippet does consider case when boosting ever so slightly
if string(res.Content[rv3[i].Start:rv3[i].End]) == rv3[i].Word {
m.Score += ExactMatchBoost
}
// This mod applies over the whole score because we want to most unique words to appear in the middle
// of the snippet over those where it is on the edge which this should achieve even if it means
// we may miss out on a slightly better match
m.Score = m.Score / float64(documentFrequencies[rv3[i].Word]) // Factor in how unique the word is
bestMatches = append(bestMatches, m)
}
// Sort our matches by score such that tbe best snippets are at the top
sort.Slice(bestMatches, func(i, j int) bool {
return bestMatches[i].Score > bestMatches[j].Score
})
// Now what we have it sorted lets get just the ones that don't overlap so we have all the unique snippets
var bestMatchesClean []bestMatch
var ranges [][]int
for _, b := range bestMatches {
isOverlap := false
for _, r := range ranges {
if b.StartPos >= r[0] && b.StartPos <= r[1] {
isOverlap = true
}
if b.EndPos >= r[0] && b.EndPos <= r[1] {
isOverlap = true
}
}
if !isOverlap {
ranges = append(ranges, []int{b.StartPos, b.EndPos})
bestMatchesClean = append(bestMatchesClean, b)
}
}
// Limit to the 20 best matches
if len(bestMatchesClean) > 20 {
bestMatchesClean = bestMatchesClean[:20]
}
var snippets []Snippet
for _, b := range bestMatchesClean {
index := bytes.Index(res.Content, res.Content[b.StartPos:b.EndPos])
startLineOffset := 1
for i := 0; i < index; i++ {
if res.Content[i] == '\n' {
startLineOffset++
}
}
contentLineOffset := startLineOffset
for _, i := range res.Content[b.StartPos:b.EndPos] {
if i == '\n' {
contentLineOffset++
}
}
snippets = append(snippets, Snippet{
Content: string(res.Content[b.StartPos:b.EndPos]),
StartPos: b.StartPos,
EndPos: b.EndPos,
Score: b.Score,
LineStart: startLineOffset,
LineEnd: contentLineOffset,
})
}
return snippets
}
// Get all of the locations into a new data structure
// which makes things easy to sort and deal with
func convertToRelevant(res *FileJob) []relevantV3 {
var rv3 []relevantV3
for k, v := range res.MatchLocations {
for _, i := range v {
rv3 = append(rv3, relevantV3{
Word: k,
Start: i[0],
End: i[1],
})
}
}
// Sort the results so when we slide around everything is in order
sort.Slice(rv3, func(i, j int) bool {
return rv3[i].Start < rv3[j].Start
})
return rv3
}
// Looks for a nearby whitespace character near this position (`pos`)
// up to `distance` away. Returns index of space if a space was found and
// true, otherwise returns the original index and false
func findSpaceRight(res *FileJob, pos int, distance int) (int, bool) {
if len(res.Content) == 0 {
return pos, false
}
end := pos + distance
if end > len(res.Content)-1 {
end = len(res.Content) - 1
}
// Look for spaces
for i := pos; i <= end; i++ {
if str.StartOfRune(res.Content[i]) && unicode.IsSpace(rune(res.Content[i])) {
return i, true
}
}
return pos, false
}
// Looks for nearby whitespace character near this position
// up to distance away. Returns index of space if a space was found and tru
// otherwise the original index is return and false
func findSpaceLeft(res *FileJob, pos int, distance int) (int, bool) {
if len(res.Content) == 0 {
return pos, false
}
if pos >= len(res.Content) {
return pos, false
}
end := pos - distance
if end < 0 {
end = 0
}
// Look for spaces
for i := pos; i >= end; i-- {
if str.StartOfRune(res.Content[i]) && unicode.IsSpace(rune(res.Content[i])) {
return i, true
}
}
return pos, false
}
// abs returns the absolute value of x.
func abs(x int) int {
if x < 0 {
return -x
}
return x
}