

FRONT-END AGENDA

Steve:

* Open-Source H/W Trends
* TL-Verilog Primer

Akos:

* Formal Verification of WARP-V, a TL-Verilog RISC-V Core Generator
Ahmed:

* Top-Down Transaction-Level Design with TL-Verilog

WWW.VLSISYSTEMDESIGN.COM 9/11/2018

OPEN SOURCE H/W - What's keeping us
back?

1. Access to tools
2. Accesstoh/w

3. Complexity/Scale

..AND THE WALLS ARE BREAKING DOWN!!!

1. Accesstotools
 Complete open-source FPGA design flows now exist

2. Accesstoh/w
* Cloud FPGAs are the answer!

3. Complexity/Scale
* TL-Verilog

4th Barrier - Patents

MAKERCHIP

N\
ma\ker/chip PROJECT~ TUTORIALS v HELP ~ saved 4 minutes ago

1. Accesstotools EENEEENEE oo ”

Saa_sq[7:0] = $aa[3:0] ** 2;
Shb_sq[7:0] = $bb[3:0] ** 2;

- in browser

Scc_sq[8:0] = $aa_sq + $bb_sq;

2. Accesstoh/w it sty
- Cloud FPGASs

3. Complex./Scale
- TL-Verilog

v WAVEFORM

ZOOM IN

Figure 1: Pipelined Pythagorean Theorem Logic @%aa o | | / \ | G \) I
@0$bb 2] | ||, 1 | Il; I 1 ||‘
This pipeline is 3 cycles deep. It has a throughput of one @1$aa_sqies (el 64\
- .) =
transaction per cycle, where a transaction performs one RLRUDSh 58 ; -
. @2$cc_sq oeo Last'updated 10 mintites'ago
Pythagorean Theorem calculation per cycle. @3fcc oo : Bg)
IIA y.) l' 1

7

TIMING ABSTRACTION

RTL:

c = sqrt(a”2 + b"2)

-> Flip-flops and staged
al signals are implied

from context.

TL-VERILOG VS. SYSTEMVERILOG

|calc // Calc Pipeline
logic [31:0] a C1;
logic [31:0] b C1;
logic [31:0] a_sq C1,
a sq C2;
logic [31:0] b sq C1,
b sq C2;
logic [31:0] c_sq C2,
c_sq C3;
logic [31:0] c C3;
always ff @ (posedge clk) a sq C2 <=
always ff @ (posedge clk) b sq C2 <=
always ff @ (posedge clk) c _sq C3 <=
// Stage 1
assign a sq C1 = a Cl * a Cl;
assign b sq C1 = b Cl1 * b Cl;
// Stage 2
assign c_sq C2 a sq C2 + b sq C2;
// Stage 3
assign ¢ _C3 = sqrt(c_sq C3);

@1

$aa sq[31:0] Saa * $Saa;

$bb sq[31:0] = $bb * $bb;
@2

$cc_sq[31:0] $aa_sq + $bb sqg;
@3

$cc[31:0] = sqgrt($cc_sq);

ADDING BACKPRESSURE

$aa sq[31:0]
$bb_sq[31:0] Sbb * S$bb;

@l
$cc_sq[31:0] $aa_sq + $bb_sqg;

@1

$cc[31:0] = sqrt($cc_sq);

10

