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Technical Support
Altair provides comprehensive software support via web FAQs, tutorials, training classes, telephone, and
e-mail.

Altair One Customer Portal
Altair One (https://altairone.com/) is Altair’s customer portal giving you access to product downloads, a
Knowledge Base, and customer support. We recommend that all users create an Altair One account and
use it as their primary portal for everything Altair.

When your Altair One account is set up, you can access the Altair support page via this link:
www.altair.com/customer-support/

Altair Community
Participate in an online community where you can share insights, collaborate with colleagues and peers,
and find more ways to take full advantage of Altair’s products.

Visit the Altair Community (https://community.altair.com/community) where you can access online
discussions, a knowledge base of product information, and an online form to contact Support. These
valuable resources help you discover, learn and grow, all while having the opportunity to network with
fellow explorers like yourself.

Altair Training Classes
Altair’s in-person, online, and self-paced trainings provide hands-on introduction to our products,
focusing on overall functionality. Trainings are conducted at our corporate and regional offices or at your
facility.

For more information visit: https://learn.altair.com/

If you are interested in training at your facility, contact your account manager for more details. If you
do not know who your account manager is, contact your local support office and they will connect you
with your account manager.

Telephone and E-mail
If you are unable to contact Altair support via the customer portal, you may reach out to technical
support via phone or e-mail. Use the following table as a reference to locate the support office for your
region.

When contacting Altair support, specify the product and version number you are using along with
a detailed description of the problem. It is beneficial for the support engineer to know what type
of workstation, operating system, RAM, and graphics board you have, so include that in your
communication.

Location Telephone E-mail

Australia +61 3 9866 5557 anzsupport@altair.com

Brazil +55 113 884 0414 br_support@altair.com

https://altairone.com/dashboard
https://www.altair.com/customer-support/
https://community.altair.com/community
https://learn.altair.com/
mailto:anzsupport@altair.com
mailto:br_support@altair.com
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Location Telephone E-mail

Canada +1 416 447 6463 support@altairengineering.ca

China +86 400 619 6186 support@altair.com.cn

France +33 141 33 0992 francesupport@altair.com

Germany +49 703 162 0822 hwsupport@altair.de

Greece +30 231 047 3311 eesupport@altair.com

India +91 806 629 4500

+1 800 425 0234 (toll free)

support@india.altair.com

Israel israelsupport@altair.com

Italy +39 800 905 595 support@altairengineering.it

Japan +81 3 6225 5830 support@altairjp.co.jp

Malaysia +60 32 742 7890 aseansupport@altair.com

Mexico +52 55 5658 6808 mx-support@altair.com

New Zealand +64 9 413 7981 anzsupport@altair.com

South Africa +27 21 831 1500 support@altair.co.za

South Korea +82 704 050 9200 support@altair.co.kr

Spain +34 910 810 080 support-spain@altair.com

Sweden +46 46 460 2828 support@altair.se

United Kingdom +44 192 646 8600 support@uk.altair.com

United States +1 248 614 2425 hwsupport@altair.com

If your company is being serviced by an Altair partner, you can find that information on our web site at
https://www.altair.com/PartnerSearch/.

See www.altair.com for complete information on Altair, our team, and our products.
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Theory Manual

This chapter covers the following:

• Large Displacement Finite Element Analysis Theory Manual  (p. 10)

• ALE, CFD and SPH Theory Manual  (p. 423)

• Appendix A: Basic Relations of Elasticity  (p. 450)
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Large Displacement Finite Element Analysis Theory
Manual

Introduction
Nonlinear finite element analyses confront users with many choices. An understanding of the
fundamental concepts of nonlinear finite element analysis is necessary if you do not want to use the
finite element program as a black box. The purpose of this manual is to describe the numerical methods
included in Radioss.

Radioss belongs to the family of hydro-codes, in which the material is considered as a non viscous fluid.
These hydro-codes found their origin in the work supported by the American Department of Energy at
the end of the 70's and which led to software like DYNA2D/3D, HEMP, PRONTO, STEALTH, HONDO and
WHAM.

Radioss’ main features are:

• A 3D Lagrangian formulation for mesh description

• An explicit time integration scheme, leading to small time steps

• Simplicity, under integrated finite element models

• Element by element assembly of nodal forces leading to in memory codes and low I/O
requirements as compared to implicit approaches where matrix assembly and inversion is required
every time step

• Non-iterative approaches

• Penalty methods based contact

• Highly vectorized implementation.

This first section introduces the notations which will be used throughout the document. An introduction
to kinematics is also given.

Basic Equations recalls the basic equations in nonlinear dynamics. Different aspects are covered:

• Material and spatial coordinates

• Mesh description

• Kinematic and kinetic descriptions

• Stress rates and stresses in solids

• Updated and total Lagrangian formulations

• Equations of equilibrium

• Principle of virtual power and the physical names of power terms.

The small strain formulation is also introduced.

The finite element formulation of the virtual power principle is introduced in Finite Element Formulation,
leading to the discretized equations of equilibrium.

Dynamic Analysis deals with time discretization and the integration schemes. Stability and time step
concepts are also discussed.
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Different finite element models are presented in Element Library. Tetrahedral solid elements, hexahedral 
solid and solid-shell elements, 3 and 4-node shell elements, 2-node truss and beam elements and 
spring elements are successively presented.

Kinematic Constraints deals with kinematic constraints, that is, constraints placed on nodal velocities.

Linear stability is introduced in Linear Stability.

The very important concept of interfaces is considered in Interfaces. Interfaces allow the solution of 
contact and impact conditions between two parts of a model. The different interface types available in 
Radioss are presented.

Material laws are discussed in Material Laws.

In Monitored Volume, the formulations of different kinds of monitored volumes are presented in detail. 
Airbag theory is also developed.

Static deals with the use of explicit algorithms to model quasi-static or static problems. Different 
approaches are discussed: slow dynamic computation, dynamic relaxation, viscous relaxation and
energy discrete relaxation. The dynamic relaxation approach is developed. The /DYREL and /DAMP 
options are introduced in this chapter.

Radioss Parallelization concerns the presentation of the fundamentals in Radioss parallelization.

In the ALE, CFD and SPH Theory Manual, the ALE formulation is presented in ALE Formulation.

Finally, the last sections are respectively dedicated to the Computational Aero-Acoustic and the Smooth 
Particle Hydrodynamics formulations.

Notation
Two types of notation are used:

Indicial notation
Equations of continuum mechanics are usually written in this form.

Matrix notation
Used for equations pertinent to the finite element implementation.

Index Notation
Components of tensors and matrices are given explicitly. A vector, which is a first order tensor, is
denoted in indicial notation by . The range of the index is the dimension of the vector.

To avoid confusion with nodal values, coordinates will be written as ,  or  rather than using
subscripts. Similarly, for a vector such as the velocity , numerical subscripts are avoided so as to avoid
confusion with node numbers. So,  and  and .

Indices repeated twice in a list are summed. Indices which refer to components of tensors are always
written in lower case. Nodal indices are always indicated by upper case Latin letters. For instance,  is
the i-component of the velocity vector at node I. Upper case indices repeated twice are summed over
their range.

A second order tensor is indicated by two subscripts. For example,  is a second order tensor whose
components are , ...
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Matrix Notation
Matrix notation is used in the implementation of finite element models. For instance, equation

(1)

is written in matrix notation as:

(2)

All vectors such as the velocity vector  will be denoted by lower case letters. Rectangular matrices will
be denoted by upper case letters.

Particle Kinematics
Kinematics deals with position in space as a function of time and is often referred to as the "geometry

of motion". 1 The motion of particles may be described through the specification of both linear and
angular coordinates and their time derivatives. Particle motion on straight lines is termed rectilinear
motion, whereas motion on curved paths is called curvilinear motion. Although the rectilinear motion
of particles and rigid bodies is well-known and used by engineers, the space curvilinear motion needs
some feed-back, which is described in the following section.

Space Curvelinear Motion
The motion of a particle along a curved path in space is called space curvilinear motion. The position
vector , the velocity , and the acceleration of a particle along a curve are:

(3)

(4)

(5)

Where ,  and  are the coordinates of the particle and ,  and  the unit vectors in the rectangular
reference. In the cylindrical reference ( , , ), the description of space motion calls merely for the polar
coordinate expression:

(6)

Where,

Also, for acceleration:

(7)

Where,
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The vector location of a particle may also be described by spherical coordinates as shown in Figure 1.

(8)

Where,

Using the previous expressions, the acceleration and its components can be computed:

(9)

Where,

The choice of the coordinate system simplifies the measurement and the understanding of the problem.

Figure 1: Vector Location of a Particle in Rectangular, Cylindrical and Spherical Coordinates

Coordinate Transformation
It is frequently necessary to transform vector quantities from a given reference to another. This
transformation may be accomplished with the aid of matrix algebra. The quantities to transform might
be the velocity or acceleration of a particle. It could be its momentum or merely its position, considering
the transformation of a velocity vector when changing from rectangular to cylindrical coordinates:
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(10)

or 

The change from cylindrical to spherical coordinates is accomplished by a single rotation  of the axes
around the -axis. The transfer matrix can be written directly from the previous equation where the
rotation  occurs in the  plane:

(11)

or 

Direct transfer from rectangular to spherical coordinates may be accomplished by combining
Equation 10 and Equation 11:

(12)

with: 

Reference Axes Transformation
Consider now the curvilinear motion of two particles A and B in space. Study at first the translation of
a reference without rotation. The motion of A is observed from a translating frame of reference x-y-z
moving with the origin B (Figure 2). The position vector of A relative to B is:

(13)

Where ,  and  are the unit vectors in the moving x-y-z system. As there is no change of unit vectors
in time, the velocity and the acceleration are derived as:

(14)

(15)

The absolute position, velocity and acceleration of  are then:

(16)
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Figure 2: Vector Location with a Moving Reference

In the case of rotation reference, it is proved that the angular velocity of the reference axes x-y-z may
be represented by the vector:

(17)

The time derivatives of the unit vectors ,  and  due to the rotation of reference axes x-y-z about ,
can be studied by applying an infinitesimal rotation . You can write:

(18)

Attention should be turned to the meaning of the time derivatives of any vector quantity
 in the rotating system. The derivative of  with respect to time as measured in the

fixed frame X-Y-Z is:

(19)

With the substitution of Equation 18, the terms in the first parentheses becomes . The terms in

the second parentheses represent the components of time derivatives  as measured relative to

the moving x-y-z reference axes. Thus:

(20)

This equation establishes the relation between the time derivative of a vector quantity in a fixed system
and the time derivative of the vector as observed in the rotating system.

Consider now the space motion of a particle , as observed both from a rotating system x-y-z and a
fixed system X-Y-Z (Figure 3).
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Figure 3: Vector Location with a Rotating Reference

The origin of the rotating system coincides with the position of a second reference particle , and the
system has an angular velocity . Standing  for , the time derivative of the vector position gives:

(21)

From Equation 20

(22)

Where,  denotes the relative velocity measured in x-y-z, that is:

(23)

Thus, the relative velocity equation becomes:

(24)

The relative acceleration equation is the time derivative of Equation 24 which gives:

(25)

Where, the last term can be obtained from Equation 20:

(26)

and

(27)

Combining Equation 25 to Equation 27, you obtain upon collection of terms:

(28)

Where, the term  constitutes Coriolis acceleration.
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Skew and Frame Notations
Two kinds of reference definition are available in Radioss:

Skew Reference A projection reference to define the local quantities with respect
to the global reference. In fact the origin of skew remains at the
initial position during the motion even though a moving skew
is defined. In this case, a simple projection matrix is used to
compute the kinematic quantities in the reference.

Frame Reference A mobile or fixed reference. The quantities are computed with
respect to the origin of the frame which may be in motion or not
depending to the kind of reference frame. For a moving reference
frame, the position and the orientation of the reference vary in
time during the motion. The origin of the frame defined by a node
position is tied to the node. Equation 24 and Equation 28 are used
to compute the accelerations and velocities in the frame.

1. Meriam J.L., “Dynamics”, John Wiley & Sons, Second edition, 1975.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.18

Basic Equations
The continuum mechanics summarized here is based on References. 2 3 4

Three basic choices need to be made in the development of a large deformation semi discretization
scheme:

• Mesh description

• Kinematic description, that is, how the deformation is measured

• Kinetic description, that is, how the stresses are measured

Usually, the kinematic description implies the kinetic description as kinetic and kinematic measures
should be energetically conjugated.

To go further in to the theory, two sets of coordinates are introduced:

• Spatial or Eulerian coordinates

• Material or Lagrangian coordinates

Material and Spatial Coordinates
In a Cartesian coordinates system, the coordinates of a material point in a reference or initial
configuration are denoted by . The coordinates of the same point in the deformed or final
configuration are denoted by .

The motion or deformation of a body can thus be described by a function  where the material
coordinates  and the time  are considered as independent variables:

(29)

The function  gives the spatial positions of material points as a function of time.

The displacement of a material point is the difference between its original and final positions:

(30)

It is possible to consider displacements and, as a consequence final coordinates , as functions of
initial coordinates . The initial configuration is assumed to be perfectly known and each coordinate

 identifies a specific material point. For this reason, the initial coordinates are called material
coordinates.

2. Belytschko T. and Hughes T.J.R., “Computational Methods for Transient Analysis”, North-Holland,
1983.

3. Belytschko T., Wing Kam Liu, and Moran B., “Finite Elements for Nonlinear Continua and
Structures”, John Wiley, 1999.

4. Geradin M., “Structural Dynamics ”, Masson, 1993.
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On the other hand, the final coordinates  identify a point of space which can be occupied by different
material points according to the different analyzed configurations. For these reasons, the  is called
spatial coordinates.

In solid mechanics, material coordinates are usually called Lagrangian coordinates. In their general
definition, they are given by the values of the integration constants of the differential equations of
particle trajectories. A particular definition consists in using the coordinates  of the particle in the
initial configuration. This point of view corresponds to the definition of material coordinates in solid
mechanics.

Use of material coordinates is well suited for solid mechanics as we seek to analyze the evolution of a
set of points for which we search the final configuration and properties. Integration can be performed in
the initial configuration for which geometric properties are usually simple.

In fluid mechanics however, the engineer is more interested in the evolution of a situation in a region
defined by fixed boundaries in space. Boundaries are eventually crossed by fluid particles. It is the
spatial configuration which is important while the set of particles may vary. This is the reason why fluid
mechanics is usually developed using spatial or Eulerian coordinates.

In solid mechanics, the Eulerian formulation consists in considering displacements and initial
coordinates as function of spatial coordinates . A problem for using Eulerian coordinates in solids
mechanics is the difficulty of formulating constitutive equations, such as the relationship between
stresses and strains that can take into account change of orientation. For this reason solid mechanics
are principally developed using the Lagrangian point of view.

The reason for using the Lagrangian form for solids is primarily due to the need for accurate boundary
modeling.

Mesh Definition
In Lagrangian meshes, mesh points remain coincident with material points and the elements deform
with the material. Since element accuracy and time step degrade with element distortion, the
magnitude of deformation that can be simulated with Lagrangian meshes is limited.

In Eulerian meshes, the coordinates of the element nodes are fixed. This means that the nodes remain
coincident with spatial points. Since elements are not changed by the deformation of the material,
no degradation in accuracy occurs because of material deformation. On the other hand, in Eulerian
meshes, boundary nodes do not always remain coincident with the boundaries of the domain. Boundary
conditions must be applied at points which are not nodes. This leads to severe complications in multi-
dimensional problems.

A third type of mesh is an Arbitrary Lagrangian Eulerian mesh (ALE). In this case, nodes are
programmed to move arbitrarily. Usually, nodes on the boundaries are moved to remain on boundaries.
Interior nodes are moved to minimize element distortion.

The selection of an appropriate mesh description, whether a Lagrangian, Eulerian or ALE mesh is
very important, especially in the solution of the large deformation problems encountered in process
simulation or fluid-structure interaction.

A by-product of the choice of mesh description is the establishment of the independent variables. For
a Lagrangian mesh, the independent variable is . At a quadrature point used to evaluate the internal
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forces, the coordinate  remains invariant regardless of the deformation of the structure. Therefore,
the stress has to be defined as a function of the material coordinate . This is natural in a solid since
the stress in a path-dependent material depends on the history observed by a material point. On the
other hand, for an Eulerian mesh, the stress will be treated as a function of , which means that the
history of the point will need to be convected throughout the computation.

Vicinity Transformation
Central to the computation of stresses and strains is the Jacobian matrix which relates the initial and
deformed configuration:

(31)

(32)

The transformation is fully described by the elements of the Jacobian matrix :

(33)

So that Equation 31 can be written in matrix notation:

(34)

The Jacobian, or determinant of the Jacobian matrix, measures the relation between the initial volume
 and the volume in the initial configuration containing the same points:

(35)

Physically, the value of the Jacobian cannot take the zero value without cancelling the volume of a set
of material points. So the Jacobian must not become negative whatever the final configuration. This
property insures the existence and uniqueness of the inverse transformation:

(36)

At a regular point whereby definition of the field  is differentiable, the vicinity transformation is
defined by:

(37)

or in matrix form:

(38)

So, the Jacobian matrix  can be obtained from the matrix of gradients of displacements:

(39)
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Kinematic Description
For geometrically nonlinear problems, that is, problems in which rigid body rotations and deformation
are large, a large number of measures of deformation are possible but most theoretical work and
computer software employ the following three measures:

• The velocity strain (or rate of deformation)

(40)

• The Green strain tensor (Lagrangian strain tensor) measured with respect to initial configuration

(41)

• The Almansi strain tensor (Eulerian strain tensor) measured with respect to deformed configuration

(42)

All three measures of strains can be related to each other and can be used with any type of mesh.

Velocity Strain or Deformation Rate
The strain rate is derived from the spatial velocity derivative:

(43)

or in matrix form:

(44)

Where, the velocity gradient in the current configuration is:

(45)

The velocity of a material particle is:

(46)

Where, the partial differentiation with respect to time  means the rate of change of the spatial position
 of a given particle. The velocity difference between two particles in the current configuration is given

by:

(47)

In matrix form:
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(48)

On the other hand, it is possible to write the velocity difference directly as:

(49)

Where,

(50)

One has as a result:

(51)

Now,  is composed of a rate of deformation and a rate of rotation or spin:

(52)

Since these are rate quantities, the spin can be treated as a vector. It is thus possible to decompose
 into a symmetric strain rate matrix and an anti symmetric rotation rate matrix just as in the small

motion theory the infinitesimal displacement gradient is decomposed into an infinitesimal strain and
an infinitesimal rotation. The symmetric part of the decomposition is the strain rate or the rate of
deformation and is:

(53)

The anti symmetric part of the decomposition is the spin matrix:

(54)

The velocity-strain measures the current rate of deformation, but it gives no information about the
total deformation of the continuum. In general, Equation 52 is not integral analytically; except in the
unidimensional case, where one obtains the true strain:

(55)

 and  are respectively the dimensions in the deformed and initial configurations. Furthermore, the
integral in time for a material point does not yield a well-defined, path-independent tensor so that
information about phenomena such as total stretching is not available in an algorithm that employs only
the strain velocity. Therefore, to obtain a measure of total deformation, the strain velocity has to be
transformed to some other strain rate.

The volumetric strain is calculated from density. For one dimensional deformation:

(56)

Green Strain Tensor
The square of the distance which separates two points in the final configuration is given in matrix form
by:
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(57)

Subtracting the square or the initial distance, you have:

(58)

(59)

 and  are called respectively right and left Cauchy-Green tensor.

Using Equation 38 in Vicinity Transformation:

(60)

(61)

In the unidimensional case, the value of the strain is:

(62)

Where,  and  are respectively the dimensions in the deformed and initial configurations.

It can be shown that any motion  can always be represented as a pure rigid body rotation followed by
a pure stretch of three orthogonal directions:

(63)

with the rotation matrix  satisfying the orthogonality condition:

(64)

and  symmetric.

The polar decomposition theorem is important because it will enable to distinguish the straining part of
the motion from the rigid body rotation.

From Equation 59 and Equation 63:

(65)

(66)

Equation 65 allows the computation of , and Equation 66 of .

As the decomposition of the Jacobian matrix  exists and is unique,  is a new measure of strain which
is sometimes called the Jaumann strain. Jaumann strain requires the calculation of principal directions.

If rotations are small,

(67)
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(68)

(69)

if second order terms are neglected.

As a result, for the Jacobian matrix:

(70)

leading, if the second order terms are neglected, to the classical linear relationships:

(71)

(72)

(73)

So for Equation 71 and Equation 72, when rigid body rotations are large, the linear strain tensor 
becomes non-zero even in the absence of deformation.

The preceding developments show that the linear strain measure is appropriate if rotations can be 
neglected; that means if they are of the same magnitude as the strains and if these are of the order 
of 10-2 or less. It is also worth noticing that linear strains can be used for moderately large strains of 
the order of 10-1 provided that the rotations are small. On the other hand, for slender structures which 
are quite in extensible, nonlinear kinematics must be used even when the rotations are order of 10-2 

because, if you are interested in strains of 10-3 - 10-4, using linear strain the error due to the rotations 
would be greater than the error due to the strains.

Large deformation problems in which nonlinear kinematics is necessary, are those in which rigid body 
rotation and deformation are large.

Kinetic Description
The virtual power principle in Virtual Power Principle will state equilibrium in terms of Cauchy true 
stresses and the conjugate virtual strain rate, the rate of deformation. It is worth noticing that, from 
the engineer's point of view, the Cauchy true stress is probably the only measure of practical interest 
because it is a direct measure of the traction being carried per unit area of any internal surface in the 
body under study. This is the reason why Radioss reports the stress as the Cauchy stress. The second 
Piola-Kirchhoff stress is, however, introduced here because it is frequently mentioned in standard 
textbooks.

The relationship between the Piola-Kirchhoff stress and the Cauchy stress is obtained as follows. 
Starting from the definition of Green's strain as explained in Kinematic Description, Equation 59 ,

(74)

the strain rate is given by:
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(75)

The power per unit reference volume is:

(76)

Where  represents the tensor of second Piola-Kirchhoff stresses. On the other hand, for Cauchy
stresses:

(77)

(78)

You immediately have:

(79)

Second Piola-Kirchhoff stresses have a simple physical interpretation. They correspond to a
decomposition of forces in the frame coordinate systems convected by the deformation of the body.
However, the stress measure is still performed with respect to the initial surface.

Stress Rates
In practice, the true stress (or Cauchy stress) for any time interval will be computed using the stress
rate in an explicit time integration:

(80)

 is not simply the time derivative of the Cauchy stress tensor as Cauchy stress components are
associated with spatial directions in the current configuration. So, the derivatives will be nonzero in the
case of a pure rigid body rotation, even if from the constitutive point of view the material is unchanged.
The stress rate is a function of element average rigid body rotation and of strain rate.

For this reason, it is necessary to separate  into two parts; one related to the rigid body motion and
the remainder associated with the rate form of the stress-strain law. Objective stress rate is used,

meaning that the stress tensor follows the rigid body rotation of the material. 5

A stress law will be objective if it is independent of the space frame. To each definition of the rigid 
body rotation, corresponds a definition of the objective stress rate. The Jaumann objective stress 
tensor derivative will be associated with the rigid body rotation defined in Kinematic Description, 
Equation 53:

(81)

Where:

Jaumann objective stress tensor derivative

Stress rate due to the rigid body rotational velocity
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The correction for stress rotation is given by:

(82)

and  defined in Kinematic Description, Equation 53 (Isotropic Linear Elastic Stress
Calculation).

Stresses in Solids

Principal Stresses
Since the stress tensor is symmetric, you can always find a proper orthogonal matrix, that is, a
coordinate system that diagonalizes it:

(83)

The diagonal components are called the principal stresses and allow a 3D representation of the state of
stress at a point.

Stress Invariants
Many of the constitutive models in Radioss are formulated in terms of invariants of the stress tensor.
The most important are the first and second invariants, called pressure and von Mises stress after
Richard von Mises.

(84)

(85)

The values of these functions remain invariant under transformation by a proper orthogonal matrix. If,

then,

Invariant Space
It is useful to plot the state of stress as a point in a diagram of pressure and von Mises stress:

5. Halphen B., “On the velocity field in thermoplasticity finished”, Laboratoire de Mécanique des
Solides, Ecole Polytechnique, International Journal of Solids and Structures, Vol.11, pp 947-960,
1975.
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Figure 4:

The horizontal axis corresponds to the hydrostatic loading, the vertical axes to pure shear. The line with
tangent 1/3 is uniaxial compression. The line with tangent -1/3 is uniaxial tension.

Deviatoric Stresses
The pressure or first invariant is related to the change in volume of the solid. The deviation from a
hydrostatic state of stress is linked to the change in shape. The stress deviator is defined as:

The second invariant becomes, in terms of the deviators:

(86)

A surface of constant von Mises stress in deviatoric space or principal deviatoric space is a sphere (in
stress space it is a cylinder).

Lagrangian and Corotational Formulations
Finite element discretizations with Lagrangian meshes are commonly classified as either an updated
Lagrangian formulation or a total Lagrangian formulation. Both formulations use a Lagrangian
description. That means that the dependent variables are functions of the material (Lagrangian)
coordinates and time. In the geometrically nonlinear structural analysis the configuration of the
structure must be tracked in time. This tracking process necessary involves a kinematic description with
respect to a reference state. Three choices called "kinematic descriptions" have been extensively used:

Total Lagrangian description
(TL)

The FEM equations are formulated with respect to a fixed
reference configuration which is not changed throughout the
analysis. The initial configuration is often used; but in special
cases the reference could be an artificial base configuration.

Updated Lagrangian
description (UL)

The reference is the last known (accepted) solution. It is kept
fixed over a step and updated at the end of each step.

Corotational description (CR) The FEM equations of each element are referred to two systems.
A fixed or base configuration is used as in TL to compute the rigid
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body motion of the element. Then the deformed current state is
referred to the corotated configuration obtained by the rigid body
motion of the initial reference.

The updated Lagrangian and corotational formulations are the approaches used in Radioss. These two
approaches are schematically presented in Figure 5.

Figure 5: Updated Lagrangian and Corotational Descriptions

By default, Radioss uses a large strain, large displacement formulation with explicit time integration.
The large displacement formulation is obtained by computing the derivative of the shape functions at
each cycle. The large strain formulation is derived from the incremental strain computation. Hence,
stress and strains are true stresses and true strains.

In the updated Lagrangian formulation, the Lagrangian coordinates are considered instantaneously
coincident with the Eulerian spatial  coordinates. This leads to the following simplifications:

(87)

(88)

The derivatives are with respect to the spatial (Eulerian) coordinates. The weak form involves integrals
over the deformed or current configuration. In the total Lagrangian formulation, the weak form involves
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integrals over the initial (reference configuration and derivatives are taken with respect to the material 
coordinates.

The corotational kinematic description is the most recent of the formulations in geometrically nonlinear 
structural analysis. It decouples small strain material nonlinearities from geometric nonlinearities
and handles naturally the question of frame indifference of anisotropic behavior due to fabrication or

material nonlinearities. Several important works outline the various versions of CR formulation. 6 7 8 9 
10

Some new generation of Radioss elements are based on this approach. Refer to Element Library for 
more details.

Note:  A similar approach to CR description using convected-coordinates is used in
some branches of fluid mechanics and theology. However, the CR description maintains
orthogonality of the moving frames. This will allow achieving an exact decomposition of rigid
body motion and deformational modes. On the other hand, convected coordinates form a
curvilinear system that fits the change of metric as the body deforms. The difference tends
to disappear as the mesh becomes finer. However, in general case the CR approach is more
convenient in structural mechanics.

Equilibrium Equations
Let  be a volume occupied by a part of the body in the current configuration, and  the boundary
of the body. In the Lagrangian formulation,  is the volume of space occupied by the material at the
current time, which is different from the Eulerian approach where a volume of space through which the
material passes is examined.  is the traction surface on  and  are the body forces.

Force equilibrium for the volume is then:

(89)

Where,

Material density

6. Belytschko T. and Hsieh B.H., “Nonlinear Transient Finite Element Analysis with convected
coordinates”, Int. Journal Num. Methods in Engineering, 7 255-271, 1973.

7. Argyris J.H., “An excursion into the large rotations”, Computer Methods in Applied Mechanics and
Engineering, 32, 85-155, 1982.

8. Crisfield M.A., “A consistent corotational formulation for nonlinear three-dimensional beam
element”, Computer Methods in Applied Mechanics and Engineering, 81, 131-150, 1990.

9. Simo J.C., “A finite strain beam formulation, Part I: The three-dimensional dynamic problem”,
Computer Methods in Applied Mechanics and Engineering, 49, 55-70, 1985.

10. Wempner G.A., “F.E., finite rotations and small strains of flexible shells”, IJSS, 5, 117-153, 1969.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.30

The Cauchy true stress matrix at a point of  is defined by:

(90)

Where,  is the outward normal to  at that point. Using this definition, Equation 89 is written:

(91)

Gauss' theorem allows the rewrite of the surface integral as a volume integral so that:

(92)

As the volume is arbitrary, the expression can be applied at any point in the body providing the
differential equation of translation equilibrium:

(93)

Use of Gauss' theorem with this equation leads to the result that the true Cauchy stress matrix must be
symmetric:

(94)

So that at each point there are only six independent components of stress. As a result, moment
equilibrium equations are automatically satisfied, thus only the translational equations of equilibrium
need to be considered.

Virtual Power Principle
The basis for the development of a displacement finite element model is the introduction of some locally
based spatial approximation to parts of the solution. The first step to develop such an approximation
is to replace the equilibrium equations by an equivalent weak form. This is obtained by multiplying the
local differential equation by an arbitrary vector valued test function defined with suitable continuity
over the entire volume and integrating over the current configuration.

(95)

The first term in Equation 95 is then expanded.

(96)

Taking into account that stresses vanish on the complement of the traction boundaries, use the Gauss's
theorem.
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(97)

Replacing Equation 97 in Equation 96 gives:

(98)

If this last equation is then substituted in Equation 95, you obtain:

(99)

The preceding expression is the weak form for the equilibrium equations, traction boundary conditions
and interior continuity conditions. It is known as the principle of virtual power.

Virtual Power Term Names
It is possible to give a physical name to each of the terms in the virtual power equation. This will be
useful in the development of finite element equations. The nodal forces in the finite element equations
will be identified according to the same physical names.

The first term can be successively written:

(100)

You have used the decomposition of the velocity gradient  into its symmetric and skew symmetric
parts and that  since  is skew symmetric and  is symmetric.

The latter relation suggests that  can be interpreted as the rate of internal virtual work or virtual

internal power per unit volume. The total internal power  is defined by the integral of :

(101)

The second and third terms in Virtual Power Principle, Equation 99 are the virtual external power:

(102)

The last term is the virtual inertial power:

(103)
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Inserting Equation 101, Equation 102 and Equation 103 into Equation 104, the principle of virtual power
can be written as:

(104)

for all  admissible.

We can show that virtual power principle implies strong equations of equilibrium. So it is possible to use
the virtual power principle with a suitable test function as a statement of equilibrium.

The virtual power principle has a simple physical interpretation. The rate of work done by the external
forces subjected to any virtual velocity field is equal to the rate of work done by the equilibrating
stresses on the rate of deformation of the same virtual velocity field. The principle is the weak form
of the equilibrium equations and is used as the basic equilibrium statement for the finite element
formulation. Its advantage in this regard is that it can be stated in the form of an integral over the
volume of the body. It is possible to introduce approximations by choosing test functions for the virtual
velocity field whose variation is restricted to a few nodal values.

Small Strain Formulation
Radioss uses two different methods to calculate stress and strain. The method used depends on the
type of simulation. The two types are Large strain and Small strain.

The large strain formulation has been discussed before and is used by default. Small strain analysis is
best used when the deformation is known to be small, for example, linear elastic problems.

Large strain is better suited to nonlinear, elastoplastic behavior where large deformation is known to
occur. However, large mesh deformation and distortion can create problems with the time step. If an
element is deformed excessively, the time step will decrease too much, increasing the CPU time. If the
element reaches a negative volume, the computation will stop or the element will have to be removed.
Using small strain can eliminate these problems.

Using a small strain formulation for part of a large deformation process introduces of course errors.
These errors depend on the specific case, but they can provide a better solution than element deletion.

On the other side, materials like honeycomb, which have no Poisson's effect, can have the small strain
limitations corrected by using adjusted stress-strain curves.

A small strain, small displacement formulation can thus be specified for some specific material behavior,
like honeycomb, or can be implemented when the time step with a large strain formulation reaches a
minimum value that is defined by the user. This allows the computation to proceed at an acceptable
rate.

The small displacement formulation is, however, not recommended for some simulations, for example,
crash analysis.

Small Strain Option
Assuming a constant Jacobian matrix during time and also a constant volume, previous equations
degenerate into a small strain and small displacement formulation. All spatial variables are then values
defined at time t=0 (or at the time the small strain formulation is initiated).

Time step then becomes constant:
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(105)

and the effective negative volume has no effect on the computation (only the initial volume is used.

The Jacobian matrix time transformation is dependent upon element deformation and element rigid 
body rotation (Kinematic Description, Equation 63 and Equation 64). On the other hand, rigid body 
translation has no effect on the Jacobian matrix.

A small strain formulation is achieved if the element deformation is not taken into account. Likewise, a 
small displacement formulation is obtained if the element rigid body rotation is ignored.

From a practical point of view, small strain formulation will be obtained if, instead of recomputing the 
Jacobian matrix at each cycle, the initial matrix is updated taking into account element rigid body 
rotation:

(106)

Where,

Rigid body angular velocity

An alternative solution that accounts for element rigid body rotation consists in computing the internal
forces in a local reference frame attached to the element. This solution is used for shell elements and
convected brick elements.

Unlike the large strain formulation, the small strain formulation uses values based on the initial
configuration. This is either at the beginning of the simulation or at the beginning of the small strain
implementation.

Hence, the strain rate is calculated using:

(107)

with  the interpolating shape functions and  the components of velocity at node .

The strain in an arbitrary  direction is calculated by:

(108)

Thus, the strain is the engineering strain.

The stress is calculated using the strain rate and the material law provided by the user. The later is
integrated over the element volume to produce the internal force vector, which is summed over the
elements to obtain the overall force vector:

(109)

The stress is the engineering stress.
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The volumetric strain using the small strain formulation is independent of density. For one dimensional
deformation, one has:

(110)

The small strain formulation for solid elements was developed for specific material, like honeycomb. In
the crushing direction, honeycomb has no Poisson's effect and stress integration over the initial surface
is acceptable. The effect on strain is small during elastic deformation and can be corrected in the plastic
phase by using a modified engineering stress-engineering strain material curve.

For materials like crushable foam, with a small Poisson's ratio, this formulation can be applied
successfully in certain situations. However, for other materials, this formulation has to be used very
carefully.

Shell elements have fewer limitations than solid elements. For crash applications, the main shell
deformation is bending. The small strain formulation has no effect on the bending description if
membrane deformation is small.

The small strain formulation can be applied to some elements for which the time step is reaching a user
specified value.

If the critical time step is small, compared to the initial one, this formulation gives acceptable results
and is more accurate than removing the deformed elements.

Large Strain Option
By default Radioss uses a large strain large displacement formulation with explicit time integration. By
computing the derivative of shape functions at each cycle, large displacement formulation is obtained.
The large strain formulation results from incremental strain computation. Stresses and strains are
therefore true stresses and true strains.

The spatial derivatives of isoparametric brick shape functions are given by:

(111)

Where,

Jacobian matrix

For each element the internal forces are integrated over the volume with one integration point:

(112)

Time integration of Cauchy stress (true stress):

(113)
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uses objective stress rate, meaning that the stress tensor follows the rigid body rotation of the material.
Stress rate is a function of element average rigid body rotation and of strain rate. Strain rate is obtained
from spatial velocity derivative:

(114)

Where,

(115)

Stability of explicit scheme is given by the Courant condition:

(116)

with

Element characteristic length

Sound speed

The time step is computed at each cycle.

Large element deformation can give a large time step decrease. For overly large deformations a
negative volume can be reached and it then becomes impossible to invert the Jacobian matrix and to
integrate the stresses over the volume.

Stress and Strain Definition
With large strain formulation, stresses are true stresses and strains are true strains:

(117)

(118)

With small strain formulation stresses become engineering stresses and strains engineering strains:

(119)

(120)

The definition of volumic strain is also modified. For large strain Radioss uses a volumic strain computed
from density:

(121)

For small strain you have:
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(122)
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Finite Element Formulation

Finite Element Approximation
In the finite element method, the motion  is approximated by:

(123)

Where,

Interpolating shape functions

Position vector of node 

Summation over repeated indices is implied. In the case of lower indices, summation is over the 
number of space dimensions. For upper case indices, summation is over the number of nodes. The 
nodes in the sum depend on the type of entity considered. When the volume is considered, the 
summation is over all the nodes in the domain. When an element is considered, the sum is over the 
nodes of the element.

Similarly, nodal displacements are defined using Material and Spatial Coordinates, Equation 30 at 
nodes:

(124)

The displacement field is:

(125)

The velocities are obtained by taking the material time derivative of the displacement giving:

(126)

It is worth pointing out that the velocity is a material time derivative of displacements, that is, the 
partial derivative with respect to time with the material coordinate fixed.

Finally, accelerations are similarly given by the material time derivative of velocities:

(127

Emphasis is placed on the fact that shapes functions are functions of the material coordinates whatever 
the updated or the total Lagrangian formulation is used. All the dependency in the finite element 
approximation of the motion is taken into account in the values of the nodal variables.

From Kinematic Description, Equation 47, the velocity gradient is given by:

(128)

and the rate of deformation (Kinematic Description, Equation 53) by:
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(129)

Similarly, the test functions are approximated as:

(130)

Where,  are the virtual nodal velocities.

The test functions are next substituted into the principle of virtual power (Virtual Power Principle, 
Equation 99 giving:

(131)

The virtual velocities must be kinematically admissible, that is, satisfy boundary conditions on , the
part of the boundary where kinematical conditions are specified. Using the arbitrariness of the virtual
nodal velocities everywhere except on , the weak form of the momentum equation is:

(132)

with  the part of the boundary where traction loads are imposed.

Internal and External Nodal Forces
As in Virtual Power Term Names, you define the nodal forces corresponding to each term in the 
virtual power equation.

The internal nodal forces are defined by:

(133)

The stress is the true (Cauchy) stress.

(134)

These nodal forces are called internal because they represent the stresses in the body. The expression
applies to both the complete mesh or to any element. It is pointed out that derivatives are taken with
respect to spatial coordinates and that integration is taken over the current deformed configuration.

The external forces are similarly defined in terms of the virtual external power:

(135)

so that external forces are given by:
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(136)

Mass Matrix and Inertial Forces
The inertial body forces are defined by:

(137)

so that the inertia forces are given by:

(138)

or using the Finite Element Approximation, Equation 127 for the accelerations:

(139)

It is usual to define the inertial nodal forces as the product of a mass matrix and the nodal
accelerations. Defining the mass matrix as:

(140)

the inertial forces are given by:

(141)

Discrete Equations
Using the definitions of the internal and external forces, as well as the definition of the inertial forces, it
is possible to write the weak form of the virtual power principle as:

(142)

or taking into account the arbitrariness of the virtual velocities:

(143)

Equation of Motion for Translational Velocities
Discrete Equations, Equation 143 is written in matrix notation as:
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(144)

This is Newton's equation, where the mass matrix is:

(145)

Radioss uses a lumped mass approach, that is, each node represents a discrete mass of zero size. This 
creates a diagonal mass matrix , eliminating, as you will see in Dynamic Analysis, the need to solve 
simultaneous equations for the solution of nodal accelerations.

(146)

is the externally applied load vector, and the internal force vector is:

(147)

Adding to the internal and external forces the anti-hourglass force vector and the contact force vector
which will be described in the following sections, you obtain the overall equation of motion:

(148)

Equation of Motion for Angular Velocities
Shell, beam and rigid body theory introduces nodal rotational degrees of freedom. The equations of
motion for rotational degrees of freedom are complicated if written in the global reference frame. They
are much simpler if written for each node in the principal reference frame attached to the node. The
resulting equations are the standard Euler equations. They are completely analogous to Newton's law
governing translational degrees of freedom and are stated as:

(149)

(150)

(151)

Where,

Principal moments of inertia about the x, y and z axes, respectively 

Angular accelerations expressed in the principal reference frame 

Angular velocities

Principal externally applied moments
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Principal internal moments

The equation of motion for rotational degrees of freedom is thus very similar to that for translational
degrees of freedom. In matrix notation and in the nodal principal reference frame:

(152)

The vector function  is computed for a value of  at . Equation 152 is used for rigid body
motion.

For shell, beam and spring using a spherical inertia, the equation of motion becomes:

(153)

Where,

Diagonal inertia matrix

Externally applied moment vector

Internal moment vector

Anti-hourglass shell moment vector

Element Coordinates
Finite elements are usually developed with shape functions expressed in terms of an intrinsic
coordinates system . It is shown hereafter that expressing the shape functions in terms of intrinsic
coordinates is equivalent to using material coordinates.

When an element is treated in terms of intrinsic coordinates, we are concerned with three domains that
correspond to this element:

• The domain in the intrinsic coordinates system

• The current element domain

• The initial reference element domain

 is associated with the direction .

 is associated with the direction .

 is associated with the direction .

The motion in each element can thus be described by the composition of three maps (the reasoning is
described only for the direction ):

• The map from the intrinsic coordinates system to the initial configuration:
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(154)

• The map from the intrinsic coordinates system to the current configuration:

(155)

• The map from the initial to the current configuration:

(156)

So, it is possible to approximate the motion in an element by:

(157)

Shape functions  have no dimensions. They simply relate coordinates in the physical world to the
intrinsic coordinates system. Writing Equation 157 at =0, you obtain:

(158)

So, it can be seen from the last equation that the material coordinates system and the intrinsic
coordinates system are invariant in a Lagrangian element. As a result, as intrinsic coordinates are time
invariant and it is possible to write displacements, velocities and accelerations in terms of intrinsic
coordinates (one coordinate system, the two other coordinates have similar shape functions):

(159)

(160)

(161)

Isoparametric elements use the same shape functions for the interpolation of  and .

Integration and Nodal Forces
In practice, integrals over the current domain in the definition of the internal nodal forces (Equation of 
Motion for Translational Velocities, Equation 147), of the external nodal forces (Equation of Motion for 
Translational Velocities, Equation 146) and of the mass matrix have to be transformed into integrals 
over the domain in the intrinsic coordinate system .

Using Vicinity Transformation, Equation 35, integrals on the current configuration are related to integrals 
over the reference configuration and over the domain in the intrinsic coordinate system by:

(162)

and
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(163)

Where,

The Jacobian determinant of the transformation between the
current and the initial configuration

The Jacobian determinant of the transformation between the
current configuration and the domain in the intrinsic coordinate
system

The Jacobian determinant of the transformation between the
reference configuration and the intrinsic coordinate system

On the other hand, it comes from Vicinity Transformation, Equation 32 and Element 
Coordinates, Equation 157:

(164)

So, using Equation 162, internal forces computed by integration over the current domain will be
obtained by the following quadrature:

(165)

and  obtained from Equation 164.

External forces and the mass matrix can similarly be integrated over the domain in the intrinsic
coordinate system.

Function Derivatives
The definition of internal forces also shows that derivatives of the form:

(166)

need to be computed. These spatial derivatives are obtained by implicit differentiation. Considering the
velocity gradient such as:

(167)

one has:

(168)
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Where, the Jacobian matrix of the map between the current coordinates and the intrinsic coordinates is:

(169)

Usually, it is not possible to have closed form expression of the Jacobian matrix. As a result the
inversion will be performed numerically and numerical quadrature will be necessary for the evaluation of
nodal forces.

Numerical Quadrature: Reduced Integration
All elements in Radioss are integrated numerically. Hence, the integrals for nodal forces are replaced by
a summation:

(170)

Where,

Number of integration points in the element

Eeight associated to the integration point 

Values of  and locations of  are given in tables according to the numerical quadrature approach.

Radioss uses either full or reduced integration schemes.

For full integration, the number of integration points is sufficient for the exact integration of the virtual
work expression. The full integration scheme is often used in programs for static or dynamic problems
with implicit time integration. It presents no problem for stability, but sometimes involves locking and
the computation is often expensive.

Reduced integration can also be used. In this case, the number of integration points is sufficient for the
exact integration of the contributions of the strain field that are one order less than the order of the
shape functions. The incomplete higher order contributions to the strain field present in these elements
are not integrated.

The reduced integration scheme, especially with one-point quadrature is widely used in programs with
explicit time integration to compute the force vectors. It drastically decreases the computation time,
and is very competitive if the spurious singular modes (often called hourglass modes which result from
the reduced integration scheme) are properly stabilized. In two dimensions, a one point integration
scheme will be almost four times less expensive than a four point integration scheme. The savings are
even greater in three dimensions. The use of one integration point is recommended to save CPU time,
but also to avoid "locking" problems, for example, shear locking or volume locking.

Shear locking is related to bending behavior. In the stress analysis of relatively thin members subjected
to bending, the strain variation through the thickness must be at least linear, so constant strain first
order elements are not well suited to represent this variation, leading to shear locking. Fully integrated
first-order isoparametric elements (tetrahedron) also suffer from shear locking in the geometries where
they cannot provide the pure bending solution because they must shear at the numerical integration
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points to represent the bending kinematic behavior. This shearing then locks the element, that is, the 
response is far too stiff.

On the other hand, most fully integrated solid elements are unsuitable for the analysis of approximately 
incompressible material behavior (volume locking. The reason for this is that the material behavior 
forces the material to deform approximately without volume changes. Fully-integrated solid elements, 
and in particular low-order elements do not allow such deformations. This is another reason for using 
selectively reduced integration. Reduced integration is used for volume strain and full integration is used 
for the deviatoric strains.

However, as mentioned above, the disadvantage of reduced integration is that the element can admit 
deformation modes that are not causing stresses at the integration points. These zero-energy modes 
make the element rank-deficient which causes a phenomenon called hour-glassing; the zero-energy 
modes start propagating through the mesh, leading to inaccurate solutions. This problem is particularly 
severe in first-order quadrilaterals and hexahedra.

To prevent these excessive deformations, a small artificial stiffness or viscosity associated with the zero-
energy deformation modes is added, leading in Equation of Motion for Translational Velocities, Equation 
144 and Equation of Motion for Angular Velocities, Equation 152 to anti-hourglass force and moment 
vectors:

(171)

(172)

Zero-energy or hourglass modes are controlled using a perturbation stabilization as described by

Flanagan-Belytschko 11, or physical stabilization as described in 12 (Element Library).

So, for isoparametric elements, reduced integration allows simple and cost effective computation of the 
volume integrals, in particular on vectorized supercomputers, and furnishes a simple way to cope with 
locking aspects, but at the cost of allowing hour-glassing.

Numerical Procedures
The Radioss numerical solver can be summarized by the flow chart in Figure 6. For each time step in a 
particular analysis, the algorithm used to compute results is:

1. For the displacement, velocity and acceleration at a particular time step, the external force vector
is constructed and applied.

2. A loop over element is performed, in which the internal and hourglass forces are computed, along
with the size of the next time step. The procedure for this loop is:

11. Flanagan D. and Belytschko T., “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal
Hourglass Control”, Int. Journal Num. Methods in Engineering, 17 679-706, 1981.

12. Zeng Q. and Combescure A., “A New One-point Quadrature, General Nonlinear Quadrilateral Shell
Element with Physical Stabilization”, Int. Journal Num. Methods in Engineering 42, 1307-1338,
1998.
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a. The Jacobian matrix is used to relate displacements in the intrinsic coordinates system to the
physical space:

(173)

b. The strain rate is calculated:

(174)

c. The stress rate is calculated:

(175)

d. Cauchy stresses are computed using explicit time integration:

(176)

e. The internal and hourglass force vectors are computed.

f. The next time step size is computed, using element or nodal time step methods 
(Dynamic Analysis)

3. After the internal and hourglass forces are calculated for each element, the algorithm proceeds by
computing the contact forces between any interfaces.

4. With all forces known, the new accelerations are calculated using the mass matrix and the
external and internal force vectors:

(177)

5. Finally, time integration of velocity and displacement is performed using the new value.
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Figure 6: Numerical Procedure
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Dynamic Analysis
The discrete form of the equation of motion given in Equation of Motion for Translational Velocities 
represents a system of linear differential equations of second order and, in principal the solution to 
the equations can be obtained by standard procedures for the solution of differential equations with 
constant coefficients. However, in practical finite element analysis, a few effective methods are used. 
The procedures are generally divided into two methods of solution: direct integration method and 
mode superposition. Although the two techniques may at first look to be quite different, in fact they 
are closely related, and the choice for one method or the other is determined only by their numerical 
effectiveness.

In direct integration the equations of motion are directly integrated using a numerical step-by-step 
procedure. In this method no transformation of the equations into another basis is carried out. The 
dynamic equilibrium equation written at discrete time points includes the effect of inertia and damping 
forces. The variation of displacements, velocities and accelerations is assumed with each time interval

. As the solution is obtained by a step-by-step procedure, the diverse system nonlinearities as 
geometric, material, contact and large deformation nonlinearity are taken into account in a natural way 
even if the resolution in each step remains linear.

The mode superposition method generally consists of transforming the equilibrium equation into the 
generalized displacement modes. An eigen value problem is resolved. The eigen vectors are the free 
vibration mode shapes of the finite element assemblage. The superposition of the response of each 
eigen vector leads to the global response. As the method is based on the superposition rule, the linear 
response of dynamically loaded of the structure is generally developed.

In the following, first the resolution procedure in direct integration method when using an explicit time 
discretization scheme is described. Then, the procedures of modal analysis are briefly presented. The 
implicit method will be detailed in Radioss Parallelization.

Direct Integration Method: Explicit Scheme
In transient dynamic analysis, the direct integration method is usually chosen. A few commonly used

integration methods exist in the literature. 13 The method used in Radioss is derived from Newmark 
time integration scheme.

This section deals with time integration of accelerations, velocities and displacements. The general 
algorithm for computing accelerations, velocities and displacements is given. Stability and time step 
aspects are then discussed.

Newarks Method
Newmark's method is a one step integration method. The state of the system at a given time 
is computed using Taylor's formula:

(178)

13. Bathe K.J., “Finite Element Procedures”, Prentice Hall, 1996.
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(179)

The preceding formula allows the computation of displacements and velocities of the system at time
:

(180)

(181)

The approximation consists in computing the integrals for acceleration in Equation 180 and in
Equation 181 by numerical quadrature:

(182)

(183)

By replacing Equation 180 and Equation 181, you have:

(184)

(185)

According to the values of  and , different algorithms can be derived:

• : pure explicit algorithm. It can be shown that it is always unstable. An integration
scheme is stable if a critical time step exists so that, for a value of the time step lower or equal to
this critical value, a finite perturbation at a given time does not lead to a growing modification at
future time steps.

• : central difference algorithm. It can be shown that it is conditionally stable.

• : Fox & Goodwin algorithm.

• : linear acceleration.

• : mean acceleration. This integration scheme is the unconditionally stable algorithm
of maximum accuracy.
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 and  so that

Central Difference Algorithm

The  central difference  algorithm  corresponds  to  the  Newmark algorithm 

with Newarks Method, Equation 184 and Equation 185 become:

(186)

(187)

with  the time step between  and .

It is easy to show that the central difference algorithm 14 can be changed to an equivalent form with 3
time steps, if the time step is constant.

(188)

From the algorithmic point of view, it is, however, more efficient to use velocities at half of the time
step:

(189)

so that:

(190)

(191)

Time integration is explicit, in that if acceleration  is known (Combine Modal Reduction), the future 
velocities and displacements are calculated from past (known values in time:

• is obtained from Equation 190:

(192)

The same formulation is used for rotational velocities.

• is obtained from Equation 189:

(193)

The accuracy of the scheme is of  order, that is, if the time step is halved, the amount of error in the
calculation is one quarter of the original. The time step  may be variable from one cycle to another. It
is recalculated after internal forces have been computed.

14. Ahmad S., Irons B.M., and Zienkiewicz O.C., “Analysis of thick and thin shell structures by curved
finite elements”, Computer Methods in Applied Mechanics and Engineering, 2:419-451, 1970.
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Numerical Starting Procedure
At time , the displacement  and velocity  are known from initial conditions. The acceleration 
and time step  are found from solving the equations of motion. The initial time step  is set to zero:

(194)

(195)

(196)

Algorithm Flow Chart
The flow chart of the central difference algorithm can be summarized as in Figure 7. It is pointed out
that the solution of the linear system to compute accelerations is immediate if the mass matrix is
diagonal.

Figure 7: Numerical Procedure
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Body Drop Example
The question "how far can a body be dropped without incurring damage?" is frequently asked in
the packaging manufacturing for transportation of particles. The problem is similar in landing of
aircrafts. It can be studied by an analytical approach where the dropping body is modeled by a simple
mass-spring system (Figure 8). If  is the dropping height,  and  the mass of the body and the
stiffness representing the contact between the body and the ground, the equation of the motion can
be represented by a simple one DOF differential equation as long as the spring remains in contact with
floor:

Figure 8: Model for a Dropping Body

(197)

In this equation the damping effects are neglected to simplify the solution. The general solution of the
differential equation is written as:

(198)

Where, the constants A, B and C are determined by the initial conditions:

At t=0 ≥ , , 
(199)

Where,  is the natural frequency of the system:

(200)

Introducing these initial solutions into Equation 199, the following result are obtained:

(201)

The same problem can be resolved by the numerical procedure explained in this section. Considering at
first the following numerical values for the mass, the stiffness, the dropping height and the gravity:

(202)

From Equation 197, the dynamic equilibrium equation or equation of motion is obtained as:

(203)
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Using a step-by-step time discretization method with a central difference algorithm, for a given known 
step  the unknown kinematic variables for the next step are given by Equation 203, Central 
Difference Algorithm, Equation 189 and Central Difference Algorithm, Equation 190:

(204)

For the first time step the initial conditions are defined by Equation 199. Using a constant time
step  the mass motion can be computed. It is compared to the analytical solution given by
Equation 201 in Figure 9. The difference between the two results shows the time discretization error.

Figure 9: Obtained Results for the Example

Numerical Stability
The definition of numerically stability is similar to the stability of mechanical systems. A numerical
procedure is stable if small perturbations of initial data result in small changes in the numerical solution.

It is worthwhile to comment the difference between physical stability and numerical stability. Numerical
instabilities arise from the discretization of the governing equations of the system, whereas physical
instabilities are instabilities in the solutions of the governing equations independent of the numerical
discretization. Usually numerical stability is only examined for physically stable cases. For this reason
in the simulation of the physically unstable processes, it is not guaranteed to track accurately the
numerical instabilities. Numerical stability of a physically unstable process cannot be examined by the
definition given above. You establish the numerical stability criteria on the physically stable system and

suppose that any stable algorithm for a stable system remains stable on an unstable system. 15

On the other hand, the numerical stability of time integrators discussed in the literature concerns
generally linear systems and extrapolated to nonlinear cases by examining linearized models of
nonlinear systems. The philosophy is: if a numerical method is unstable for a linear system, it will be
certainly unstable for nonlinear systems as linear cases are subsets of the nonlinear cases. Therefore,
the stability of numerical procedures for linear systems provides a useful guide to explore their behavior
in a general nonlinear case.

To study the stability of the central difference time integration scheme, you establish the necessary
conditions to ensure that the solution of equations is not amplified artificially during the step-by-step
procedure. Stability also means that the errors due to round-off in the computer, do not grow in the
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integration. It is assured if the time step is small enough to accurately integrate the response in the 
highest frequency component.

Explicit Scheme Stability
In direct integration method, at time  the solutions for the prior steps are known and the solution
for the time  is required next. The equations to relate displacements, velocities and 
accelerations in a discrete time scale using the central difference time integration algorithm are given in 
Central Difference Algorithm. They can be rewritten as:

(205)

For stability studies, aim to establish a recursive relationship to link the displacements at three
consecutive time steps:

(206)

Where,  is amplification matrix. A spectral analysis of this matrix highlights the stability of the
integration scheme.

The numerical algorithm is stable if and only if the radius spectral of  is less than unity. In other

words, when the module of all eigen values of  are smaller than unity, the numerical stability is
ensured.

The stability of a numerical scheme can be studied using the general form of the 2x2 matrix :

(207)

Then, the equations are developed for the systems with or without damping. 16

The eigen values of  are computed from the characteristic polynomial equation:

(208)

Where,

The eigen values are then obtained as:

15. Belytschko T., Wing Kam Liu, and Moran B., “Finite Elements for Nonlinear Continua and
Structures”, John Wiley, 1999.
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(209)

If , eigen values are complex conjugate; if , they are real and identical; if , they are

real and distinct. You intend to define a stability domain in the -space, where the spectral radius

. The boundary of this domain is given by couples  such as .
Three cases are to be considered:

1. Roots are real and one of them is equal to 1:

You then have:

(210)

This yields:

(211)

The corresponding part of the boundary of the stability domain is the segment analytically defined
by  and .

2. Roots are real and one of them is equal to -1:

You then have:

(212)

This yields:

(213)

In this case, the corresponding part of the boundary is the segment given by  and
.

3. Roots are complex conjugate:

Their modulus is equal to 1. You then have, using :

(214)

This yields:

(215)

Since , you obtain:
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(216)

The corresponding part of the boundary is thus the segment given by  and .

The 3 segments introduced above define a closed contour. Point  is located inside this

contour and in this case, . Since  varies continuously with respect to  and ,
you can conclude that the stability domain corresponds to the interior of the contour. To precisely
define the stability domain, you must also have points leading to double eigen value of modulus

1, that is, the intersections between the parabola  and the boundary of the domain. This

corresponds to Points .

Figure 10: Stability Domain

You can analytically summarize the description of the stability by means of the following two sets
of conditions:

(217)

Numerical Stability of Undamped Systems
The stability conditions developed in the previous section can be applied to a one degree-of-freedom of
a system without damping. The dynamic equilibrium equation at time  is given by:

(218)

Where,  and  are respectively the nodal mass and stiffness.  is the external force at time .
Rewriting the central difference time integration equations from Equation 205, you obtain:
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(219)

and:

(220)

Substituting these equations into Equation 218, it yields:

(221)

This equation can be written as Equation 206. Then the amplification matrix takes the expression:

(222)

Where,  is the angular frequency of the considered mode.

Comparing with Equation 207, you have  and . Stability is then given by:

(223)

The right inequality is always true if  ≠ 0. For, the particular case of  = 0, the scheme is unstable.
However, the analytical solution for a system with  = 0 leads to an unbounded solution. The left
inequality implies:

(224)

Numerical Stability with Viscous Damping: Velocities at Time Steps
The dynamic equilibrium equation at time step  is written as:

(225)

Using the equations:

(226)

Results in:

(227)

For the velocity, write the equations:

(228)
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to obtain:

(229)

Substituting these equations into Equation 225, the recurring continuation equation on the displacement
is written in the form:

(230)

The equation can be rearranged to obtain the expression of the amplification matrix:

(231)

This yields  and .

Stability is given by the set of conditions from Equation 217:

(232)

The second expression is always verified for . It is the same for the right inequality of the first
expression. The left inequality of the first expression leads to the condition on the time step:

(233)

You find the same condition as in the undamped case, which echoes a conclusion given in 16. You may
yet remark that damping has changed the strict inequality into a large inequality, preventing from weak
instability due to a double eigen value of modulus unity.

It is important to note that the relation Equation 233 is obtained by using the expression Equation 229
to compute nodal velocities at time steps. However, in an explicit scheme generally the mid-step

velocities  and  are used. This will be studied in the next section.

Numerical Stability with Viscous Damping: Velocities at Mid Steps
Considering the case in which damping effects cannot be neglected, you still would like to deal with
decoupled equilibrium equations to be able to use essentially the same computational procedure.
Except for the case of full modal projection which is a very expensive technique and practically unused,

the damping matrix  is not diagonal, contrary to . The computation of the viscous forces with

the exact velocity given by the integration algorithm requires the matrix  to be inverted,

which can harm the numerical performances. You therefore often compute the viscous forces using the
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velocities at the preceding mid-step, which are explicit. This leads to an equilibrium at step  in the
form:

(234)

The integration algorithm immediately yields:

(235)

The recurring continuation becomes:

(236)

As above, you obtain the amplification matrix:

(237)

You have in this case  and .

Stability is again given by the set of conditions Equation 217:

(238)

Right inequalities are always verified in both preceding expressions. Left inequalities now lead to two
conditions on the time step:

(239)

Therefore, the critical time step depends not only to  but also to the mass and the damping. However, 
the critical time step depends only to  when using the exact velocities to compute the viscous forces 
as described in the previous section.

Numerical Stability with Rayleigh Damping
The linearized equations of equilibrium governing the dynamic response of a finite element system can 
derived from the equations of motion given in Equation of Motion for Translational Velocities and 
Equation of Motion for Angular Velocities:

(240)

In the case of direct step-by-step time integration, it is necessary to evaluate the damping matrix 

explicitly. The Rayleigh damping method assumes that the matrix  is computed by the following
equation:

(241)
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Where,

Viscous damping matrix of the system

Mass matrix

Stiffness matrix

As described in the preceding sections, the computation of the viscous forces by using velocities at time

steps leads to obtain a non-diagonal matrix  which should be inverted in the resolution procedure.
To avoid the high cost operations, generally the simplifications are made to obtain a diagonal matrix.

Substituting the Rayleigh equation into Equation 240 and using the mid-step velocities for  terms

and at step nodal velocities for  terms, the following expression is obtained:

(242)

Studying the equilibrium of a node to obtain a one dimensional equation of motion, write:

(243)

Where,

Modal mass

Associated modal damping

Nodal stiffness

This leads to the following recurring continuation on the displacement:

(244)

The amplification matrix is then:

(245)

In this case,  and .

Stability is obtained as before by means of the set of conditions from Equation 217:

(246)
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This again yields two conditions on the time step, coming from the left inequalities in both expressions:

(247)

It is equivalent to consider only the  contribution in the damping for the computation of the time

step, which appears to be logical since the  contribution is used with the exact velocity. It is
advantageous to separate the two contributions, restrictions of the time step then becoming lighter. It
can be shown that for the complete treatment of the Rayleigh damping using mid-step velocities, the
stability conditions can be given by:

(248)

Example: Critical Time Step for a Mass-Spring System

Figure 11:

Consider a free mass-spring system without damping. The governing differential equation can be
written as:

(a)

The element matrix expressions are given as:

; 

The general solution is assumed in the form of:

(b)

Where, the angular frequency   and the phase angle  are common for all .  and  are the
constants of integration to be determined from the initial conditions of the motion and   is a
characteristic value (eigen value) of the system. Substituting (b) into (a) yields:
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(c)

The consistency of (c) for  requires that:

 => (d)

Assuming the following numerical values  and , you have .

The critical time step of the system is given by Equation 224:

Example: Critical Time Step for Dropping Body
A dropping body is studied in Body Drop Example with analytical and numerical approaches. As shown 
in Figure 14, the numerical results are closed to the analytical solution if you use a step-by-step time 
discretization   method  with   a  constant  time  step . This value is less than the critical time 
step obtained by:

Figure 12:

which may be computed as:

Therefore, the used time step in the Body Drop Example ensures the stability of the numerical scheme 
as it is less than the critical value. Now using the values higher than or equal to the critical time step, 
the solution diverges towards the infinity as shown in Figure 13.
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Figure 13: Numerical instability for Example Using Over Critical Time Steps

It is worthwhile to comment that in a general explicit finite element program as Radioss, the critical
time step is computed for an entire element (two nodal masses and stiffness for spring element). In the
case of dropping body example, the mass-spring system can be compared by analogy to a two-node
mass-spring system where the global stiffness is twice softer. The critical time step is then computed

using the nodal time step of the entire element (refer to the following sections 16 for more details on the
computation of nodal time step).

Figure 14:

16. Hughes T.J.R., “Analysis of Transient Algorithms with Particular Reference to Stability Behavior”,
Computational Methods for Transient Analysis, eds. T. Belytschko and T.J.R. Hugues, 67-155, North
Holland, 1983.
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Courant Condition Stability
Radioss uses elements with a lumped mass approach. This reduces computational time considerably as
no matrix inversion is necessary to compute accelerations.

The integration scheme used by Radioss is based on the central difference integration scheme which is
conditionally stable, that is, the time step must be small enough to assure that the solution does not
grow boundlessly.

The stability condition is given in the last sections. For a system without damping, it can be written in a
closed form:

(249)

Where,  is the highest angular frequency in the system:

(250)

Where,  and  are respectively the stiffness and the mass matrices of the system.

The time step restriction given by Equation 249 was derived considering a linear system (Explicit 
Scheme Stability), but the result is also applicable to nonlinear analysis since on a given step the 
resolution is linear. However, in nonlinear analysis the stiffness properties change during the response
calculation. These changes in the material and the geometry influence the value of  and in this way
the critical value of the time step.

The above point can be easily pointed out by using a nonlinear spring with increasing stiffness in Body 
Drop Example. It can be shown that the critical time step decreases when the spring becomes stiffer. 
Therefore, if a constant time step close to the initial critical value is considered, a significant solution 
error is accumulated over steps when the explicit central difference method is used.

Another consideration in the time integration stability concerns the type of problem which is analyzed. 
For example in the analysis of wave propagation, a large number of frequencies are excited in the 
system. That is not always the case of structural dynamic problems. In a wave shock propagation 
problem, the time step must be small enough in order to excite all frequencies in the finite element 
mesh. This requires short time step so that the shock wave does not miss any node when traveling 
through the mesh. It follows that the time step should be limited by the following relation:

(251)

Where,

Characteristic element length, representing the shortest road for a
wave arriving on a node to cross the element

Speed of sound in the material

Time step

The condition Equation 251 gives a severe time step restriction with respect to stability time step,

that is, . It can easily be shown that for a simple case of a bar element, the two expressions
Equation 251 and Equation 249 are equivalent.
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Figure 15: Bar Element

If a uniform linear-displacement bar element is considered, (Figure 16), and a lumped mass formulation
at the nodes is used, the highest frequency of this element can be obtained by a resolution of an eigen
value problem:

(252)

(253)

For a lumped mass bar, you have:

(254)

(255)

Where,  and  are respectively the nodal mass and stiffness of the bar:

(256)

Equation Equation 253 yields:

(257)

then:

(258)

which can be simplified with Equation 256 to obtain:

(259)

Where,  is the speed of sound in the material and its expression is given as:

(260)
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with   the material density and the Young’s modulus. Combining Equation 259 and Equation 249, you
obtain:

(261)

Figure 16: Element Characteristic Lengths

This relation is that of Equation 251 and shows that the critical time step value in the explicit time
integration of dynamic equation of motion can be carried out by the interpretation of shock wave

propagation in the material. This is shown for the first time by Courant. 17 In spite of their works are
limited to simple cases, the same procedure can be used for different kinds of finite elements. The
characteristic lengths of the elements are found and Equation 251 is written for all elements to find
the most critical time step over a mesh. Regarding to the type (shape) of element, the expression of
characteristic length is different. Figure 16 shows some typical cases for elements with one integration
point.

Time Step Control
The time incrementation in Radioss is fully automatic and a priori requires no user intervention. The
step used for time integration (or moving forward in time) can be calculated using two different
methods. The method used depends on the type of simulation being performed.

• Element time step

• Nodal time step

17. Courant R., Friedrichs K.O., and Levy H., “About the partial Differenzensleichungen Bogdanova of
Physics”, Math. A nn., Vol. 100, 32, 1928.
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The time step used by the solver is the largest possible time step, as determined by the Courant 
condition that will maintain stability. If the default large strain formulation is used, the time step
is computed at each cycle. Large element deformation can give a large time step decrease. If the 
deformation is too large, negative volumes can result, which make it impossible to invert the Jacobian 
matrix and to integrate the stress over the volume. If the small strain formulation is used, assuming 
a constant Jacobian matrix during time and also a constant volume, all spatial variables are defined 
at . This is either the beginning of the analysis or the time at which the small strain formulation is 
initiated. If the sound speed is constant, the time step thus becomes constant. Using this formulation, 
the time step has no effect on the computation since the initial volume is used.

Element Time Step Control
The stable element time step was detailed in Courant Condition Stability and is restated as:

(262)

Where,

Element characteristic length

Speed of sound in the material

This is the default setting.

The element time step is computed at the same time as the internal forces. The characteristic length
and the sound speed are computed for each element in every cycle.

The computed time step is compared to a minimum time step value and a scale factor is applied to
ensure a conservative bound. Different minimum time step values can be given to different element
types by using the option: /DT/Keyword.

Where,

Keyword Defined in the user manual as the element type

If deformation is large enough for the time step to reach the minimum defined value, there are 3 user-
defined options possible:

• Stop the analysis when the minimum time step value is reached. This is the default for brick and
quadrilateral elements.

• Delete the element(s) defining the time step. This is the default for shell elements.

• Implement small strain formulation using a constant time step. This only works for shell and brick
elements.

These options are defined using a third keyword: STOP, DEL, CST, AMS or SET

Nodal Time Step Control
The nodal time step is calculated after the computation of all the internal forces at each node using:

(263)

Where,
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Nodal mass

Equivalent nodal stiffness

The nodal stiffness is one half of eigen value from element stiffness matrix; for a truss element this
value is equal to the diagonal term of the stiffness matrix. It is computed from the accumulation of
element and interface stiffness'. These stiffness' are obtained during internal force computation.

For a regular mesh, the element time step and nodal time step conditions are identical. Consider the
element time step condition for a truss element.

(264)

The nodal time step condition is written as:

(265)

with

(266)

Therefore:

(267)

To select the nodal time step when running Radioss the option /DT/NODA has to be used.

As for the element time step, minimum time step and scale factors are required. The default value for
the scale factor is 0.9. If the minimum time step is reached, the analysis can either be stopped or a
mass scaling formulation can be applied. In the latter case, mass is added to the affected nodes so that
the time step remains constant at the minimum value. This option can be enabled using the same third
keyword as used in the element time step control. It must be checked that added masses do not affect
the accuracy of results. If one uses the nodal time step, the element time step is ignored.

Interface Time Step Control
Finally, the time step is influenced by existence of interfaces. The interface time step control depends on
the type of interface being used.

For the interfaces in which the contact conditions are defined by applying kinematic conditions, no time
step restriction is required. This is the case of interface TYPE 2 of Radioss.

In addition, for the interfaces TYPES 3, 4, 5, and 8 in Radioss a small stiffness is used. Therefore, the
interfaces are stable if a time step scale factor less than or equal to 0.9 is used.

TYPES 7, 10 and 11 interfaces use a variable stiffness and if this stiffness is not small compared to the
element stiffness, a stability condition must be adhered to.

For interfaces 3, 4, 5, 7, 8, and 10, there are three possibilities that can be selected, shown in Table 1.
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Table 1: Interface Time Step Cases

Default (element) time step without
interfaces TYPES 7, 10 or 11

Element time step is computed and a scaling factor of 0.9
(default) is applied.

Option /DT/NODA is used with or without
interface TYPES 7 and/or 10, 11

Nodal time step is computed and a scaling factor of 0.9
(default) is applied.

Default time step with interface TYPES 7 or
10, 11

Nodal and element time steps are computed and the
smallest is used.

If the deletion option is applied with the /DT/INTER/DEL interface time step control, the node controlling 
the minimum time step is deleted from the interface.

Mass scaling, where mass is added to an interface node, can be enabled using the option /DT/INTER/
CST.

Time Step Control Limitations
Many of the time step control options influence the solution results. The solution of the nonlinear 
dynamic response of a finite element system accurate is the numerical model correctly represents the 
physical model. The critical time step given for finite element system is determined by a theoretical 
approach in which the highest frequency of the discretized system controls this value. Therefore, the 
time step limitations are related to the model and cannot be changed without incidence on the quality of 
results.

Using the DEL option can significantly alter the model, since elements and nodes are removed without
replacement. In fact, mass and/or volume is lost. Using either /DT/NODA/CST or /DT/INTER/CST will add 
mass to the model to allow mathematical solution. The added mass will increase the kinetic energy. This
should be checked by the user to see if there is a significant effect. Switching to a small strain option 
using brick or shell elements also introduces errors as it was seen in Small Strain Formulation.

Generally, in the study of the nonlinear dynamic response of a system, three physical laws have to be 
respected:

• Conservation of mass

• Conservation of energy

• Conservation of momentum dynamic equilibrium

The last one is generally respected as the equation of motion is resolved at each resolution cycle.
However, in the case of adding masses especially when using /DT/NODA/CST option, it is useful to verify
the momentum variation. The two other conservation laws are not explicitly satisfied. They should be
checked a posteriori after computation to ensure the validity of the numerical model with respect to the
physical problem.
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Example: Time Step

Explicit Scheme Stability Condition
(268)

(269)

(270)

(271)

Equation 269 and  Equation 270 are added:

(272)

The following equation is obtained:

(273)

When Equation 273 is subtracted from Equation 272, and Equation 271 is used:

(274)

Where,

For non-divergence of Equation 274:

≥ : largest eigen value of  is smaller than 1

≥ 

≥ 

≥  largest eigen value of 

≥  < smallest eigen value of 
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Application

Figure 17:

Interface
Interfaces have stiffness but no mass: 

Solution 1: (interface TYPE3, TYPE4, TYPE5)

Solution 2: nodal time step (interface TYPE7 and TYPE10)

Kinematic time step (interface TYPE7):

Where,

Impact speed

Large Scale Eigen Value Computation
The numerical solution of large scale algebraic eigen value problems is now available thanks to new
methods and software. A class of methods called Krylov subspace projection methods is used. The
well known Lanczos method is the first one. The Arnoldi method is a generalization of Lanczos method
applied to the non-symmetric case. A variant of Arnoldi-Lonczos scheme called the Implicitly Restarted
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Arnoldi Method 18 is a part of public domain software package called ARPACK which is integrated
in Radioss. Restarting is introduced as a way to overcome intractable storage and computational
requirements in the original Arnoldi method. Implicit restarting is a variant of restarting which may be
considered as a truncated form of the powerful implicitly shifted QR technique that is suitable for large
scale problems. It provides a mean to approximate a few eigen values with user specified properties in
space proportional to the number of eigen values required. The details of the method are not explained
here.

Combine Modal Reduction
A domain decomposition method allowing the combination of nonlinear sub-domains with linear modal

sub-domains has been proposed. 19 With this technique, the displacement field in the linear sub-
domains is projected on a local basis of reduction modes calculated on the detailed geometry and the
kinematic continuity relations are written at the interface in order to recombine the physical kinematic
quantities of reduced sub-domains locally. The method yields promising save of computing time in
industrial applications. However, the use of modal projection is limited to linear sub-domains. In the
case of overall rigid-body motion with small local vibrations, the geometrical nonlinearity of sub-
domains must be taken into account. Therefore, the projection cannot be used directly even thought the
global displacements may still be described by a small number of unknowns; for example six variables
to express motion of local frame plus a set of modal coordinates in this frame. This approach is used in

the case of implicit framework. 20 In the case of direct integration with an explicit scheme an efficient

approach is presented. 21 One of the main problems is to determine the stability conditions for the
explicit integration scheme when the classical rotation parameters as Euler angles or spin vectors are
used. A new set of parameters, based on the so-called frame-mass concept is introduced to describe
the global rigid body motion. The position and the orientation of the local frame are given by four points
where the distances between the points are kept constant during the motion. In this way, only the
displacement type DOF is dealt and the equations of motion are derived to satisfy perfectly the stability
conditions. This approach, which was integrated in Radioss V5, will be presented briefly here.

Linear Modal Reduction
A modal reduction basis is defined on one or more sub-domains of the decomposition. The definition
of this basis is completely arbitrary. Any combination of eigen modes and static corrections can be
used. All these modes are orthogonalized with respect to the finite element mass matrix in order for the
projected mass matrix to be diagonal and suitable for an explicit solver.

Considering the case of a structure divided into two sub-domains, assume that modal reduction is used
for linear Sub-domain 1. Thus, the displacement field of this sub-domain is projected onto the reduction
vectors:

(275)

18. Sorensen D.C., “Implicit application of polynomial filters in a k-step Arnoldi method”, SIAM J. Matrix
Anal. Appl., Vol. 13, pp. 357-385, 1992.
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with  vector of discretized displacements in Sub-domain 1,  vector of modal participations. This
naturally yields:

(276)

The number of modal unknowns  chosen is much smaller than the original number of degrees of
freedom of Sub-domain 1.

In order to obtain the new coupled system, the dynamic equilibrium of sub-domain 1 must be projected
onto the reduction basis and the velocities involved in the kinematic relations must be expressed in
terms of the modal coordinates. Thus, write the new matrix system for a single time scale as:

(277)

Where,

(278)

The structure of this system is strictly identical to that which existed before reduction. Therefore, use
exactly the same resolution process and apply the multi-time-step algorithm.

The time step for a reduced sub-domain is deduced from the highest eigen frequency of the projected
system in order to preserve the stability of the explicit time integration. This time step is often larger
than that given by the Courant condition with the finite element model before reduction.

Model Reduction with Finite Overall Rotation

Since large rotations are highly nonlinear 22, the displacement field in a sub-domain undergoing
finite rotations cannot be expressed as a linear combination of constant modes. However, the rigid
contribution to the displacement field creates no strain. In the case of small strains and linear behavior,
the local vibrating system can still be projected onto a basis of local reduction modes. Then, take into
account the rotation matrix from the initial global coordinate system to the local coordinate system
and its time derivatives. A classical parameterization of this rotation, for example, Euler angles, would
introduce nonlinear terms involving velocities. Since these quantities, in the central difference scheme,
are implicit, this would require internal iterations in order to solve the equilibrium problem, a situation
you clearly want to reduce the computation time due to the reduction.

Classically, the displacement field of a rotating and vibrating sub-domain is decomposed into a finite
rigid-body contribution and a small-amplitude vibratory contribution measured in a local frame. The

large rigid motion is represented using the so-called four-mass approach. 21
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Four points  in space are arbitrarily chosen to represent the position of a local frame attached
to the sub-domain. In order to simplify the local equations, choose these points so that they constitute
an ortho-normal frame.

Note:  The four points defining the local frame do not have to coincide with nodes of the
mesh.

Displacement Field Decomposition
The global displacements of these four points are the unknowns describing the rigid motion of the sub-
domain. These are classical displacement-type parameters. The relative distances between these points
are kept constant during the dynamic calculation through external links. This enables us to express the
total continuous displacement field of the sub-domain as:

(279)

Where,

Coordinates in the local frame 

Rotation matrix expressing the transformation from the local

to the global coordinates: since  are unit vectors,

.

In order to express the dynamic equilibrium, Equation 278 must be derived with respect to time to yield
velocities and accelerations.

(280)

The time derivatives of the rotation matrix are given by:

(281)

Thus, the fields in Equation 280 have the following expression:

(282)

Where,  are the components of the local displacement in the local frame. The assumption
of small perturbations in the local frame enables us to consider that the rigid and the deformed
configurations are the same, that is, you can neglect  compared to the local coordinates,

. Thus, you get simplified expressions of the velocity and acceleration fields:

(283)
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To express the weak form of the dynamic equilibrium, you also need the variation  of the
displacement field:

(284)

Where, 

Again, the same assumption as above allows us to simplify this expression:

(285)

Local Reduced Dynamic System
The local dynamic equilibrium of the sub-domain is given by:

(286)

The principle of virtual work yields a weak form of this equilibrium, taking into account, Dirichlet-type
boundary conditions:

(287)

Where,

Verifies the kinematic boundary conditions

Volume of the sub-domain

To introduce Equation 278 into this weak form of the equilibrium, you must express with the new
parameterization the virtual works of both the internal and external forces and the virtual work, due to
the rigid links among the points defining the local frame.

The internal forces can be calculated from the local part of the displacement, using Equation 279 and
taking into account the rigid links, for example, the fact that displacement  creates no strain.

(288)

Where, index  expresses that the coordinates and the spatial derivatives are taken in the local frame.

The virtual work of the internal forces is then:

(289)

The integration by parts in the local frame introduces external surface forces :

(290)
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Where,

The boundary of 

The normal to  expressed in the local frame

To compute forces associated to the rigid links, first, new Lagrange multipliers are introduced to express
the energy of a link:

(291)

Where,  and  are the initial coordinates of point  and the rigid

link between points  and  is given by:  .

Then, the differentiation of this energy is used to obtain the virtual work to be introduced into the weak
form of the equilibrium:

(292)

Note:  The quantity  can be viewed as the

resisting force applied to point  to preserve the distances from this point to
the other points of the local frame.

(293)

Weak Form of Equilibrium
Now, express the displacement field using Equation 279 and the local field projected on a Ritz basis:

(294)

where , ,  , ,  is a basis of the global frame,

 is a basis of local Ritz vectors obtained, for example, by finite element discretization or by modal

analysis,  is the vector of the discrete unknowns:
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, with  and  ,

 is the projection basis:  .

Equation 283 and Equation 285 yield:

(295)

Where,  is the gyroscopic contribution to the acceleration, given by:

The final expression of the complete weak form of the dynamic equilibrium is obtained as:

(296)

Where,

Vector formed by the 6 relations preserving the relative distances

of points 

Vector of the Lagrange multipliers corresponding to each rigid link

Vector of the link forces given by Equation 293

Equation 296 can be rewritten using classical matrix and vector operators obtained by finite element
discretization:

(297)

Where,
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Classical mass matrix of sub-domain

Projection matrix consisting of vectors of  discretized on the
nodes of the mesh.

(298)

 , with  being the sub-domain's local stiffness matrix and  and  deduced (as was
) from ,  and the mesh, , with  being the classical vector of the external

forces assembled on the sub-domain.

Now, you are able to reduce the number of unknowns on the sub-domain drastically by choosing as
the Ritz vectors, instead of classical finite element shape functions, an appropriate (and small) family
of local reduction vectors. The modal vibration problem is purely local and guidelines found in the
literature for the proper choice of the projection basis apply here.

Note:  As far as inertia coupling with local vibration and overall large motion is concerned,
two separate contributions must be considered. The first contribution appears in the
projected mass matrix, which as now the following form:

(299)

Where,  is the constant mass matrix corresponding only to the global displacement field given

by  ,  is the constant mass matrix corresponding to the local
vibration given by ,  is a coupling matrix, variable with overall rotation, arising from the interaction
between the local vibratory acceleration field expressed in the global frame  and the overall virtual

displacement field  ;   naturally comes from the symmetric
interaction between virtual local displacement field and the overall acceleration field.

The second contribution to the inertia coupling is the gyroscopic forces.

Note:  In Radioss a special procedure is used to linearize the rigid links. 21

The rigid body motion component of the displacement increment is computed in unconditionally stable
way by the use of Lagrange Multiplier to impose the rigid links. The deforming part is generated by the
local vibration modes retained in the reduction basis. Therefore, you can conclude that the stability
condition is the same as that given by the local vibrating system. The critical time step is constant
throughout the calculation and can be derived from the highest eigen frequency of the local reduced
stiffness matrix with respect to the local reduced mass matrix.

The highest eigen frequency  is given by the system:

(300)
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Where,  and .

Having determined , the maximum time step which can be used on the reduced sub-domain while
ensuring the stability of the time integration is:

(301)

19. Faucher V. and Combescure A., “A time and space mortar method for coupling linear modal
subdomains and nonlinear subdomains in explicit structural dynamics”, Computer Methods in
Applied Mechanics and Engineering, Vol. 192, pp. 509-533, 2002.

20. Cardona A. and Géradin M., “A superelement formulation for mechanism analysis”, Computer
Methods in Applied Mechanics and Engineering, Vol. 100, pp. 1-29, 1992.

21. Faucher V. and Combescure A., “Local modal reduction in explicit dynamics with domain
decomposition. Part 1: extension to subdomains undergoing finite rigid rotations”, Int. Journal
Num. Methods in Engineering, Vol. 60, pp. 2531-2560, 2004.

22. Argyris J.H., “An excursion into the large rotations”, Computer Methods in Applied Mechanics and
Engineering, 32, 85-155, 1982.
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Element Library
Radioss element library contains elements for one, two or three dimensional problems.

Some new elements have been developed and implemented in recent versions. Most of them use the
assumed strain method to avoid some locking problems. For the elements using reduced integration
schema, the physical stabilization method is used to control efficiently the hourglass deformations.
Another point in these new elements is the use of co-rotational coordinate system. For the new solid
elements, as the assumed strains are often defined in the specific directions, the use of global system
combined with Jaumman's stress derivation contributes to commutative error especially when solid
undergoes large shear strains.

The Radioss finite element library can be classified into the following categories of elements:

Solid elements 8- and 20-node bricks, 4- and 10-node tetrahedrons

Solid-shells 8- , 16- and 20-node hexahedrons, 6-node pentahedral element

2 dimensional elements 4-node quadrilaterals for plane strain and axisymmetrical analysis

Shell elements 4-node quadrilaterals and 3-node triangles

One dimensional elements rivet, springs, bar and beams

The implementation of these elements will now be detailed. Expression of nodal forces will be developed
as, for explicit codes they represent the discretization of the momentum equations. Stiffness matrices,
which are central to implicit finite element approaches, are not developed here.

Solid Hexahedron Elements
Radioss brick elements have the following properties:

BRICK8 8-node linear element with reduced or full integration

HA8 8-node linear element with various number of integration points
going from 2x2x2 to 9x9x9

HEPH 8-node linear element with reduced integration point and physical
stabilization of hourglass modes

BRICK20 20-node quadratic element with reduced or full integration
schemes

For all elements, a lumped mass approach is used and the elements are isoparametric, that is, the
same shape functions are used to define element geometry and element displacements.

The fundamental theory of each element is described in this chapter.
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Linear Brick Shape Functions
Shape functions define the geometry of an element in its computational (intrinsic) domain. As was seen 
in Finite Element Formulation, physical coordinates are transformed into simpler computational intrinsic 
coordinates so that integration of values is numerically more efficient.

Figure 18: Node Brick Element

Where, , , and .

The shape functions of an 8 node brick element, shown in Figure 18, are given by:

(302)

(303)

(304)

(305)

(306)

(307)

(308)

(309)

The element velocity field is related by:

(310)
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Where,  are the nodal velocities.

Strain Rate
The relationship between the physical coordinate and computational intrinsic coordinates system for a
brick element is given by the matrix equation:

(311)

Hence:

(312)

Where,  is Jacobian matrix.

The element strain rate is defined as:

(313)

Relating the element velocity field to its shape function gives:

(314)

Hence, the strain rate can be described directly in terms of the shape function:

(315)

As was seen in Velocity Strain or Deformation Rate, volumetric strain rate is calculated separately by 
volume variation.

For one integration point:

(316)

F.E Method is used only for deviatoric strain rate calculation in A.L.E and Euler formulation.

Volumetric strain rate is computed separately by transport of density and volume variation.
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Assumed Strain Rate
Using Voigt convention, the strain rate of Strain Rate, Equation 315 can be written as:

(317)

With,

It is useful to take the Belytschko-Bachrach's mix form 23 of the shape functions written by:

(318)

Where,

The derivation of the shape functions is given by:

(319)

It is decomposed by a constant part which is directly formulated with the Cartesian coordinates, and a
non-constant part which is to be approached separately. For the strain rate, only the non-constant part
is modified by the assumed strain. You can see in the following that the non-constant part or the high
order part is just the hourglass terms.

You now have the decomposition of the strain rate:

(320)

with:
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; 

Belvtschko and Bindeman 24 ASQBI assumed strain is used:

(321)

with 

Where, ; ; and  .

To avoid shear locking, some hourglass modes are eliminated in the terms associated with shear so

that no shear strain occurs during pure bending. That is,  in  terms and all fourth hourglass
modes in shear terms are also removed since this mode is non-physical and is stabilized by other terms

in .

The terms with Poisson coefficient are added to obtain an isochoric assumed strain field when the nodal
velocity is equivoluminal. This avoids volumetric locking as . In addition, these terms enable the
element to capture transverse strains which occurs in a beam or plate in bending. The plane strain
expressions are used since this prevents incompatibility of the velocity associated with the assumed
strains.

Incompressible or Quasi-incompressible Cases
Flag for new solid element: Icpre =1,2,3

For incompressible or quasi- incompressible materials, the new solid elements have no volume locking
problem due to the assumed strain. Another way to deal with this problem is to decompose the stress
field into the spherical part and the deviatory part and use reduced integration for spherical part so that
the pressure is constant. This method has the advantage on the computation time, especially for the full
integrated element. For some materials which the incompressibility can be changed during computation
(for example: elastoplastic material, which becomes incompressible as the growth of plasticity), the
treatment is more complicated. Since the elastoplastic material with large strain is the most frequently
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used, the constant pressure method has been chosen for Radioss usual solid elements. The flag Icpre

has been introduced for new solid elements.

Icpre

=0 Assumed strain with  terms is used.

=1 Assumed strain without  terms and with a constant pressure
method is used. The method is recommended for incompressible
(initial) materials.

=2 Assumed strain with  terms is used, where  is variable in
function of the plasticity state. The formulation is recommended
for elastoplastic materials.

=3 Assumed strain with  terms is used.

Internal Force Calculation
Internal forces are computed using the generalized relation:

(322)

However, to increase the computational speed of the process, some simplifications are applied.

Reduced Integration Method
This is the default method for computing internal forces. A one point integration scheme with constant
stress in the element is used. Due to the nature of the shape functions, the amount of computation can
be substantially reduced:

(323)

Hence, the value  is taken at the integration point and the internal force is computed using the

relation:

(324)

The force calculation is exact for the special case of the element being a parallelepiped.

23. Belytschko T. and Bachrach W.E., “Efficient implementation of quadrilaterals with high coarse-mesh
accuracy”, Computer Methods in Applied Mechanics and Engineering, 54:279-301, 1986.

24. Belytschko Ted and Bindeman Lee P., “Assumed strain stabilization of the eight node hexahedral
element”, Computer Methods in Applied Mechanics and Engineering, vol.105, 225-260, 1993.
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Full Integration Method
The final approach that can be used is the full generalized formulation found in Equation 322. A classical
eight point integration scheme, with non-constant stress, but constant pressure is used to avoid locking
problems. This is computationally expensive, having eight deviatoric stress tensors, but will produce
accurate results with no hourglass.

When assumed strains are used with full integration (HA8 element), the reduced integration of pressure
is no more necessary, as the assumed strain is then a free locking problem.

ALE Improved Integration Method
This is an ALE method for computing internal forces (flag INTEG). A constant stress in the element is
used.

The value  is computed with Gauss points.

Hourglass Modes
Hourglass modes are element distortions that have zero strain energy. Thus, no stresses are created
within the element. There are 12 hourglass modes for a brick element, 4 modes for each of the 3

coordinate directions.  represents the hourglass mode vector, as defined by Flanagan-Belytschko. 25

They produce linear strain modes, which cannot be accounted for using a standard one point integration
scheme.

Figure 19:

Figure 20:
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Figure 21:

Figure 22:

To correct this phenomenon, it is necessary to introduce anti-hourglass forces and moments. Two
possible formulations are presented hereafter.

Kosloff and Frasier Formulation

The Kosloff-Frasier hourglass formulation 26 uses a simplified hourglass vector. The hourglass velocity
rates are defined as:

(325)

Where,

Non-orthogonal hourglass mode shape vector

Node velocity vector

Direction index, running from 1 to 3

Node index, from 1 to 8

Hourglass mode index, from 1 to 4

This vector is not perfectly orthogonal to the rigid body and deformation modes.

All hourglass formulations except the physical stabilization formulation for solid elements in Radioss use
a viscous damping technique. This allows the hourglass resisting forces to be given by:

(326)

Where,
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Material density

Sound speed

Dimensional scaling coefficient defined in the input

Volume

Flanagan-Belytschko Formulation
In the Kosloff-Frasier formulation seen in Kosloff and Frasier Formulation, the hourglass
base vector  is not perfectly orthogonal to the rigid body and deformation modes that are taken 
into account by the one point integration scheme. The mean stress/strain formulation of a one point 
integration scheme only considers a fully linear velocity field, so that the physical element modes 
generally contribute to the hourglass energy. To avoid this, the idea in the Flanagan-Belytschko 
formulation is to build an hourglass velocity field which always remains orthogonal to the physical 
element modes. This can be written as:

(327)

The linear portion of the velocity field can be expanded to give:

(328)

Decomposition on the hourglass vectors base gives 25:

(329)

Where,

Hourglass modal velocities

Hourglass vectors base

Remembering that  and factorizing Equation 329 gives:

(330)

(331)

is the hourglass shape vector used in place of  in Equation 326.
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Physical Hourglass Formulation
You also try to decompose the internal force vector as:

(332)

In elastic case, you have:

(333)

The constant part  is evaluated at the quadrature point just like other

one-point integration formulations mentioned before, and the non-constant part (Hourglass) will be
calculated as:

Taking the simplification of  (that is the Jacobian matrix of Strain Rate, Equation 311

is diagonal), you have:

(334)

with 12 generalized hourglass stress rates  calculated by:

(335)

and

(336)

Where, , ,  are permuted between 1 to 3 and  has the same definition than in Equation 330.

Extension to nonlinear materials has been done simply by replacing shear modulus  by its effective
tangent values which is evaluated at the quadrature point. For the usual elastoplastic materials, use a
more sophistic procedure which is described in Advanced Elasto-plastic Hourglass Control.
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Advanced Elasto-plastic Hourglass Control
With one-point integration formulation, if the non-constant part follows exactly the state of constant
part for the case of elasto-plastic calculation, the plasticity will be under-estimated due to the fact
that the constant equivalent stress is often the smallest one in the element and element will be stiffer.
Therefore, defining a yield criterion for the non-constant part seems to be a good idea to overcome this
drawback.

Plastic yield criterion
The von Mises type of criterion is written by:

(337)

for any point in the solid element, where  is evaluated at the quadrature point.
As only one criterion is used for the non-constant part, two choices are possible:

1.
taking the mean value, that is, 

2. taking the value by some representative points, for example: eight Gauss points

The second choice has been used in this element.

Elastro-plastic hourglass stress calculation
The incremental hourglass stress is computed by:

• Elastic increment

• Check the yield criterion

• If , the hourglass stress correction will be done by un radial return

 

Stability
The stability of the numerical algorithm depends on the size of the time step used for time integration .
For brick elements, Radioss uses the following equation to calculate the size of the time step:

(338)

This is the same form as the Courant condition for damped materials. The characteristic length of a
particular element is computed using:

25. Flanagan D. and Belytschko T., “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal
Hourglass Control”, Int. Journal Num. Methods in Engineering, 17 679-706, 1981.

26. Kosloff D. and Frazier G., “Treatment of hourglass pattern in low order finite element code”,
International Journal for Numerical and Analytical Methods in Geomechanics, 1978.
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(339)

For a 6-sided brick, this length is equal to the smallest distance between two opposite faces.

The terms inside the parentheses in the denominator are specific values for the damping of the
material:

•

•  effective kinematic viscosity

•
 for fluid materials

•
 for a solid elastic material

•  is the bulk modulus

• ,  are Lame moduli

The scaling factor , is used to prevent strange results that may occur when the time step is
equal to the Courant condition. This value can be altered by the user.

Shock Waves
Shocks are non-isentropic phenomena, that is, entropy is not conserved, and necessitates a special
formulation.

The missing energy is generated by an artificial bulk viscosity  as derived by von Neumann and

Richtmeyer. 27 This value is added to the pressure and is computed by:

(340)

Where,

l Is equal to  or to the characteristic length

Volume

Volumetric compression strain rate tensor

Speed of sound in the medium

The values of  and  are adimensional scalar factors defined as:

•  is a scalar factor on the quadratic viscosity to be adjusted so that the Hugoniot equations are
verified. This value is defined by the user. The default value is 1.10.

•  is a scalar factor on the linear viscosity that damps out the oscillations behind the shock. This is

user specified. The default value is 0.05.
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Default values are adapted for velocities lower than Mach 2. However, for viscoelastic materials (LAW34,
LAW35, LAW38) or honeycomb (LAW28), very small values are recommended, that is, 10-20.

Element Degeneration
Element degeneration is the collapsing of an element by one or more edges. For example: making an
eight node element into a seven node element by giving nodes 7 and 8 the same node number.

The use of degenerated elements for fluid applications is not recommended. The use of degenerated
elements for assumed strain formulation is not recommended. If they cannot be avoided, any two nodes
belonging to a same edge can be collapsed, with examples shown below.

For solid elements, it is recommended that element symmetry be maintained.

For 4 node elements, it is recommended that the special tetrahedron element be used.

Brick elements can be degenerated into other 3D solid elements by repeating nodes numbers in the
node_ID input to combine brick corners to together to form another shape. The most common example
is a triangular prism pentahedra element, as shown in the next two images but other shapes are shown
if needed to connect a complex mesh.

27. Von Neumann J. and Richtmeyer R., “A method for the numerical calculation of hydrodynamical
shocks”, Journal of applied physics, 1950.
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Figure 23: Degenerated 3D Solid Element Examples

Internal Stress Calculation

Global Formulation
The time integration of stresses has been stated earlier (Stress Rates) as:

(341)

The stress rate is comprised of two components:

(342)

Where,

Stress rate due to the rigid body rotational velocity

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.94

Jaumann objective stress tensor derivative

The correction for stress rotation from time  to time  is given by 28:

(343)

Where,  is the rigid body rotational velocity tensor (Kinematic Description, Equation 53).

The Jaumann objective stress tensor derivative  is the corrected true stress rate tensor without
rotational effects. The constitutive law is directly applied to the Jaumann stress rate tensor. 

Deviatoric stresses and pressure (Stresses in Solids) are computed separately and related by:

(344)

Where,

Deviatoric stress tensor

Pressure or mean stress - defined as positive in compression

Substitution tensor or unit matrix

Co-rotational Formulation
A co-rotational formulation for bricks is a formulation where rigid body rotations are directly computed 
from the element's node positions. Objective stress and strain tensors are computed in the local (co-
rotational) frame. Internal forces are computed in the local frame and then rotated to the global 
system.

So, when co-rotational formulation is used, Deviatoric Stress Calculation, Equation 356
 reduces to:

(345)

Where,

Jaumann objective stress tensor derivative expressed in the co-
rotational frame

Figure 24 orthogonalization, when one of the r, s, t directions is orthogonal to the two other directions.
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Figure 24:

When large rotations occur, this formulation is more accurate than the global formulation, for which the
stress rotation due to rigid body rotational velocity is computed in an incremental way.

Co-rotational formulation avoids this kind of problem. Consider this test:

Figure 25:

The increment of the rigid body rotation vector during time step  is:

(346)

So, 

Where,  equals the imposed velocity on the top of the brick divided by the height of the brick
(constant value).

Due to first order approximation, the increment of stress  due to the rigid body motion is:

(347)

Increment of stress  due to the rigid body motion:

(348)

Increment of shear stress  due to the rigid body motion:
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(349)

Increment of shear strain:

(350)

Increment of stress  due to strain:

(351)

and increment of shear stress due to strain is:

(352)

Where,  is the shear modulus (material is linear elastic).

From Equation 348 to Equation 352, you have:

(353)

System Equation 353 leads to:

(354)

So, shear stress is sinusoidal and is not strictly increasing.

Figure 26:
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So, it is recommended to use co-rotational formulation, especially for visco-elastic materials such as
foams, even if this formulation is more time consuming than the global one.

Co-rotational Formulation and Orthotropic Material
When orthotropic material and global formulation are used, the fiber is attached to the first direction of
the isoparametric frame and the fiber rotates a different way depending on the element numbering.

Figure 27:

Figure 28:

On the other hand, when the co-rotational formulation is used, the orthotropic frame keeps the same
orientation with respect to the local (co-rotating) frame, and is therefore also co-rotating.
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Figure 29:

Deviatoric Stress Calculation
With the stress being separated into deviatoric and pressure (hydrostatic) stress (Stresses in Solids), it 
is the deviatoric stress that is responsible for the plastic deformation of the material. The hydrostatic 
stress will either shrink or expand the volume uniformly, that is, with proportional change in shape. The 
determination of the deviatoric stress tensor and whether the material will plastically deform requires a 
number of steps.

Perform an Elastic Calculation
The deviatoric stress is time integrated from the previous known value using the strain rate to compute 
an elastic trial stress:

(355)

Where,

Shear modulus

This relationship is Hooke's Law, where the strain rate is multiplied by time to give strain.

Compute von Mises Equivalent Stress and Current Yield Stress
Depending on the type of material being modeled, the method by which yielding or failure is determined
will vary. The following explanation relates to an elastoplastic material (LAW2).

The von Mises equivalent stress relates a three dimensional state of stress back to a simple case of
uniaxial tension where material properties for yield and plasticity are well known and easily computed.

The von Mises stress, which is strain rate dependent, is calculated using the equation:

(356)

The flow stress is calculated from the previous plastic strain:

28. Wilkins M., “Calculation of elastic plastic flow” LLNL, University of California UCRL-7322, 1981.
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(357)

For material laws 3, 4, 10, 21, 22, 23 and 36, Equation 357 is modified according to the different
modeling of the material curves.

Plasticity Check
The state of the deformation must be checked.

(358)

If this equation is satisfied, the state of stress is elastic. Otherwise, the flow stress has been exceeded
and a plasticity rule must be used (Figure 30).

Figure 30: Plasticity Check

The plasticity algorithm used is due to Mendelson. 29

Compute Hardening Parameter
The hardening parameter is defined as the slope of the strain-hardening part of the stress-strain curve:

(359)

This is used to compute the plastic strain at time :

(360)

This plastic strain is time integrated to determine the plastic strain at time :

(361)

The new flow stress is found using:
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(362)

Radial Return

There are many possible methods for obtaining  from the trial stress. The most popular method

involves a simple projection to the nearest point on the flow surface, which results in the radial return
method.

The radial return calculation is given in Equation 363. Figure 31 is a graphic representation of radial
return.

(363)

Figure 31: Radial Return

29. Mendelson A., “Plasticity: Theory and Application”, MacMillan Co., New York, 1968.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.101

Solid Tetrahedron Elements

4-Node Solid Tetrahedron
The Radioss solid tetrahedron element is a 4 node element with one integration point and a linear shape
function.

This element has no hourglass. But the drawbacks are the low convergence and the shear locking.

10-Node Solid Tetrahedron
The Radioss solid tetrahedron element is a 10 nodes element with 4 integration points and a quadratic
shape function as shown in Figure 32.

Figure 32: (a) Isoparametric 10 Node Tetrahedron; (b) Nodal Mass Distribution

Introducing volume coordinates in an isoparametric frame:

The shape functions are expressed by:

(364)

(365)
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(366)

(367)

(368)

(369)

(370)

(371)

(372)

(373)

Location of the 4 integration points is expressed by 30.

a α

b α

c α

d α

With,

 and .

a, b, c, and d are the 4 integration points.

Advantages and Limitations
This element has various advantages:

• No hourglass

• Compatible with powerful mesh generators

• Fast convergence

• No shear locking.

But there are some drawbacks too:

• Low time step

• Not compatible with ALE formulation
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Time Step
The time step for a regular tetrahedron is computed as:

(374)

Where,  is the characteristic length of element depending on tetra type. The different types are:

Figure 33: Regular 4 Nodes Tetra

(375)

Figure 34: Regular 10 Nodes Tetra

(376)

For another regular tetra obtained by the assemblage of four hexa as shown in Figure 35, the
characteristic length is:
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Figure 35: Other Regular Tetra

(377)

CPU Cost and Time/Element/Cycle
The CPU cost is shown in Figure 36:

Figure 36: CPU Cost in TEC

Example: Comparison
Below is a comparison of the 3 types of elements (8-nodes brick, 10-nodes tetra and 20-nodes brick).
The results are shown in Figure 37 for a plastic strain contour.
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Figure 37: Comparison (plastic strain max = 60%)

30. Hammet P.C., Marlowe O.P. and Stroud A.H., “Numerical integration over simplexes and cones”,
Math. Tables Aids Comp, 10, 130-7, 1956.
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Shell Elements

Since the degenerated continuum shell element formulation was introduced by Ahmad et al. 31, it has
become dominant in commercial Finite Element codes due to its advantage of being independent of any
particular shell theory, versatile and cost effective, and applicable in a reliable manner to both thin and
thick shells.

In the standard 4-node shell element, full integration and reduced integration schemes have been used
to compute the stiffness matrices and force vectors:

• The full integration scheme is often used in programs for static or dynamic problems with implicit
time integration. It presents no problem for stability, but sometimes involves "locking" and
computations are often more expensive.

• The reduced integration scheme, especially with one-point quadrature (in the mid-surface), is
widely used in programs with explicit time integration such as Radioss and other programs applied
essentially in crashworthiness studies. These elements dramatically decrease the computation
time, and are very competitive if the hourglass modes (which result from the reduced integration
scheme) are "well" stabilized.

Shell Elements Overview
The historical shell element in Radioss is a simple bilinear Mindlin plate element coupled with a reduced
integration scheme using one integration point. It is applicable in a reliable manner to both thin and
moderately thick shells.

This element is very efficient if the spurious singular modes, called “hourglass modes”, which result
from the reduced integration are stabilized.

The stabilization approach consists of providing additional stiffness so that the spurious singular modes
are suppressed. Also, it offers the possibility of avoiding some locking problems. One of the first

solutions was to generalize the formulation of Kosloff and Frazier 32 for brick element to shell element.
It can be shown that the element produces accurate flexural response (thus, free from the membrane

shear locking) and is equivalent to the incompatible model element of Wilson et al. 33 without the static

condensation procedure. Taylor 34 extended this work to shell elements. Hughes and Liu 35 employed a
similar approach and extended it to nonlinear problems.

Belytschko and Tsay 36 developed a stabilized flat element based on the  projections developed by

Flanagan and Belytschko 37. Its essential feature is that hourglass control is orthogonal to any linear
field, thus preserving consistency. The stabilized stiffness is approached by a diagonal matrix and scaled
by the perturbation parameters   which are introduced as a regulator of the stiffness for nonlinear
problems. The parameters  are generally chosen to be as small as possible, so this approach is often
called, perturbation stabilization.

The elements with perturbation stabilization have two major drawbacks:

• The parameters   are user-inputs and are generally problem-dependent.

31. Ahmad S., Irons B.M., and Zienkiewicz O.C., “Analysis of thick and thin shell structures by curved
finite elements”, Computer Methods in Applied Mechanics and Engineering, 2:419-451, 1970.
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• Poor behavior with irregular geometries (in-plane, out-of-plane). The stabilized stiffness (or
stabilized forces) is often evaluated based on a regular flat geometry, so they generally do not pass
either the Patch-test or the Twisted beam test.

Belytschko 38 extended this perturbation stabilization to the 4-node shell element which has become
widely used in explicit programs.

Belytschko 39 improved the poor behavior exhibited in the warped configuration by adding a coupling
curvature-translation term, and a particular nodal projection for the transverse shear calculation

analogous to that developed by Hughes and Tezduyar 37, and MacNeal 41. This element passes the
Kirchhoff patch test and the Twisted Beam test, but it cannot be extended to a general 6 DOF element
due to the particular projection.

Belytschko and Bachrach 42 used a new method called physical stabilization to overcome the first
drawback of the quadrilateral plane element. This method consists of explicitly evaluating the stabilized
stiffness with the help of 'assumed strains', so that no arbitrary parameters need to be prescribed.

Engelmann and Whirley 43 have applied it to the 4-node shell element. An alternative way to evaluate

the stabilized stiffness explicitly is given by Liu et al. 44 based on Hughes and Liu's 4-node selected

reduced integration scheme element 35, in which the strain field is expressed explicitly in terms
of natural coordinates by a Taylor-series expansion. A remarkable improvement in the one-point
quadrature shell element with physical stabilization has been performed by Belytschko and Leviathan
45. The element performs superbly for both flat and warped elements especially in linear cases, even
in comparison with a similar element under a full integration scheme, and is only 20% slower than
the Belytschko and Tsay element. More recently, based on Belytschko and Leviathan's element, Zhu

and Zacharia 46 implemented the drilling rotation DOF in their one-point quadrature shell element; the

drilling rotation is independently interpolated by the Allman function 47 based on Hughes and Brezzi's 48

mixed variational formulation.

The physical stabilization with assumed strain method seems to offer a rational way of developing a
cost effective shell element with a reduced integration scheme. The use of the assumed strains based
on the mixed variational principles, is powerful, not only in avoiding the locking problems (volumetric

locking, membrane shear locking, as in Belytschko and Bindeman 49; transverse shear locking, as in

Dvorkin and Bathe 50), but also in providing a new way to compute stiffness. However, as highlighted

by Stolarski et al. 51, assumed strain elements generally do not have rigorous foundations; there is
almost no constraint for the independent assumed strains interpolation. Therefore, a sound theoretical
understanding and numerous tests are needed in order to prove the legitimacy of the assumed strain
elements.

The greatest uncertainty of the one-point quadrature shell elements with physical stabilization is with
respect to the nonlinear problems. All of these elements with physical stabilization mentioned above
rely on the assumptions that the spin and the material properties are constant within the element. The
first assumption is necessary to ensure the objectivity principle in geometrical nonlinear problems. The
second was adapted in order to extend the explicit evaluation of stabilized stiffness for elastic problems
to the physical nonlinear problems. It is found that the second assumption leads to a theoretical
contradiction in the case of an elastoplastic problem (a classic physical nonlinear problem), and results
in poor behavior in case of certain crash computations.
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Zeng and Combescure 52 have proposed an improved 4-node shell element named QPPS with one-point 
quadrature based on the physical stabilization which is valid for the whole range of its applications (see 
Shell Formulations). The formulation is based largely on that of Belytschko and Leviathan.

Based on the QPPS element, Zeng and Winkelmuller have developed a new improved element named 
QEPH which is integrated in Radioss 44 version (see 3-Node Shell Elements).

32. Kosloff D. and Frazier G., “Treatment of hourglass pattern in low order finite element code”,
International Journal for Numerical and Analytical Methods in Geomechanics, 1978.

33. Wilson L.T., “Incompatible displacement models”, page 43. Academi Press, New York, 1973.

34. Taylor R.L., “Finite element for general shell analysis”, 1979.

35. Hughes T.J.R. and Liu W.K., “Nonlinear finite element analysis of shells: Part I: Three-dimensional
shells”, Computer Methods in Applied Mechanics and Engineering, 26:331-362, 1981.

36. Belytschko T. and Tsay C.S., “A stabilization procedure for the quadrilateral plate element with one-
point quadrature”, Computer Methods in Applied Mechanics and Engineering, 55:259-300, 1986.

37. Flanagan D. and Belytschko T., “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal
Hourglass Control”, Int. Journal Num. Methods in Engineering, 17 679-706, 1981.

38. Belytschko T. and Leviathan I., “Physical stabilization of the 4-node shell element with one-point
quadrature”, Computer Methods in Applied Mechanics and Engineering, 113:321-350, 1992.

39. Belytschko T., Wong B.L. and Chiang H.Y. “Advances in one-point quadrature shell elements”,
Computer Methods in Applied Mechanics and Engineering, 96:93-107, 1989.

40. Hughes T.J.R. and Tezduyar T.E., “Finite elements based upon Mindlin plate theory with particular
reference to the four-node bilinear isoparametric element”, J. of Applied Mechanics, 48:587-596,
1981.

41. MacNeal R.H., “Derivation of element stiffness matrices by assumed strain distributions”, Nuclear
Engrg. Des., 70:3-12, 1982.

42. Belytschko T. and Bachrach W.E., “Efficient implementation of quadrilaterals with high coarse-mesh
accuracy”, Computer Methods in Applied Mechanics and Engineering, 54:279-301, 1986.

43. Engelmann B.E. and Whirley R.G., “A new elastoplastic shell element formulation for DYNA3D”,
Report ugrl-jc-104826, Lawrence Livermore National Laboratory, 1990.

44. Liu W.K., Law E.S., Lam D. and Belytschko T., “Resultant-stress degenerated-shell element”, Int.
Journal Num. Methods in Engineering, 19:405-419, 1983.

45. Belytschko T. and Leviathan I., “Projection schemes for one-point quadrature shell elements”,
Computer Methods in Applied Mechanics and Engineering, 115:277-286, 1993.

46. Zhu Y. and Zacharia T., “A new one-point quadrature, quadrilateral shell element with drilling
degree of freedom”, Computer Methods in Applied Mechanics and Engineering, 136:165-203, 1996.

47. Allman D.J., “A quadrilateral finite element including vertex rotations for plane elasticity problems”,
Int. Journal Num. Methods in Engineering, 26:717-739, 1988.

48. Hughes T.J.R. and Brezzi F., “On drilling degrees of freedom”, Computer Methods in Applied
Mechanics and Engineering, 72:105-121, 1989.

49. Belytschko T. and Bindeman L., “Assumed strain stabilization of the 4-node quadrilateral with
1-point quadrature for nonlinear problems”, Computer Methods in Applied Mechanics and
Engineering, 88:311-340, 1991.

50. Dvorkin E. and Bathe K.J. “A continuum mechanics four-node shell element for 35 general nonlinear
analysis”, Engrg Comput, 1:77-88, 1984.
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Bilinear Mindlin Plate Element
Most of the following explanation concerns four node plate elements, Figure 38. 3-Node Shell 
Elements explains the three node plate element, shown in Figure 39.

Figure 38: Four Node Plate Element

Figure 39: Three Node Plate Element

Plate theory assumes that one dimension (the thickness, z) of the structure is small compared to the
other dimensions. Hence, the 3D continuum theory is reduced to a 2D theory. Nodal unknowns are

the velocities  of the midplane and the nodal rotation rates  as a consequence of the
suppressed z direction. The thickness of elements can be kept constant, or allowed to be variable. This
is user defined. The elements are always in a state of plane stress, that is , or there is no stress
acting perpendicular to the plane of the element. A plane orthogonal to the midplane remains a plane,
but not necessarily orthogonal as in Kirchhoff theory, (where ) leading to the rotations rates

 and . In Mindlin plate theory, the rotations are independent variables.

51. Stolarski H., Belytschko T. and Lee S.H., “A review of shell finite elements and corotational
theories”, Computational Mechanics Advances, 2:125-212, 1995.

52. Zeng Q. and Combescure A., “A New One-point Quadrature, General Nonlinear Quadrilateral Shell
Element with Physical Stabilization”, Int. Journal Num. Methods in Engineering 42, 1307-1338,
1998.
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Stability Time Step
The characteristic length, , for computing the critical time step, referring back to Figure 40, is defined
by:

(378)

(379)

(380)

When the orthogonalized mode of the hourglass perturbation formulation is used, the characteristic
length is defined as:

(381)

(382)

(383)

Where,  is the shell membrane hourglass coefficient and  is the shell out of plane hourglass
coefficient, as mentioned in Hourglass Modes.

Local Reference Frame
Three coordinate systems are introduced in the formulation:

• Global Cartesian fixed system

• Natural system , covariant axes x,y

• Local systems (x, y, z) defined by an orthogonal set of unit base vectors ( , , ).  is taken to be
normal to the mid-surface coinciding with , and ( , ) are taken in the tangent plane of the mid-
surface.
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Figure 40: Local Reference Frame

The vector normal to the plane of the element at the mid point is defined as:

(384)

The vector defining the local direction is:

(385)

Hence, the vector defining the local direction is found from the cross product of the two previous
vectors:

(386)

Bilinear Shape Functions
The shape functions defining the bilinear element used in the Mindlin plate are:

(387)

or, in terms of local coordinates:

(388)

It is also useful to write the shape functions in the Belytschko-Bachrach 53 mix form:

(389)
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with

 is the area of the element.

The velocity of the element at the mid-plane reference point is found using the relations:

(390)

(391)

(392)

Where,  are the nodal velocities in the x, y, z directions.

In a similar fashion, the element rotations are found by:

(393)

(394)

Where,  and  are the nodal rotational velocities about the x and y reference axes.

The velocity change with respect to the coordinate change is given by:

(395)

(396)

53. Belytschko T. and Bachrach W.E., “Efficient implementation of quadrilaterals with high coarse-mesh
accuracy”, Computer Methods in Applied Mechanics and Engineering, 54:279-301, 1986.
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Mechanical Properties
Shell elements behave in two ways, either membrane or bending behavior. The Mindlin plate elements
that are used by Radioss account for bending and transverse shear deformation. Hence, they can be
used to model thick and thin plates.

Membrane Behavior
The membrane strain rates for Mindlin plate elements are defined as:

(397)

(398)

(399)

(400)

(401)

Where,

Membrane strain rate

Bending Behavior
The bending behavior in plate elements is described using the amount of curvature. The curvature rates
of the Mindlin plate elements are defined as:

(402)

(403)

(404)

Where,

Curvature rate

Strain Rate Calculation
The calculation of the strain rate of an individual element is divided into two parts, membrane and
bending strain rates.
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Membrane Strain Rate
The vector defining the membrane strain rate is:

(405)

This vector is computed from the velocity field vector  and the shape function gradient :

(406)

Where,

(407)

(408)

Bending Strain Rate
The vector defining the bending strain rate is:

(409)

As with the membrane strain rate, the bending strain rate is computed from the velocity field
vector. However, the velocity field vector for the bending strain rate contains rotational velocities,
as well as translations:

(410)

Where,

(411)

(412)
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Figure 41: Strain Rate Calculation

Mass and Inertia
Consider a rectangular plate with sides of length  and , surface area  and thickness , as shown
in Figure 42.

Figure 42: Mass distribution

Due to the lumped mass formulation used by Radioss, the lumped mass at a particular node is:

(413)
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The mass moments of inertia, with respect to local element reference frame, are calculated at node 
by:

(414)

(415)

(416)

(417)

Inertia Stability
With the exact formula for inertia (Equation 414 to Equation 417), the solution tends to diverge for
large rotation rates. Belytschko proposed a way to stabilize the solution by setting  = , that is, to
consider the rectangle as a square with respect to the inertia calculation only. This introduces an error
into the formulation. However, if the aspect ratio is small the error will be minimal. In Radioss a better
stabilization is obtained by:

(418)

(419)

(420)

Where,  is a regulator factor with default value =12 for QBAT element and =9 for other
quadrilateral elements.

Internal Forces
The internal force vector is given by:

(421)

In elasticity it becomes:

(422)

It can be written as:

(423)
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with the constant part  being computed with one-point quadrature and the non constant part or

hourglass part  being computed by perturbation stabilization (Ishell = 1, 2 ,3 ...) or by physical
stabilization (Ishell = 22).

Hourglass Modes
Hourglass modes are element distortions that have zero strain energy. The 4 node shell element has
12 translational modes, 3 rigid body modes (1, 2, 9), 6 deformation modes (3, 4, 5, 6, 10, 11) and 3
hourglass modes (7, 8, 12).

Figure 43: Translational Modes of Shell

Along with the translational modes, the 4 node shell has 12 rotational modes: 4 out of plane rotation
modes (1, 2, 3, 4), 2 deformation modes (5, 6), 2 rigid body or deformation modes (7, 8) and 4
hourglass modes (9, 10, 11, 12).
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Figure 44: Rotational Modes of Shell

Hourglass Viscous Forces
Hourglass resistance forces are usually either viscous or stiffness related. The viscous forces relate to 
the rate of displacement or velocity of the elemental nodes, as if the material was a highly viscous fluid.

The viscous formulation used by Radioss is the same as that outlined by Kosloff and Frasier 54. Refer to 
Hourglass Modes. An hourglass normalized vector is defined as:

(424)

The hourglass velocity rate for the above vector is defined as:

(425)

The hourglass resisting forces at node  for in-plane modes are:

(426)

For out of plane mode, the resisting forces are:

(427)

Where,
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Direction index

Node index

Element thickness

Sound propagation speed

Element area

Material density

Shell membrane hourglass coefficient

Shell out of plane hourglass coefficient

Hourglass Elastic Stiffness Forces
Radioss can apply a stiffness force to resist hourglass modes. This acts in a similar fashion to the 
viscous resistance, but uses the elastic material stiffness and node displacement to determine the

size of the force. The formulation is the same as that outlined by Flanagan et al. 55 Refer to 
Flanagan-Belytschko Formulation. The hourglass resultant forces are defined as:

(428)

For membrane modes:

(429)

For out of plane modes:

(430)

Where,

Element thickness

Time step

Young's modulus

Hourglass Viscous Moments
This formulation is analogous to the hourglass viscous force scheme. The hourglass angular velocity
rate is defined for the main hourglass modes as:

(431)

The hourglass resisting moments at node  are given by:
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(432)

Where,  is the shell rotation hourglass coefficient.

Hourglass Resistance
To correct this phenomenon, it is necessary to introduce anti-hourglass forces and moments. Two 
possible formulations are presented hereafter.

Flanagan-Belytschko Formulation

Ishell=156

In the Kosloff-Frasier formulation seen  in Kosloff and Frasier Formulation,  the  hourglass base 
vector  is not perfectly orthogonal to the rigid body and deformation modes that are taken into 
account by the one point integration scheme. The mean stress/strain formulation of a one point 
integration scheme only considers a fully linear velocity field, so that the physical element modes 
generally contribute to the hourglass energy. To avoid this, the idea in the Flanagan-Belytschko 
formulation is to build an hourglass velocity field which always remains orthogonal to the physical 
element modes. This can be written as:

(433)

The linear portion of the velocity field can be expanded to give:

(434)

Decomposition on the hourglass base vectors gives 56:

(435)

Where,

Hourglass modal velocities

Hourglass vectors, base

Remembering that  and factorizing Hourglass Modes, Equation 329 gives:

54. Kosloff D. and Frazier G., “Treatment of hourglass pattern in low order finite element code”,
International Journal for Numerical and Analytical Methods in Geomechanics, 1978.

55. Flanagan D. and Belytschko T., “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal
Hourglass Control”, Int. Journal Num. Methods in Engineering, 17 679-706, 1981.
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(436)

(437)

is the hourglass shape vector used in place of  in Hourglass Modes, Equation 326.

Figure 45: Flanagan Belytschko Hourglass Formulation

Elastoplastic Hourglass Forces
Ishell=3

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.122

The same formulation as elastic hourglass forces is used (Hourglass Elastic Stiffness Forces and

Flanagan et al. 56) but the forces are bounded with a maximum force depending on the current element 
mean yield stress. The hourglass forces are defined as:

(438)

For in plane mode:

(439)

(440)

For out of plane mode:

(441)

(442)

Where,

Element thickness

Yield stress

Element area

Physical Hourglass Forces
Ishell=22, 24

The hourglass forces are given by:

(443)

For in-plane membrane rate-of-deformation, with  and  defined in Bilinear Shape

Functions, Equation 389:

(444)

For bending:
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(445)

It is shown in 57 that the non-constant part of the membrane strain rate does not vanish when a warped

element undergoes a rigid body rotation. Thus, a modified matrix [ ] is chosen using  as a

measure of the warping:

(446)

This matrix is different from the Belytschko-Leviathan 58 correction term added at rotational positions,
which couples translations to curvatures as:

(447)

This will lead to membrane locking (the membrane strain will not vanish under a constant bending
loading). According to the general formulation, the coupling is presented in terms of bending and not in
terms of membrane, yet the normal translation components in ( ) do not vanish for a warped element

due to the tangent vectors  which differ from .

Fully Integrated Formulation
Ishell=12

The element is based on the Q4 24 shell element developed in 59 by Batoz and Dhatt. The element
has 4 nodes with 5 local degrees-of-freedom per node. Its formulation is based on the Cartesian shell
approach where the middle surface is curved. The shell surface is fully integrated with four Gauss
points. Due to an in-plane reduced integration for shear, the element shear locking problems are
avoided. The element without hourglass deformations is based on Mindlin-Reissner plate theory where
the transversal shear deformation is taken into account in the expression of the internal energy. Consult
the reference for more details.

Shell Membrane Damping
The shell membrane damping, dm, is only used for LAWS 25, 27, 19, 32 and 36. The Shell membrane
damping factor is a factor on the numerical VISCOSITY and not a physical viscosity. Its effect is shown
in the formula of the calculation of forces in a shell element:

read in D00 input (Shell membrane damping factor parameter) then:
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(448)

Effect in the force vector ( ) calculation:

(449)

(450)

(451)

Where,

Density

Area of the shell element surface

dt Time step

Sound speed

In order to calibrate the dm value so that it represents the physical viscosity, one should obtain the
same size for all shell elements (Cf.  factor), then scale the physical viscosity value to the element
size.

Stress and Strain Calculation
The stress and strain for a shell element can be written in vector notation. Each component is a stress
or strain feature of the element.

The generalized strain  can be written as:

(452)

Where,

Membrane strain

56. Flanagan D. and Belytschko T., “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal
Hourglass Control”, Int. Journal Num. Methods in Engineering, 17 679-706, 1981.

57. Belytschko T., Lin J.L. and Tsay C.S., “Explicit algorithms for the nonlinear dynamics of shells”,
Computer Methods in Applied Mechanics and Engineering, 42:225-251, 1984.

58. Belytschko T. and Leviathan I., “Physical stabilization of the 4-node shell element with one-point
quadrature”, Computer Methods in Applied Mechanics and Engineering, 113:321-350, 1992.

59. Batoz J.L. and Dhatt G., “Modeling of Structures by finite element”, volume 3, Hermes, 1992.
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Bending strain or curvature

The generalized stress  can be written as:

(453)

Where,

Isotropic Linear Elastic Stress Calculation
The stress for an isotropic linear elastic shell for each time increment is computed using:

(454)

Where,

(455)

(456)
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(457)

Young's or Elastic modulus

Poisson's ratio

Shell thickness

Isotropic Linear Elastic-Plastic Stress Calculation
An incremental step-by-step method is usually used to resolve the nonlinear problems due to elasto-
plastic material behavior. The problem is presented by the resolution of the following equation:

(458)

(459)

(460)

and

(461)

 is the yield surface function for plasticity for associative hardening. The equivalent stress  may be
expressed in form:

(462)

with  and  for von Mises criteria.

The normality law (Stress and Strain Calculation, Equation 461) for associated plasticity is 
written as:

(463)

Where,

Equivalent plastic deformation

Stress and Strain Calculation, Equation 458 is written in an incremental form:
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(464)

Where,  represents stress components obtained by an elastic increment and  the elastic matrix in
plane stress. The equations in Stress and Strain Calculation, Equation 458 to Equation 464 lead to 
obtain the nonlinear equation:

(465)

that can be resolved by an iterative algorithm as Newton-Raphson method.

To determine the elastic-plastic state of a shell element, a number of steps have to be performed to
check for yielding and defining a plasticity relationship. Stress-strain and force-displacement curves for
a particular ductile material are shown in Figure 46.

Figure 46: Material Curve

The steps involved in the stress calculation are:

1. Strain calculation at integration point z

The overall strain on an element due to both membrane and bending forces is:

(466)

(467)

(468)

(469)
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2. Elastic stress calculation

The stress is defined as:

(470)

It is calculated using explicit time integration and the strain rate:

(471)

The two shear stresses acting across the thickness of the element are calculated by:

(472)

Where, α is the shear factor. Default is Reissner's value of 5/6.

3. von Mises yield criterion

The von Mises yield criterion for shell elements is defined as:

(473)

For type 2 simple elastic-plastic material, the yield stress is calculated using:

(474)

4. Plasticity Check

The element's state of stress must be checked to see if it has yielded. These values are compared
with the von Mises and Yield stresses calculated in the previous step. If the von Mises stress is
greater than the yield stress, then the material will be said to be in the plastic range of the stress-
strain curve.

Figure 47: Plasticity Check

5. Compute plastically admissible stresses
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If the state of stress of the element is in the plastic region, there are two different analyses that
can be used as described in the next paragraph. The scheme used is defined in the shell property
set, card 2 of the input.

6. Compute thickness change

The necking of the shells undergoing large strains in hardening phase can be taken into account
by computing normal strain  in an incremental process. The incompressibility hypothesis in
plasticity gives:

(475)

Where, the components of membrane strain  and  are computed by Equation 463 as:

(476)

7. The plan stress condition  allows to resolve for :

(477)

Plastically Admissible Stresses
Radial return

Iplas=2
When the shell plane stress plasticity flag is set to 0 on card 1 of the shell property type
definition, a radial return plasticity analysis is performed. Thus, Step 5 of the stress computation
is:
The hardening parameter is calculated using the material stress-strain curve:

(478)

Where,  is the plastic strain rate.
The plastic strain, or hardening parameter, is found by explicit time integration:

(479)

Finally, the plastic stress is found by the method of radial return. In case of plane stress this
method is approximated because it cannot verify simultaneously the plane stress condition and
the flow rule. The following return gives a plane stress state:

(480)

Iterative algorithm
Iplas=1
If flag 1 is used on card 1 of the shell property type definition, an incremental method is used.

Step 5 is performed using the incremental method described by Mendelson. 60 It has been
extended to plane stress situations. This method is more computationally expensive, but provides
high accuracy on stress distribution, especially when one is interested in residual stress or elastic
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return. This method is also recommended when variable thickness is being used. After some
calculations, the plastic stresses are defined as:

(481)

(482)

(483)

Where,

(484)

The value of  must be computed to determine the state of plastic stress. This is done by an
iterative method. To calculate the value of , the von Mises yield criterion for the case of plane
stress is introduced:

(485)

and the values of , ,  and  are replaced by their expression as a function of  
(Hourglass Modes, Equation 424 to Hourglass Modes, Equation 427), with for example:

(486)

and:

(487)

The nonlinear equation Equation 485 is solved iteratively for  by Newton's method using three
iterations. This is sufficient to obtain  accurately.

Plastic Plane Stress with Hill's Criterion
In the case of Hill's orthotropic criterion, the equivalent stress is given by:

(488)

with 

Equation 464 is then written as:

(489)
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; 

Changing the stress variables to :

(490)

with:

; 

The matrix  is diagonal:

(491)

Where,  is the Jacobian of [ ]. Equation 490 is now written as:

(492)

This will enable to give explicitly the expression of the yield surface Equation 465:

(493)

With .

The derivative of  is carried out in order to use the Newton-Raphson method:

(494)

60. Mendelson A., “Plasticity: Theory and Application”, MacMillan Co., New York, 1968.
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Forces and Moments Calculation

Integration Points Throughout the Thickness
The integration is performed using n equally spaced integration points throughout the thickness. The
method used assumes a linear variation of stresses between integrations points:

(495)

(496)

Table 2 compares the coefficients used to the classical Newton quadrature in case of 3 integration
points.

Table 2: wN for 3 Integration Points

Coefficients w1 w2 w3

Radioss 0.250 0.500 0.250

Simpson 0.166 0.666 0.166

Table 3: wM for 3 Integration Points

Coefficients w1 w2 w3

Radioss -0.083 0. 0.083

Simpson -0.083 0. 0.083

Table 4: Gauss Integration Scheme

Number
of Points

Position Weight

1 ±0.0000 2.0000

2 ±0.5774 1.0000

3 0.0000

±0.7746

0.8889

0.5556

4 ±0.8611 0.6521
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Number
of Points

Position Weight

±0.3400 0.3479

5 ±0.9062

±0.5385

0.0000

0.2369

0.4786

0.5689

6 ±0.9325

±0.6612

±0.2386

0.1713

0.3608

0.4679

7 ±0.9491

±0.7415

±0.4058

0.0000

0.1295

0.2797

0.3818

0.4180

8 ±0.9603

±0.7967

±0.5255

±0.1834

0.1012

0.2224

0.3137

0.3627

9 ±0.9681

±0.8360

±0.6134

±0.3243

0.0000

0.0813

0.1806

0.2606

0.3123

0.3302

10 ±0.9739

±0.8650

±0.6794

±0.4334

±0.1489

0.0667

0.1495

0.2191

0.2693

0.2955
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Table 5: Lobatto Integratin Scheme

Number
of Points

Position Weight for
Membrane

wN

Weight for
Bending

wM

1 0.0000 1.0000 0.0000

2 ±0.5000 0.5000 ±0.0833

3
±0.5000

0.0000

0.2500

0.5000

±0.0833

0.0000

4
±0.5000

±0.1667

0.1667

0.3333

±0.0648

±0.0556

5

±0.5000

±0.2500

0.0000

0.1250

0.2500

0.2500

±0.0521

±0.0625

0.0000

6

±0.5000

±0.3000

±0.1000

0.1000

0.2000

0.2000

±0.0433

±0.0600

±0.0200

7

±0.500

±0.3333

±0.1667

0.0000

0.0833

0.1667

0.1667

0.1667

±0.0370

±0.0556

±0.0278

0.0000

8

±0.5000

±0.3750

±0.2500

±0.1250

0.0714

0.1429

0.1429

0.1429

±0.0323

±0.0510

±0.0306

±0.0102

9

±0.5000

±0.3750

±0.2500

±0.1250

0.0000

0.0625

0.1250

0.1250

0.1250

0.1250

±0.086

±0.0469

±0.0313

±0.0156

0.0000
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Number
of Points

Position Weight for
Membrane

wN

Weight for
Bending

wM

10

±0.5000

±0.3889

±0.2778

±0.1667

±0.0555

0.0556

0.1111

0.1111

0.1111

0.1111

±0.0257

±0.0432

±0.0309

±0.0185

±0.0062

For shell elements, integration points through the thickness are almost Lobatto points.

Global Plasticity Algorithm
In the case of global plasticity, the forces and moments are computed directly. The algorithm is
activated by specifying the number of integration points through the thickness as zero. The first step is
an obvious elastic calculation:

(497)

The yield criterion used is the uncoupled Iliouchine 61 form:

(498)

with

(499)

(500)

Where,
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An extension of Iliouchine criterion for isotropic hardening is developed here. The yield surface can be
expressed as:

(501)

with

(502)

and

(503)

Where,  and  are scalar material characteristic constants, function of plastic deformation. They can be
identified by the material hardening law in pure traction and pure bending.

In pure traction:

(504)

In pure bending:

(505)

If no hardening law in pure bending is used,  is simply computed by  varying between

1.0 and 1.5.

The plasticity flow is written using the normality law:

(506)
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The equivalent plastic deformation  is proportional to the plastic work. Its expression is the same as in
the case of traction:

(507)

This leads to:

(508)

Where,  is the plastic module. The derivative of function  in Equation 501 is discontinuous when 

 =0. This can be treated when small steps are used by putting s=0 as explained in 62.

Then the derivative of  with respect to  ( ) is carried out. The derived equation is nonlinear in

internal efforts and is resolved by Newton-Raphson:

(509)

Where,  is the elastic stiffness matrix and:

(510)

Shell Formulations

QPH shell is the Belytschko Leviathan 63 shell for linear models or quasi-static analysis is identical to a 
QPPS shell analysis, only one difference being explained in Fully-integrated Shell Element QBAT.

The QPPS shell is a new One-point Quadrature, General Nonlinear Quadrilateral Shell Element with

Physical Stabilization. This shell is a Belytschko Leviathan 63 shell modified by Zeng and Combescure. 
64

The physical stabilization is applied which enables the explicit evaluation of the stabilizing forces based 
on the general degenerated shell formulation and which does not require any input parameters. An 
optimized choice of the moduli is made in order to compute the stabilized forces for nonlinear material 
so that element's behavior is improved with respect to similar physical stabilization elements. The cost 
efficiency of the element is demonstrated by numerical examples, as compared with a fully-integrated 
4-node element.

61. Iliouchine A., “Plasticity”, Edition Eyrolles Paris, 1956.

62. Crisfield M.A., “Nonlinear finite element analysis of solids and structures”, J. Wiley, Vol. 2, 1997.
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The QEPH shell is a new improved element with respect to QPH,QPPS. The improvements will be 
explained in Fully-integrated Shell Element QBAT. As the QEPH is very efficient, it replaces 
QPH,QPPS in the applications.

 24 shell of Batoz and Dhatt 66The QBAT shell  is a  new  fully-integrated  4-node  element  based 
on Q4 as discussed in Fully Integrated Formulation.

The general formulation of the degenerated continuum quadrilateral shell (for which all these elements 
used) is given in General Degenerated 4-Node Shell Formulations. The difficulties in evaluating the 
stabilized stiffness are also described. Fully-integrated Shell Element QBAT presents the detailed 
formulations for the one-point quadrature shell element based on the general formulation, and 
compares it with that of Belytschko and Leviathan.

General Degenerated 4-Node Shell Formulations
The following formulations of degenerated quadrilateral shells are based on the successful full

integration element MITC4 developed by Dvorkin-Bathe 65 and Q4 24 developed by Batoz and Dhatt
66; they are suitable for both thin and thick shells and are applicable to linear and nonlinear problems.
Their main feature is that a classical displacement method is used to interpolate the in-plane strains
(membrane, bending), and a mix/collocation (or assumed strain) method is used to interpolate the out-
plane strains (transverse shear). Certain conditions are also specified:

• They are based on the Reissner-Mindlin model,

• In-plane strains are linear, out-plane strains (transverse shear) are constant throughout the 
thickness,

• Thickness is constant in the element (the normal and the fiber directions are coincident),

• 5 DOF in the local system (that is, the nodal normal vectors are not constant from one element to 
another).

Notational Conventions
• A bold letter denotes a vector or a tensor.

• An upper case index denotes a node number; a lower case index denotes a component of vector or
tensor.

• The Einstein convention applies only for the repeated index where one is subscript and another is
superscript, e.g.:

• {} denotes a vector and [ ] denotes a matrix.

63. Belytschko T. and Leviathan I., “Physical stabilization of the 4-node shell element with one-point
quadrature”, Computer Methods in Applied Mechanics and Engineering, 113:321-350, 1992.

64. Zeng Q. and Combescure A., “A New One-point Quadrature, General Nonlinear Quadrilateral Shell
Element with Physical Stabilization”, Int. Journal Num. Methods in Engineering 42, 1307-1338,
1998.
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Geometry and Kinematics

Figure 48: Coordinate Systems

The geometry of the 4-node degenerated shell element, as shown in Figure 48, is defined by its mid-

surface with coordinates denoted by  interpolated by the node coordinates  ( =1,4):

(511)

Where,  are the bilinear isoparametric shape functions, given by:

(512)

A generic point  within the shell is derived from point p on the mid-surface and its coordinate along the
normal (fiber):

(513)

with 

Where,

Shell thickness

The transformation between the Cartesian system and the Natural system is given by the differential
relation (in matrix form):

(514)

with 

 is the gradient tensor which is related to the Jacobian tensor .

With 5 DOF at each node I (three translational velocities  and two rotational velocities ,
the velocity interpolation is given by the Mindlin model:

(515)

Where,  and  are the rotational velocity vectors of the normal: 
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and  is base of the local coordinate system.

Equation 515 can be written also by:

This velocity interpolation is expressed in the global system, but  must be defined first in the local
nodal coordinate system to ensure Mindlin's kinematic condition.

Strain-Rate Construction
The in-plane rate-of-deformation is interpolated by the usual displacement method.

The rate-of-deformation tensor (or velocity-strains)  is defined by the velocity gradient
tensor :

(516)

with .

The Reissner-Mindlin conditions  and  requires that the strain and stress tensors are
computed in the local coordinate system (at each quadrature point).

After the linearization of  with respect to , the in-plane rate-of-deformation terms are given by:

with the membrane terms:

the bending terms:

(517)

Where, the contravariant vectors , dual to , satisfy the orthogonality condition: 

(Kronecker delta symbol);  is the average curvature: 

(518)

The curvature-translation coupling is presented in the bending terms for a warped element (the first two
terms in the last equation.)

The out-plane rate-of-deformation (transverse shear) is interpolated by the "assumed strain" method,
which is based on the Hu-Washizu variation principle.

If the out-plane rate-of-deformation is interpolated in the same manner for a full integration scheme, it
will lead to shear locking. It is known that the transverse shear strains energy cannot vanish when it is

subjected to a constant bending moment. Dvorkin-Bathe's 65 mix/collocation method has been proved
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very efficient in overcoming this problem. This method consists in interpolating the transverse shear
from the values of the covariant components of the transverse shear strains at 4 mid-side points. That
is:

(519)

(520)

Where,  are the values of the covariant components at 4 mid-side points which vanish under a

constant bending moment (Figure 49).

Figure 49: Covariant Components at 4 Mid-Side

Special Case for One-point Quadrature and the Difficulties in Stabilization
The formulations described above are general for both the full integration and reduced integration
schemes. For a one-point quadrature element, you have the following particularities:

The quadrature point is often chosen at . The derivatives of the shape functions are:

(521)

Where, .

This implies that all the terms computed at the quadrature point are the constant parts with respect to

, and the stabilizing terms (hourglass) are the non-constant parts.

The constant parts can be derived directly from the general formulations at the quadrature point
without difficulty. The difficulties in stabilization lie in correctly computing the internal force vector (or
stiffness matrices):

(522)

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.142

It would be ideal if the integration term  could be evaluated explicitly. But such is not the case, and

the main obstacles are the following:

For a non-coplanar element, the normal varies at each point so that it is difficult to write the non-
constant part of strains explicitly. For a physically nonlinear problem, the non-constant part of stress is
not generally in an explicit form. Thus, simplification becomes necessary.

Fully-integrated Shell Element QBAT
QBAT is a fully-integrated shell element based on the general formulation described above. In the
surface of each element, 4 Gauss points are used to evaluate the nodal forces.

The main modifications with respect to Q4 24 shell element 66 are:

• Reduced integration for in-plane shear (constant) to avoid locking.

• Co-rotational coordinate system is used and the stresses are evaluated in 4 local systems at each
Gauss points.

One-Point Quadrature Shell Element
In this section, a one-point quadrature shell element formulation will be developed from the general
formulation described in the previous section. It is based on the Physical Stabilization method which
explicitly computes the stabilization terms in making some simplifications.

The following formulations will be written in the local coordinate system [ ] (the circumflex in the

co-rotational system notation has been omitted for convenience).

Kinematic Approximation

The velocity interpolation using the nodal tangent vectors ( ) complicates the strain computation,
especially for transverse shear which is used mainly as a penalty function. To be consistent with the
one-point quadrature approach, the kinematic approximation is performed by:

(523)

Where,  ( =1,2) is the nodal rotation velocity around .  can be computed by a projection scheme
by:

(524)

The projection consists in eliminating the nodal drilling rotations in order to reinforce Mindlin's kinematic

condition at the nodes. It has been pointed out 67 that without this projection, the element is too
flexible and cannot pass the Twisted Beam test.

65. Dvorkin E. and Bathe K.J. “A continuum mechanics four-node shell element for 35 general nonlinear
analysis”, Engrg Comput, 1:77-88, 1984.

66. Batoz J.L. and Dhatt G., “Modeling of Structures by finite element”, volume 3, Hermes, 1992.
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This projection has a drawback of changing the invariance property to rigid body motion, that is, a
warped element being invariant to rigid body rotation will now strains under to rigid body rotation if the
drill projection is applied. To overcome this problem, a full projection proposed by Belytschko-Leviathan
68 which free either drilling rotation or rigid motion should be used. This full projection is only used for
QEPH element.

In-plane Strain-rate Construction

Constant part
It is useful to write the shape functions in Belytschko-Bachrach's mixed form:

(525)

with:

 is the area of element.

The derivation of the shape functions is given by:

Where,

(526)

The advantage of this shape function form is that a linear field expressed with Cartesian coordinates
and a bilinear field expressed with Natural coordinates is decomposed so that the constant part is
directly formulated with the Cartesian coordinates, and the non-constant part is to be approached
separately.

The in-plane rate-of-deformation (decomposed on membrane and bending) is given by:

(527)

with:

67. Belytschko T. and Leviathan I., “Projection schemes for one-point quadrature shell elements”,
Computer Methods in Applied Mechanics and Engineering, 115:277-286, 1993.

68. Belytschko Ted and Leviathan Itai, “Projection schemes for one-point quadrature shell elements”,
Computer Methods in Applied Mechanics and Engineering, Vol. 115, 227-286, 1994.
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The development of the general formulations leads to the constant part, denoted by superscript 0, of
the matrix [ ]:

(528)

with

The parameter  is a measure of the warping of the element.

The first term  is neglectable. You have verified that the order of  is  times the second

term of  with  which vanishes when the element is rectangular.

Thus, this term is not used in the program.

The constant part of the in-plane rate-of-deformation formulation without the  term is consistent

with the result of Belytschko's family shell element 70, 72though this part has been obtained in a very

different manner. Letellier has given the same result in his thesis 71, and studies were also made of the
quadratic terms with respect to .

Non-constant Part
The main simplification for the non-constant part formulation, in order to overcome the difficulties
described above, is:

The element is considered to be flat.

In this case, the Jacobian matrix is written as:

(529)

with the determinant  of the in-plane Jacobian:

(530)

and:
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The inverse of the in-plane Jacobian matrix can be expressed explicitly:

(531)

You can now write the non-constant part, denoted by superscript , of the matrix [ ] for in-plane
rate-of-deformation:

(532)

It is shown in 69 that the non-constant part of membrane rate-strain does not vanish when a warped

element undergoes a rigid body rotation. Thus, a modified matrix  is chosen:

(533)

This matrix is different from the Belytschko-Leviathan correction term added at rotational positions,
which couples translations to curvatures:

(534)

This will lead to 'membrane locking' (the membrane strain will not vanish under a constant bending
loading). According to the general formulation, the coupling is presented in the bending terms not in the

membrane terms, yet the normal translation components in  do not vanish for a warped element

due to the tangent vectors   which differ from  (0,0).

69. Belytschko T., Lin J.L. and Tsay C.S., “Explicit algorithms for the nonlinear dynamics of shells”,
Computer Methods in Applied Mechanics and Engineering, 42:225-251, 1984.

70. Belytschko T., Wong B.L. and Chiang H.Y. “Advances in one-point quadrature shell elements”,
Computer Methods in Applied Mechanics and Engineering, 96:93-107, 1989.
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Out-plane Strain-rate Construction
The out-plane rate-of-deformation (transverse shear) is interpolated by the Dvorkin-Bathe method,
whose closed form is given by Belytschko-Leviathan:

(535)

Where, 

(536)

The straightforward form of [ ] is obtained using one additional simplification:

which is true for a parallelogram element. Although this simplification is not necessary, it is justified by
the fact that the transverse shear terms serve mainly as a penalty function.

Explicit Integration of the Nodal Internal Force Vector

Elastic Case
The elementary nodal force vector is computed by:

Taking advantage of substantial orthogonality between the:

• Constant in-plane fields along with the non-constant ones

• Membrane and the bending

• In-plane fields and the out-plane fields

• Decomposed non-constant out-plane fields

Resulting in:

71. Letellier Antoine, “Contribution to the modeling of impacts of birds on the blades of aircraft
engines”, PhD thesis, University d'Evry, 1996.
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With  the constant part being computed with one-point quadrature, and

It can be shown in the last equation that only the following scalar functions need to be integrated:

(537)

These can be evaluated explicitly.

Defining 6 hourglass generalized rate-of-deformation  by:

(538)

(539)

(540)

The rate-of-deformations will be written explicitly.

The rate form of the constitutive relation is written as (stress plane for in-plane terms):

With the assumption: the spin is constant within the element, the objectivity principle will be satisfied.
The incremental computation is performed with the hourglass generalized rate-of-deformation :

Noting that if  is considered as constant over a time step, it is equivalent to the incremental stress
computation.

Physical Nonlinear Case
Now consider an elastoplastic problem.

The elementary nodal internal force vector is now computed by:

The constitutive relation is written by either a tangent form: , or a projection form: 

Where,  is the history-dependent tangent tensor;  is the trial stress, and
the function  consists of projecting the trial stress on the updated yield surface.
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The decomposed form of the last equation is written:

The constant part is computed by integration at each integration point through the thickness.

The stabilization part will be approached by relying on two hypotheses:

• Keep the same orthogonalities as in the elastic case, and

• Use the unidimensional tangent modulus  to evaluate the non-constant rate-stress, that is,

(541)

Where,

Young's modulus

Matrix of elastic moduli

Thus, the elastic case easily extends to the nonlinear case.

The incremental computation with the hourglass generalized rate-of-deformation  becomes:

(542)

(543)

(544)

Where,  is obtained by the constant stress incremental computation along the thickness and

 in the elastic zone, and  is the average value of  and .

For the QPH shell, = 1
The key orthogonalities has been maintained without any significant deterioration in performance,
although the first two orthogonalities might have been slightly violated. In fact, it is simply due to
these orthogonalities that a one-point quadrature element dramatically reduces the computation cost;
otherwise you return to the full integration scheme.

Most of the physical stabilization elements have incorporated the following assumption.

The material response is constant within the element.

There are two alternatives to this assumption:

• Take the elastic matrix  directly:

which means that the plastic rate-of-deformation  is constant within the element; or

• Take the tangent matrix [ ] (  constant).
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Since the components of [ ] are generally functions of the updated stress (precisely, the stress
deviator for an elastoplastic problem with an associative flow rule, which means that the stress is
constant within the element.

Neither of these alternatives is theoretically perfect. Note that the  option results in a contradiction
with the stress computation (which yields different results for the constant part and the non-constant
part); it is more expensive and the tangent form is not generally used for constant stress computations
within an explicit program. Hence, the approximation based on the above assumption is not necessary.

The choice of the moduli for the nonlinear case has not been studied for Belytschko-Leviathan's element
72, and it has been shown that this choice has little effect on the result of the "Cylindrical panel test". In
73, the elastic tangent matrix has been used for the evaluation of the stabilizing forces.

QPH,QPPS have shown often stiffer behaviors and sometimes have certain numerical problems in crash
simulations.

Advanced Elasto-plastic Hourglass Control

QEPH (Quadrilateral ElastoPlastic Physical Hourglass Control) Element
With one-point integration formulation, if the non-constant part follows exactly the state of constant
part for the case of elasto-plastic calculation, the plasticity will be under-estimated due to the fact
that the constant equivalent stress is often the smallest one in the element and element will be stiffer.
Therefore, defining a yield criterion for the non-constant part seems to be a good idea to overcome this
drawback.

From In-plane Strain-rate Construction, Equation 526 and Equation 531, you have the rate of stresses
of non-constant part:

(545)

Where,  corresponds to the membrane and bending terms respectively.

Note:  The shear terms are eliminated to avoid shear locking.

The transverse shear terms can also be written as the same way:

(546)

72. Belytschko T. and Leviathan I., “Physical stabilization of the 4-node shell element with one-point
quadrature”, Computer Methods in Applied Mechanics and Engineering, 113:321-350, 1992.

73. Zhu Y. and Zacharia T., “A new one-point quadrature, quadrilateral shell element with drilling
degree of freedom”, Computer Methods in Applied Mechanics and Engineering, 136:165-203, 1996.
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You can now redefine 12 generalized hourglass stresses by integrating their rate ones, and the stress
field can be expressed by:

Membrane, bending

Shear

Even the redefinition for shear is not necessary as it is not included in the plastic yield criterion, but the
same stress calculation as the constant part with the updated Lagrangian formulation is always useful
when large strain is involved.

Plastic Yield Criterion
The von Mises type of criterion for any point in the solid element is written by:

(547)

Where,  is evaluated at the quadrature point.

As only one criterion is used for the non-constant part, two choices are possible:

•
taking the mean value, that is: 

• taking the value by some representative points, such as eight Gauss points

The second choice has been used in this element.

Elasto-plastic Hourglass Stress Calculation
The incremental hourglass stress is computed by:

• Elastic increment

• Check the yield criterion

• If , the hourglass stress correction will be done by unradial return

3-Node Shell Elements
As for the four node shell element, a simple linear Mindlin Plate element formulation is used. Likewise,
the use of one integration point and rigid body motion given by the time evolution of the local reference
frame is applied. There is no hourglass mode in case of one integration point.

Local Reference Frame
The local reference frame for the three node shell element is shown in Figure 50.
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Figure 50: Node Shell Local Reference Frame

The vector normal to the plane of the element is defined as:

(548)

The vector defining the local x direction is defined as edge 1-2:

(549)

Hence, the vector defining the local y direction is found from the cross product of the two previous
vectors:

(550)

Time Step
The characteristic length for computing the critical time step is defined by:

(551)

Three Node Shell Shape Functions
The three node shell has a linear shape functions defined as:
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(552)

(553)

(554)

These shape functions are used to determine the velocity field in the element:

(555)

(556)

(557)

(558)

(559)

(560)

(561)

Membrane Behavior
The method used to calculate the membrane behavior and the membrane strain rates is exactly the 
same as that used for four node shell elements (Membrane Behavior).

Bending Behavior
The bending behavior and calculation of the bending strain rates (or curvature rates) is the exact same 
method used for four node shell elements (Bending Behavior).

Strain Rate Calculation
The strain rate calculation for the three node shell is the same as the method used for the four node 
shell. However, only three nodes are accounted for. This makes the vectors and matrices smaller. The 
overall membrane strain rate is calculated by:
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(562)

(563)

(564)

Where the  matrix of shape function gradients is defined as:

(565)

Where  for a shell element.

The overall bending strain or curvature rate is computed by:

(566)

(567)

(568)

Where,

(569)

Mass and Inertia
The three node shell element is considered as an element with a lumped mass. Its mass is defined as:

(570)

Where,

Material density
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Shell thickness

Reference plane surface area

The mass moment of inertia about all axes is the same:

(571)

(572)

(573)

When nodal masses need to be calculated, the distribution is determined by the shape of the element
as shown in Figure 51.

Figure 51: Mass Distribution

The mass and inertia at node  are given by:

(574)

Composite Shell Elements
There are three different element types that can be used for modeling composites.

• TYPE9 Element Property - Orthotropic Shell

• TYPE10 Element Property - Composite Shell

• TYPE11 Element Property - Composite Shell with variable layers

These elements are primarily used with the Tsai-Wu model (material LAW25). They allow one global
behavior or varying characteristics per layer, with varying orthotropic orientations, varying thickness
and/or varying material properties, depending on which element is used. Elastic, plastic and failure
modeling can be undertaken.

Transformation Matrix: Global to Orthotropic Skew
If the element reference is defined by the axes X, Y and the orthotropy directions by axes 1-2, write:
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Figure 52: Fiber Orientation

 with  and .

(575)

(576)

(577)

The strain-stress relation in orthotropy directions is written as:

(578)

(579)

(580)

The computed stresses are then projected to the element reference:

(581)

Composite Modeling
Radioss has been successfully used to predict the behavior of composite structures for crash and impact
simulations in the automotive, rail and aeronautical industries.
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The purpose of this chapter is to present the various options available in Radioss to model composites,
as well as some modeling methods.

Modeling Composites with Shell Elements
Composite materials with up to 100 layers may be modeled, each with different material properties,
thickness, and fiber directions.

Lamina plasticity is taken into account using the Tsai-Wu criteria, which may also consider strain rate
effects. Plastic work is used as a plasticity as well as rupture criterion.

Fiber brittle rupture may be taken into account in both orthotropic directions.

Delamination may be taken into account through a damage parameter in shear direction.

Modeling Composites with Solid Elements
Solid elements may be used for composites.

Two material laws are available:

• Solid composite materials: one layer of composite is modeled with one solid element. Orthotropic
characteristics and yield criteria are the same as shell elements (Modeling Composites with Shell
Elements).

• A honeycomb material law is also available, featuring user defined yield curves for all components
of the stress tensor and rupture strain.

Solid + Shell Elements
For sandwich plates, if the foam or the honeycomb is very thick, it is possible to combine composite
shells for the plates and solid elements for the sandwich.

Figure 53:

Element Orientation
A global reference vector  is used to define the fiber direction. The direction in which the material
properties (or fiber direction) lay is known as the direction 1 of the local coordinate system of
orthotropy. It is defined by the  angle, which is the angle between the local direction 1 (fiber direction)
and the projection of the global vector  as shown in Figure 54.
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Figure 54: Fiber Direction Orientation

The shell normal defines the positive direction for . For elements with more than one layer, multiple 
angles can be defined.

The fiber direction orientation may be updated by two different ways:

1. Constant orientation in local corotational reference frame constant orientation in local
isoparametric frame. The first formulation may lead to unstable models especially in the case of
very thin shells (airbag modeling). In Figure 55 the difference between the two formulations is
illustrated for the case of element traction and shearing.

Figure 55: Fiber Direction Updating

Orthotropic Shells
The TYPE9 element property set defines orthotropic shell elements. They have the following properties:

1. Only one layer

2. Can have up to 5 integration points1 through the thickness

3. One orientation

4. One material property
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Figure 56:

Composite Shells
The TYPE10 element property set defines composite shell elements. They have the following properties:

1. Up to 100 layers can be modeled

2. Constant layer thickness

3. Constant reference vector

4. Variable layer orientation

5. Constant material properties

Integration is performed with constant stress distribution for each layer.

Figure 57:

Composite Shells with Variable Layers
The TYPE11 element property set defines composite shell elements that allow variable layer thicknesses
and materials. They have the following properties:

1. Up to 100 layers can be modeled

2. Variable layer thicknesses

3. Constant reference vector

4. Variable layer orientation

5. Variable material properties, mi
2,3

Integration is performed with constant stress distribution for each layer.
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Figure 58:

Limitations
When modeling a composite material, there are two strategies that may be applied. The first, and
simplest, is to model the material in a laminate behavior. This involves using TYPE9 property shell
elements. The second is to model each ply of the laminate using one integration point. This requires
either a TYPE10 or TYPE11 element.

Modeling using the TYPE9 element allows global behavior to be modeled. Input is simple, with only the
reference vector as the extra information. A Tsai-Wu yield criterion and hardening law is easily obtained
from the manufacturer or a test of the whole material.

Using the TYPE10 or TYPE11 element, one model's each ply in detail, with one integration point per
ply and tensile failure is described in detail for each ply. However, the input requirements are complex,
especially for the TYPE11 element.

Delamination is the separation of the various layers in a composite material. It can occur in situations
of large deformation and fatigue. This phenomenon cannot be modeled in detail using shell theory. A
global criterion is available in material LAW25. Delamination can affect the material by reducing the
bending stiffness and buckling force.

3-Node Triangle without Rotational DOF
The need of simple and efficient element in nonlinear analysis of shells undergoing large rotations is
evident in crash and sheet metal forming simulations. The constant-moment plate elements fit this

need. One of the famous concepts in this field is that of Batoz et al. 77 known under DKT elements

where DKT stands for Discrete Kirchhoff Triangle. The DKT12 element 77, 78 has a total of 12 DOFs. The
discrete Kirchhoff plate conditions are imposed at three mid-point of each side. The element makes
use of rotational DOF. at each edge to take into account the bending effects. A simplified three-node

element without rotational DOF is presented in 79. The rotational DOF is computed with the help of out-
of-plane translational DOF in the neighbor elements. This attractive approach is used in Radioss in the
development of element SH3N6 which based on DKT12.

74. Same integration rule as shells.

75. Material number mi must be defined as LAW25 or LAW27 (not both) in material input cards.

76. Material given in the shell definition is only used for memory allocation, time step computation and
interface stiffness. It must also be defined as LAW25.
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Strain Computation
Consider two adjacent coplanar elements with a common edge i-j as shown in Figure 60. Due to out-of-
plane displacements of nodes  and , the elements rotate around the side i-j. The angles between final
and initial positions of the elements are respectively  and  for corresponding opposite nodes  and
. Assuming, a constant curvature for both of elements, the rotation angles   and  related to the

bending of each element around the common side are obtained by:

(582)

However, for total rotation you have:

(583)

which leads to:

(584)

Figure 59: Computation of Rotational DOF in SH3N6

Consider the triangle element in Figure 60. The outward normal vectors at the three sides are defined
and denoted ,  and . The normal component strain due to the bending around the element side is
obtained using plate assumption:
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(585)

The six mid-side rotations   are related to the out-of-plane displacements of the six apex nodes as
shown in Figure 61 by the following relation:

(586)

Where, ,  ,  and   are respectively the heights of the triangles
(1,2,3), (1,4,2), (2,5,3) and (3,6,1).

Figure 60: Normal Vectors Definition

The non-null components of strain tensor in the local element reference are related to the normal

components of strain by the following relation: 77 79

(587)
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Figure 61: Neighbor Elements for a Triangle

Boundary Conditions Application
As the side rotation of the element is computed using the out-of-plane displacement of the neighbor
elements, the application of clamped or free boundary conditions needs a particular attention. It is
natural to consider the boundary conditions on the edges by introducing a virtual and symmetric
element outside of the edge as described in Figure 62. In the case of free rotation at the edge, the
normal strain  is vanished. From Equation 585, this leads to:

(588)

In Equation 586 the fourth row of the matrix is then changed to:

(589)

The clamped condition is introduced by the symmetry in out-of-plane displacement, that is, .
This implies . The fourth row of the matrix in Equation 586 is then changed to:

(590)
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Figure 62: Virtual Element Definition for Boundary Conditions Application

77. Batoz J.L. and Dhatt G., “Modeling of Structures by finite element”, volume 3, Hermes, 1992.

78. Batoz J.L., Guo Y.Q., Shakourzadeh H., “Nonlinear Analysis of thin shells with elasto-plastic element
DKT12”, Revue Europénne des Eléments Finis, Vol. 7, N° 1-2-3, pp. 223-239. 1998.

79. Sabourin F. and Brunet M., “Analysis of plates and shells with a simplified three-node triangle
element”, Thin-walled Structures, Vol. 21, pp. 209-223, Elsevier, 1995.
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Solid-Shell Elements
Solid-shell elements form a class of finite element models intermediate between thin shell and
conventional solid elements. From geometrical point of view, they are represented by solid meshes
with two nodes through the thickness and generally without rotational degree-of-freedom. On the
other hand, they account for shell-like behavior in the thickness direction. They are useful for modeling
shell-like portions of a 3D structure without the need to connect solid element nodes to shell nodes
(Figure 63).

Figure 63: Solid-Shell Elements Application

The derivation of solid-shell elements is more complicated than that of standard solid elements since
they are prone to the following problems:

• Shear and membrane locking with the hybrid strain formulation 80 81, the hybrid stress 82, and the

Assumed and Enhanced Natural Strain formulations. 83 84 85 86

• Trapezoidal locking caused by deviation of mid-plane from rectangular shape 87.

• Thickness locking due to Poisson's ratio coupling of the in-plane and transverse normal stresses. 80

81 83 85

Solid shell elements in Radioss are the solid elements with a treatment of the normal stresses in the
thickness direction. This treatment consists of ensuring constant normal stresses in the thickness by
a penalty method. Advantage of this approach with respect to the plane-stress treatment is that it
can simulate the normal deformability and exhibits no discernible locking problems. The disadvantage
is its possible small time step since it is computed as solid element and the characteristic length is
determined often using the thickness.

The solid-shell elements of Radioss are:

• HA8: 8-node linear solid and solid-shell with or without reduced integration scheme,

• HSEPH: 8-node linear thick shell with reduced integration scheme and physical stabilization of
hourglass modes,

• PA6: Linear pentahedral element for thick shells,

• SHELL16: 16-node quadratic thick shell.

The thick shell elements HA8 and HSEPH are respectively the solid elements HA8 and HEPH in which
the hypothesis of constant normal stress through the thickness is applied by penalty method. The

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.165

theoretical features of these elements are explained in Solid Hexahedron Elements. The thick shell 
element SHELL16 is described hereby.

Thick Shell Elements SHELL16
The element can be used to model thick-walled structures situated between 3D solids and thin shells. 
The element is presented in Figure 64. It has 16 nodes with three translational DOFs per each node. 
The element is quadratic in plane and linear through the thickness. The numerical integration through 
the thickness is carried out by Gauss-Lobatto schemes rise up to 9 integrations to enhance the quality 
of elasto-plastic behavior. The in-plane integration may be done by a reduced 2x2 scheme or a fully 
integrated 3x3 points (Figure 65). A reduced integration method is applied to the normal stress in order 
to avoid locking problems.

Figure 64: Thick Shell Element SHELL16

The distribution of mass is not homogenous over the nodes. The internal nodes receive three times
more mass than the corner nodes as shown in Figure 66.

Figure 65: Integration Points for SHELL16
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Figure 66: Mass Distribution for SHELL16 Element

80. Ausserer M.F. and Lee S.W., “An eighteen node solid element for thin shell analysis”,Int. Journal
Num. Methods in Engineering, Vol. 26, pp. 1345, 1364, 1988.

81. Park H.C., Cho C. and Lee S.W., “An efficient assumed strain element model with six dof per
node for geometrically nonlinear shells”, Int. Journal Num. Methods in Engineering, Vol. 38, pp.
4101-4122, 1995.

82. Sze K.Y. and Ghali A., “A hexahedral element for plates, shells and beam by selective scaling”, Int.
Journal Num. Methods in Engineering, Vol. 36, pp. 1519-1540, 1993.

83. Betch P. and Stein E., “An assumed strain approach avoiding artificial thickness straining for a
nonlinear 4-node shell element”, Computer Methods in Applied Mechanics and Engineering, Vol. 11,
pp. 899-909, 1997.

84. Bischoff M. and Ramm E., “Shear deformable shell elements for large strains and rotations”, Int.
Journal Num. Methods in Engineering, Vol. 40, pp. 445-452, 1997.

85. Hauptmann R. and Schweizerhof K., “A systematic development of solid-shell element formulations
for linear and nonlinear analysis employing only displacement degrees of freedom”, Int. Journal
Num. Methods in Engineering, Vol. 42, pp. 49-69, 1988.

86. Simo J.C. and Rifai M.S., “A class of mixed assumed strain methods and the method of incompatible
modes”, Int. Journal Num. Methods in Engineering, Vol. 9, pp. 1595-1638, 1990.

87. Donea J., “An Arbitary Lagrangian-Eulerian finite element method for transient dynamic fluid-
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Truss Elements (TYPE2)
Truss elements are simple two node linear members that only take axial extension or compression.
Figure 67 shows a truss element.

Figure 67: Truss Element

Property Input
The only property required by a truss element is the cross-sectional area. This value will change as the
element is deformed. The cross sectional area is computed using:

(591)

Where,

Poisson's ratio defined in the material law

Stability
Determining the stability of truss elements is very simple. The characteristic length is defined as the
length of the element, that is, the distance between N1 and N2 nodes.

(592)

Where,

Current truss length

Sound speed

Rigid Body Motion
The rigid body motion of a truss element as shown in Figure 68 shows the different velocities of nodes 1
and 2. It is the relative velocity difference between the two nodes that produces a strain in the element,
namely ex.
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Figure 68: Truss Motion

Strain
The strain rate, as shown in Figure 68, is defined as:

(593)

Material Type
A truss element may only be assigned two types of material properties. These are TYPE1 and TYPE2,
elastic and elasto-plastic properties, respectively.

Force Calculation
The calculation of forces in a truss element is performed by explicit time integration:

(594)

A generalized force-strain graph can be seen in Figure 69. The force rate under elastic deformation is
given by:

(595)

Where,

Elastic modulus

Cross-sectional area

In the plastic region, the force rate is given by:

(596)

Where,
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Gradient of the material curve at the deformation point

Figure 69: Force-Strain Relationship
(a) without gap; (b) with gap

In a general case, it is possible to introduce a gap distance in the truss definition. If gap is not null, the
truss is activated when the length of the element is equal to the initial length minus the gap value. This
results a force-strain curve shown in Figure 69(b).
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Beam Elements (TYPE3)
Radioss uses a shear beam theory or Timoshenko formulation for its beam elements.

This formulation assumes that the internal virtual work rate is associated with the axial, torsional and
shear strains. The other assumptions are:

• No cross-section deformation in its plane.

• No cross-section warping out of its plane.

With these assumptions, transverse shear is taken into account.

This formulation can degenerate into a standard Euler-Bernoulli formulation (the cross section remains
normal to the beam axis). This choice is under user control.

Local Coordinate System
The properties describing a beam element are all defined in a local coordinate system.

This coordinate system can be seen in Figure 70. Nodes 1 and 2 of the element are used to define the
local X axis, with the origin at node 1. The local Y axis is defined using node 3, which lies in the local XY
plane, along with nodes 1 and 2. The Z axis is determined from the vector cross product of the positive
X and Y axes.

The local Y direction is first defined at time  and its position is corrected at each cycle, taking into
account the mean rotation of the X axis. The Z axis is always orthogonal to the X and Y axes.

Deformations are computed with respect to the local coordinate system displaced and rotated to take
into account rigid body motion. Translational velocities  and angular velocities  with respect to the
global reference frame are expressed in the local frame.

Figure 70: Beam Element Local Axis

Beam Element Geometry
The beam geometry is user-defined by:

Cross section area

Area moment of inertia of cross section about local x axis
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Area moment of inertia of cross section about local y axis

Area moment of inertia of cross section about local z axis

The area moments of inertia about the y and z axes are concerned with bending. They can be calculated
using the relationships:

(597)

(598)

The area moment of inertia about the x axis concerns torsion. This is simply the summation of the
previous two moments of Ontario:

(599)

Minimum Time Step
The minimum time step for a beam element is determined using the following relation:

(600)

Where,

 is the speed of sound: ,

,

Beam Element Behavior
Radioss beam elements behave in four individual ways:

• Membrane or axial deformation

• Torsion

• Bending about the z axis
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• Bending about the y axis

Membrane Behavior
Membrane or axial behavior is the extension or compression of the beam element. The forces acting on
an element are shown in Figure 71.

Figure 71: Membrane Forces

The force rate vector for an element is calculated using the relation:

(601)

Where,

Elastic modulus

Beam element length

Nodal velocity in x direction

With the force rate equation, the force vector is determined using explicit time integration:

(602)

Torsion
Torsional deformation occurs when the beam is loaded with a moment M about the X axis as shown in
Figure 72.

Figure 72: Torsional Loading

The moment rate vector is computed by:

(603)
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Where,

Modulus of rigidity

Angular rotation rate

The moment about the X axis is found by explicit time integration:

(604)

Bending About Z-axis
Bending about the z axis involves a force in the y direction and a moment about the z axis as shown in
Figure 73.

Figure 73: Bending about the Z Axis

Two vector fields must be solved for forces and moments. The rate equations are:

(605)

(606)

Where,

,

 is the Poisson's ratio.

The factor  takes into account transverse shear.

The time integration for both is:
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(607)

(608)

Bending About Y-axis
Bending about the Y axis is identical to bending about the Z axis. A force in the Y direction and a
moment about the Z axis, shown in Figure 74, contribute to the elemental bending.

Figure 74: Bending about Y Axis

The rate equations are:

(609)

(610)

Where,  .

Like bending about the Z axis, the factor  introduces transverse shear.

With the time integration, the expression is:

(611)

(612)
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Material Properties
A beam element may have two different types of material property:

• Elastic

• Elasto-plastic

Elastic Behavior
The elastic beam is defined using material LAW1 which is a simple linear material law.

The cross-section of a beam is defined by its area  and three area moments of inertia ,  and .

An elastic beam can be defined with these four parameters. For accuracy and stability, the following
limitations should be respected:

(613)

(614)

(615)

(616)

Elasto-plastic Behavior
A global plasticity model is used.

The main assumption is that the beam cross section is full and rectangular. Optimal relations between
sections and section inertia are:

(617)

(618)

However, this model also gives good results for the circular or ellipsoidal cross-section. For tubular or H
cross-sections, plasticity will be approximated.

Recommendations:

(619)

(620)

(621)

(622)

Global Beam Plasticity
The elasto-plastic beam element is defined using material LAW2:
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(623)

The increment of plastic strain is:

(624)

The equivalent strain rate is derived from the total energy rate:

(625)

Yield stress:

(626)

If , you perform a radial return on the yield surface:

(627)

and for = x, y, z:

(628)

Inertia Computation
The computational method of inertia for some kinds of elements as beam is particular as the inertia
has to be transferred to the extremities of the beam. The nodal inertias are computed in function of
the material density , the cross-section area , the element length  and the moments of inertia

:

(629)
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One Degree of Freedom Spring Elements (TYPE4)
One degree of freedom (DOF) spring elements are defined as a TYPE4 property set. Three variations of
the element are possible:

• Spring only

• Dashpot (damper) only

• Spring and dashpot in parallel

These three configurations are shown in Figure 75 to Figure 77.

Figure 75: Spring Only

Figure 76: Dashpot Only
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Figure 77: Spring and Dashpot in Parallel

No material data card is required for spring elements. However, the stiffness  and equivalent viscous
damping coefficient  are required. The mass  is required if there is any spring translation.

There are three other options defining the type of spring stiffness with the hardening flag:

• Linear Stiffness

• Nonlinear Stiffness

• Nonlinear Elasto-Plastic Stiffness

Likewise, the damping can be either:

• Linear

• Nonlinear

A spring may also have zero length. However, a one DOF spring must have 2 nodes.

The forces applied on the nodes of a one DOF spring are always colinear with direction through both
nodes; refer to Figure 78.

Figure 78: Colinear Forces

Time Step
The time of a spring element depends on the values of stiffness, damping and mass.

For a spring only element:

(630)

For a dashpot only element:
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(631)

For a parallel spring and dashpot element:

(632)

The critical time step ensures that the stability of the explicit time integration is maintained, but it does
not ensure high accuracy of spring vibration behavior. Only two time steps are required during one
vibration period of a free spring to keep stability. However, if true sinusoidal reproduction is desired, the
time step should be reduced by a factor of at least 5.

If the spring is used to connect the two parts, the spring vibration period increases and the default
spring time step ensures stability and accuracy.

Linear Spring

Function number defining .

N1=0

The general linear spring is defined by constant mass, stiffness and damping. These are all required in
the property type definition. The relationship between force and spring displacement is given by:

(633)

Figure 79: Linear Force-Displacement Curve

The stability condition is given by Equation 632:

(634)
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Nonlinear Elastic Spring
Hardening flag

H=0

The hardening flag must be set to 0 for a nonlinear elastic spring. The only difference between linear
and nonlinear elastic spring elements is the stiffness definition. The mass and damping are defined as
constant. However, a function must be defined that relates the force, , to the displacement of the
spring, ( ). It is defined as:

(635)

Figure 80: Nonlinear Elastic Force-Displacement Curve

The stability criterion is the same as for the linear spring, but rather than being constant, the stiffness is
displacement dependent:

(636)

Where,

(637)

Nonlinear Elasto-plastic Spring: Isotropic Hardening
H=1

The hardening flag must be set to 1 in this case and  is defined by a function. Hardening is
isotropic if compression behavior is identical to tensile behavior:

(638)
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Figure 81: Isotropic Hardening Force-Displacement Curve

Nonlinear Elasto-plastic Spring: Decoupled Hardening
H=2

The hardening flag is set to 2 in this case and f  is defined by a function. The hardening is
decoupled for compression and tensile behavior:

(639)

Figure 82: Decoupled Hardening Force-Displacement Curve

Nonlinear Elasto-plastic Spring: Kinematic Hardening
H=4

The hardening flag is set to 4 in this case and  and  (respectively maximum and

minimum yield force) are defined by a function. The hardening is kinematic if maximum and minimum
yield curves are identical:
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(640)

Figure 83: Kinematic Hardening Force-Displacement Curve

Nonlinear Elasto-plastic Spring: Nonlinear Unloading
H=5

The hardening flag is set to 5 in this case and  and  (maximum yield force and residual
deformation, respectively) are defined by a function. Uncoupled hardening in compression and tensile
behavior with nonlinear unloading:

(641)

With .

Figure 84: Nonlinear Unloading Force-Displacement Curve

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.183

Nonlinear Dashpot
The input properties for a nonlinear dashpot are very close to that of a spring. The required values are:

• Mass, .

• A function defining the change in force with respect to the spring displacement. This must be equal
to unity:

• A function defining the change in force with spring displacement rate,

• The hardening flag in the input must be set to zero.

The relationship between force and spring displacement and displacement rate is:

(642)

A nonlinear dashpot property is shown in Figure 85.

Figure 85: Nonlinear Dashpot Force Curve

The stability condition for a nonlinear dashpot is given by:

(643)

Where,

(644)

Nonlinear Viscoelastic Spring
The input properties for a nonlinear viscoelastic spring are:

• Mass, 

• Equivalent viscous damping coefficient 

• A function defining the change in force with spring displacement
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• A function defining the change in force with spring displacement rate

The hardening flag in the input must be set to equal zero. The force relationship is given by:

(645)

Graphs of this relationship for various values of  are shown in Figure 86.

Figure 86: Visco-Elastic Spring Force-Displacement Curves

The stability condition is given by:

(646)

Where,

(647)

(648)

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.185

General Spring Elements (TYPE8)
General spring elements are defined as TYPE8 element property. They are mathematical elements, 
which have 6 DOF, three translational displacements and three rotational degrees of freedom. Each 
DOF is completely independent from the others. Spring displacements refer to either spring extension 
or compression. The stiffness is associated to each DOF. Directions can either be global or local. Local 
directions are defined with a fixed or moving skew frame. Global force equilibrium is respected, but 
without global moment equilibrium. Therefore, this type of spring is connected to the laboratory that 
applies the missing moments, unless the two defining nodes are not coincident.

Time Step
The time step calculation for general spring elements is the same as the calculation of the equivalent 
TYPE4 spring (Time Step).

Linear Spring
See Linear Spring; the explanation is the same as for spring TYPE4.

Nonlinear Elastic Spring
See Nonlinear Elastic Spring; the explanation is the same as for spring TYPE4.

Nonlinear Elasto-plastic Spring: Isotropic Hardening
See Nonlinear Elasto-plastic Spring: Isotropic Hardening; the explanation is the same as for spring TYPE 
4.

Nonlinear Elasto-plastic Spring: Decoupled Hardening
See Nonlinear Elasto-plastic Spring: Decoupled Hardening; the explanation is the same as for spring 
TYPE4.

Nonlinear Elasto-plastic Spring: Kinematic Hardening
See Nonlinear Elasto-plastic Spring: Kinematic Hardening; the explanation is the same as for spring 
TYPE4.

Nonlinear Elasto-plastic Spring: Nonlinear Unloading
See Nonlinear Elasto-plastic Spring: Nonlinear Unloading; the explanation is the same as for spring 
TYPE4.

Nonlinear Dashpot
See Nonlinear Dashpot; the explanation is the same as for spring TYPE4.

Nonlinear Viscoelastic Spring
See Nonlinear Viscoelastic Spring; the explanation is the same as for spring TYPE4.

Skew Frame Properties
To help understand the use of skew frames, the deformation in the local x direction of the spring will be 
considered. If the skew frame is fixed, deformation in the local X direction is shown in Figure 87:
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Figure 87: Fixed Skew Frame

The same local x direction deformation, with a moving skew frame, can be seen in Figure 88.

Figure 88: Moving Skew Frame

In both cases, the forces are in equilibrium, but the moments are not. If the first two nodes defining
the moving skew system are the same nodes as the two spring element nodes, the behavior becomes
exactly the same as that of a TYPE4 spring element. In this case the momentum equilibrium is
respected and local Y and Z deformations are always equal to zero.

Fixed Nodes

If one of the two nodes is completely fixed, the momentum equilibrium problem disappears. For
example, if node 1 is fixed, the force computation at node 2 is not dependent on the location of node 1.
The spring then becomes a spring between node 1 and the laboratory, as shown in Figure 89.
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Figure 89: Fixed Node - Fixed Skew Frame

It is generally recommended that a general spring element (TYPE8) be used only if one node is fixed
in all directions or if the two nodes are coincident. If the two nodes are coincident, the translational
stiffness' have to be large enough to ensure that the nodes remain near coincident during the
simulation.

Deformation Sign Convention
Positive and negative spring deformations are not defined with the variation of initial length. The
initial length can be equal to zero for all or a given direction. Therefore, it is not possible to define the
deformation sign with length variation.

The sign convention used is the following. A deformation is positive if displacement (or rotation) of node
2 minus the displacement of node 1 is positive. The same sign convention is used for all 6 degrees of
freedom.

(649)

(650)

Translational Forces
The translational forces that can be applied to a general spring element can be seen in Figure 90. For
each DOF (i = x, y, z), the force is calculated by:

(651)

Where,

Equivalent viscous damping coefficient

Force function related to spring displacement

The value of the displacement function depends on the type of general spring being modeled.
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Figure 90: Translational Forces

Linear Spring
If a linear general spring is being modeled, the translation forces are given by:

(652)

Where,

Stiffness or unloading stiffness (for elasto-plastic spring)

Nonlinear Spring
If a nonlinear general spring is being modeled, the translation forces are given by:

(653)

Where,

Function defining the change in force with spring displacement

Function defining the change in force with spring displacement
rate

Coefficient

Default = 1

Coefficient

Coefficient

Default = 1

Moments
Moments can be applied to a general spring element, as shown in Figure 91. For each DOF (i = x, y, z),
the moment is calculated by:

(654)
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Where,

Equivalent viscous damping coefficient

Force function related to spring rotation

The value of the rotation function depends on the type of general spring being modeled. Not all
functions and coefficients defining moments and rotations are of the same value as that used in the
translational force calculation.

Figure 91: General Spring Moments

Linear Spring
If a linear general spring is being modeled, the translation forces are given by:

(655)

Where,

Stiffness or unloading stiffness (for elasto-plastic spring)

Nonlinear Spring
If a nonlinear general spring is being modeled, the translation forces are given by:

(656)

Where,

Function defining the change in force with spring displacement

Function defining the change in force with spring displacement
rate

Coefficient

Default = 1

Coefficient
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Coefficient

Default = 1

Multidirectional Failure Criteria
Flag for rupture criteria: Ifail

Ifail=1

The rupture criteria flag is set to 1 in this case:

(657)

Where,

The rupture displacement in positive x direction if 

The rupture displacement in negative x direction if 

Graphs of this rupture criterion can be seen in Figure 92.

Figure 92: Multi-directional Failure Criteria Curves
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Pulley Type Spring Elements (TYPE12)
Pulley type springs are defined by TYPE12 element property. A general representation can be seen
in Figure 93. It is defined with three nodes, where node 2 is located at the pulley position. Other
properties such as stiffness, damping, nonlinear and plastic effects are the same as for the other spring
types, and are defined using the same format.

A deformable "rope" joins the three nodes, with the mass distribution as follows: one quarter at node 1;
one quarter at node 3 and one half at node 2.

Coulomb friction can be applied at node 2, which may also take into account the angle between the two
rope strands.

The two rope strands have to be long enough to avoid node 1 or node 3 sliding up to node 2 (the
pulley). If this occurs, either node 1 or 3 will be stopped at node 2, just as if there were a knot at the
end of the rope.

Figure 93: Pulley Type Spring Element Representation

Time Step
The time step is calculated using the relation:

(658)

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.192

This is the same as for TYPE4 spring elements, except that the stiffness is replaced with twice the 
stiffness to ensure stability with high friction coefficients.

Linear Spring
See Linear Spring; the explanation is the same as for spring TYPE4.

Nonlinear Elastic Spring
See Nonlinear Elastic Spring; the explanation is the same as for spring TYPE4.

Nonlinear Elasto-Plastic Spring - Isotropic Hardening
See Nonlinear Elasto-plastic Spring: Isotropic Hardening; the explanation is the same as for spring 
TYPE4.

Nonlinear Elasto-Plastic Spring - Decoupled Hardening
See Nonlinear Elasto-plastic Spring: Decoupled Hardening; the explanation is the same as for spring 
TYPE4.

Nonlinear Dashpot
See Nonlinear Dashpot; the explanation is the same as for spring TYPE4.

Friction Effects
Pulley type springs can be modeled with or without Coulomb friction effects.

Figure 94:
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Forces without Friction
Without friction, the forces are computed using:

(659)

Where,

Total rope elongation =  with 

Rope stiffness

Rope equivalent viscous damping

Forces with Coulomb Friction
If Coulomb friction is used, forces are corrected using:

(660)

(661)

(662)

(663)

(664)

Where,

Elongation of strand 1-2

Elongation of strand 2-3

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.194

Beam Type Spring Elements (TYPE13)
Beam type spring elements are defined as property TYPE13 elements. This type of spring element
functions as if it were a beam element. The six independent modes of deformation are:

• Traction / compression

• Torsion

• Bending (two modes)

• Shear (two modes)

Beam type springs only function if their length is not zero. A physical representation of a beam type
spring can be seen in Figure 93.

Figure 95: Representation of Beam Type Spring

Time Step

Translational Stiffness Time Step

Where,

Maximum translational stiffness

Translational damping
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Rotational Stiffness Time Step

 is the equivalent rotational stiffness: 

Where,

Maximum translational stiffness

Maximum rotational stiffness

Equivalent rotational damping: 

Where,

Maximum translational damping

Maximum rotational damping

Linear Spring
The properties required to define the spring characteristics are stiffness  and damping . Nonlinear 
and elasto-plastic properties can also be applied, for all degrees of freedom. The properties are of the 
same form as simple TYPE4 spring elements (One Degree of Freedom Spring Elements (TYPE4)).

See Linear Spring; the explanation is the same as for spring TYPE4.

Nonlinear Elastic Spring
See Nonlinear Elastic Spring; the explanation is the same as for spring TYPE4.

Nonlinear Elasto-Plastic Spring - Isotropic Hardening
See Nonlinear Elasto-plastic Spring: Isotropic Hardening; the explanation is the same as for spring 
TYPE4.

Nonlinear Elasto-Plastic Spring - Decoupled Hardening
See Nonlinear Elasto-plastic Spring: Decoupled Hardening; the explanation is the same as for spring 
TYPE4.

Nonlinear Elasto-Plastic Spring - Kinematic Hardening
See Nonlinear Elasto-plastic Spring: Kinematic Hardening; the explanation is the same as for spring 
TYPE4.
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Nonlinear Elasto-Plastic Spring - Nonlinear Unloading
See Nonlinear Elasto-plastic Spring: Nonlinear Unloading; the explanation is the same as for spring 
TYPE4.

Nonlinear Dashpot
See Nonlinear Dashpot; the explanation is the same as for spring TYPE4.

Nonlinear Visco-Elastic Spring
See Nonlinear Viscoelastic Spring; the explanation is the same as for spring TYPE4.

Skew Frame Properties
Beam type spring elements are best defined using three nodes (Figure 96). Nodes 1 and 2 are the two 
ends of the element and define the local X axis. Node 3 allows the local Y and Z axes to be defined. 
However, this node does not need to be supplied.

If all three nodes are defined, the local reference frame is calculated by:

(665)

(666)

(667)

If node 3 is not defined, the local skew frame that can be specified for the element is used to define the
Z axis. The X and Y axes are defined in the same manner as before.

(668)

If no skew frame and no third node are defined, the global Y axis is used to replace the Y skew axis. If
the Y skew axis is collinear with the local X axis, the local Y and Z axes are placed in a totally arbitrary
position. The local Y axis is defined at time zero, and is corrected at each cycle, taking into account the
mean X axis rotation.
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Figure 96: Element Definition

Sign Conventions
The sign convention used for defining positive displacements and forces can be seen in Figure 97.

Figure 97: Sign Conventions
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Tension
The tension component of the beam type spring element is independent of other forces. It is shown in
Figure 98. The tension at each node is computed by:

(669)

(670)

Where,

Relative displacement of nodes 1 and 2

Function defining the force-displacement relationship

It can be linear or nonlinear (Linear Spring to Nonlinear Elasto-plastic Spring: Decoupled 
Hardening).

Figure 98: Spring Tension

Shear - XY
Shear in the Y direction along the face perpendicular to the X axis is a combination of forces and
moments. This can be seen in Figure 99.

Figure 99: XY Shear Forces and Moments

There are two mechanisms that can cause shear. The first is the beam double bending as shown in
Figure 99. The second is shear generated by node displacement, as shown in Figure 100, where node 2
is displaced.
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Figure 100: Shear Due to Node Displacement

The forces and moments are calculated by:

(671)

(672)

(673)

(674)

Where,

 is the function defining the force-displacement relationship.

Shear - XZ
The XZ shear is orthogonal to the XY shear described in the previous section. The forces and moments
causing the shear can be seen in Figure 101.
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Figure 101: XZ Shear Forces and Moments

The forces and moments are calculated by:

(675)

(676)

(677)

(678)

Where,

 is the function defining the force-displacement relationship.

Torsion
Torsional forces, shown in Figure 102, are calculated using the relations:

(679)

(680)

Where,

 is the relative rotation of node 1 and 2.

 is the function defining the force-displacement relationship.
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Figure 102: Beam Type Spring Torsion

Bending About the Y Axis
Bending about the Y axis can be seen in Figure 103. The equations relating to the moments being
produced are calculated by:

(681)

(682)

Where,

 is the relative rotation of node 1 and 2.

 is the function defining the force-displacement relationship.

Figure 103: Bending about Y Axis

Bending About the Z Axis
The equations relating to the moment generated in a beam type spring element and the beam's
displacement, (Figure 104) is given by:

(683)

(684)

Where,

 is the relative rotation of node 1 and 2.
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 is the function defining the force-displacement relationship.

Figure 104: Bending about Z Axis

Multidirectional Failure Criteria
See Multidirectional Failure Criteria; the explanation is the same as for spring TYPE8.
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Multistrand Elements (TYPE28)
Multistrand elements are n-node springs where matter is assumed to slide through the nodes.

It could be used for belt modelization by taking nodes upon the dummy. Friction may be defined at all
or some nodes. When nodes are taken upon a dummy in order to modelize a belt, this allows friction to
be modelized between the belt and the dummy.

Internal Forces Computation

Figure 105: Internal Forces Computation

Nodes are numbered from 1 to , and strands are numbered from 1 to n-1 (strand  goes from node Nk
to node Nk+1).

Averaged Force
The averaged force in the multistrand is computed as:

Linear spring 

Nonlinear spring 

or, if  function identifier is 0:

(685)

or, if  function identifier is 0:

(686)

Where,

Engineering strain: 

Reference length of element
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Force into each Strand
The force into each strand  is computed as:

Where,  is computed an incremental way:

(687)

with  the length of the unconstrained strand ,  and .

Where,  is the unitary vector from node Nk to node Nk+1.

Assuming:

(688)

Where,  is the actual length of strand .

Therefore, Equation 687 reduces to:

(689)

Friction
Friction is expressed at the nodes: if  is the friction coefficient at node , the pulley friction at node Nk
is expressed as:

(690)

When equation Equation 690 is not satisfied,  is reset to .

All the  (k=1, n-1) are modified in order to satisfy all conditions upon  (k=2, n-1), plus
the following condition on the force integral along the multistrand element:

(691)

This process could fail to satisfy Equation 690 after the  modification, since no iteration
is made. However, in such a case one would expect the friction condition to be satisfied after a few time
steps.

Note:  Friction expressed upon strands (giving a friction coefficient  along strand ) is

related to pulley friction by adding a friction coefficient  upon each nodes Nk and Nk+1.
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Time Step
Stability of a multistrand element is expressed as:

(692)

with :

(693)

(694)

Internal Forces Computation

Figure 106:

Nodes are numbered from 1 to , and strands are numbered from 1 to n-1 (strand  goes from node Nk
to node Nk+1).

Averaged Force
The averaged force in the multistrand is computed as:

Linear spring 

Nonlinear spring 

or, if  function identifier is 0:

(695)

or, if  function identifier is 0:
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(696)

Where,  is engineering strain .

Where,  is the reference length of element.

Force Into Each Strand
The force into each strand  is computed as:

Where,  is computed an incremental way:

(697)

with  the length of the unconstrained strand ,  and .

Where,  is the unitary vector from node Nk to node Nk+1.

Assuming:

(698)

Where,  is the actual length of strand .

Therefore, Equation 697 reduces to:

(699)

Friction
Friction is expressed at the nodes: if  is the friction coefficient at node , the pulley friction at node Nk
is expressed as:

(700)

When equation Equation 700 is not satisfied,  is reset to .

All the  (k=1, n-1) are modified in order to satisfy all conditions upon  (k=2, n-1), plus
the following condition on the force integral along the multistrand element:

(701)
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This process could fail to satisfy Equation 700 after the  modification, since no iteration
is made. However, in such a case one would expect the friction condition to be satisfied after a few time
steps.

Note:  Friction expressed upon strands (giving a friction coefficient  along strand ) is

related to pulley friction by adding a friction coefficient  upon each nodes Nk and Nk+1.

Time Step
Stability of a multistrand element is expressed as:

(702)

with  and (assuming Equation 698):

(703)

(704)
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Spring Type Pretensioners (TYPE32)
Pretensioner expected behavior is as follows: before pretensioning, a piston is fixed in its initial
position; when activated, the piston is pushed and cannot slide once the piston has reached the end of
its slide, it is unable to slide further in any direction in the opposite direction from its actual position.

Pretensioner Model

Linear Model

Figure 107:

 is the spring stiffness before sensor activation. At sensor activation, the 2 input coefficients
among D1, STIF1, F1 and E1 determine the pretensioner characteristics. Let us recall the following
relations between the 4 coefficients:

(705)

 is also used as unloading stiffness before the end of the piston's slide, and as both loading and
unloading stiffness at the end of the piston's slide.  should be large enough to allow locking.
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Nonlinear Model

Figure 108:

 is spring stiffness before sensor activation. Depending on the input, pretensioning force is

defined as , with either , or , with  length of the spring at sensor
activation time and at  sensor activation time.

Similar use of  allows piston locking.

Force Computation

Let the pretensioning force  for a linear model, and  or

 or  for a nonlinear model.

The force into the pretensioner spring is computed as:

if, 

and  otherwise.
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Kinematic Constraints
Kinematic constraints are boundary conditions that are placed on nodal velocities. They are mutually
exclusive for each degree of freedom (DOF), and there can only be one constraint per DOF.

There are seven different types of kinematic constraints that can be applied to a model in Radioss:

1. Rigid Body

2. Initial static equilibrium

3. Boundary Condition

4. Tied Interface (TYPE2)

5. Rigid Wall

6. Rigid Link

7. Cylindrical Joint

Two kinematic conditions applied to the same node may be incompatible.

Rigid Body
A rigid body is defined by a main node and its associated secondary nodes. Mass and inertia may be
added to the initial main node location. The main node is then moved to the center of mass, taking into
account the main node and all secondary node masses. Figure 109 shows an idealized rigid body.

Figure 109: Idealized Rigid Body

Rigid Body Mass
The mass of the rigid body is calculated by:

(706)

The rigid body's center of mass is defined by:

(707)

(708)
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(709)

Where,

Main node mass

Secondary node masses

, , Coordinates of the mass center

Rigid Body Inertia
The six components of inertia of a rigid body are computed by:

(710)

(711)

(712)

(713)

(714)

(715)

Where,

Moment of rotational inertia in the  direction

Main node added inertia

Rigid Body Force And Moment Computation
The forces and moments acting on the rigid body are calculated by:

(716)

(717)

Where,
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Force vector at the main node

Force vector at the secondary nodes

Moment vector at the main node

Moment vector at the secondary nodes

Vector from secondary node to the center of mass

Resolving these into orthogonal components, the linear and rotational acceleration may be computed
as:

Linear Acceleration

(718)

Rotational Acceleration

(719)

(720)

(721)

Where,

Principal moments of inertia of the rigid body

Rotational accelerations in the principal inertia frame (reference
frame)

Rotational velocity in the principal inertia frame (reference frame)

Moments in the principal inertia frame (reference frame)

Time Integration
Time integration is performed to find velocities of the rigid body at the main node:

(722)

(723)

Where,  is the linear velocity vector. Rotational velocities are computed in the local reference frame.

The velocities of secondary nodes are computed by:
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(724)

(725)

Boundary Conditions
The boundary conditions given to secondary nodes are ignored. The rigid body has the boundary
conditions given to the main node only.

A kinematic condition is applied on each secondary node, for all directions. A secondary node is not
allowed to have any other kinematic conditions.

No kinematic condition is applied on the main node. However, the rotational velocities are computed in a
local reference frame. This reference frame is not compatible with all options imposing rotation such as
imposed velocity, rotational, rigid link.

The only exception concerns the rotational boundary conditions for which a special treatment is carried
out. Connecting shell, beam or spring with rotation stiffness to the main node, is not yet allowed either.

Tied Interface (TYPE2)
With a tied interface it is possible to connect rigidly a set of secondary nodes to a main surface.

Figure 110:

A tied interface (TYPE2) can be used to connect a fine mesh of Lagrangian elements to a coarse mesh
or two different kinds of meshes (for example, spring to shell contacts).
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Figure 111: Fine and Coarse Mesh

A main and a secondary surface are defined in the interface input cards. The contact between the two
surfaces is tied. No sliding or movement of the secondary nodes is allowed on the main surface. There
are no voids present either.

It is recommended that the main surface has a coarser mesh.

Accelerations and velocities of the main nodes are computed with forces and masses added from the
secondary nodes.

Kinematic constraint is applied on all secondary nodes. They remain at the same position on their main
segments.

Tied interfaces are useful in rivet modeling, where they are used to connect springs to a shell or solid
mesh.

Spotweld Formulation
The secondary node is rigidly connected to the main surface. Two formulations are available to describe
this connection:

• Default formulation

• Optimized formulation

Default Spotweld Formulation
When Spotflag=0, the spotweld formulation is a default formulation:

• Based on element shape functions

• Generating hourglass with under integrated elements

• Providing a connection stiffness function of secondary node localization

• Recommended with full integrated shells (mainr)
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• Recommended for connecting brick secondary nodes to brick main segments (mesh transition
without rotational freedom)

Forces and moments transfer from secondary to main nodes is described in Figure 112:

Figure 112: Default Tied Interface (TYPE2)

The mass of the secondary node is transferred to the main nodes using the position of the projection on
the segment and linear interpolation functions:

(726)

Where,

Denotes the position of the secondary point

Weight function obtained by the interpolation equations

Figure 113: Transfer of Secondary Node Efforts to the Main Nodes (Spotflag=0)
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The inertia of the secondary node is also transferred to the main nodes by taking into account the
distance  between the secondary node and the main surface:

(727)

The term  may increase the total inertia of the model especially when the secondary node
is far from the main surface.

The stability conditions are written on the main nodes:

(728)

The dynamic equilibrium of each main node is then studied and the nodal accelerations are computed. 
Then the velocities at main nodes can be obtained and updated to compute the velocity of the projected 
point  by:

(729)

The velocity of the secondary node is then obtained:

(730)

With this formulation, the added inertia may be very large especially when the secondary node is far
from the mean plan of the main element.

Optimized Spotweld Formulation
When Spotflag=1, the spotweld formulation is an optimized formulation:

• Based on element mean rigid motion (that is, without exciting deformation modes)

• Having no hourglass problem

• Having constant connection stiffness

• Recommended with under integrated shells (main)

• Recommended for connecting beam, spring and shell secondary nodes to brick main segments

This spotweld formulation is optimized for spotwelds or rivets.

The secondary node is joined to the main segment barycenter as shown in Figure 114.
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Figure 114: Relation Between Secondary Node and Main Node

Forces and moments transfer from secondary to main nodes is described in Figure 115. The force
applied at the secondary node  is redistributed uniformly to the main nodes. In this way, only

translational mode is excited. The moment  is redistributed to the main nodes by four
forces  such that:

(731)

Where,

Normal vector to the segment
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Figure 115: Optimized Tied Interface (TYPE2)

In this formulation the mass of the secondary node is equally distributed to the main nodes. In
conformity with effort transmission, the spherical inertia is computed with respect to the center of the
main element :

(732)

Where,  is distance from the secondary node to the center of element. In order to insure the stability
condition without reduction in the time step, the inertia of the secondary node is transferred to the main
nodes by an equivalent nodal mass computed by:

(733)
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Closest Main Segment Formulation
The main segment is found via 2 formulations:

• Old formulation

• New improved formulation

Old Search of Closest Main Segment Formulation
When Isearch= 1, the search of closest main segment was based on the old formulation.

A box with a side equal to dsearch (input) is built to search the main node contained within this box.

Figure 116: Old Search of Closest Main Segment

The distance between each main node in the box and the secondary node is computed.

The main node giving the minimum distance (dmin) is retained.

The segment is chosen with the selected node, (if the selected node belongs to 2 segments, one is
selected at random).

Figure 117: Old Search of Closest Main Segment

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.220

New Improved Search of Closest Main Segment Formulation
When Isearch=2, the search of closest main segment is based on the new improved formulation; a box
including the main surface is built.

The dichotomy principle is applied to this box as long as the box contains only one main node and as
long as the box side is equal to dsearch.

Figure 118: New Improved Search of Closest Main Segment

There are two solutions to compute the minimum distance, dmin:

1. The secondary node is an internal node for the main segment, as shown in Figure 119.

The secondary node is projected orthogonally on the main segment to give a distance that may be
compared with other distances. Select the minimum distance:

Figure 119: Orthogonal Projection on the Main Segment

The segment that provides the minimum distance is chosen for the following computation.

2. The secondary node is a node external to the main segment, as shown in Figure 120.

The distance selected is that between the secondary node and the nearest main node.
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Figure 120: Nearest Main Node

The segment is chosen using the selected node, (if the selected node belongs to 2 segments, one is
chosen at random).

Rigid Wall
There are four types of rigid walls available in Radioss:

1. Infinite Plane

2. Infinite Cylinder with Diameter D

3. Sphere with Diameter D

4. Parallelogram

Each wall can be fixed or moving.

A kinematic condition is applied on each impacted secondary node. Therefore, a secondary node cannot
have another kinematic condition; unless these conditions are applied in orthogonal directions.

Fixed Rigid Wall
A fixed wall is a pure kinematic option on all impacted secondary nodes. It is defined using two points,
M and M1. These define the normal, as shown in Figure 121.
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Figure 121: Fixed Rigid Wall Definition

Moving Rigid Wall
A moving rigid wall is defined by a node number, N, and a point, M1. This allows a normal to be
calculated, as shown in Figure 122.

The motion of node N can be specified with fixed velocity, or with an initial velocity. For simplification,
an initial velocity and a mass may be given at the wall definition level.

Figure 122: Moving Rigid Wall Definition

A moving wall is a main secondary option. Main node defines the wall position at each time step and
imposes velocity on impacted secondary nodes. Impacted secondary node forces are applied to the
main node. The secondary node forces are computed with momentum conservation. The mass of the
secondary nodes is not transmitted to the main node, assuming a large rigid wall mass compared to the
impacted secondary node mass.
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Secondary Node Penetration
Secondary node penetration must be checked. Figure 123 shows how penetration is checked.

Figure 123: Secondary Node Penetration

If penetration occurs, a new velocity must be computed. This new velocity is computed using one of
three possible situations.

1. Sliding

2. Sliding with Friction

3. Tied

For a node which is allowed to slide along the face of the rigid wall, the new velocity  is given by:

(734)

A friction coefficient can be applied between a sliding node and the rigid wall. The friction models are 
developed in Interface Friction.

For a node that is defined as tied, once the secondary node contacts the rigid wall, its velocity is the 
same as that of the wall. The node and the wall are tied. Therefore:

(735)

Rigid Wall Impact Force
The force exerted by nodes impacting onto a rigid wall is found by calculating the impulse by:

(736)

Where,

Number of penetrated secondary nodes

Wall velocity

The force can then be calculated by the rate of change in the impulse:

(737)

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.224

Rigid Link
A rigid link imposes the same velocity on all secondary nodes in one or more directions. The directions
are defined to a skew or global frame. Figure 124 displays a rigid link.

Figure 124: Rigid Link Model

The velocity of the group of nodes rigidly linked together is computed using momentum conservation 
(Section Definition, Equation 740). However, no global moment equilibrium is respected.

(738)

Angular velocity for the ith DOF with respect to the global or a skew reference frame is:

(739)

For non-coincident nodes, no rigid body motion is possible.

A rigid link is equivalent to an infinitely stiff spring TYPE8.
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Section Definition
A section is a cut in the structure where forces and moments will be computed and stored in output
files.

It is defined by:

• A cutting plane

• A reference point to compute forces

• A direction of the section.

Figure 125: Definition of a Section for an Oriented Solid

In Radioss the cutting plane is defined by a group of elements and its orientation by a group of nodes
as shown in Figure 126.

Figure 126: Definition of a Section for a Shell Mesh

Then, a point is defined for the center of rotation of the section and a reference frame is attached to
this point to compute the internal efforts.
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Figure 127: Center of Rotation and its Associated Frame for a Section

The resultant of all forces applied to the elements and its application point are computed by:

(740)

(741)

Figure 128: Resultant of Force and Moment for a Node I with the Rotation Point O
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Linear Stability
The stability of solution concerns the evolution of a process subjected to small perturbations. A process
is considered to be stable if small perturbations of initial data result in small changes in the solution.
The theory of stability can be applied to a variety of computational problems.

The numerical stability of the time integration schemes is widely discussed in the Theory Manual.
Here, the stability of an equilibrium state for an elastic system is studied. The material stability will be
presented in an upcoming version of this manual.

The stability of an equilibrium state is of considerable interest. It is determined by examining whether
perturbations applied to that equilibrium state grow. A famous example of stable and unstable cases
is often given in the literature. It concerns a ball deposited on three kinds of surfaces as shown in
Figure 129.

Figure 129: Schematic Presentation of Stability

It is clear that the state (b) represents an unstable case since a small change in the position of the ball
results the rolling either to the right or to the left. It is worthwhile to mention here that stability and
equilibrium notions are quite different. A system in static equilibrium may be in unstable state and a
system in evolution is not necessary unstable.

A good understanding of the stability of equilibrium can be obtained by studying the load-deflection
curves. A typical behavior of a structure in buckling is given in Figure 130. The load-deflection curves
are slightly different for systems with and without imperfection. In the first case, the structure is
loaded until the bifurcation point B corresponding to the first critical load level. Then, two solutions are
mathematically acceptable: response without buckling (BA), response after buckling (BC).

In the case of structures with imperfection, no bifurcation point is observed. The behavior before
buckling is not linear and the turning point D is the limit point in which the slope of the curve changes
sign. If the behavior before buckling is linear or the nonlinearity before the limit point is not high,
the linear stability technique can be used to determine the critical load. The method is based on the
perturbation of the equilibrium state. As the perturbations are small, the linearized model is used. The
method is detailed in the following section.
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Figure 130: Bifurcation and Limit Points in Load-Deflection Curves for System With and Without Imperfections
B: Bifurcation point, D: Limit point

General Theory of Linear Stability
The principle of virtual power and the minimum of total potential energy are the various mathematical 
models largely used in Finite Element Method. Under small-perturbations assumption these notions can 
be applied to the equilibrium state in order to study the stability of the system.

Consider the example of the ball on the three kinds of surfaces as shown in Linear Stability,
Figure 129. If  is the total potential energy, the equilibrium is obtained by:

Static equilibrium

(742)

Applying a small perturbation to the equilibrium state, the variation of the total potential energy can be 
written as:

(743)

Where,  is the second variation of the potential energy. Then, the three cases can be distinguished:

Stable (case a)

(744)

The energy increases around the equilibrium state.

Unstable (case b)

(745)

The energy decreases around the equilibrium state.

Neutral stability (case c)

(746)

The energy remains unchanged around the equilibrium state.

The last case is used to compute the critical loads:

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.229

(747)

Where, the indices  and  denote the interval and external parts of the total potential energy. After
the application of the application of finite element method, the stability equation in a discrete form can
be written as:

(748)

(749)

(750)

Where,

Designate element

Vector of the external forces

Virtual displacement vector

Green-Lagrange strain tensor

Piola-Kirchhoff stress tensor

The equation Equation 750 is written as a function of X, the displacement between the initial

configuration  and the critical state . If  and  are the linear response obtained after application

the load  in the initial configuration , in linear theory of stability suppose that the solution in  for

the critical load  is proportional to the linear response:

(751)

If you admit that the loading does not depend on the deformation state, the hypothesis  is

 for the linear part of Green-then true. Using  Kinematic  Description, Equation 62  and  denoting 

Lagrange strain tensor and  for the nonlinear part, you have:

(752)

Putting this equation in Equation 750, you obtain:
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(753)

Or

(754)

Where,

Stiffness matrix

Initial displacement matrix

Initial stress or geometrical stiffness matrix

Elastic matrix

The linear theory of stability allows estimating the critical loads and their associated modes by resolving
an eigenvalue problem:

(755)

Linear stability assumes the linearity of behavior before buckling. If a system is highly nonlinear in the

neighborhood of the initial state , moderate perturbations may lead to unstable growth. In addition, 
in case of path-dependent materials, the use of method is not conclusive from an engineering point of 
view. However, the method is simple and provides generally good estimations of limit points.

The resolution procedure consists in two main steps. First, the linear solution for the equilibrium of the

system under the application of the load  is obtained. Then, Equation 755 is resolved to compute 
the first desired critical loads and modes. The methods to compute the eigen values are those explained 
in Large Scale Eigen Value Computation.
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Interfaces
Interfaces solve the contact and impact conditions between two parts of a model.

Contact-impact problems are among the most difficult nonlinear problems to solve as they introduce
discontinuities in the velocity time histories. Prior to the contact, the normal velocities of the two
bodies which come into contact are not equal, while after impact the normal velocities must be
consistent with the impenetrability condition. In the same way, the tangential velocities along interfaces
are discontinuous when stick-slip behavior occurs in friction models. These discontinuities in time
complicate the integration of governing equations and influence performance of numerical methods.

Central to the contact-impact problem is the condition of impenetrability. This condition states that
bodies in contact cannot overlap or that their intersection remains empty. The difficulty with the
impenetrability condition is that it cannot be expressed in terms of displacements as it is not possible to
anticipate which parts of the bodies will come into contact. For this reason, it is convenient to express
the impenetrability condition in a rate form at each cycle of the process. This condition can be written
as:

(756)

on the contact surface  common to the two bodies.

 and  are respectively the normal velocities in the two bodies in contact.  is the rate of

interpenetration.

Equation 756 simply expresses that when two bodies are in contact, they must either remain in contact
and , or they must separate and .

On the other hand, the tractions must observe the balance of momentum across the contact interface.
This requires that the sum of the tractions on the two bodies vanish:

(757)

Normal tractions are assumed compressive, which can be stated as:

(758)

Equation 756 and Equation 757 can be combined in a single equation stating that, . This

condition simply expresses that the contact forces do not create work. If the two bodies are in contact,
the interpenetration rate vanishes. On the other hand, if the two bodies are separated  but the

surface tractions vanish. As a result, the product of the surface tractions and the interpenetration rate
disappear in all cases.

The impenetrability condition is expressed as an inequality constraint, the condition:

(759)

can also be seen as the Kuhn-Tucker condition associated with the optimization problem consisting 
in minimizing the total energy (Virtual Power Principle, Equation 99) subject to the inequality 
constraint Lagrange Multiplier Method, Equation 756.

In practice, the solution to a contact problem entails in three steps:
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• First, it is necessary to find for each point those points in the opposite body which will possibly
come into contact. This is the geometrical recognition phase.

• The second phase is to check whether or not the bodies are in contact and, if the bodies are
in contact, if they are sticking or slipping. This step makes use of the geometrical information
computed in the first phase.

• The last step will be to compute a satisfactory state of contact.

The geometrical recognition phase is dependent on the type of interface. This will be discussed below in
parallel with the description of interfaces. On the other hand, structural problems with contact-impact
conditions lead to constrained optimization problems, in which the objective function to be minimized is
the virtual power subject to the contact-impact conditions. There are conventionally two approaches to
solving such mathematical programming problems:

• the Lagrange multiplier method

• the Penalty method.

Both methods are used in Radioss.

Lagrange Multiplier Method

Lagrange multipliers can be used to find the extreme of a multivariate function  subject to

the constraint 

Where,  and  are functions with continuous first partial derivatives on the open set containing the
constraint curve, and  at any point on the curve (where  is the gradient).

To find the extreme, write:

(760)

But, because  is being held constant, it is also true that

(761)

So multiply Equation 761 by the as yet undetermined parameter  and add to Equation 761,

(762)

Note that the differentials are all independent, so any combination of them can be set equal to 0 and
the remainder must still give zero. This requires that:

(763)

for all k = 1, ..., n, and the constant   is called the Lagrange multiplier. For multiple constraints,  ,

  , ...,

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.233

(764)

The Lagrange multiplier method can be applied to contact-impact problems. In this case, the
multivariate function is the expression of total energy subjected to the contact conditions:

(765)

(766)

Where,  are the global vectors of DOF. The application of Lagrange multiplier method to the
previous equations gives the weak form as:

(767)

with

(768)

This leads to:

(769)

The Lagrange multipliers are physically interpreted as surface tractions. The equivalence of the modified 
virtual power principle with the momentum equation, the traction boundary conditions and the contact

conditions (impenetrability and surface tractions) can be easily demonstrated. 88

It is emphasized that the above weak form is an inequality. In the discretized form, the Lagrange 
multiplier fields will be discretized and the restriction of the normal surface traction to be compressive 
will result from constraints on the trial set of Lagrange multipliers.

Penalty Method
In the solution of constrained optimization problems, penalty methods consist in replacing the 
constrained optimization problem with a sequence of unconstrained optimization problems. The virtual 
power continues to be minimized so as to find the stationary condition, but a penalty term is added to 
Virtual Power Term Names, Equation 99 so as to impose the impenetrability condition:

(770)

Where,

 if 

88. Engelmann B.E. and Whirley R.G., “A new elastoplastic shell element formulation for DYNA3D”,
Report ugrl-jc-104826, Lawrence Livermore National Laboratory, 1990.
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 if 

 is an arbitrary parameter known as the penalty parameter. The penalty function  is an arbitrary 
function of the interpenetration and its rate. It is emphasized that the weak form, including the virtual 
power and the penalty term Penalty Method, Equation 770 is not an inequality form. The penalty 
function will be defined in the description of interfaces.

Interface Overview
There are several different interface types available in Radioss. A brief overview of the different types 
and their applications.

TYPE1 Tied contact (boundary) between an ALE part and a Lagrangian
part.

TYPE2 Tied contact

TYPE3 Used to simulate impacts and contacts on shell and solid
elements. Surfaces should be simply convex.

TYPE5 Used to simulate impacts and contacts between a main surface
and a list of secondary nodes. Best suited for beam, truss and
spring impacts on a surface.

TYPE6 Used to simulate impacts and contacts between two rigid surfaces.

TYPE7 A general interface that removes the limitations of TYPE3 and
TYPE5.

TYPE8 Drawbead contact for stamping applications.

TYPE9 ALE Lagrange with void opening and free surface.

TYPE10 Tied after impact with or without rebound.

TYPE11 Edge to edge or line to line impact.

TYPE12 Connects 2 fluid meshes with free, tied or periodic options.

ALE or EULER or LAG/ALE or EULER or LAG.

TYPE14 Ellipsoidal surfaces to nodes contact.

TYPE15 Ellipsoidal surfaces to segments contact.

TYPE18 Coupling between a Lagrangian material and an ALE material.

TYPE19 General contact interface.

Node to segment contact and Edge to Edge contact.

Equivalent to one interface TYPE7 + one interface TYPE11.
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TYPE20 Single surface, surface to surface with optional Edge to Edge
contact.

No time step condition with soft penalty

TYPE21 Specific interface between a non-deformable main surface and a
secondary surface designed for stamping.

Each of these interfaces was developed for a specific application field. However, this application field is
not the only selection criteria. Some limitations of the different algorithms used in each interface can
also determine the choice.

The algorithm limitations concern mainly the search of the impacted segment. This search may be
performed directly (TYPE7, TYPE10, and TYPE11 interfaces), or via a search of the nearest node (TYPE3,
TYPE5, and TYPE6 interfaces).

Apart from the limitation of the nearest node search, some limitations exist for the choice between the
segments connected to the nearest node. These limitations are the same for TYPE3, TYPE5 and TYPE6
interfaces.

TYPE3, TYPE5 and TYPE6 interfaces also have some limitations due to the orientation of the normal
segment.

TYPE7 interface was written to emulate TYPE3 and TYPE5 interfaces without algorithm limitations. With
this interface, each node can impact one or more segments, on both sides, on the edges or on the
corners of the segments. The only limitation to this interface concerns high impact speed and/or small
gap. For these situations the interface will continue to work properly, but the time step can decrease
dramatically.

TYPE3, TYPE5 and TYPE7 interfaces are compatible with all Radioss kinematic options.

TYPE1 interface is a special option used with solid elements to provide mesh transition. TYPE1 interface
is used to connect a Lagrangian and an ALE mesh.

TYPE2 interface is used to connect a fine and a coarse Lagrangian mesh.

All other interface types (TYPE3, TYPE4, TYPE5, TYPE6 and TYPE7) are used to simulate impacts and
contacts.

A node may belong to several interfaces.

Surface (Segment) Definition
Surfaces or segments may be defined in different ways, depending on the type of element being used.
For a four node three dimensional shell element, an element is a segment.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.236

Figure 131: Shell Elements Segment

For a brick element, a segment is one face of the brick.

Figure 132: Brick Element Segment

For a two dimensional element, a segment is one side.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.237

Figure 133: 2D Element Segment

Tied Interface (TYPE2)
Refer to Kinematic Constraints for a detailed description.

Auto Contacts
The physics of contacts is involved in various phenomena, such as the impact of two billiard balls, the 
contact between two gears, the impact of a missile, the crash of a car, etc. While the physics of the 
contact itself is the same in all these cases, the main resulting phenomena are not.

In the case of billiard balls, it is the shock itself that is important and it will then be necessary to 
simulate perfectly the wave propagation. In the case of gears, it is the contact pressure that has to be 
evaluated precisely.

The quality of these simulations depends mainly on the quality of the models (spatial and temporal 
discretization) and on the choice of the integration scheme. In structural crash or vehicle crash 
simulations, the majority of the contacts result from the buckling of tubular structures and metal 
sheets. Modeling the structure using shell and plate finite elements, the physics of the contact cannot 
be described in a precise way. The reflection of the waves in the thickness is not captured and the 
distribution of contact pressures in the thickness is not taken into account. The peculiarity of the 
contacts occurring during the crash of a structure lies more in the complexity of the structural folding 
and the important number of contact zones than in the description of the impact or the contact itself.

During a contact between two solid bodies, the surface in contact is usually continuous and only slightly 
curved. On the other hand, during the buckling of a structure, the contacts, resulting from sheet 
folding, are many and complex. Globally, the contact is no longer between two identified surfaces,
but in a surface impacting on itself. The algorithms able to describe this type of contact are “auto-
impacting” algorithms. Especially adapted to shell structures, they still can be used to simulate the 
impact of the external surface of a solid (3D element) on itself.

The main capabilities of the auto-contact can be summarized by the following functionalities:
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Figure 134:

• Capacity to make each point of the surface impact on itself

• Capacity to impact on both sides of a segment (internal and external)

• Possibility for a point of the surface to be wedged between an upper and a lower part

• Processing of very strong concavities (will complete folding)

• Reversibility of the contact, thereby authorizing unfolding after folding or the simulation of airbag
deployment.

Contacts Modeling
The contacts occurring between two surfaces of a finite element mesh can be modeled in different
ways:

• Contact nodes to nodes

The contact is detected based on the criteria of distance between the two nodes. After detection of
contact, a kinematic condition or penalty formulation method prevents the penetration attaining the
rebound point ("pin-ball" formulation).
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Figure 135: Contact Nodes to Surface

The contact is detected based on the criteria of distance between a group of nodes and a meshed
surface. The distance between a node and the surface of a triangular or quadrangular segment is
evaluated, locally.

Symmetrized contact nodes to surface
The symmetrization of the previous formulation makes it possible to model a contact between two
surfaces, as the group of nodes of the first surface can impact the second group and vice-versa.
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Figure 136: Contact Edges to Edges

This formulation makes it possible to model contacts between wire framed structures or between
edges of two-dimensional structures. Contact is detected based on the criteria of distance
between two segments. This formulation can also be used to describe in an approximate way the
surface to surface contact.

Surface to surface contact
Several approaches can be used to detect the contact between two surfaces. If the two surfaces
are quadrangular, the exact calculation of the contact can be complex and quite expensive. An
approximate solution may be made by combining the two previous formulations. By evaluating all
the contacts of nodes to surface, as well as the edge to edge contacts, the only approximation is
the partial consideration of the segment curvature.

Choice of a Formulation for Auto Impact
In the case of a surface impacting on itself, it is possible to use one of the previous formulations if
considering certain specificities of the auto-contact. The choice of a formulation will depend on two
essential criteria: the quality of the description of the contact and the robustness of the formulation.
The selected formulation has to provide results that are as precise as possible in a normal operational
situation, while still working in a satisfying way in extreme situations. The node-to-node method
provides the best robustness, but the quality of the description is not sufficient enough to simulate in a
realistic way those contacts occurring during the buckling of a structure.
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The node-to-surface contact is the best compromise. However, it has some limitations, the main one
being that it cannot detect contacts occurring on the edges of a segment. The most critical situation
occurs when this leads to the locking of a part of one surface to another. This phenomenon, being
irreversible, might create irrelevant behavior during the deployment of a structure (example, airbag
deployment). An example of a locking situation is shown in the above images. To correct this, it is
possible to associate a node-to-surface formulation to an edge-to-edge formulation.

Figure 137:

Algorithms for Impact Candidates
During the impact of one part on another, it is possible to predict which node will impact on a certain
segment. In the case of the buckling of a shell structure, such as a tube, it is impossible to predict
where different contacts will occur. It is thus necessary to have a fairly general and powerful algorithm
that is able to search for impact candidates.

The detail of the formulation of an algorithm, able to search for impact candidates, will depend on
the choice of the contact formulation described in the previous chapter. In a node-to-node contact
formulation, it is necessary to find for each node the closest node, whose distance is lower than
a certain value. In the case of the edge-to-edge formulation, the search for neighboring entities
concerns the edges and not the nodes. However, we should note that in some algorithms, the search
for neighboring edges or segments is obtained by a node proximity calculation. Moreover, an algorithm
designed to search for proximity of nodes can be adapted in order to transform it into a search for
proximity of segments or even for a mixed proximity of nodes and segments.

It is possible to distinguish four main types of search for proximity:

• Direct search

• Topologically limited search

• Algorithms of sorting by boxes (bucket sort)

• Algorithms of fast sort (octree, quick sort)

When using direct search, at each cycle the distance is calculated from each entity (node, segment,
edge) to all others. The quadratic cost (N*N) of this algorithm makes it unusable in case of auto-
contact.
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Topologically Limited Search
In a simulation in fast dynamics, geometrical modifications of the structure are not very important
during one cycle of calculation. It is then possible to consider neighborhood search algorithms using
the information of the previous cycle of computation. If for a node the nearest segment is known at the
previous cycle, it is then possible to limit the search for this node to the segments topologically close
to the previous one (the segments having at least one common node). Furthermore, if an algorithm
based on the search of neighboring nodes is used, then the search may be limited to the nodes of the
segments connected to the previous closest node.

Figure 138:

It remains however necessary to do a complete search before the first cycle of calculation. We will also
see that this algorithm presents significant restrictions that limit its use to sliding surfaces (it cannot be
used for auto-impacting surfaces).

The cost of this algorithm is linear (N), except at the first cycle of computation, during which it is
quadratic (N*N). The combination of this algorithm with one of the following two is also possible.

Bucket Sort
Sorting by boxes consists in dividing space in to steady boxes (not necessarily identical) in which the
nodes are placed. The search for closest nodes is limited to one box and the twenty-six neighboring
boxes. The cost of this sorting is linear (N) for regular meshes. For irregular meshes, an adaptation
is possible but its interest becomes less interesting compared with the next solution. This three-
dimensional sorting is of the same kind as one-way sorting with direct addressing or needle sort.
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Figure 139:

In order to limit the memory space needed, we first count the number of nodes in each box, thereby
making it possible to limit the filling of those boxes that are not empty. In the two-dimensional
example shown above, nodes are arranged in the boxes as described in the following table. With this
arrangement, the calculation of distances between nodes of the same box is not a problem. On the
other hand, taking into account the nodes of neighboring boxes is not straightforward, especially in
the horizontal direction (if the arrangement is first made vertically, as in this case). One solution is to
consider three columns of boxes at a time. Another solution, more powerful but using more memory,
would be for each box to contain the nodes already located there plus those belonging to neighboring
boxes. This is shown in the third series of columns in the following table. Once this sorting has been
performed, the last step is to calculate the distances between the different nodes of a box, followed by
the distance between these nodes and those of the neighboring box. In box 0,3 for example, fifteen
distances must be calculated.

11-14, 11-3, 11-8, 11-12, 11-15, 11-16, 11-17, 11-18, 14-3, 14-8,

14-12, 14-15, 14-16, 14-17, 14-18.

Box Nodes Nodes of the Neighboring Box

0,0 26 21

0,1 21 15 16 17 22 26

0,2 16 8 11 12 14 15 17 21 22 26

0,3 11 14 3 8 12 15 16 17 18

1,1 22 15 16 17 19 21 23 26

1,2 15 17 8 11 12 13 14 18 16 19 21 22 23

1,3 8 12 18 3 5 11 13 14 15 16 17 19
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Box Nodes Nodes of the Neighboring Box

1,4 3 1 2 5 11 12 13 14 18

1,5 1 2 3 5

2,1 23 15 17 19 22

2,2 19 8 9 10 12 13 15 17 18 22 23

2,3 13 3 5 8 9 10 12 15 17 18 19

2,4 5 1 2 3 8 9 10 12 13 18

2,5 2 1 3 5

3,3 9 10 4 5 6 13 19 20

4,1 24 20 25 27

4,2 20 9 10 24

4,4 4 6 9 10

5,0 25 27 24

In this example you have considered a search based on nodal proximity. It is possible to adapt this
algorithm in order to arrange segments or even edges in the boxes. It will be necessary however to
reserve more memory, for a segment can overlap several boxes.

Quick Sort
The octree is a three-dimensional adaptation of fast sorting. Space is divided into eight boxes, each
one being subdivided into eight boxes. In this way a tree with eight branches per node is obtained.
An alternative to the "octree", closer to the quick sort, consists in successively dividing space in two
equal parts, according to directions X, Y, or Z. This operation is renewed for each of the two resulting
parts as long as some segments or nodes are found in the space concerned. The main advantage
to this algorithm, as compared to sorting by boxes, lies in the fact that its performance is affected
neither by the irregularity of the mesh, nor by the irregularity of the model. The cost of this algorithm is
logarithmic (N*Log(N)).
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Figure 140: Possible Impact of Node n1

In order to illustrate the 3D quick sort, consider a search for node-segment proximity. At each step,
space is successively divided into two equal parts, according to directions X, Y or Z. The group of nodes
is thus separated into two subsets. We thereby obtain a tree organization with two branches per node.
After each division, a check is made to determine whether the first of the two boxes must be divided. If
so, it will be divided similar to the previous one. If not, the next branch is then checked. This recursive
algorithm is identical to the regular fast sorting one.

The segments are also sorted using the spatial pivot. The result of the test can lead to three
possibilities: the segment is on the left side of the pivot, on the right side of the pivot or astride the
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pivot. In the first two cases, the segments are treated similar to the nodes, but in the third situation,
the segment is duplicated and placed on both sides.

Among the different criteria that can be used to stop the division are the following situations:

• The box does not contain any nodes

• The box does not contain any segments

• The box contains sufficiently few elements that the calculation of distance of all the couples is more
economical

• The dimension of the box is smaller than a threshold

Contact Processing
After the choice of a good sorting algorithm, a formulation for the handling of the contact has to be
selected. One can distinguish three techniques ensuring the conditions of continuity during the contact:

• Kinematic formulation of type main/secondary.

In a contact node to segment, the secondary node transmits its mass and force to the main
segment and the segment transmits its speed to the node. This formulation is particularly adapted
to an explicit integration scheme, provided that the nodes do not belong to a main segment. A
node cannot be at the same time secondary and main. This approach then cannot be used in the
case of auto-contact.

• The Lagrange multipliers ensure kinematic continuity at contact.

There is no restriction as in the previous formulation but the system of equations cannot be solved
in an explicit way. The Lagrange multiplier matrix has to be reversed at each cycle of computation.
In the case of auto-contact, the number of points in contact can become significant and this
formulation then becomes quite expensive.

• Penalty methods do not ensure kinematic contact continuity, but they add springs at the contact
spots.

The first advantage to this formulation is its natural integration in an explicit code. Each contact
is treated like an element and integrates itself perfectly into the code architecture, even if the
programming is vectorial and parallel. Contrary to the kinematic formulations, the penalty method
ensures the conservation of momentum and kinetic energy during impact.

The formulation used in Radioss is a penalty type formulation. The choice of the penalty factor is a
major aspect of this method. In order to respect kinematic continuity, the penalty spring must be as
rigid as possible. If the impedance of the interface becomes higher than those of the structures in
contact, some numerical rebounds (high frequency) can occur. To ensure the stability of the integration
diagram, without having additional constraints, this rigidity must be low. With a too low penalty, the
penetration of the nodes becomes too strong and the geometrical continuity is no longer ensured.

The compromise selected consists in using a stiffness of the same order of magnitude than the stiffness
of the elements in contact. This stiffness is nonlinear and increases with the penetration, so that a node
is not allowed to cross the surface.

These choices provide a clear representation of physics, without numerical generation of noise, but
require the contact stiffness in the calculation of the criteria of stability of the explicit scheme to be
taken into account.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.247

Contact Detection
After identifying the candidates for the impact, it is necessary to determine whether contact takes place
and its precise localization. If for a formulation of node to node contact the detection of the contact is
quite easy, it becomes more complex in the case of a node to segment or edge to edge contact. In the
case of edge-to-edge contacts, a direct solution is possible if the segments are planar. If not, it is better
to triangulate one of the segments, which would then turn it into a node-to-segment contact problem.

The search algorithm for candidates is uncoupled from the rest of the processing of the interfaces. This
is not the case with regard to the detection, localization and processing of the contact. These last three
tasks significantly overlap with each other so we will limit ourselves to the processing of the contact by
penalty for simplicity.

In the case of contact between two solid bodies modeled with 3D finite elements, contact can only take
place on the segments of the external surface. This external surface has a certain orientation and the
impact of a node can come only from the outside. Most of the node-to-surface contact algorithms use
this orientation to simplify detection of contact. In the case of impact of a two-dimensional structure
modeled with shell or plate finite elements, contact is possible on both sides of the surface.

For an oriented surface, it is necessary to consider contacts of the positive dimension side of the surface
on itself, contacts of the negative dimension side on itself, and the contact of the "positive" side on the
"negative" one. This last situation, which is quite rare, can occur in the case of a surface rolled up into
itself or during the impact of a twisted surface.

Node to Segment Contact
The use of a "gap" surrounding the segment is one way of providing physical thickness to the surface
and makes it possible to distinguish the impacts on the top or on the lower part of the segment.
The contact is activated if the node penetrates within the gap or if the distance from the node to the
segment becomes smaller than the gap.

To calculate the distance from the node to the segment, we make a projection of this node on the
segment and measure the distance between the node and the projected point.

Figure 141:

The projected point is calculated using isoparametric coordinates for a quadrangular segment and
barycentric coordinates for a triangular segment. In the case of any quadrangular segment, the exact
calculation of these coordinates leads to a system of two quadratic equations that can be solved in an
iterative way. The division of the quadrangular segment into four triangular segments makes it possible
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to work with a barycentric coordinate system and gives equations that can be solved in an analytical
way.

From the isoparametric coordinates ( , ) of the projected point ( ), we have all the necessary
information for the detection and the processing of contact. The relations needed for the determination
of  and  are: the vector  is normal to the segment at the point ; and the normal to the
segment is given by the vectorial product of the vectors  and .

After bounding the isoparametric coordinates between +1 or -1, the distance from the node to the
segment and the penetration are calculated:

A penalty force is deducted from this. It is applied to the node  and distributed between the four
nodes ( , , , ) of the segment according to the following shape functions.

Edge to Edge Contact
The formulation of edge-to-edge contact is similar to that of node-to-segment contact. The gap
surrounding each edge defines a cylindrical volume. The contact is detected if the distance between the
two edges is smaller than the sum of the gaps of the two edges. The distance is then calculated as:

The force of penalty is calculated as in node-to-segment contact. It is applied to the nodes , , ,
 and therefore ensures the equilibrium of forces and moments.
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Figure 142:

Solid and Shell Element Contact (TYPE3)
The main use of this interface is with shell or solid plates that are initially in contact.

There are no main and secondary surfaces in this interface. Each surface is considered as if it were a
secondary.

Limitations
The main limitations of TYPE3 interfaces are:

• The two surfaces should be simply convex.

• The surface normals must face each other.

• A node may not exist on the main and secondary side of an interface simultaneously.

• Surfaces must consist of either shell or brick elements.

It is recommended that the two surface meshes be regular with a good aspect ratio. The interface gap
should be kept small, if not zero.

There are some search problems associated with this interface.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.250

Figure 143: Surfaces 1 and 2 with Facing Normals

Computation Algorithm
The computation and search algorithms used for TYPE3 interface are the same as for TYPE5. However,
TYPE3 interface does not have a main surface, so that the algorithms are applied twice, one for each
surface.

The surfaces are treated symmetrically, with all nodes allowed to penetrate the opposing surface. The
interface spring stiffness applies the opposing penetration reduction force.

Figure 144: Contact Surfaces Treated Symmetrically
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Because the computation algorithm is performed twice, accuracy is improved over a TYPE5 interface.
However, the computational cost is increased.

The first pass solution solves the penetration of the nodes on surface 1 with respect to segments on
surface 2. The second pass solves surface 2 nodes with respect to surface 1 segments.

Interface Stiffness
When two surfaces contact, a massless stiffness is introduced to reduce the penetration's nodes of the
other surface into the surface.

The nature of the stiffness depends on the type of interface and the elements involved.

The introduction of this stiffness may have consequences on the time step, depending on the interface
type used.

The TYPE3 interface spring stiffness K is determined by both surfaces. To retain solution stability,
stiffness is limited by a scaling factor which is user defined on the input card. The default value (and
recommended value) is 0.2.

The overall interface spring stiffness is determined by considering two springs acting in series.

Figure 145: Interface Springs in Series

The equation for the overall interface spring stiffness is:

(771)

Where,

Stiffness scaling factor. Default is 0.2.

Surface 1 Stiffness

Surface 2 Stiffness

Overall interface spring stiffness

The scale factor, , may have to be increased if:

 or 

The calculation of the spring stiffness for each surface is determined by the type of elements.

For example:
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 implies  or 

Shell Element
If the main interface segment is a set of shell elements, the stiffness is calculated by:

(772)

Where,

Modulus of Elasticity

Shell Thickness

The stiffness does not depend on the shell size.

Brick Element
If the main interface segment is a set of brick elements, the stiffness is calculated by:

(773)

Where,

Bulk modulus

Segment area

Element volume

Figure 146: Brick Element

Combined Elements
If a segment is a shell element that is attached to the face of a brick element, the shell stiffness is used.
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Interface Friction
TYPE3 interface allows sliding between contact surfaces. Coulomb friction between the surfaces is
modeled. The input card requires a friction coefficient. No value (default) defines zero friction between
the surfaces.

The friction on a surface is calculated by:

(774)

Where,

Interface spring stiffness

Contact node displacement vector

Figure 147: Coulomb Friction

Contact point at time 

Contact point at time 
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Figure 148: Friction on Interface TYPE3

The normal force computation is given by:

(775)

Where,

Initial interface spring stiffness (as in TYPE5)

The tangential force computation is given by:

(776)

Where, .

If the friction force is greater than the limiting situation, , the frictional force is reduced

to equal the limit, , and sliding will occur. If the friction is less than the limiting condition,
, the force is unchanged and sticking will occur.

Time integration of the frictional forces is performed by:

(777)

Where,

Result from Equation 774
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Figure 149: Friction on TYPE3 Interface

Interface Gap
TYPE3 interfaces have a gap that determines when contact between two segments occurs. This gap is
user defined, but some interfaces will calculate an automatic default gap.

The gap determines the distance for which the segment interacts with the three nodes. If a node moves
within the gap distance, such as nodes 1 and 2, reaction forces act on the nodes.

TYPE3 interface have a gap:

• Only normal to the segment, as shown in Figure 150

• On the contact side of the segments, which is defined by the surface normal. The size of the gap
defined for certain interface types is critical. If the gap is too small, the solution time step may be
dramatically reduced or a node may move across the entire gap in one time step. However, if the
gap is too large, nodes not associated with the direct contact may become involved.

Figure 150: Interface Gap

Examples: Interface Failure
There are a number of situations in which TYPE3 elements may fail. A couple of these are shown below.

Care must be taken when defining contact surfaces with large deformation simulations. If the normal
definitions of the contact surfaces are incorrect, node penetration will occur without any reaction from
either surface.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.256

Figure 151: Improper Normal Direction

Referring to Figure 151, the first situation shows the mesh deforming in a way that allows the normals
to be facing each other. However, in the second case, the deformation moves two surfaces with normals
all facing the same direction, where contact will not be detected. Large rotations can have a similar
effect, as shown in Figure 152.

Figure 152: Initial and Deformed Mesh (Before Impact)

Kinematic motion may reposition the mesh so that normals do not correspond. It is recommended that
possible impact situations be understood before a simulation is attempted.

General Purpose Contact (TYPE5)
This interface is used to simulate the impact between a main surface and a list of secondary nodes., as
shown in Figure 153.

The penetration is reduced by the penalty method.
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Another method is possible: Lagrange multipliers. But spatial distribution force is not smooth and
induces hourglass deformation.

This interface is mainly used for:

• Simulation of impact between beam, truss and spring nodes on a surface.

• Simulation of impact between a complex fine mesh and a simple convex surface.

• A replacement for a rigid wall.

Limitations
The main limitations of TYPE5 interface are:

• The main segment normals must be oriented from the main surface towards the secondary nodes.

• The main side segments must be connected to solid or shell elements.

• The same node is not allowed to exist on both the main and secondary surfaces.

• In certain situations, the search algorithm does not identify the correct node to surface impacts.

It is recommended that the main surface mesh be regular, with a good aspect ratio and that a small or
zero gap be used to detect penetration.

Figure 153: Surface 1 (Nodes) and Surface 2 (Segments)

Computation Algorithm
The computation and search algorithms used for TYPE5 are the same as for TYPE3. Refer to 
Computation Algorithm.
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Interface Stiffness
When two surfaces contact, a massless stiffness is introduced to reduce the penetration's nodes of the
other surface into the surface.

The nature of the stiffness depends on the type of interface and the elements involved.

The introduction of this stiffness may have consequences on the time step, depending on the interface
type used.

For a TYPE5 interface, the spring stiffness  is determined by main and secondary sides. The stiffness
scaling factor default value (and recommended value) is 0.2.

For a soft main surface material and stiff secondary surface, the stiffness scaling factor should be
increased by the elastic modulus ratio of the two materials.

The calculation of the spring stiffness' is the same as in a TYPE3 interface.

If a segment is a shell as well as the face of brick element, the shell stiffness is used.

The overall interface spring stiffness is determined by considering two springs acting in series.

Figure 154: Interface Springs in Series

The equation for the overall interface spring stiffness is:

(778)

Where,

Stiffness scaling factor. Default is 0.2.

Surface 1 Stiffness

Surface 2 Stiffness

Overall interface spring stiffness

The scale factor, , may have to be increased if:

 or 

The calculation of the spring stiffness for each surface is determined by the type of elements.

For example:

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.259

 implies  or .

(779)

(780)

Shell Elements
For more information, refer to Shell Element.

Brick Elements
For more information, refer to Brick Element.

Combined Elements
For more information, refer to Combined Elements.

Interface Friction
TYPE5 interface allows sliding between contact surfaces.

Coulomb friction between the surfaces is modeled. The input card requires a friction coefficient. No 
value (default) defines zero friction between the surfaces.

The friction computation on a surface is the same as for TYPE3 interface. Refer to Interface 
Friction.

Darmstad and Renard models for friction are also available:

Darmstad Law:

Renard Law:

Where,

Possibility of smoothing the tangent forces via a filter:

(781)

Where, the coefficient  depends on the Ifiltr flag value.
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Interface Gap
Refer to Interface Gap for TYPE3 interface.

Interface Algorithm
The algorithm used to calculate interface interaction for each secondary node is:

1. Determine the closest main node.

2. Determine the closest main segment.

3. Check if the secondary node has penetrated the main segment.

4. Calculate the contact point.

5. Compute the penetration.

6. Apply forces to reduce penetration.

For more information, refer to Auto Contacts.

Detection of Closest Main Node
The Radioss Starter and Engine use different methods to determine the closest main node to a 
particular secondary node.

The Starter searches for the main node with the minimum distance to the particular secondary node. 
The Engine carries out the following algorithm, referring to Figure 155.

Figure 155: Search Method

1. Get the previous closest segment, , to node  at time .

2. Determine the closest node, , to node  which belongs to segment .

3. Determine the segments connected to node  ( , ,  and ).

4. Determine the new closest main node, , to node  at time . The new main node must belong
to one of the segments , ,  or .

5. Determine the new closest main segment ( , ,  and ).
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The Starter CPU cost is calculated with the following equation:

• CPUstarter = a x Number of Secondary Nodes x Number of Main Nodes

The Engine CPU cost is calculated with the following equation:

• CPUengine = b x Number of Secondary Nodes

The algorithm used in the Engine is less expensive but it does not work in some special cases. In

Figure 156, if node  is moving from  to  and then to , the closest main nodes are 

and . When the final node movement to  is taken, the impact on segment  will not be detected
since none of the nodes on this segment are considered as the closest main node.

Figure 156: Undetected Impact

Detection of Closest Main Segment
The closest main segment to a secondary node , shown in Figure 157, is found by determining a
reference quantity, .

Figure 157: Closest Main Segment Determination Method

The  value for segment  is given by:

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.262

(782)

Where,

Projection of  on plane ( , , )

 and Tangential Surface Vectors along segment  edges.

The  value for segment  is given by:

(783)

Where,

Projection of  on plane ( , , )

The same procedure is carried out for all main segments that node  is connected to.

The closest segment is the segment for which  is a minimum.

In some special cases (curved surfaces), it is possible that:

• All values of  are positive.

• More than one value of  is negative.

Detection of Penetration
Penetration is detected by calculating the volume of the tetrahedron made by secondary node  and
the main nodes of the corresponding main segment, as shown in Figure 158.

For a given normal , the sign of the volume shows if penetration has occurred.

Figure 158: Tetrahedron used for Penetration Detection
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Figure 159: Negative Volume Tetrahedron - Penetrated Node

Reduction of Penetration
The penetration, , is reduced by the introduction of a massless spring between the node, , and the
contact point, .

Figure 160: Forces Associated with Penetration

The force applied on node  in direction  is:

(784)

Where,  is the interface spring stiffness.

Reaction forces , ,  and  are applied on each main node (shown in Figure 160) in the opposite
direction to the penetration force, such that:

(785)

Forces  (  = 1, 2, 3, 4) are functions of the position of the contact point, . They are evaluated by:
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(786)

Where, 

or more simply:

(787)

Where,

Standard linear quadralateral interpolation functions

 and Isoparametric coordinates contact point

The penalty method is used to reduce the penetration. This provides:

• Accuracy

• Generality

• Efficiency

• Compatibility

Rigid Body Contact (TYPE6)
This interface is used to simulate impacts between two rigid bodies.

It works like TYPE3 interface except that the total interface force is a user defined function of the
maximum penetration. The input and computational algorithms are the same as for TYPE3 interfaces.
This interface is used extensively in vehicle occupant simulations; example, knee bolsters.

Limitations
Some of the main limitations for this interface type are:

• Surface 1 must be part of one and only one rigid body.

• Surface 2 must be part of one and only one rigid body.

• The interface stiffness (user defined function) can reduce the time step.

Other limitations are the same as for TYPE3 interfaces.
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Figure 161: Surfaces 1 and 2 with Facing Normals

Interface Stiffness
When two surfaces contact, a massless stiffness is introduced to reduce the penetration's nodes of the 
other surface into the surface.

The nature of the stiffness depends on the type of interface and the elements involved.

If a segment is a shell as well as the face of brick element, the shell stiffness is used.

Interface Friction
TYPE6 interface allows sliding between contact surfaces. Coulomb friction between the surfaces is 
modeled. The input card requires a friction coefficient. No value (default) defines zero friction between 
the surfaces. The friction computation on a surface is the same as for TYPE3 interface (refer to 
Contact Processing).

Interface Gap
Refer to Contact Detection for TYPE3 interface.

Time Step Calculation
The stable time step used for time integration equations is computed by:

(788)

Where,

min(M rigid body 1, M rigid body 2)
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Tangent of user force function

Time step  is affected by the actual stiffness derived from function :

(789)

The function  refers to a function number given in input and must be user-defined.

Contact Force

Figure 162: Especially Suited for Rigid Bodies

(790)

 is the contribution to node  of vector  distributed on the segment penetrated by node .

General Purpose Contact (TYPE7)
This interface simulates the most general type of contacts and impacts. TYPE7 interface has the
following properties:

1. Impacts occur between a main surface and a set of secondary nodes, similar to TYPE5 interface.

2. A node can impact on one or more mainr segments.

3. A node can impact on either side of a main surface.

4. Each secondary node can impact each main segment except if it is connected to this segment.

5. A node can belong to a main surface and a set of secondary nodes, as shown in Figure 163.

6. A node can impact on the edge and corners of a main segment. None of the previous interfaces
allow this.

7. Edge to edge contacts between main and secondary segments are not solved by this interface.
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Limitations
All limitations encountered with interface TYPE3, TYPE4 and TYPE5 are solved with this interface.

It is a fast search algorithm without limitations.

Figure 163: Secondary and Main Node Impact

There are no search limitations with this interface concerning node to surface contacts. All possible
contacts are found.

There is no limitation on the use of large and small segments on the same interface. This is
recommended to have a good aspect ratio elements or a regular mesh to obtain reasonable results;
however, it is not an obligation.

There is no limitation to the size of the spring stiffness factor. The spring stiffness is much greater
than interfaces TYPE3 and TYPE5, with the default stiffness factor set to 1.0. This is to avoid node
penetrations larger than the gap size, removing problems that were associated with the other
interfaces.

Interface Stiffness
When two surfaces contact, a massless stiffness is introduced to reduce the penetration of one surface
node to the other surface.

The nature of the stiffness depends on the type of interface and the elements involved.

The introduction of this stiffness may have consequences on the time step, depending on the interface
type used.

The interface spring stiffness calculation is not as simple as for TYPE3, TYPE4 and TYPE5. The initial
stiffness is calculated using the methods for TYPE3 interfaces. However, after initial penetration, the
stiffness is given as a function of the penetration distance and the rate of penetration.
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A critical viscous damping coefficient given on the input card (visc) allows damping to be applied to the
interface stiffness.

(791)

The stiffness is much larger than the other interfaces to accommodate high speed impacts with minimal
crossing of surfaces. The consequence of this is that a stable time step is calculated to maintain solution
stability.

Interface Friction
TYPE7 interface allows sliding between contact surfaces.

Coulomb friction between the surfaces is modelled. The input card requires a friction coefficient. No
value (default) defines zero friction between the surfaces.

In TYPE7 interface a critical viscous damping coefficient is defined, allowing viscous damped sliding.

The friction on a surface may be calculated by two methods. The first method suitable for contact
tangential velocity greater that 1m/s consist in computing a viscous tangential growth by:

(792)

In the second method an artificial stiffness  is input. The change of tangent force  is obtained using:

(793)

Where,

Tangent displacement

The normal force computation is given by:

(794)

Where,

Initial interface spring stiffness (as in TYPE5)

Critical damping coefficient on interface stiffness (input)
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Figure 164: Coulomb Friction

Contact Point at time t

Contact Point at time 

Figure 165: Friction on TYPE7 Interface - Scheme

The tangential force computation is given by:

(795)

Where,
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Adhesion force

Tangential velocity calculated from the movement of the node
from  to  in Figure 164.

Note:  The friction coefficient  may be obtained by Coulomb, Darmstad and Renard models 
as described in Interface Friction.

Time integration of the frictional forces is performed by:

(796)

Where,  is obtained from Equation 792 or Equation 793.

Figure 166: Friction on TYPE7 Interface

Interface Gap
TYPE7 interfaces have a gap that determines when contact between two segments occurs.

This gap is user-defined, but some interfaces will calculate an automatic default gap. Shown in 
Interface Stiffness, is a segment TYPE7 interface with three nodes in close proximity. The gap, as 
shown, determines the distance for which the segment interacts with the three nodes. If a node moves 
within the gap distance, such as nodes 1 and 2, reaction forces act on the nodes.
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Figure 167: TYPE7 Interface Gap

TYPE7 interface has a gap that covers both edges of the segments, as shown in Figure 167.

Time Step
A time step is calculated to maintain stability when a TYPE7 interface is used.

The kinematic or interface time step is calculated if  by:

(797)

The stable time step or nodal time step is given by:

(798)

Where,

Nodal mass

Nodal stiffness

The time step used for the interface is the smaller of the two. If the interface spring stiffness is too
great, the time step can be reduced dramatically. If the two materials involved in the contact are the
same, the default interface stiffness factor can be retained. This is the case when modeling sheet metal.
However, the stiffness factor may need adjustment if the two materials stiffness' vary too much; for
example, steel and foam.
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Methods to Increase Time Step
The time step can be altered by two different methods, by altering the size of the gap and by increasing
the initial stiffness. Figure 168 shows three force-penetration curves for a TYPE7 interface. Both
methods change the nature of the stiffness which affects the time step.

Figure 168: Force - Penetration Curves

Using a larger gap size, curves 1 and 2 keep the same initial stiffness; hence the initial time step
remains the same. Since the impact slowing force is applied over a greater distance, the stiffness is not
changed as much, but increases.

Increasing the initial interface stiffness, although decreasing the time step initially; will increase the
time step if penetration is large.

Detection and Gap Size
A secondary node can be detected near a main segment from all directions, as shown in Figure 169.

The size of the gap can be user defined, but Radioss automatically calculates a default gap size, based
on the size of the interface elements. For shell elements, the computed gap is the average thickness.
For brick elements it is equal to one tenth of the minimum side length.

Variable Gap
By default the gap is constant on all main segments.

If the variable gap option is activated, a different gap is used for each contact taking into account the
physical thickness on the main and secondary sides.
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Figure 169: Variable Gap

For shell elements, the main gap is equal to one half of the shell thickness. The secondary gap is equal
to one half of the largest thickness of all connected shell elements.

For solid elements, the main gap is zero. If the secondary node is only connected to solid elements, the
secondary gap is zero.

For beam or truss elements connected to the secondary node, the secondary gap is one half of the
square root of the section area.

If a secondary node is connected to different elements (shell, brick, beam, and truss) the largest gap
value is used.

The total gap is the sum of the secondary and main gaps. The total gap cannot be smaller than a
minimum gap (user input gap).

Gap Correction
TYPE7 interface is very sensitive to initial penetrations. One method for solving the resulting problems is
to use an automatic gap correction (Inacti = 5).

With automatic gap correction the effective gap is corrected to take into account the initial penetration.
The correction is only applied to the initially penetrated nodes. If the node penetration decreases, the
correction is reduced. The computed penetration is illustrated in Figure 170.
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Figure 170: Corrected Gap

Penetration Reaction
Like the other interface types, TYPE7 has a spring stiffness as a secondary node penetrates the
interface gap (previous section). However, there are some fundamental differences in the determination
of the reaction force. Figure 171 shows a graph of force versus penetration of a node on a main
segment. This figure also shows a pictorial diagram of node penetration and the associated forces.

Figure 171: Penetration Reaction Force

The reaction force is not a linear relation like the previous interfaces. There is a viscous damping which
acts on the rate of penetration.
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The force computation is given by:

(799)

Where,

Initial interface spring stiffness (as in TYPE5)

Critical damping coefficient on interface stiffness (input)

The instantaneous stiffness is given by:

(800)

Figure 172: Force - Penetration Graph

A critical viscous damping is required to be defined on the TYPE7 input card for both damping on the
spring stiffness and for interface friction damping.
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Force Orientation
Due to the gap on a TYPE7 interface extending around the edges of a segment, the reaction forces over 
a surface will be smooth.

Penetration Reaction, Figure 172 shows the reaction forces on a node at various positions around two 
adjoining segments.

Figure 173: Force Orientation

Position 1 in Figure 173 shows the force acting radially from the edge of the segment. The size of the
force depends on the amount of penetration. At position 2 the force is normal to the segment surface.
In position 3 two segments intersect and their gaps overlap. The result is that each segment applies a
force to the node, normal to the respective segment, this may double the force for the distance of gap
overlap.

Interface Hints

Main Problem
One main problem remains namely, deep penetrations are not easily tolerated. They lead to high
penalty forces and stiffness', and consequently to a drop-in time step. When such a problem occurs, you
may see:

• A very small time step

• A large contact force vector in animation
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Deep penetrations (that is, close to gap value) can sometimes occur in most car crash simulations. They
occur in the following cases:

• Initial penetrations of adjacent plates

• Edge impacts: wrong side contacts

• Full collapse of one structural region

• Rigid body impact on another rigid body or on fixed nodes or on very stiff structures

• Impact between heavy stiff structures

• High impact speed

• Small gap

The elastic contact force is calculated with the formulation:

(801)

With 

The elastic contact energy is calculated with the formulation:

(802)

Where,

Interface stiffness

Contact gap

Penetration

When node to element mid-plane distance is smaller then 10-10 gap, the node is deactivated.

The maximum potential contact energy is:

elastic contact energy CE = 23 kg

Drastic time step dropping is mostly due to cases where node is forced into the gap region.

Remedies to the Main Problem
There are several ways to resolve this problem:

1. Increase Gap

Increasing the gap is the best remedy, but check that no initial penetrations result from this.

2. Increase Stiffness

Increase Stfac dimensionless stiffness factor or provide an appropriate effective global stiffness
value (v23 and up).

3. /DT/INTER/DEL (Engine option)

Some nodes will be allowed to cross the impacted surface freely before penetration reaches
(1-1010 ) gap.

4. /DT/INTER/CST (Engine option)
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Nodal mass will be modified to maintain time step constant. This option should be avoided when
rigid body secondary nodes are secondary of a TYPE7 interface.

The initial penetrations are mostly due to discretization and modelization problems.

They result in high initial forces that should be avoided.

5. Modify geometry

New coordinates are proposed in the output file for all initially penetrated nodes. These are the
coordinates used in the automatic coordinate change option. However, this might not suffice.
Several iterations are sometimes necessary. Radioss will create a file RootD0A containing the
modified geometry.

6. Reduce gap

When there are only small penetrations with a gap, this should be reduced; otherwise care should
be taken as this will reduce potential contact energy.

7. Deactivate node stiffness

This solution is the simplest. It will generally not unduly affect your results. For sake of precision,
use this option only for initial penetrations remaining after geometrical adjustments.

Edge Contact Problem
A special algorithm is developed for this purpose.

Modelization should eventually be adapted to prevent situations where 2 nodes of an element move to
opposite sides of a surface.

For solid to solid contacts, the external closed surfaces may be used.

Ellipsoidal Surface to Node Contact (TYPE14)
This interface simulates impacts between a hyper-ellipsoidal rigid main surface and a list of secondary
nodes. This interface is used for MADYMO to Radioss coupling.

The hyper-ellipsoidal surface is treated as an analytical surface (hyper-ellipsoidal surfaces are
discretized only for post-processing).

The interface allows user-defined behavior:

• User defines total elastic force versus maximum penetration of nodes.

• A local friction coefficient is computed at each impacted node, depending upon elastic force
computed at its location by scaling the total elastic force by the following factor: penetration of the
node divided by sum of node penetrations.

• A local viscosity coefficient in the normal direction to the surface is computed at each impacted
node, depending upon this node's velocity or the computed elastic force at its location.

It is also possible to only define a constant stiffness factor, a constant friction coefficient or a constant
viscosity coefficient. A time step is computed to ensure stability.
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Interface Hints
As the interface is defined as nodes impacting upon a surface, impact cannot be detected if the mesh is
too coarse. In general, use a mesh which size is finer than the lowest semi-axis of the main surface.

Figure 174: No Impact is Detected

The interface is designed to allow penetration of secondary nodes. However, the contact algorithm does
not ensure that a node will not cross the ellipsoid when sliding; nodes may slide along the ellipsoid until
they fully cross the ellipsoid, resulting in that the structure itself fully crossing the surface and contact
force is no longer applied to it (as shown in Figure 175, where perfect sliding is considered).

Increase interface stiffness or friction to avoid this problem.

Figure 175: Sliding Until Structure Fully Crosses Surface

Ellipsoidal Surface to Segment Contact (TYPE15)
TYPE15 interface between surfaces made up of 4-node or 3-node segments and hyper-ellipsoids is a
penalty contact interface without damping.

It applies to TYPE14 interface, especially when the mesh is coarser than the ellipsoid size. Remember
that in such a case, TYPE14 interface is able to compute low quality contact forces even if it fails to find
contact.
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Figure 176: No Contact is Detected

Interface stiffness is a nonlinear increasing function of penetration, computed in order to avoid
penetrations up to half the ellipsoid:

Where,

Input stiffness factor

Figure 177: Penetration is Detected

A Kinematic Time Step is computed so that the element does not cross the line Lt within one time step.

A friction coefficient m is input.
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Interface takes into account sliding/rolling effects.

Coulomb Friction condition is expressed as:

 for each penetrated element

Node to Curved Surface Contact (TYPE16)
Interface TYPE16 will enable to define contact conditions between a group of nodes (secondary) and
a curve surface of quadratic elements (main part) as shown in Figure 178 for a symmetric contact.
The main part may be made of 16-node thick shells or 20 node-bricks. The Lagrange Multiplier Method
(LMM) is used to apply the contact conditions. By the way that the LMM is used, no gap is necessary
to be applied. Some applications of this interface are sliding contacts without gaps as in gear box
modeling.

Figure 178: Node to Curved Surface Contact in Interface TYPE16

General Surface to Surface Contact (TYPE17)
The interface is used in the modeling of surface-to-surface contact. It is a generalized form of TYPE16
interface in which the contact on the two quadratic surfaces are directly resolved without needs of gap
as the Lagrange Multiplier Method is used (Figure 179). The contact is supposed to be sliding or tied.
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Figure 179: Quadratic Surface to Quadratic Surface Contact

Common Problems
The following sections contain examples of some common problems in the contact interfaces and
solutions to overcome them.

Nearest Main Node Found Incorrect
If the interface surface is not simply convex, the simplified main node search may find an incorrect
nearest main node.

This problem occurs with interface TYPE3, TYPE6 and TYPE5 (main side only).

The solution to this problem is to use TYPE7 interface.
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Figure 180: Incorrect Main Node Found

Nearest Main Segment Found Incorrect: B1
In some cases the nearest main node is not connected to the nearest segment.

This problem can occur with interface TYPE3, TYPE6 and TYPE5 (main side only).

The solution is to either use TYPE7 interface or to refine the mesh.
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Figure 181: Wrong Nearest Main Segment 1

Nearest Main Segment Found Incorrect: B2
In some cases the nearest main node is not connected to the nearest segment.

This problem can occur with interface TYPE3, TYPE5 and TYPE6 (main side only).

The solution is to either use TYPE7 interface or change the mesh (for initial mesh problem).

Figure 182: Incorrect Nearest Main Segment 2
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Nearest Main Segment Found Incorrect: B3
If the angle between segments is less than 90 degrees, the incorrect nearest segment may sometimes
be found, as in Figure 183.

This problem can occur with interface TYPE3, TYPE5 and TYPE6.

The solution is to use a TYPE7 interface or to refine the mesh. With a finer mesh, the shape is smoother.

Figure 183: Main Segment Angle to Acute

Impact Side Incorrect: C1
A node can only impact on the positive side of a segment for interface TYPE3, TYPE6, and TYPE5 (main
side). The solution is to use a TYPE7 interface.
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Figure 184: Wrong Normal Direction

No Main Node Impact: D1
With TYPE5 interface, only secondary nodes impact main segments; main nodes cannot impact
secondary segments.

This can be solved by either inverting the secondary and main sides, or by changing the type of
interface. Interface TYPE3 and TYPE7 will solve this problem adequately.
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Figure 185: Main Node Penetration
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Material Laws
A large variety of materials is used in the structural components and must be modeled in stress analysis
problems. For any kind of these materials a range of constitutive laws is available to describe by a
mathematical approach the behavior of the material.

The choice of a constitutive law for a given material depends at first to desired quality of the model.
For example, for standard steel, the constitutive law may take into account the plasticity, anisotropic
hardening, the strain rate, and temperature dependence. However, for a routine design maybe a simple
linear elastic law without strain rate and temperature dependence is sufficient to obtain the needed
quality of the model. This is the analyst design choice. On the other hand, the software must provide a
large constitutive library to provide models for the more commonly encountered materials in practical
applications.

Radioss material library contains several distinct material laws. The constitutive laws may be used
by the analyst for general applications or a particular type of analysis. You can also program a new
material law in Radioss. This is a powerful resource for the analyst to code a complex material model.

Theoretical aspects of the material models that are provided in Radioss are described in this chapter.
The available material laws are classified in the table below. This classification is in complementary with
those of Radioss input manual. The reader is invited to consult that one for all technical information
related to the definition of input data.

Table 6: Material Law Descriptions

Group Model Description Law Number in
Radioss (MID)

Johnson-Cook (2)

Zerilli-Armstrong (2)

von Mises isotropic hardening
with polynomial pressure

(3)

Johnson-Cook (4)

Gray model (16)

Ductile damage for
solids and shells

(22)

Ductile damage for solids (23)

Aluminum, glass, etc. (27)

Hill (32)

Tabulated piecewise linear (36)

Elasto-plasticity Materials

Cowper-Symonds (44)
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Group Model Description Law Number in
Radioss (MID)

Zhao (48)

Steinberg-Guinan (49)

Ductile damage for
porous materials, Gurson

(52)

Foam model (53)

3-Parameter Barlat (57)

Tabulated quadratic
in strain rate

(60)

Hänsel model (63)

Ugine and ALZ approach (64)

Elastomer (65)

Visco-elastic (66)

Anisotropic Hill (72)

Thermal Hill Orthotropic (73)

Thermal Hill Orthotropic 3D (74)

Semi-analytical elasto-plastic (76)

Yoshida-Uemori (78)

Brittle Metal and Glass (79)

High strength steel (80)

Swift and Voce elastio-
plastic Material

(84)

Barlat YLD2000 (87)

Closed cell, elasto-plastic foam (33)

Boltzman (34)

Generalized Kelvin-Voigt (35)

Hyper and Visco-elastic

Tabulated law (38)
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Group Model Description Law Number in
Radioss (MID)

Generalized Maxwell-Kelvin (40)

Ogden-Mooney-Rivlin (42)

Hyper visco-elastic (62)

Tabulated input
for Hyper-elastic

(69)

Tabulated law -
hyper visco-elastic

(70)

Tabulated law -
visco-elastic foam

(77)

Ogden material (82)

Simplified hyperelastic
material with strain rate effects

(88)

Tabulated law -
visco-elastic foam

(90)

Arruda-Boyce
Hyperelastic Material

(92)

Yeoh hyperelastic material (94)

Bergstrom-Boyce Nonlinear
viscoelastic material

(95)

Tsai-Wu formula for solid (12)

Composite Solid (14)

Composite Shell Chang-Chang (15)

Fabric (19)

Composite Shell (25)

Composite and Fabric

Fabric (58)

Drücker-Prager for rock or
concrete by polynominal

(10)Concrete and Rock

Drücker-Prager for
rock or concrete

(21)
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Group Model Description Law Number in
Radioss (MID)

Reinforced concrete (24)

Drücker-Prager with cap (81)

Honeycomb (28)

Crushable foam (50)

Honeycomb

Cosserat Medium (68)

Jones Wilkins Lee model (5)

Hydrodynamic viscous (6)

Hydrodynamic viscous with k-ε (6)

Boundary element (11)

Boundary element with k-ε (11)

ALE and Euler formulation (20)

Hydrodynamic bi-
material liquid gas material

(37)

Lee-Tarver material (41)

Viscous fluid with LES
subgrid scale viscosity

(46)

Multi-Material, Fluid
and Explosive Material

Solid, liquid, gas
and explosives

(51)

Predit rivets (54)

Connection material (59)

Connections Materials

Advanced connection material (83)

Fictitious (0)

Hooke (1)

Purely thermal material (18)

Other Materials

SESAM tabular EOS, used with
a Johnson-Cook yield criterion

(26)
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Group Model Description Law Number in
Radioss (MID)

Superelastic Law for
Shape Memory Alloy

(71)

Porous material (75)

GAS material GAS (-)

User material (29~31)

Isotropic Elastic Material
Two kinds of isotropic elastic materials are considered:

• Linear elastic materials with Hooke’s law,

• Nonlinear elastic materials with Ogden, Mooney-Rivlin and Arruda-Boyce laws.

Linear Elastic Material (LAW1)
This material law is used to model purely elastic materials, or materials that remain in the elastic range.
The Hooke's law requires only two values to be defined; the Young's or elastic modulus , and Poisson's
ratio, . The law represents a linear relation between stress and strain.

Ogden Materials (LAW42, LAW69 and LAW82)
Ogden's law is applied to slightly compressible materials as rubber or elastomer foams undergoing large

deformation with an elastic behavior. The detailed theory for Odgen material models can be found in 89.

The strain energy  is expressed in a general form as a function of :

(803)

89. Ogden R.W., “Nonlinear Elastic Deformations”, Ellis Horwood, 1984.

90. Arruda, E.M. and Boyce, M.C., “A three-dimensional model for the large stretch behavior of rubber
elastic materials”, J. Mech. Phys. Solids, 41(2), pp. 389–412, 1993.

91. Jörgen Bergström, “Mechanics of solid polymers: theory and computational modeling”, pp.
250-254, 2015.

92. Yeoh, O. H., “Some forms of the strain energy function for rubber”, Rubber Chemistry and
Technology, Vol. 66, Issue 5, pp. 754-771, November 1993.

93. Kolling S., Du Bois P.A., Benson D.J., and Feng W.W., "A tabulated formulation of hyperelasticity
with rate effects and damage." Computational Mechanics 40, no. 5 (2007).
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Where, , ith principal stretch

, with  being the ith principal engineering strain

 is relative volume with:

(804)

 is the deviatoric stretch

(805)

 and  are the material constants.

 is order of Ogden model and defines the number of coefficients pairs .

This law is very general due to the choice of coefficient pair .

• If =1, then one pair  of material constants is needed andin this case if  then it

becomes a Neo-hookean material model.

• If =2 then two pairs  of material constants are needed and in this case if  and

 then it becomes a Mooney-Rivlin material model

For uniform dilitation:

(806)

The strain energy function can be decomposed into deviatoric part  and spherical part :

(807)

With:

The stress  corresponding to this strain energy is given by:

(808)

which can be written as:

(809)
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Since  and   for i=j and   for i≠j

Equation 809 is simplified to:

(810)

For which the deviator of the Cauchy stress tensor , and the pressure  would be:

(811)

(812)

Only the deviatoric stress above is retained, and the pressure is computed independently:

(813)

Where,  a user-defined function related to the bulk modulus  in LAW42 and LAW69:

(814)

For an imcompressible material ,  and no pressure in material.

(815)

With  being the initial shear modulus, and  the Poisson's ratio.

Note:  For an incompressible material you have . However,  is a good
compromise to avoid too small time steps in explicit codes.

A particular case of the Ogden material model is the Mooney-Rivlin material law which has two basic
assumptions:

• The rubber is incompressible and isotropic in unstrained state

• The strain energy expression depends on the invariants of Cauchy tensor

The three invariants of the Cauchy-Green tensor are:

(816)

(817)

For incompressible material:
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(818)

The Mooney-Rivlin law gives the closed expression of strain energy as:

(819)

with:

(820)

The model can be generalized for a compressible material.

Viscous Effects in LAW42
Viscous effects are modeled through the Maxwell model:

Figure 186: Maxwell Model

Where, the shear modulus of the hyper-elastic law  is exactly the long-term shear modulus .

(821)

 are relaxation times: 

Rate effects are modeled through visco-elasticity using convolution integral using Prony series. This
corresponds to extension of small deformation theory to finite deformation.

This viscous stress is added to the elastic one.

The visco-Kirchoff stress is given by:
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(822)

Where,

Order of the Maxwell model

Deformation gradient matrix

Denotes the deviatoric part of tensor 

The viscous-Cauchy stress is written as:

(823)

LAW69, Ogden Material Law (Using Test Data as Input)
This law, like /MAT/LAW42 (OGDEN) defines a hyperelastic and incompressible material specified using
the Ogden or Mooney-Rivlin material models. Unlike LAW42 where the material parameters are input
this law computes the material parameters from an input engineering stress-strain curve from a uniaxial
tension and compression tests. This material can be used with shell and solid elements.

The strain energy density formulation used depends on the law_ID.

law_ID =1, Ogden law (Same as LAW42):

law_ID =2, Mooney-Rivlin law

Curve Fitting

After reading the stress-strain curve (fct_ID1), Radioss calculates the corresponding material parameter
pairs using a nonlinear least-square fitting algorithm. For classic Ogden law, (law_ID =1), the calculated
material parameter pairs are  and  where the value of  is defined via the N_pair input. The

maximum value of N_pair = 5 with a default value of 2.

For the Mooney-Rivlin law (law_ID =2), the material parameter  and  are calculated
remembering that  and  for the LAW42 Ogden law can be calculated using this conversion.

, ,  and .

The minimum test data input should be a uniaxial tension engineering stress strain curve. If uniaxial
compression data is available, the engineering strain should increate monotonically from a negative
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value in compression to a positive value in tension. In compression, the engineering strain should not
be less than -1.0 since -100% strain is physically not possible.

This material law is stable when (with =1,…5) is satisfied for parameter pairs for all loading conditions.
By default, Radioss tries to fit the curve by accounting for these conditions (Icheck=2). If a proper fit
cannot be found, then Radioss uses a weaker condition (Icheck=1:) which ensures that the initial shear
hyperelastic modulus ( ) is positive.

Once the material parameters are calculated by the Radioss Starter in LAW69, all the calculations done
by LAW69 in the simulation are the same as LAW42.

LAW82
The Ogden model used in LAW82 is:

(824)

The Bulk Modulus is calculated as  based on these rules:

• If ,  should be entered.

• If ,  input is ignored and will be recalculated and output in the Starter output using:

(825)

• If  and =0, a default value of  is used and  is calculated using Equation 825

LAW88, A simplified hyperelastic material with strain rate effects

This law utilizes tabulated uniaxial tension and compression engineering stress and strain test data at
different strain rates to model incompressible materials. It is only compatible with solid elements. The
material is based on Ogden’s strain energy density function but does not require curve fitting to extract
material constants like most other hyperelastic material models. Strain rate effects can be modeled by
including engineering stress strain test data at different strain rates. This can be easier than calculating
viscous parameters for traditional hyperelastic material models. The following Ogden strain energy
density function is used but instead of extracting material constants via curve fitting this law determines

the Ogden function directly from the uniaxial engineering stress strain curve tabulated data. 93

(826)

Unloading can be represented using an unloading function, FscaleunL, or by providing hysteresis, Hys
and shape factor, Shape, inputs to a damage model based on energy.

When using the damage model, the loading curves are used for both loading and unloading and the
unloading stress tensor is reduced by:
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(827)

(828)

If the unloading function, FscaleunL, is entered, unloading is defined based on the unloading flag,
Tension and the damage model is not used.

Arruda-Boyce Material (LAW92)
LAW92 describes the Arruda-Boyce material model, which can be used to model hyperelastic behavior.
The Arruda-Boyce model is based on the statistical mechanics of a material with a cubic representative
volume element containing eight chains along the diagonal directions. It assumes that the chain
molecules are located on the average along the diagonals of the cubic in principal stretch space.

The strain energy density function is:

(829)

Where, Material constant  are:

Shear modulus

Initial shear modulus

(830)

 is the limit of stretch which describes the beginning of hardening phase in tension (locking strain in
tension) and so it is also called the locking stretch.

Arruda-Boyce is always stable if positive values of the shear modulus, , and the locking stretch,  are
used.

 is deviatoric part of first strain invarient 

(831)

with 

 is a material parameter for the bulk modulus computation given as:

(832)
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The Cauchy stress corresponding to above strain energy is:

(833)

For incompressible materials, the Cauchy stress is then given by:

• Uniaxial test

(834)

with  and , then 

and nominal stress is:

(835)

• Equibiaxial test

(836)

with  and , then 

and the nominal stress is:

(837)

• Planar test

(838)

with  and , then 

and nominal stress is:

(839)

Additional information about Arruda-Boyce model. 90 91
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Yeoh Material (LAW94)

The Yeoh model (LAW94) 92is a hyperelastic material model that can be used to describe incompressible
materials. The strain energy density function of LAW94 only depends on the first strain invariant and is
computed as:

(840)

Where,

First strain invariant

Deviatoric stretch

The Cauchy stress is computed as:

(841)

For incompressible materials with =1 only and  are input and the Yeoh model is reduced to a Neo-
Hookean model.

The material constant specify the deviatoric part (shape change) of the material and parameters ,
,  specify the volumetric change of the material. These six material constants need to be calculated

by curve fitting material test data. RD-E: 5600 Hyperelastic Material with Curve Input includes a Yeoh
fitting Compose script for uniaxial test data. The Yeoh material model has been shown to model all
deformation models even if the curve fit was obtained using only uniaxial test data.

The initial shear modulus and the bulk modulus are computed as:

 and 

LAW94 is available only as an incompressible material model.

If =0, an incompressible material is considered, where  and  is calculated as:

(842)
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Composite and Anisotropic Materials
The orthotropic materials can be classified into following cases:

• Linear elastic orthotropic shells as fabric

• Nonlinear orthotropic pseudo-plastic solids as honeycomb materials

• Elastic-plastic orthotropic shells

• Elastic-plastic orthotropic composites

The purpose of this section is to describe the mathematical models related to composite and orthotropic
materials.

Fabric Law for Elastic Orthotropic Shells (LAW19 and LAW58)
Two elastic linear models and a nonlinear model exist in Radioss.

Fabric Linear Law for Elastic Orthotropic Shells (LAW19)
A material is orthotropic if its behavior is symmetrical with respect to two orthogonal plans. The fabric
law enables to model this kind of behavior. This law is only available for shell elements and can be
used to model an airbag fabric. Many of the concepts for this law are the same as for LAW14 which is
appropriate for composite solids. If axes 1 and 2 represent the orthotropy directions, the constitutive
matrix  is defined in terms of material properties:

(843)

where the subscripts denote the orthotropy axes. As the matrix  is symmetric:

(844)

Therefore, six independent material properties are the input of the material:

Young's modulus in direction 1

Young's modulus in direction 2

12 Poisson's ratio

, , Shear moduli for each direction

The coordinates of a global vector  is used to define direction 1 of the local coordinate system of
orthotropy.
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The angle  is the angle between the local direction 1 (fiber direction) and the projection of the global

vector  as shown in Figure 187.

Figure 187: Fiber Direction Orientation

The shell normal defines the positive direction for . Since fabrics have different compression and
tension behavior, an elastic modulus reduction factor, RE, is defined that changes the elastic properties
of compression. The formulation for the fabric law has a  reduction if  < 0 as shown in Figure 188.

Figure 188: Elastic Compression Modulus Reduction

Fabric Nonlinear Law for Elastic Anisotropic Shells (LAW58)
This law is used with Radioss standard shell elements and anisotropic layered property (TYPE16).
The fiber directions (warp and weft) define the local axes of anisotropy. Material characteristics are
determined independently in these axes. Fibers are nonlinear elastic and follow the equation:

(845)

The shear in fabric material is only supposed to be function of the angle between current fiber directions
(axes of anisotropy):

(846)

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.303

and

,  with 

Where,  is a shear lock angle,  is a tangent shear modulus at , and  is a shear modulus at  =
0. If  = 0, the default value is calculated to avoid shear modulus discontinuity at :  = .

Figure 189: Elastic Compression Modulus Reduction

 is an initial angle between fibers defined in the shell property (TYPE16).

The warp and weft fiber are coupled in tension and uncoupled in compression. But there is no
discontinuity between tension and compression. In compression only fiber bending generates global
stresses. Figure 190 illustrates the mechanical behavior of the structure.

Figure 190: Local Frame Definition

A local micro model describes the material behavior (Figure 191). This model represents just ¼ of a
warp fiber wave length and ¼ of the weft one. Each fiber is described as a nonlinear beam and the two
fibers are connected with a contacting spring. These local nonlinear equations are solved with Newton
iterations at membrane integration point.
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Figure 191: Local Frame Definition

Nonlinear Pseudo-plastic Orthotropic Solids (LAWS28, 50 and 68)

Conventional Nonlinear Pseudo-plastic Orthotropic Solids (LAW28 and LAW50)
These laws are generally used to model honeycomb material structures as crushable foams. The
microscopic behavior of this kind of materials can be considered as a system of three independent
orthogonal springs. The nonlinear behavior in orthogonal directions can then be determined by
experimental tests. The behavior curves are injected directly in the definition of law. Therefore, the
physical behavior of the material can be obtained by a simple law. However, the microscopic elasto-
plastic behavior of a material point cannot be represented by decoupled unidirectional curves. This is
the major drawback of the constitutive laws based on this approach. The cell direction is defined for
each element by a local frame in the orthotropic solid property. If no property set is given, the global
frame is used.

Figure 192: Local Frame Definition

The Hooke matrix defining the relation between the stress and strain tensors is diagonal, as there is no
Poisson's effect:
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(847)

An isotropic material may be obtained if:

(848)

Plasticity may be defined by a volumic strain or strain dependent yield curve (Figure 193). The input
yield stress function is always positive. If the material undergoes plastic deformation, its behavior is
always orthotropic, as all curves are independent to each other.

Figure 193: Honeycomb Typical Constitutive Curve

The failure plastic strain may be input for each direction. If the failure plastic strain is reached in one
direction, the element is deleted. The material law may include strain rate effects (LAW50) or may not
(LAW28).

Cosserat Medium for Nonlinear Pseudo-plastic Orthotropic Solids (LAW68)
Conventional continuum mechanics approaches cannot incorporate any material component length
scale. However, a number of important length scales as grains, particles, fibers, and cellular structures
must be taken into account in a realistic model of some kinds of materials. To this end, the study of a
microstructure material having translational and rotational degrees-of-freedom is underlying. The idea
of introducing couple stresses in the continuum modeling of solids is known as Cosserat theory which

returns back to the works of brothers Cosserat in the beginning of 20th century. 94 A recent renewal

of Cosserat mechanics is presented in several works of Forest 95 96 97 98 A short summary of these
publications is presented in this section.

Cosserat effects can arise only if the material is subjected to non-homogeneous straining conditions. A
Cosserat medium is a continuous collection of particles that behave like rigid bodies. It is assumed that
the transfer of the interaction between two volume elements through surface element dS occurs not
only by means of a traction and shear forces, but also by moment vector as shown in Figure 194.
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Figure 194: Equilibrium of Cosserat Volume Element

Surface forces and couples are then represented by the generally non-symmetrical force-stress and
couple-stress tensors  and  (units MPA and MPa-m):

(849)

The force and couple stress tensors must satisfy the equilibrium of momentums:

(850)

Where,

Volume forces

Volume couples

Mass density

Isotropic rotational inertia

Signature of the perturbation (i,k,l)

In the often used couple-stress, the Cosserat micro-rotation is constrained to follow the material
rotation given by the skew-symmetric part of the deformation gradient:

(851)

The associated torsion-curvature and couple stress tensors are then traceless. If a Timoshenko beam is
regarded as a one-dimensional Cosserat medium, constraint Equation 851 is then the counterpart of the
Euler-Bernoulli conditions.

The resolution of the previous boundary value problem requires constitutive relations linking the
deformation and torsion-curvature tensors to the force- and couple-stresses. In the case of linear
isotropic elasticity, you have:
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(852)

Where,  and   are respectively the symmetric and skew-symmetric part of the Cosserat

deformation tensor. Four additional elasticity moduli appear in addition to the classical Lamé constants.

Cosserat elastoplasticity theory is also well-established. von Mises classical plasticity can be extended to
micropolar continua in a straightforward manner. The yield criterion depends on both force- and couple-
stresses:

(853)

Where,

Stress deviator

 and Material constants

Cosserat continuum theory can be applied to several classes of materials with microstructures as
honeycombs, liquid crystals, rocks and granular media, cellular solids and dislocated crystals.

    

Hill's Law for Orthotropic Plastic Shells
Hill's law models an anisotropic yield behavior. It can be considered as a generalization of von Mises
yield criteria for anisotropic yield behavior.

The yield surface defined by Hill can be written in a general form:

(854)

Where, the coefficients , , , ,  and  are the constants obtained by the material tests in
different orientations. The stress components 1j are expressed in the Cartesian reference parallel to

94. Cosserat E. and Cosserat F., “Theory of Deformable Bodies”, Hermann, Paris, 1909.

95. Forest S. and Sab K., “Cosserat overall modeling of heterogeneous materials”, Mechanics Research
Communications, Vol. 25, No. 4, pp. 449-454, 1998.

96. Forest S., Cailletaud G. and Sievert R., “A Cosserat Theory for Elastoviscoplastic Single Crystals at
Finite Deformation”, Archives of Mechanics, Vol. 49, pp. 705-736, 1997.

97. Besson J., Bultel F., and Forest S., “Plasticity Cosserat media. Application to particular composites
particles”, 4th Symposium Calculation of Structures, CSMA/Teksea, Toulouse, pp. 759-764, 1999.

98. Forest S., “Cosserat Media”, ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J.
Kramer and S. Mahajan, Encyclopedia of Materials, Science and Technology, Elsevier, 2001.
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the three planes of anisotropy. Equation 854 is equivalent to von Mises yield criteria if the material is
isotropic.

In a general case, the loading direction is not the orthotropic direction. In addition, we are concerned
with the plane stress assumption for shell structures. In planar anisotropy, the anisotropy is
characterized by different strengths in different directions in the plane of the sheet. The plane stress
assumption will enable to simplify Equation 854, and write the expression of equivalent stress  as:

(855)

The coefficients  are determined using Lankford's anisotropy parameter :

(856)

Where, the Lankford's anisotropy parameters  are determined by performing a simple tension test at
angle α to orthotropic direction 1:

(857)

The equivalent stress  is compared to the yield stress  which varies in function of plastic strain 
and the strain rate  (LAW32):

(858)

Therefore, the elastic limit is obtained by:

(859)

The yield stress variation is shown in Figure 195.

Figure 195: Yield Stress Variation

The strain rates are defined at integration points. The maximum value is taken into account:

(860)

In Radioss, it is also possible to introduce the yield stress variation by a user-defined function (LAW43).
Then, several curves are defined to take into account the strain rate effect.
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It should be noted that as Hill's law is an orthotropic law, it must be used for elements with orthotropy
properties as TYPE9 and TYPE10 in Radioss.

Anistropic Hill Material Law with MMC Fracture Model (LAW72)
This material law uses an anistropic Hill yield function along with an associated flow rule. A simple
isotropic hardening model is used coupled with a modified Mohr fracture criteria. The yield condition is
written as:

Where,  is the Equivalent Hill stress given as:

• For 3D model (Solid)

• For Shell

Where, , , , , , and  are six Hill anisotropic parameters.

For the yield surface a modified swift law is employed to describe the isotropic hardening in the
application of the plasticity models:

Where,

Initial yield stress

Initial equivalent plastic strain

Equivalent plastic strain

Material constant

Modified Mohr fracture criteria
A damage accumulation is computed as:

Where,  is a plastic strain fracture for the modified Mohr fracture criteria is given by:

• Anisotropic 3D model

with:
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Where,

Third invariant of the deviatoric stress

• 2D Anisotropic Model

With:

Where,

,  and Parameters for MMC fracture model

The fracture initiates when  = 1.
In order to represent realistic process of an element, a softening function  is introduced to
reduce the deformation resistance. The yield surface is modified as:

with 

Where,

Critical damage

We have crack propagation when  in this case  is considered to reduce the yield
surface otherwise the  =1.

The element is deleted if .

Elastic-plastic Orthotropic Composite Shells
Two kinds of composite shells may be considered in the modeling:

• Composite shells with isotropic layers

• Composite shells with at least one orthotropic layer
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The first case can be modeled by an isotropic material where the composite property is defined in 
element property definition as explained in Element Library. However, in the case of composite shell 
with orthotropic layers the definition of a convenient material law is needed. Two dedicated material 
laws for composite orthotropic shells exist in Radioss:

• Material law COMPSH (25) with orthotropic elasticity, two plasticity models and brittle tensile
failure,

• Material law CHANG (15) with orthotropic elasticity, fully coupled plasticity and failure models.

These laws are described here. The description of elastic-plastic orthotropic composite laws for solids is
presented in the next section.

Tensile Behavior
The tensile behavior is shown in Figure 197. The behavior starts with an elastic phase. Then, reached
to the yield state, the material may undergo an elastic-plastic work hardening with anisotropic Tsai-Wu
yield criteria. It is possible to take into account the material damage. The failure can occur in the elastic
stage or after plastification. It is started by a damage phase then conducted by the formation of a
crack. The maximum damage factor will allow these two phases to separate. The unloading can happen
during the elastic, elastic-plastic or damage phase. The damage factor  varies during deformation as in
the case of isotropic material laws (LAW27). However, three damage factors are computed; two damage
factors  and  for orthotropy directions and the other  for delamination:

(861)

Figure 196: Shear Strain

Where,  and  are the tensile damages factors. The damage and failure behavior is defined by
introduction of the following input parameters:

Tensile failure strain in direction 1

Maximum strain in direction 1

Tensile failure strain in direction 2
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Maximum strain in direction 2

dmax Maximum damage (residual stiffness after failure)

Figure 197: Tensile Behavior of Composite Shells

Delamination
The delamination equations are:

(862)

(863)

Where,  is the delamination damage factor. The damage evolution law is linear with respect to the
shear strain.

Let  then:

for  # 

for =1 # 

(864)

Plastic Behavior

The plasticity model is based on the Tsai-Wu criterion 99 which enable to model the yield and failure
phases.
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(865)

Where,

(866)

(867)

(868)

(869)

(870)

(871)

Where,  is the reduction factor. The six other parameters are the yield stresses in tension and
compression for the orthotropy directions which can be obtained uniaxial loading tests:

Tension in direction 1 of orthotropy

Tension in direction 2 of orthotropy

Compression in direction 1 of orthotropy

Compression in direction 2 of orthotropy

Compression in direction 12 of orthotropy

Tension in direction 12 of orthotropy

The Tsai-Wu criteria are used to determine the material behavior:

• : elastic state

• : plastic admissible state

• : plastically inadmissible stresses

(872)

For  the cross-sections of Tsai-Wu function with the planes of stresses in orthotropic directions is
shown in Figure 198.
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Figure 198:Cross-sections of Tsai-Wu Yield Surface For 

If , the stresses must be projected on the yield surface to satisfy the flow rule.  is compared

to a maximum value  varying in function of the plastic work  during work hardening phase:

(873)

Where,

Hardening parameter

Hardening exponent

Therefore, the plasticity hardening is isotropic as illustrated in Figure 199.
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Figure 199: Isotropic Plasticity Hardening

Failure Behavior
The Tsai-Wu flow surface is also used to estimate the material rupture by means of two variables:

• plastic work limit ,

• maximum value of yield function 

If one of the two conditions is satisfied, the material is ruptured. The evolution of yield surface during
work hardening of the material is shown in Figure 200.

Figure 200: Evolution of Tsai-Wu Yield Surface

The model will allow the simulation of the brittle failure by formation of cracks. The cracks can either
be oriented parallel or perpendicular to the orthotropic reference frame (or fiber direction), as shown in
Figure 201. For plastic failure, if the plastic work  is larger than the maximum value  for a given

99. Tsai S.W. and Wu E.M., “A general theory of strength for anisotropic materials”, Journal of
Composite Materials, 58-80, 1971.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.316

element, then the element is considered to be ruptured. However, for a multi-layer shell, several criteria
may be considered to model a total failure. The failure may happen:

• If  for one layer,

• If  for all layers,

• If  or tensile failure in direction 1 for each layer,

• If  or tensile failure in direction 2 for each layer,

• If  or tensile failure in directions 1 and 2 for each layer,

• If  or tensile failure in direction 1 for all layers,

• If  or tensile failure in direction 2 for all layers,

• If  or tensile failure in directions 1 and 2 for each layer.

The last two cases are the most physical behaviors; but the use of failure criteria depends, at first, to
the analyst’s choice. In Radioss the flag Ioff defines the used failure criteria in the computation.

Figure 201: Crack Orientation

In practice, the use of brittle failure model allows to estimate correctly the physical behavior of a
large rang of composites. But on the other hand, some numerical oscillations may be generated due
to the high sensibility of the model. In this case, the introduction of an artificial material viscosity
is recommended to stabilize results. In addition, in brittle failure model, only tension stresses are 
considered in cracking procedure.

The ductile failure model allows plasticity to absorb energy during a large deformation phase. Therefore, 
the model is numerically more stable. This is represented by CRASURV model in Radioss. The model 
makes also possible to take into account the failure in tension, compression and shear directions.

Strain Rate Effect
The strain rate is taken into account within the modification of Plastic Behavior, Equation 873 which acts 
through a scale factor:

(874)
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Where,

Plastic work

Reference plastic work

Plastic hardening parameter

Plastic hardening exponent

Strain rate coefficient (equal to zero for static loading)

The last equation implies the growing of the Tsai-Wu yield surface when the dynamic effects are
increasing. The effects of strain rate are illustrated in Figure 202.

Figure 202: Strain Rate Effect in Work Hardening

CRASURV Model
The CRASURV model is an improved version of the former law based on the standard Tsai-Wu criteria. 
The main changes concern the expression of the yield surface before plastification and during work 
hardening. First, in CRASURV model the coefficient  in Plastic Behavior, Equation 865 depends only 
on one input parameter:

(875)

(876)

With 

Another modification concerns the parameters  in Plastic Behavior, Equation 865 which are 
expressed now in function of plastic work and plastic work rate as in Strain Rate Effect, Equation 
874:

With

 ( =12)
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 ( =12)

And

(877)

(878)

(879)

And 

Where the five sets of coefficients ,  and  should be obtained by experience. The work hardening is
shown in Figure 203.

Figure 203: CRASURV Plasticity Hardening

The CRASURV model will allow the simulation of the ductile failure of orthotropic shells. The plastic
and failure behaviors are different in tension and in compression. The stress softening may also be
introduced in the model to take into account the residual Tsai-Wu stresses. The evolution of CRASURV
criteria with hardening and softening works is illustrated in Figure 204.
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Figure 204: Flow Surface in CRASURV Model

Chang Chang Model

Chang-Chang law 100, 101 incorporated in Radioss is a combination of the standard Tsai-Wu elastic-

plastic law and a modified Chang-Chang failure criteria. 102 The affects of damage are taken into
account by decreasing stress components using a relaxation technique to avoid numerical instabilities.

Six material parameters are used in the failure criteria:

Longitudinal tensile strength

Transverse tensile strength

Shear strength

Longitudinal compressive strength

Transverse compressive strength

Shear scaling factor

Where,

Fiber direction

The failure criterion for fiber breakage is written as:

• Tensile fiber mode:
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(880)

• Compressive fiber mode: 

(881)

For matrix cracking, the failure criterion is:

• Tensile matrix mode: 

(882)

• Compressive matrix mode: 

(883)

If the damage parameter is equal to or greater than 1.0, the stresses are decreased by using an
exponential function to avoid numerical instabilities. A relaxation technique is used by gradually
decreasing the stress:

(884)

With:  and 

Where,

Time

Start time of relaxation when the damage criteria are assumed

Time of dynamic relaxation

 is the stress components at the beginning of damage (for matrix cracking ).

  

100. Chang, F.K. and Chang, K.Y., “A Progressive Damage Model For Laminated Composites Containing
Stress Concentrations”, Journal of Composite Materials, Vol 21, 834-855, 1987.

101. Chang, F.K. and Chang K.Y., “Post-Failure Analysis of Bolted Composites Joints in Tension or Shear-
Out Mode Failure”, Journal of Composite Materials, Vol 21, 809-833, 1987.

102. Matzenmiller A. and Schweizerhof K., “Crashworthiness Simulation of composite Structures-a first
step with explicit time integration”, Nonlinear Computational Mechanics-State of the Art Ed. p.
Wriggers and W. Wagner, 1991.
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Elastic-Plastic Orthotropic Composite Solids
The material LAW14 (COMPSO) in Radioss allows to simulate orthotropic elasticity, Tsai-Wu plasticity
with damage, brittle rupture and strain rate effects. The constitutive law applies to only one layer of
lamina. Therefore, each layer needs to be modeled by a solid mesh. A layer is characterized by one
direction of the fiber or material. The overall behavior is assumed to be elasto-plastic orthotropic.

Direction 1 is the fiber direction, defined with respect to the local reference frame  as shown in
Figure 205.

Figure 205: Local Reference Frame

For the case of unidirectional orthotropy (that is,  and ) the material LAW53 in
Radioss allows to simulate an orthotropic elastic-plastic behavior by using a modified Tsai-Wu criteria.

Linear Elasticity
When the lamina has a purely linear elastic behavior, the stress calculation algorithm:

• Transform the lamina stress, , and strain rate, , from global reference frame to fiber
reference frame.

• Compute lamina stress at time  by explicit time integration:

(885)

• Transform the lamina stress, , back to global reference frame.

The elastic constitutive matrix  of the lamina relates the non-null components of the stress tensor to
those of strain tensor:

(886)

The inverse relation is generally developed in term of the local material axes and nine independent
elastic constants:
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(887)

Where,

Young's modulus

Shear modulus

Poisson's ratios

Strain components due to the distortion

Figure 206: Strain Components and Distortion

Orthotropic Plasticity
Lamina yield surface defined by Tsai-Wu yield criteria is used for each layer:

(888)

with:

 ( =1,2,3);

; ; ;
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; ; ;

 ; 

Where,  is the yield stress in direction ,  and  denote respectively for compression and tension.

 represents the yield envelope evolution during work hardening with respect to strain rate effects:

(889)

Where,

Plastic work

Hardening parameter

Hardening exponent

Strain rate coefficient

 is limited by a maximum value :

(890)

If the maximum value is reached the material is failed.

In Equation 889, the strain rate effects on the evolution of yield envelope. However, it is also possible to
take into account the strain rate  effects on the maximum stress  as shown in Figure 207.

(a) Strain rate effect on (b) No strain rate effect on 
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(a) Strain rate effect on (b) No strain rate effect on

Figure 207: Strain Rate Dependency

Unidirectional Orthotropy
LAW 53 in Radioss provides a simple model for unidirectional orthotropic solids with plasticity. The
unidirectional orthotropy condition implies:

(891)

The orthotropic plasticity behavior is modeled by a modified Tsai-Wu criterion (Orthotropic 
Plasticity, Equation 888) in which:

(892)

Where,  is yield stress in 45° unidirectional test. The yield stresses in direction 11, 22, 12, 13 and

45° are defined by independent curves obtained by unidirectional tests (Figure 208). The curves give
the stress variation in function of a so-called strain :

(893)

Figure 208: Yield Stress Curve for a Unidirectional Orthotropic Material
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Elastic-plastic Anisotropic Shells (Barlat's Law)

Barlat's 3- parameter plasticity model is developed in F. Barlat, J. Lian 103 for modeling of sheet under
plane stress assumption with an anisotropic plasticity model. The anisotropic yield stress criterion for
plane stress is defined as:

(894)

Where,  is the yield stress,  and  are anisotropic material constants,  exponent and  and   are
defined by:

(895)

Where,  and  are additional anisotropic material constants. All anisotropic material constants, except
for  which is obtained implicitly, are determined from Barlat width to thickness strain ratio  from:

(896)

The width to thickness ratio for any angle  can be calculated: 103

(897)

Where,   is the uniaxial tension in the   direction. Let   = 45°, Equation 897 gives an equation from
which the anisotropy parameter  can be computed implicitly by using an iterative procedure:

(898)

Note:  Barlat's law reduces to Hill's law when using =2

103. Barlat F. and Lian J., “Plastic behavior and stretchability of sheet metals, Part I: A yield function
for orthoropic sheets under plane stress conditions”, International Journal of Plasticity, Vol. 5, pp.
51-66, 1989.
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Elastic-plasticity of Isotropic Materials
The strain hardening behavior of materials is a major factor in structural response as metal working 
processes or plastic instability problems. A proper description of strain hardening at large plastic strains 
is generally imperative. For many plasticity problems, the hardening behavior of the material is simply 
characterized by the strain-stress curve of the material. For the proportional loading this is generally 
true. However, if the loading path is combined, the characterization by a simple strain-stress curve is no 
longer adequate.

The incremental plasticity theory is generally used in computational methods. Plasticity models are 
written as rate-dependent or independent. A rate-dependent model is a one in which the strain rate 
does affect the constitutive law. This is true for a large range of metals at low temperature relative to 
their melting temperature.

Most isotropic elastic-plastic material laws in Radioss use von Mises yield criteria as given in Stresses in 
Solids. Several kinds of models are integrated. The models involve damage for ductile or brittle failures 
with or without dislocation. The cumulative damage law can be used to access failure. The next few 
paragraphs describe theoretical bases of the integrated models.

Johnson-Cook Plasticity Model (LAW2)
In this law the material behaves as linear elastic when the equivalent stress is lower than the yield 
stress.

For higher value of stress, the material behavior is plastic. This law is valid for brick, shell, truss and 
beam elements. The relation between describing stress during plastic deformation is given in a closed 
form:

(899)

Where,

Flow stress (Elastic + Plastic Components)

Plastic strain (True strain)

Yield stress

Hardening modulus

Hardening exponent

Strain rate coefficient

Strain rate

Reference strain rate

Temperature exponent
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Tmelt Melting temperature in Kelvin degrees. The adiabatic conditions
are assumed for temperature computation:

(900)

Where,

Specific heat per unit of volume

Initial temperature (in degrees Kelvin)

Internal energy

Two optional additional inputs are:

Maximum flow stress

Plastic strain at rupture

Figure 209 shows a typical stress-strain curve in the plastic region. When the maximum stress is
reached during computation, the stress remains constant and material undergoes deformation until the
maximum plastic strain. Element rupture occurs if the plastic strain is larger than . If the element is
a shell, the ruptured element is deleted. If the element is a solid element, the ruptured element has its
deviatoric stress tensor permanently set to zero, but the element is not deleted. Therefore, the material
rupture is modeled without any damage effect.

Figure 209: Stress - Plastic Strain Curve

Chard in this material law is same like in /MAT/LAW44. For more details on Chard, refer to Cowper-
Symonds Plasticity Model (LAW44).

Strain Rate Definition
Regarding to the plastification method used, the strain rate expression is different. If the progressive 
plastification method is used (that is, integration points through the thickness for thin-walled 
structured), the strain rate is:
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(901)

(902)

With global plastification method:

(903)

Where,  is the internal energy.

For solid elements, the maximum value of the strain rate components is used:

(904)

Strain Rate Filtering
The strain rates exhibit very high frequency vibrations which are not physical. The strain rate filtering
option will enable to damp those oscillations and; therefore obtain more physical strain rate values.

If there is no strain rate filtering, the equivalent strain rate is the maximum value of the strain rate
components:

(905)

For thin-walled structures, the equivalent strain is computed by the following approach. If ε is the main
component of strain tensor, the kinematic assumptions of thin-walled structures allows to decompose
the in-plane strain into membrane and flexural deformations:

(906)

Then, the expression of internal energy can by written as:

(907)

Therefore:

(908)

The expression can be simplified to:

(909)
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(910)

The expression of the strain rate is derived from Equation 906:

(911)

Admitting the assumption that the strain rate is proportional to the strain, that is:

(912)

(913)

Therefore:

(914)

Referring to Equation 910, it can be seen that an equivalent strain rate can be defined using a similar
expression to the equivalent strain:

(915)

(916)

For solid elements, the strain rate is computed using the maximum element stretch:

(917)

The strain rate at integration point,  in /ANIM/TENS/EPSDOT/i  is calculated by:

(918)

Where,

Membrane strain rate /ANIM/TENS/EPSDOT/MEMB

Bending strain rate /ANIM/TENS/EPSDOT/BEND.

The strain rate in upper and lower layers is computed by:

(919)

/ANIM/TENS/EPSDOT/UPPER

(920)

/ANIM/TENS/EPSDOT/LOWER

The strain rate is filtered by using:

(921)

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.330

Where,

Time interval

Fcut Cutting frequency

Filtered strain rate

Strain Rate Filtering Example
An example of material characterization for a simple tensile test RD-E: 1100 Tensile Test is given in
Radioss Example Guide. For the same example, a strain rate filtering allows to remove high frequency
vibrations and obtain smoothed the results. This is shown in Figure 210 and Figure 211 where the cut
frequency Fcut = 10 KHz is used.

Figure 210: Force Comparison

Figure 211: First Principal Strain Rate Comparison (max = 10%)
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Zerilli-Armstrong Plasticity Model (LAW2)
This law is similar to the Johnson-Cook plasticity model. The same parameters are used to define the
work hardening curve.

However, the equation that describes stress during plastic deformation is:

(922)

Where,

Stress (Elastic + Plastic Components)

Plastic strain

Temperature (computed as in Johnson-Cook plasticity)

Yield stress

Hardening exponent

Strain rate, must be 1 s-1 converted into user's time unit

Reference strain rate

Additional inputs are:

Maximum flow stress

Plastic strain at rupture

The  enables to define element rupture as in the former law. The theoretical aspects related to
strain rate computation and filtering are also the same.

Cowper-Symonds Plasticity Model (LAW44)
This law models an elasto-plastic material with:

• Isotropic and kinematic hardening

• Tensile rupture criteria

The damage is neglected in the model. The work hardening model is similar to the Johnson-Cook
model (LAW2) without temperature effect where the only difference is in the strain rate dependent
formulation. The equation that describes the stress during plastic deformation is:

(923)

Where,

Flow stress (Elastic + Plastic Components)

Plastic strain (True strain)
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Yield stress

Hardening modulus

Hardening exponent

Strain rate coefficient

Strain rate

Strain rate exponent

The implanted model in Radioss allows the cyclic hardening with a combined isotropic-kinematic 
approach.

The coefficient Chard varying between zero and unity is introduced to regulate the weight between 
isotropic and kinematic hardening models.

In isotropic hardening model, the yield surface inflates without moving in the space of principle 
stresses. The evolution of the equivalent stress defines the size of the yield surface, as a function
of the equivalent plastic strain. The model can be represented in one dimensional case as shown in 
Table 7. When the loading direction is changed, the material is unloaded and the strain reduces. A new 
hardening starts when the absolute value of the stress reaches the last maximum value (Table 7(a)).

Table 7: Isotropic and Kinematic Hardening Models for Deformation Decrease

(a) Isotropic hardening (b) Prager-Ziegler kinematic hardening

This law is available for solids and shells. Refer to the Radioss Reference Guide for more information
about element/material compatibilities.

Zhao Plasticity Model (LAW48)

The elasto-plastic behavior of material with strain rate dependence is given by Zhao formula: 104 105

(924)

Where,
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Plastic strain

Strain rate

Yield stress

Hardening parameter

Hardening exponent

Relative strain rate coefficient

Strain rate plasticity factor

Relative strain rate exponent

Strain rate coefficient

Strain rate exponent

In the case of material without strain rate effect, the hardening curve given by Equation 924 is identical 
to those of Johnson-Cook. However, Zhao law allows a better approximation of strain rate dependent 
materials by introducing a nonlinear dependency.

As described for Johnson-Cook law, a strain rate filtering can be introduced to smooth the results. The 
plastic flow with isotropic or kinematic hardening can be modeled as described in Cowper-Symonds 
Plasticity Model (LAW44). The material failure happens when the plastic strain reaches a maximum 
value as in Johnson-Cook model. However, two tensile strain limits are defined to reduce stress when 
rupture starts:

(925)

Where,

Largest principal strain

 and Rupture strain limits

If , the stress is reduced by Equation 925. When  the stress is reduced to zero.

104. Zhao Han, “A Constitutive Model for Metals over a Large Range of Strain Rates”, Materials Science
& Engineering, A230, 1997.

105. Zhao Han and Gerard Gary, “The Testing and Behavior Modelling of Sheet Metals at Strain Rates
from 10.e-4 to 10e+4 s-1”, Materials Science & Engineering" A207, 1996.
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Tabulated Piecewise Linear and Quadratic Elasto-plastic Laws (LAW36 
and LAW60)
The elastic-plastic behavior of isotropic material is modeled with user-defined functions for work 
hardening curve.

The elastic portion of the material stress-strain curve is modeled using the elastic modulus, E, and 
Poisson's ratio, . The hardening behavior of the material is defined in function of plastic strain for a 
given strain rate (Figure 212). An arbitrary number of material plasticity curves can be defined for 
different strain rates. For a given strain rate, a linear interpolation of stress for plastic strain change, 
can be used. This is the case of LAW36 in Radioss. However, in LAW60 a quadratic interpolation of the 
functions allows to better simulate the strain rate effects on the behavior of material as it is developed 
in LAW60. For a given plastic strain, a linear interpolation of stress for strain rate change is used. 
Compared to Johnson-Cook model (LAW2), there is no maximum value for the stress. The curves are 
extrapolated if the plastic deformation is larger than the maximum plastic strain. The hardening model 
may be isotropic, kinematic or a combination of the two models as described in Cowper-Symonds 
Plasticity Model (LAW44). The material failure model is the same as in Zhao law.

For some kinds of steels the yield stress dependence to pressure has to be incorporated especially for 
massive structures. The yield stress variation is then given by:

(926)

Where,  is the pressure defined by Stresses in Solids, Equation 84. Drücker-Prager model described

in   Drücker-Prager (LAW10 and LAW21)    gives  a  nonlinear   function  for . However, for steel 
type materials where the dependence to pressure is low, a simple linear function may be considered:

(927)

Where,

User-defined constant

Computed pressure for a given deformed configuration

Chard in /MAT/LAW36 is same like in /MAT/LAW44. For more detail on Chard, see Cowper-Symonds 
Plasticity Model (LAW44).

Figure 212: Piecewise Linear Stress-Strain Curves

The principal strain rate is used for the strain rate definition:
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(928)

For strain rate filtering, refer to Strain Rate Filtering.

Drücker-Prager Constitutive Model (LAWS 10, 21 and 81)

Drücker-Prager (LAW10 and LAW21)
For materials, like soils and rocks, the frictional and dilatational effects are significant. In these
materials, the plastic behavior depends on the pressure as the internal friction is proportional to the
normal force.

Furthermore, for frictional materials, associative plasticity laws, in which the plastic flow is normal to

the yield surface, are often inappropriate. Drücker-Prager 106 yield criterion uses a modified von Mises
yield criteria to incorporate the effects of pressure for massive structures:

(929)

Where,

Second invariant of deviatoric stress 

Pressure

, , Material coefficients

Figure 213 shows Equation 929 in the plane of  and . The criterion expressed in the space of
principal stresses represents a revolutionary surface with an axis parallel to the trisecting of the space
as shown in Figure 214. This representation is in contrast with the von Mises criteria where yield
criterion has a cylindrical shape. Drücker-Prager criterion is a simple approach to model the materials
with internal friction because of the symmetry of the revolution surface and the continuity in variation of
normal to the yield surface.

For LAW10 pressure evaluation for EOS is described with /EOS/COMPATION.

The pressure in the material is determined in function of volumetric strain for loading phase:

(930)

for loading 

Where,  is a user-defined (LAW21) or a cubic polynomial function (LAW10). For unloading phase, if the
volumetric strain has a negative value, a linear relation is defined as:

(931)

for unloading  and 
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For unloading with a positive volumetric strain, another linear function may be used:

(932)

for unloading  and

In Radioss extended Drücker-Prager model is used in LAW10 and LAW21. Neither of these laws can
reproduce the mono-dimensional behavior. In addition, no viscous effect is taken into account.

Figure 213: Yield Criteria in the Plane of  and P

Figure 214: Drücker-Prager Yield Criteria in Space of Principal Stresses
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Figure 215: Material Pressure Variation in Function of Volumetric Strain

Drücker-Prager Constitutive Model with Cap (LAW81)

Yield Surface
The Drücker-Prager yield surface is:

(933)

Figure 216:

Cap hardening considered in this material law in  is described with:

106. Drücker D. and Prager W., “Soil mechanics and plastic analysis of limit design”, Quart. Appl. Math.,
Vol. 10, 157-165, 1952.
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(934)

In lower compression or tension , then linear yield surface will be considered with:

(935)

Where,

von Mises stress

Pressure

Deviatoric stress

Cohesion

Friction angle

Pressure value

Plastic Flow
Plastic flow is governed by the non-associated flow potential  defined as:

If 

(936)

If 

(937)

If  (example, the flow becomes associated on the cap)

(938)

The plastic potential is continuous as you have .

By definition the plastic flow is normal to the flow potential.
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(939)

The scalar  will be determined in order to satisfy consistency and experimental hardening/softening.

Hardening/Softening
The cap is defined by only one parameter , assume that  evolves according to:

(940)

Where,

 and Initial value of  and 

The evolution of  depends on  via a curve given in input fct_IDpb.

Note:  The same sign conversion for  and , which is positive in compression is

considered.

• Shear yielding has an effect on , which depends on the possible dilantancy imposed by the flow

rule. An option to prevent this phenomenon is provided, for example, for rocks (cap softening
deactivation flag Isoft).

•  is derived from  via Equation 940

• If softening is allowed, the condition  is imposed, otherwise, 

Derive Stress-Strain Relationships
Considering bulk and shear moduli  and , write the relationship between stress and elastic strain
deviatoric tensors and and between pressure and volumetric strain and its plastic component.

(941)

(942)

Note that,

(943)

(944)

You can relate the increment of the plastic volumetric strain  and the equivalent plastic strain 

and .
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(945)

and  with .

and solving for  from Equation 939, Equation 942, Equation 944 and Equation 945, you obtain,

(946)

With 

You can then compute all terms in Equation 946.

If , then , , .

If , then

(947)

and 

If , then 

If , then

(948)

If , then 

Finally,  gives

(949)
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When  and  leads to softening of the cap. If the no-softening cap flag is set, the last term

in Equation 942 is irrelevant. To achieve this, set  and impose on the hardening parameter 

not decrease, although there is some volumetric plastic flow .

For , , , so that  is undetermined in Equation 945.

In this case, a special treatment needs to be performed; at first order, the deviatoric terms are
neglected.

(950)

Elastic Properties
Yielding the cap actually models the compaction process. The elastic properties should thus increase
when the porosity decreases, that is,  increases.

The variation of  and  with  are determined by two functions given in input.

Figure 217:
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Note:  Typically, when variable elastic properties are used, the hardening parameter

 and the volumetric deformation after full unloading are not consistent.

Porosity Model

The porosity model is inspired by 107 and assumes the soils are made of elastic grains with voids and
is for low energies when the soil is not fully compacted. For a fully compacted soil at high energy,
an equation of state should be used. In this material law, the variation of the volume of voids has
an elastic part due to the elastic deformation of the skeleton and a plastic part which corresponds to
the rearrangement of grains which induces compaction upon pressure loadings and dilatancy when
undergoing shear loadings.

Note:  The presence of air is not part of this model. The porosity is defined so that it
represents the volume fraction of voids, with respect to the total reference volume.

(951)

In the elastic case, the void volume does not change. However, in the plastic case, the porosity change
is defined by:

(952)

The initial state of the pores is defined by the initial porosity, initial saturation, and initial pore pressure.
The saturation is defined as the ratio of the volume of the water to the volume in the void:

(953)

The above voids can be partly or totally filled with water. In soil mechanics, when the soil is not
saturated  the only effect of water is its weight and mass so the water pressure ; the
mechanical properties are then the same as the drained soil. When the soil is saturated , the water

pressure  is taken into account using Terzaghi’s assumption. 108 The total pressure is , where
 is the effective pressure in the structure that has the voids. Also, assume the initial water pressure

does not exceed the initial pressure in the skeleton.

The average density of the void can be calculated as the mass of the water divided by the volume of the
void:

(954)

Next, define:

(955)

Where,  is the initial density of the water.
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For stability reasons, a viscousity term is added.

If  and is added to .

For a smoother transition, define:

(956)

Where,  is the water bulk modulus.

Figure 218: Pressure, due to Porosity

The cap is then modified by adding a purely von Mises region for .

Figure 219: Modification to the Cap

107. R. Kohler and G. Hofstetter, A cap model for partially saturated soils, Wiley & Sons, 2007

108. Karl Terzaghi, Theoretical Soil Mechanics, Wiley & Sons, 1943
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Brittle Damage: Johnson-Cook Plasticity Model (LAW27)
Johnson-Cook plasticity model is presented in Johnson-Cook Plasticity Model (LAW2). For shell 
applications, a simple damage model can be associated to this law to take into account the brittle 
failure. The crack propagation occurs in the plan of shell in the case of mono-layer property and through 
the thickness if a multi-layer property is defined (Figure 220).

Figure 220: Damage Affected Material

The elastic-plastic behavior of the material is defined by Johnson-Cook model. However, the stress-
strain curve for the material incorporates a last part related to damage phase as shown in Figure 221.
The damage parameters are:

Tensile rupture strain in direction 1

Maximum strain in direction 1

dmax1 Maximum damage in direction 1

Maximum strain for element deletion in direction 1

The element is removed if one layer of element reaches the failure tensile strain, . The nominal and
effective stresses developed in an element are related by:

(957)

Where,

Damage factor

The strains and the stresses in each direction are given by:

(958)

(959)

(960)

(961)
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(962)

The conditions for these equations are:

; 

; 

A linear damage model is used to compute the damage factor in function of material strain.

(963)

The stress-strain curve is then modified to take into account the damage by Equation 957. Therefore:

(964)

The softening condition is given by:

(965)

The mathematical approach described here can be applied to the modeling of rivets. Predit law in
Radioss allows achievement of this end by a simple model where for the elastic-plastic behavior a
Johnson-Cook model or a tabulated law (LAW36) may be used.

Figure 221: Stress-strain Curve for Damage Affected Material

Brittle Damage: Reinforced Concrete Material (LAW24)
The model is a continuum, plasticity-based, damage model for concrete. It assumes that the main two
failure mechanisms are tensile cracking and compressive crushing of the concrete material.

The material law will enable to formulate the brittle elastic - plastic behavior of the reinforced concrete.

The input data for concrete are:
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E c Young's modulus

32000 MPa

Vc Poisson's ratio

0.2

fc Uniaxial compressive strength

32 

fi/fc Tensile strength ratio

Default = 0.1

fb/fc Biaxial strength ratio

Default = 1.2

f2/fc Confined strength ratio

Default = 4.0

s0/fc Confining stress ratio

Default = 1.25

Experimental results enable to determine the material parameters. This can be done by in-plane
unidirectional and bi-axial tests as shown in Figure 223. The expression of the failure surface is in a
general form as:

(966)

Where,

Second invariant of stress

Where, 

Mean stress

A schematic representation of the failure surface in the principal stress space is given in Figure 223. The

yield surface is derived from the failure envelope by introducing a scale factor . The meridian
planes are presented in Figure 224.

The steel directions are defined identically to material LAW14 by a TYPE6 property set. If a property
set is not given in the element input data, r, s,  are taken respectively as direction 1, 2, 3. For quad
elements, direction 3 is taken as the  direction.

Steel data properties are:

E Young's modulus
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Yield strength

E t Tangent modulus

Ratio of reinforcement in direction 1

Ratio of reinforcement in direction 2

Ratio of reinforcement in direction 3

Figure 222: Failure Surface in Plane Stress

Figure 223: Failure Surface in Principal Stress Space
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Figure 224: Meridians of Failure and Yield Surfaces

Ductile Damage Model
In Brittle Damage: Johnson-Cook Plasticity Model (LAW27), a damage model for brittle materials is 
presented. It is used in Radioss LAW27 valid for shell meshes. The damage is generated when the shell 
works in traction only. A generalized damage model for ductile materials is incorporated in Radioss 
LAW22 and LAW23. The damage is not only generated in traction but also in compression and shear. 
It is valid for solids and shells. The elastic-plastic behavior is formulated by Johnson-Cook model. The 
damage is introduced by the use of damage parameter, . The damage appears in the material when 
the strain is larger than a maximum value, :

• If  LAW 22 is identical to LAW2.

• If  and 

This implies an isotropic damage with the same effects in tension and compression. The inputs of
the model are the starting damage strain  and the slope of the softening curve  as shown in
Figure 225.

For brick elements the damage law can be only applied to the deviatoric part of stress tensor  and

. This is the case of LAW22 in Radioss. However, if the application of damage law to

stress tensor  is expected, Radioss LAW23 may be used.
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Figure 225: Ductile Damage Model

The strain rate definition and filtering for these laws are explained in Johnson-Cook Plasticity Model 
(LAW2). The strain rate  may or may not affect the maximum stress value  according to the user's 
choice, as shown in Figure 226.

(a) Strain rate effect on (b) No strain rate effect on

Figure 226: Strain Rate Dependency

Ductile Damage Model for Porous Materials (LAW52)

The Gurson constitutive law 109 models progressive microrupture through void nucleation and growth. It
is dedicated to high strain rate elasto-viscoplastic porous metals. A coupled damage mechanical model
for strain rate dependent voided material is used. The material undergoes several phases in the damage
process as described in Figure 227.
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Figure 227: Damage Process for Visco-elastic-plastic Voided Materials

The constitutive law takes into account the void growth, nucleation and coalescence under dynamic
loading. The evolution of the damage is represented by the void volume fraction, defined by:

(967)

Where,

, 
Respectively, are the elementary apparent volume of the material and the corresponding
elementary volume of the matrix.

The rate of increase of the void volume fraction is given by:

(968)

The growth rate of voids is calculated by:

(969)

Where,  is the trace of the macroscopic plastic strain rate tensor. The nucleation rate of voids
is given by:

(970)

Where,

Nucleated void volume fraction

Gaussian standard deviation

Nucleated effective plastic strain

Admissible plastic strain

The viscoplastic flow of the porous material is described by:
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(971)

Where,

von Mises is effective stress

Admissible elasto-viscoplastic stress

Hydrostatic stress

Specific coalescence function which can be written as:

(972)

Where,

Critical void volume fraction at coalescence

Critical void volume fraction at ductile fracture

Corresponding value of the coalescence function ,

The variation of the specific coalescence function is shown in Figure 228.

Figure 228: Variation of Specific Coalescence Function

The admissible plastic strain rate is computed as:
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(973)

Where,

Cauchy stress tensor

Admissible plastic stress

Macroscopic plastic strain rate tensor which can be written in the
case of the associated plasticity as:

(974)

with  the yield surface envelope. The viscoplastic multiplier is deduced from the consistency
condition:

(975)

From this last expression we deduce that:

(976)

Where,

(977)

Connect Materials (LAW59)
For the moment /MAT/LAW59 is only compatible with /PROP/TYPE43 and /FAIL/CONNECT.

Solid Connection Element and Material
These materials and properties are only compatible with each other; /FAIL/CONNECT, and the
designated failure model.

They are designed for spotweld, welding line or glue type connections.

The property is only compatible with standard 8 node brick elements. The element orientation with
respect to the connected surfaces is important, and must be defined, as:

109. Gurson A. L. “Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield
criteria and flow rules for porous ductile media”, Journal of Engineering Materials and Technology,
Vol. 99, 2-15, 1977.
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Figure 229: Solid connect element

The main characteristic of CONNECT property is the time step is independent on the element height,
only on the section surface area. Hence, it can be used for glue or spotweld connections, with null
height distance.

Element Definition
The element local coordinate system is constructed in the mid-plane section between the bottom and
top faces. The orientation is the same as in Radioss shell elements:

Figure 230: Points 1a, 2a, 3a and 4a are in the mid-distance between bottom and top face nodes

The local element system is fully corotational (not only convected), local deformations are thus
independent on rigid element rotations.

The element has four Gauss integration points placed in the mid plane section. Element deformation in
each point is constructed using nodal displacements and linear function forms in the following way:

Dzz = sum(Ni*Vzi)i=5,6,7,8 - sum(Nj*Vzj)j=1,2,3,4
Dxz = sum(Ni*Vxi)i=5,6,7,8 - sum(Nj*Vxj)j=1,2,3,4
Dyz = sum(Ni*Vyi)i=5,6,7,8 - sum(Nj*Vyj)j=1,2,3,4

Where,

Vx, Vy, and Vz
Nodal velocities in local corotational system
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Ni
Function forms

Note:  These independent variables are not deformations but relative displacements
(velocities).

The element has only three "strain" components - traction/compression in normal (Z) direction and
both transverse shears XZ and YZ. Actually, in-plane shear, as well as lateral tractions/compressions
does not give any resistance forces. It's a pure "connection" element and is not intended to be used in
independent way. Both upper and bottom faces have to be tied to different structural parts.

Material Law
The elastic-plastic behavior is modeled independently in normal and tangent (in-plane) directions
in each Gauss integration points, using user-defined functions for work hardening curve. There is
no coupling between normal and shear direction in the material law. The hardening model is purely
isotropic. Different number of hardening curves may be defined in each direction, for different values of
deformation rate.

For a given strain rate, a linear interpolation between corresponding curves is used to find the value of
the yield stress for the actual plastic displacement.

Deformation rates may be optionally filtered. In this regard, the law is similar to the classical elastic-
plastic tabulated approach.

Nodal forces are assembled using stress components calculated in each Gauss integration point, and
additional treatment is performed to assure global force and moment balance at every time step.

Input Parameters
The material stiffness parameters are input as total element rigidity per section area, which is

equivalent to the Young and shear modulus per height unit  ( ).

The hardening functions are expressed as engineering stress relative to plastic displacements.

Element Stability
The element does not have its own elementary time step. Corresponding nodal time step is calculated
using nodal masses and stiffness to assure the numerical stability. In Radioss v12.0, the nodal time step
is imposed to the whole model, in the next releases the elementary time step is option is maintained if
chosen in the Engine input file, only the connection material elements will use nodal time step.
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Viscous Materials
General case of viscous materials represents a time-dependent inelastic behavior.

However, special attention is paid to the viscoelastic materials such as polymers exhibiting a rate- and
time-dependent behavior. The viscoelasticity can be represented by a recoverable instantaneous elastic
deformation and a non-recoverable viscous part occurring over the time. The characteristic feature of
viscoelastic material is its fading memory. In a perfectly elastic material, the deformation is proportional
to the applied load. In a perfectly viscous material, the rate of change of the deformation over time is
proportional to the load. When an instantaneous constant tensile stress  is applied to a viscoelastic
material, a slow continuous deformation of the material is observed. When the resulting time dependent

strain , is measured, the tensile creep compliance is defined as:

(978)

The creep behavior is mainly composed of three phases:

• Primary creep with fast decrease in creep strain rate

• Secondary creep with slow decrease in creep strain rate

• Tertiary creep with fast increase in creep strain rate.

The creep strain rate is the slope of creep strain to time curve.

Another kind of loading concerns viscoelastic materials subjected to a constant tensile strain, . In

this case, the stress,  which is called stress relaxation, gradually decreases. The tensile relaxation
modulus is then defined as:

(979)

Because viscoelastic response is a combination of elastic and viscous responses, the creep compliance
and the relaxation modulus are often modeled by combinations of springs and dashpots. A simple
schematic model of viscoelastic material is given by the Maxwell model shown in Figure 231. The model
is composed of an elastic spring with the stiffness  and a dashpot assigned a viscosity . It is assumed
that the total strain is the sum of the elastic and viscous strains:

(980)

Figure 231: Maxwell Model

The time derivation of the last expression gives the expression of the total strain rate:

(981)

As the dashpot and the spring are in series, the stress is the same in the two parts:
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(982)

The constitutive relations for linear spring and dashpot are written as:

 then (983)

(984)

Combining Equation 981, Equation 983 and Equation 984, an ordinary differential equation for stress is
obtained:

 or 
(985)

Where,  is the relaxation time. A solution to the differential equation is given by the convolution

integral:

(986)

Where,  is the relaxation modulus. The last equation is valid for the special case of Maxwell one-
dimensional model. It can be extended to the multi-axial case by:

(987)

Where,  are the relaxation moduli. The Maxwell model represents reasonably the material
relaxation. But it is only accurate for secondary creep as the viscous strains after unloading are not
taken into account.

Another simple schematic model for viscoelastic materials is given by Kelvin-Voigt solid. The model is
represented by a simple spring-dashpot system working in parallel as shown in Figure 232.

Figure 232: Kelvin-Voigt Model

The mathematical relation of Kelvin-Voigt solid is written as:

(988)

When  (no dashpot), the system is a linearly elastic system. When =0 (no spring), the material
behavior is expressed by Newton's equation for viscous fluids. In the above relation, a one-dimensional
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model is considered. For multiaxial situations, the equations can be generalized and rewritten in tensor
form.

The Maxwell and Kelvin-Voigt models are appropriate for ideal stress relaxation and creep behaviors.
They are not adequate for most of physical materials. A generalization of these laws can be obtained by
adding other springs to the initial models as shown in Figure 233 and Figure 234. The equations related
to the generalized Maxwell model are given as:

(989)

(990)

(991)

The mathematical relations which hold the generalized Kelvin-Voigt model are:

(992)

; ; 

The combination of these equations enables to obtain the expression of stress and strain rates:

(993)

(994)

(995)

Figure 233: Generalized Maxwell Model

Figure 234: Generalized Kelvin-Voigt Model
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The models described above concern the viscoelastic materials. The plasticity can be introduced in the
models by using a plastic spring. The plastic element is inactive when the stress is less than the yield
value. The modified model is able to reproduce creep and plasticity behaviors. The viscoplasticity law
(LAW33) in Radioss will enable to implement very general constitutive laws useful for a large range of
applications as low density closed cells polyurethane foam, honeycomb, impactors and impact limiters.

The behavior of viscoelastic materials can be generalized to three dimensions by separating the stress
and strain tensors into deviatoric and pressure components:

(996)

(997)

Where,  and  are the stress and strain deviators. ,  and  are respectively the dilatation
and the shear and bulk relaxation moduli.

Boltzmann Viscoelastic Model (LAW34)
This law valid for solid elements can be used for viscoelastic materials like polymers, elastomers, glass
and fluids.

Elastic bulk behavior is assumed. Air pressure may be taken into account for closed cell foams:

(998)

with:

(999)

and:

(1000)

Where,

Volumetric strain

Porosity

Initial air pressure

Initial volumetric strain

Bulk modulus

For deviatoric behavior, the generalized Maxwell model is used. The shear relaxation moduli in 
Viscous Materials, Equation 996 is then defined as:
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(1001)

(1002)

Where,

Short time shear modulus

Long time shear modulus

Decay constant, defined as the inverse of relaxation time :

; with 
(1003)

The coefficients ,  and  are defined for the generalized Maxwell model, as shown in Figure 235.

Figure 235: Generalized Maxwell Model for Boltzmann Law

From Equation 1001, the value of  governs the transition from the initial modulus  to the final

modulus . For =0, you obtain  and when , then . For a linear response, put
.

Generalized Kelvin-Voigt Model (LAW35)
This law uses a generalized viscoelastic Kelvin-Voigt model whereas the viscosity is based on the Navier
equations.

The effect of the enclosed air is taken into account via a separate pressure versus compression function.
For open cell foam, this function may be replaced by an equivalent "removed air pressure" function.
The model takes into account the relaxation (zero strain rate), creep (zero stress rate), and unloading.
It may be used for open cell foams, polymers, elastomers, seat cushions, dummy paddings, etc. In
Radioss the law is compatible with shell and solid meshes.

The simple schematic model in Figure 236 describes the generalized Kelvin-Voigt material model where
a time-dependent spring working in parallel with a Navier dashpot is put in series with a nonlinear
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rate-dependent spring. If  is the mean stress, the deviatoric stresses  at steps  and  are

computed by the expressions:

(1004)

for  else, 

(1005)

with:

(1006)

for 

(1007)

for 

Where,  and  are defined as:

(1008)

(1009)

In Equation 1008 the coefficients  and  are defined for Young's modulus updates ( ).

Figure 236: Generalized Kelvin-Voigt Model

The expressions used by default to compute the pressure is:

(1010)

Where,

(1011)
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(1012)

(1013)

(1014)

 and  are the Navier Stokes viscosity coefficients which can be compared to Lame constants in

elasticity.  is called the volumetric coefficient of viscosity. For incompressible model,  and

 and . In Equation 1014, C1, C2 and C3 are Boolean multipliers used to define different

responses. For example, C1=1, C2=C3=0 refers to a linear bulk model. Similarly, C1=C2=C3=1
corresponds to a visco-elastic bulk model.

For polyurethane foams with closed cells, the skeletal spherical stresses may be increased by:

(1015)

Where,

Volumetric strain

Porosity

Initial air pressure

In Radioss, the pressure may also be computed with the  versus , by a user-defined

function. Air pressure may be assumed as an "equivalent air pressure" versus . You can define this
function used for open cell foams or for closed cell by defining a model identical to material LAW 33
(FOAM_PLAS).

Tabulated Strain Rate Dependent Law for Viscoelastic Materials
(LAW38)
The law incorporated in Radioss can only be used with solid elements.

It can be used to model:

• polymers

• elastomers

• foam seat cushions

• dummy paddings

• hyperfoams

• hypoelastic materials
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In compression, the nominal stress-strain curves for different strain rates are defined by you
(Figure 237). Up to 5 curves may be input. The curves represent nominal stresses versus engineering
strains.

Figure 237: Nominal Stress-strain Curves Defined by User Input Functions

The first curve is considered to represent the static loading. All values of the strain rate lower than the
assumed static curve are replaced by the strain rate of the static curve. It is reasonable to set the strain
rate corresponding to the first curve equal to zero. For strain rates higher than the last curve, values of
the last curve are used. For a given value of , two values of function at for the two immediately lower

 and higher  strain rates are read. The related stress is then computed as:

(1016)

Parameters  and  define the shape of the interpolation functions. If  =  = 1, then the interpolation
is linear.

Figure 238 shows the influence of  and  parameters.
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Figure 238: Influence of a and b Parameters

The coupling between the principal nominal stresses in tension is computed using anisotropic Poisson's
ratio:

(1017)

Where,  is the maximum Poisson's ratio in tension,  being the maximum Poisson's ratio in
compression, and , the exponent for the Poisson's ratio computation (in compression, Poisson's ratio
is always equal to ).

In compression, material behavior is given by nominal stress versus nominal strain curves as defined by
you for different strain rates. Up to 5 curves may be input.

The algorithm of the formulation follows several steps:

1. Compute principal nominal strains and strain rates.

2. Find corresponding stress value from the curve network for each principal direction.

3. Compute principal Cauchy stress.

4. Compute global Cauchy stress.

5. Compute instantaneous modulus, viscosity and stable time step.

Stress, strain and strain rates must be positive in compression. Unloading may be either defined with
an unloading curve, or else computed using the "static" curve, corresponding to the lowest strain rate
(Figure 239 and Figure 240).
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Figure 239: Unloading Behavior (No Unloading Curve Defined)

Figure 240: Unloading Behavior (Unloading Curve Defined)

It should be noted that for stability reasons, damping is applied to strain rates with a damping factor:

(1018)

The stress recovery may be applied to the model in order to ensure that the stress tensor is equal to
zero, in an undeformed state.

An hysteresis decay may be applied when loading, unloading or in both phases by:

(1019)

Where,

Hysteresis coefficient

Relaxation parameter

Confined air content may be taken into account, either by using a user-defined function, or using the
following relation:

(1020)
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The relaxation may be applied to air pressure:

(1021)

Generalized Maxwell-Kelvin Model for Viscoelastic Materials (LAW40)
This law may only be applied to solid elements.

Bulk behavior is assumed to be linear:

(1022)

Shear behavior is computed using a shear factor as:

(1023)

Figure 241: Maxwell-Kelvin Model

 are time decays,  with  being relaxation time.

Visco-elasto Materials for Foams (LAW33)
This material law can be used to model low density closed cell polyurethane foams, impactors, impact
limiters. It can only be used with solid elements.

The main assumptions in this law are:

• The components of the stress tensor are uncoupled until full volumetric compaction is achieved
(Poisson's ratio = 0.0).

• The material is isotropic.

• The effect of the enclosed air is considered via a separate Pressure versus Volumetric Strain
relation:

(1024)
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with:

(1025)

Where,

Volumetric strain

Porosity

Initial air pressure

Initial volumetric strain

• The structural stresses  follow the Maxwell-Kelvin-Voight viscoelastic model (Generalized 
Kelvin-Voigt Model (LAW35), Equation 1015 before the limiting yield curve is reached):

Figure 242: Maxwell-Kelvin-Voight Model

(1026)

• The Young's modulus used in the calculation is:

• Yield is defined by a user-defined curve versus volumetric strain, , or 

• Yield is applied to the principal structural stresses.

• Unloading follows Young's modulus, which results in viscous unloading.

• The full stress tensor is obtained by adding air pressure to the structual stresses:

(1027)

Hyper Visco-elastic Law for Foams (LAW62)
Experimental tests on foam specimens working in compression illustrate that the material behavior
is highly nonlinear. The general behavior can be subdivided into three parts related to particular
deformation modes of material cells. When the strain is small, the cells working in compression deform
in membrane without causing buckling in its lateral thin-walls. In the second step, the lateral thin-walls
of the cells buckle while the material undergoes large deformation. Finally, in the last step the cells are
completely collapsed and the contact between the lateral thin-walled cells increases the global stiffness
of the material.
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As the viscous behavior of foams is demonstrated by various tests, it is worthwhile to elaborate

a material law including the viscous and hyper elasticity effects. This is developed in 110 where a
decoupling between viscous and elastic parts is introduced by using finite transformations. Only the
deviatoric part of the stress tensor is concerned by viscous effects.

Material LAW62 corresponds to a hyper-elastic solid material using the Ogden formulation for rubber

material. The strain energy functional 111 is given by:

(1028)

Where,  is the right Cauchy Green Tensor,  with  the deformation gradient matrix,  are the

eigenvalues of , , ,  and 

Note:  For rubber materials which are almost incompressible, the bulk modulus is very large
compared to the shear modulus.

The ground shear modulus is given by:

(1029)

 can be written as:

(1030)

Where,

Deviatoric part of the right Cauchy Green Tensor

 and Volumetric and deviatoric parts of the stored energy functions and
 the second Piola-Kirchhoff stress tensor given by:

(1031)

With 

The Green-Lagrange strain tensor:

 and  are the deviatoric and volumetric parts of the second Piola-Kirchhoff stress

tensor .

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.368

Rate effects are modeled through visco-elasticity using a convolution integral using Prony series. This
corresponds to an extension of small strain theory or finite deformation to large strain. The rate effect is
applied only to the deviatoric stress. The deviatoric stress is computed as:

(1032)

Where,  is the internal variable given by the following rate equations:

(1033)

, 

, 

 is given by the following convolution integral:

(1034)

Where,

Where,  is the initial shear modulus;  should be exactly the same as the ground shear modulus
.  is the long-term shear modulus that can be obtained from long-term material testing.  are the

relaxation times.

The relation between the second Piola-Kirchhoff stress tensor  and Cauchy stress tensor 
is:

(1035)
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110. Simo J.C., “On a fully three-dimensional finite strain viscoelastic damage model: Formulation and
Computational Aspects”, Computer Methods in Applied Mechanics and Engineering, Vol. 60, pp.
153-173, 1987.

111. Ogden R.W., “Nonlinear Elastic Deformations”, Ellis Horwood, 1984.
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Hydrodynamic Analysis Materials
The following material laws are commonly used for fluid simulations:

• Johnson-Cook model for strain rate and temperature dependence on yield stress (LAW4),

• Hydrodynamic viscous material for Newtonian or turbulent fluids (LAW6),

• Elasto-plastic hydrodynamic materials with von Mises isotropic hardening and polynomial pressure
(LAW3),

• Steinberg-Guinan elasto-plastic hydrodynamic law with thermal softening (LAW49),

• Boundary element materials (LAW11),

• Purely thermal materials (LAW18)

Radioss provides a material database incorporated in the installation. Many parameters are already
defined by default and give accurate results.

Johnson-Cook Law for Hydrodynamics (LAW4)
This law enables to model hydrodynamic behavior of an elastic-plastic material using Johnson-Cook
Yield criteria and any equation of state available with /EOS card. It based on /MAT/LAW3 and adds strain
rate and temperature dependency. The advantage of material LAW04 regarding classical LAW02 (/MAT/
JCOOK) is that you can choose any available EOS from /EOS card.

The equation describing yield stress (scale value) is:

(1036)

Where, 

The pressure and energy values are obtained by solving equation of state  related to the material
(/EOS).

Material parameters are the same as in LAW3.

The parameters are:

Strain rate coefficient

Reference strain rate

Temperature exponent

Tmelt Melting temperature

Tmax Maximum temperature

For , then =1 is used.

Specific heat per unit volume

For an explanation about strain rate filtering, refer to Strain Rate Filtering.  
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Hydrodynamic Viscous Fluid Materials (LAW6)
This law is specifically designed to model liquids and gases.

The equations used to describe the material are:

(1037)

(1038)

Where,

Deviatoric stress tensor

Kinematic viscosity

Deviatoric strain rate tensor

The kinematic viscosity  is related to the dynamic viscosity,  by:

(1039)

Perfect Gas Model
To model a perfect gas, all coefficients C0, C1, C2, C3 must be set to equal zero. Also:

(1040)

(1041)

A perfect gas allows compressibility and expansion and contraction with a rise in temperature. However,
for many situations, especially very slow subsonic flows, an incompressible gas gives accurate and
reliable results with less computation.

Incompressible Gas Model
To model an incompressible gas, the coefficients should be set to:

(1042)

(1043)

Where,

Speed of sound

Incompressibility is achieved via a penalty method. The sound speed is set to at least 10 times the
maximum velocity.

This classical assumption is not valid when fluid and structures are coupled. In this case, set the sound
speed in the fluid so that the first eigen frequency is at least 10 times higher in the fluid than in the
structure.
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Elasto-plastic Hydrodynamic Materials (LAW3)
This law is only used with solid brick and quadrilateral elements.

It models the elastic and plastic regions, similar to LAW2, with a nonlinear behavior of pressure and
without strain rate effect. The law is designed to simulate materials in compression.

The stress-strain relationship for the material under tension is:

(1044)

The pressure and energy values are obtained by solving equation of state  related to the material
(/EOS).

Input requires Young's or the elastic modulus, , and Poisson's ratio, . These quantities are used only
for the deviatoric part. The plasticity material parameters are:

Yield stress

Hardening modulus

Hardening exponent

Maximum flow stress

Plastic strain at rupture

A pressure cut off, Pmin, can be given to limit the pressure in tension. The pressure cut off must be
lower or equal to zero. Figure 243 shows a typical curve of the hydrodynamic pressure.

Figure 243: Hydrodynamic Pressure Relationship

Steinberg-Guinan Material (LAW49)
This law defines as elastic-plastic material with thermal softening. When material approaches melting 
point, the yield strength and shear modulus reduces to zero.

The melting energy is defined as:

(1045)

Where,  is cold compression energy and  melting temperature is supposed to be constant. If the 
internal energy  is less than , the shear modulus and the yield strength are defined by:
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(1046)

(1047)

Where, , ,  and  are the material parameters.  is given by a hardening rule:

(1048)

The value of  is limited by .

The material pressure  is obtained by solving equation of state  related to the material (/EOS)
as in LAW3.

Void Materials (LAW0)
This material can be used to define elements to act as a void, or empty space.

Shape Memory Superelastic Material (LAW71)
This material can be used to define elements to act as a void, or empty space.

The constitutive model that is used in LAW71 to describe the shape memory alloy superelastic behavior

is based on the work of Auricchio.112

Phase Transformation Conditions
Two phase transformations are considered:

• Transformation from austenite to martensite denoted AS (A→S)

• Transformation from martensite to austenite denoted SA (S→A)

A transformation strain is introduced dependent on the evolution of the fraction of martensite:

(1049)

The stress deviator and pressure are updated using the fraction of martensite and transformation
strain:

(1050)

(1051)

 and  are the shear and the bulk modulus, respectively. It is possible to define these parameters
dependent on the martensite fraction. In this case,  and  subscripts refer to austenite and
martensite, respectively. The two moduli are calculated as:

(1052)

(1053)
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Where,

Deviator of the strain

Denotes the trace of the tensor

Martensite fraction

 and Constant material parameters

Unit vector is defined as 

Transformation from Austenite to Martensite
Two functions are defined for the start and the final point of transformation. These functions are
expressed as:

(1054)

(1055)

Where,

(1056)

(1057)

The loading function  is computed using the stress deviator , the pressure , and the temperature:

(1058)

Where, , , , , , and  are the material parameters.

The conversion of austenite to martensite takes place when the following conditions are verified:

(1059)

(1060)

(1061)

112. F. Auricchio, R.L. Taylor. Shape memory alloys: modeling and numerical simulations of the finite-
strain superelastic behavior. Comput. Methods Appl. Mech. Engrg. 143 (1997) 175-194.
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Failure Models
In addition to the possibility to define user's material failure models, Radioss integrates several failure
models. These models use generally a global notion of cumulative damage to compute failure. They are
mostly independent to constitutive law and the hardening model and can be linked to several available
material laws. A compatibility table is given in the Radioss Reference Guide. Table 8 provides a brief
description of available models.

Table 8: Failure Model Description

Failure Model Type Description

BIQUAD Strain failure model Direct input on effective
plastic strain to failure

CHANG Chang-Chang model Failure criteria for composites

CONNECT Failure Normal and Tangential failure model

EMC Extended Mohr
Coulomb failure model

Failure dependent on
effective plastic strain

ENERGY Energy isotrop Energy density

FABRIC Traction Strain failure

FLD Forming limit diagram Introduction of the experimental
failure data in the simulation

HASHIN 115 116 Composite model Hashin model

HC_DSSE Extended Mohr
Coulomb failure model

Strain based Ductile Failure Model:
Hosford-Coulomb with Domain
of Shell-to-Solid Equivalence

JOHNSON Ductile failure model Cumulative damage law based
on the plastic strain accumulation

LAD_DAMA Composite delamination Ladeveze delamination model

NXT NXT failure criteria Similar to FLD, but based on stresses

PUCK Composite model Puck model

SNCONNECT Failure Failure criteria for plastic strain

SPALLING Ductile + Spalling Johnson-Cook failure
model with Spalling effect

TAB1 Strain failure model Based on damage accumulation
using user-defined functions
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Failure Model Type Description

TBUTCHER Failure due to fatigue Fracture appears when time integration
of a stress expression becomes true

TENSSTRAIN Traction Strain failure

WIERZBICKI Ductile material 3D failure model for solid and shells

WILKINS Ductile Failure model Cumulative damage law

Johnson-Cook Failure Model
High-rate tests in both compression and tension using the Hopkinson bar generally demonstrate the
stress-strain response is highly isotropic for a large scale of metallic materials. The Johnson-Cook model
is very popular as it includes a simple form of the constitutive equations. In addition, it also has a
cumulative damage law that can be accesses failure:

(1062)

with:

(1063)

Where  is the increment of plastic strain during a loading increment,   the normalized mean

stress and the parameters  the material constants. Failure is assumed to occur when =1.

Wilkins Failure Criteria

An early continuum model for void nucleation is presented in 113. The model proposes that the
decohesion (failure) stress  is a critical combination of the hydrostatic stress  and the equivalent
von Mises stress :

(1064)

In a similar approach, a failure criteria based on a cumulative equivalent plastic strain was proposed
by Wilkins. Two weight functions are introduced to control the combination of damage due to the
hydrostatic and deviatoric loading components. The failure is assumed when the cumulative reaches a
critical value . The cumulative damage is obtained by:

(1065)

Where,
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Where,

An increment of the equivalent plastic strain

Hydrostatic pressure weighting factor

Deviatoric weighting factor

Deviatoric principal stresses

a,  and The material constants

Tuler-Butcher Failure Criteria

A solid may break owning to fatigue due to Tuler-Butcher criteria: 114

(1066)

Where,

Fracture stress

Maximum principal stress

Material constant

Time when solid cracks

Another material constant, called damage integral

Forming Limit Diagram for Failure (FLD)
In this method the failure zone is defined in the plane of principal strains (Figure 244). The method
usable for shell elements allows introducing the experimental results in the simulation.
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Figure 244: Generic Forming Limit Diagram (FLD)

Spalling with Johnson-Cook Failure Model
In this model, the Johnson-Cook failure model is combined to a Spalling model where we take into
account the spall of the material when the pressure achieves a minimum value Pmin. The deviatoric
stresses are set to zero for compressive pressure. If the hydrostatic tension is computed, then the
pressure is set to zero. The failure equations are the same as in Johnson-Cook model.

Bao-Xue Wierzbicki Failure Model

Bao-Xue-Wierzbicki model 117 represents a 3D fracture criterion which can be expressed by:

(1067)

(1068)

(1069)

Where, , ,  , ,  and  are the material constants,  is the hardening parameter and  and 
are defined as:

• for solids:

If Imoy=0:

; 

If Imoy=1:
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• for shells:

; 

Where,

Hydrostatic stress

The von Mises stress

Third invariant of principal deviatoric stresses

Figure 245: Graphical Representation of Bao-Xue-Wierzbicki Failure Criteria

Strain Failure Model
This failure model can be compared to the damage model in LAW27. When the principal tension strain

 reaches , a damage factor  is applied to reduce the stress, as shown in Figure 246. The element
is ruptured when =1. In addition, the maximum strains  and  may depend on the strain rate by
defining a scale function.
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Figure 246: Strain Failure Model

Energy Density Failure Model
When the energy per unit volume achieves the value , then the damage factor  is introduced to
reduce the stress. For the limit value , the element is ruptured. In addition, the energy values  and

 may depend on the strain rate by defining a scale function.

Figure 247: Strain Failure Model

XFEM Crack Initialization Failure Model
This failure model is available for Shell only.

In /FAIL/TBUTCHER, the failure mode criteria are written as:

For ductile materials, the cumulative damage parameter is:

(1070)

Where,

Fracture stress

Maximum principal stress

Material constant
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Time when shell cracks for initiation of a new crack within the
structure

Another material constant called damage integral

For brittle materials, the damage parameter is:

(1071)

(1072)

(1073)

    

113. Argon A.S., J. Im, and Safoglu R., “Cavity formation from inclusions in ductile fracture”,
Metallurgical Transactions, Vol. 6A, pp. 825-837, 1975.

114. Tuler F.R. and Butcher B.M., “A criteria for time dependence of dynamic fracture”, International
Journal of Fracture Mechanics, Vol. 4, N°4, 1968.

115. Hashin, Z. and Rotem, A., “A Fatigue Criterion for Fiber Reinforced Materials”, Journal of Composite
Materials, Vol. 7, 1973, pp. 448-464. 9.

116. Hashin, Z., “Failure Criteria for Unidirectional Fiber Composites”, Journal of Applied Mechanics, Vol.
47, 1980, pp. 329-334.

117. Wierzbicki T., “From crash worthiness to fracture; Ten years of research at MIT”, International
Radioss User's Conference, Nice, June 2006.
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Monitored Volume
An airbag is defined as a monitored volume. A monitored volume is defined as having one or more 3 or 
4 node shell property sets.

The defined surface must be closed (the normal to shell elements must be all oriented outward, as 
shown in Figure 248. The shell normal must be oriented outside the volume. It is possible to reverse 
the
shell normals for a given property set (by entering a negative property number). Dummy properties 
(/PROP/TYPE0) and materials (/MAT/TYPE0) can be used.

Figure 248: Tire Model: Volume Closed

There are five types of MONITORED VOLUME:

1. AREA Type: volume and surface output (post processing option, no pressure)

2. PRES Type: user function defining pressure versus relative volume

3.
GAS Type: adiabatic pressure volume relation.  with 

4. AIRBAG Type: Single airbag

5. COMMU1 Type: Chambered, communicating, folded airbag (airbag with communications)

Same basic equations:
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Typical use of monitored volume is for tire, fuel tank, airbag.

• For tire use PRES or GAS type monitored volume.

• For fuel tank use PRES or GAS type monitored volume.

• For simple unfolded airbag use AIRBAG type monitored volume.

• For chambered airbag use two ore more COMMU1 type monitored volumes.

• For folded airbag use a set of COMMU1 type monitored volumes.

AREA Type
This type is only a post processing option. It allows plotting of the Time History of volume and area of a
closed surface.

No pressure is applied with this option.

No specific input is needed for this type.

PRES Type
With this type the pressure is defined versus relative volume with a tabulated function:

(1074)

Where,

F(x) Function

Initial volume

No external pressure is defined.

Only the load curve number is needed as specific input.

GAS Type
This option gives an adiabatic pressure volume relation. With  = 1 an isothermal condition can also be
applied.

It is possible to define an incompressible sub-volume to model a volume partially filled with a liquid.

The general equation is:

(1075)

With

Initial volume

Incompressible volume 
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A viscosity  can be used to reduce numerical oscillations.

If  = 1 a critical damping (shell mass and volume stiffness) is used. The viscous pressure  is:

(1076)

Where,

Mass of fabric

Its surface

The applied pressure is .

The specific inputs for this type are:

•

•

•

•

•

If the deflation is considered (isenthalpic outflow computation), the initial mass of gas, must also be
input.

This monitored volume is typically used to model tire pressure or simple fuel tank. For tire model  is
zero and for fuel tank  is the fuel volume.

Thermodynamical Equations
The basic energy equation of the monitored volume can be written as:

(1077)

Where,

Internal energy

Pressure

Monitored volume

Incompressible volume

Outgoing enthalpy

When the adiabatic condition is applied and assuming a perfect gas:

(1078)

Where,  is the gas constant. For air,  = 1.4.
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The two equations above allow the current volume to be determined. The energy and pressure can then
be found.

External Work Variation
At the current time step, , assume we know:

•

•

•

 will be obtained as:

(1079)

be the variation of external work and from the adiabatic condition:

(1080)

we have:

(1081)

Let:

(1082)

Hence, the external work is given by:

(1083)

Computing the energy from basic principles:

(1084)

 can be estimated from, , the velocity at vent hole; this estimation will be described
hereafter.

The variation of internal energy  can be given by:
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(1085)

Therefore:

(1086)

(1087)

This pressure is then applied to the monitored volume to get:

1. New accelerations

2. New velocities

3. New geometry

4. New volume

5. Ready for next step evaluation

Venting
Venting, or the expulsion of gas from the volume, is assumed to be isenthalpic.

The flow is also assumed to be unshocked, coming from a large reservoir and through a small orifice
with effective surface area, .

Conservation of enthalpy leads to velocity, , at the vent hole. The Bernouilli equation is then written
as:

(1088)

Applying the adiabatic conditions:

(1089)

Therefore, the exit velocity is given by:

(1090)

The mass flow rate is given by:

(1091)

The energy flow rate is given by:

(1092)
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The vent hole area or scale factor area, , can be defined in these ways:

• a constant area taking into account a discharge coefficient

• a variable area equal to the area of a specified surface, multiplied by a discharge coefficient

• a variable area equal to the area of the deleted elements within a specified surface, multiplied by a
discharge coefficient

Supersonic Outlet Flow
Vent pressure  is equal to external pressure  for unshocked flow. For shocked flow,  is equal
to critical pressure  and  is bounded to critical sound speed:

(1093)

And,

(1094)

, )

Example: GAS Type
Some applications in Radioss:

• A tire model:

The inputs are:

◦  = 1.4

◦

◦ = 105 Pa

◦  = initial tire pressure

Then, the pressure in the tire is 

◦

• A fuel tank model if the sloshing effect is neglected

Only if the sloshing effect is neglected, pressure in a partial filled fuel tank can be modeled with a
type GAS monitored volume. Use the following input:

◦  = 1.4

◦

◦  = 105 Pa

◦  = 105 Pa

◦  = volume of fuel
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AIRBAG Type
The airbag simulation used by Radioss uses a special uniform pressure airbag. Hence, regardless of
state of inflation or shape, the pressure remains uniform.

Perfect gas law and adiabatic conditions are assumed. Injected mass and temperature are defined as a
time function. A sensor can define the inflater starting time.

Deflation of vent hole is available after reaching a pressure ( ) for a given duration  or at time
( ) criteria.  prevents deflation due to initial peak of pressure corresponding to the jetting
activation.

Figure 249: Uniform Pressure Airbag

The key assumptions are:

• Uniform airbag pressure  kinetic energy is negligible

• Adiabatic conditions

The airbag simulation must include:

• Injection of energy and mass

• Bag mechanics (that is, unfolding, expansion, membrane tension, impacts, ...)

• Exhaust through vent holes

Thermodynamical Equations
The basic energy equation of the airbag can be written as:

(1095)

Where,

Internal energy

Pressure

Airbag volume
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Incoming enthalpy

Outgoing enthalpy

When the adiabatic condition is applied and assuming a perfect gas:

(1096)

Where,  is the gas constant. For air,  = 1.4.

The two equations above allow the current airbag volume to be determined. The energy and pressure
can then be found. To know the current airbag volume, derive energy and thus pressure.

Considering a gas such that the constant pressure and the constant volume heat capacities per mass
unit (respectively,  and ) vary in temperature .

The following temperature dependency of the constant pressure heat capacity is assumed:

(1097)

Where, ,  and  are the constants depending to characteristics of the gas.

The  and  satisfy the Mayer relation:

(1098)

With  is the universal gas constant depending to the unit system ( ):

(1099)

Where,

Specific energy

Specific enthalpy per mass unit of the gas at temperature 

You can then obtain:

(1100)

and

(1101)

Where, the lower index  refers to the reference temperature .

Now, assuming an ideal mixture of gas:
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(1102)

with  the total number of moles:

(1103)

Where,

Mass of gas 

Molar weight of gas

It follows:

(1104)

With .

Energy Variation Within a Time Step

Let  the temperature,  the pressure, and  the volume of the airbag at time ,
and  the mass of gas  at time . , ,  are respectively temperature, pressure and

volume of the airbag at time , and  the mass of gas  at time .

Using , the variation of total gas energy can be written as:

(1105)

which can be written as:

(1106)

On the other hand, the basic energy equation Thermodynamical Equations, Equation 1095 of the airbag 
and the expression of enthalpy in Thermodynamical Equations, Equation 1099 gives:
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(1107)

Where,  and  are characteristics of the inflator and are considered as input to the problem.

 and  can be estimated from the velocity at vent hole .  is the variation of the external
work. This estimation will be described hereafter.

It comes from Equation 1105 and Equation 1106:

(1108)

The variation of the external work can be written as:

(1109)

Using Thermodynamical Equations, Equation 1103, the last expression can be written as:

(1110)

The last equation can be introduced to Equation 1108:
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(1111)

The first order approximation  for each gas, which allows rewrite

Equation 1111 as:

(1112)

Which allows to determine the actual temperature . The actual pressure then computed from the
equation of perfect gas (Thermodynamical Equations, Equation 1103).

Mass Injection
The amount of mass injected into the airbag needs to be defined with respect to time. This is required 
as a function.

The specific heat, , along with a function defining the change in temperature with time is required.

The data can be obtained by two methods:

1. Possibly from the airbag manufacturer

2. From a tank experiment

A diagram of a tank experiment can be seen in Figure 250.
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Figure 250: Tank Experiment

The mass versus time curve can be derived from the pressure curve if  is known:

(1113)

Where,  is the molecular weight of the injected gas.  is the perfect gas constant: ;

.

The average estimate for temperature of injection is:

(1114)

Where,

Total pressure variation during the experiment

Total injected mass, which can be derived from the mass of
propellant in the pyrotechnic inflator and the chemical reaction;
40% is a typical value for the ratio of the produced mass of gas to
the solid propellant mass.

Venting Outgoing Mass Determination
Venting, or the expulsion of gas from the airbag, is assumed to be isenthalpic.

The flow is also assumed to be unshocked, coming from a large reservoir and through a small orifice
with effective surface area, .

Conservation of enthalpy leads to velocity, , at the vent hole. The Bernouilli equation is then written
as:
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(airbag)  (vent hole)
(1115)

Applying the adiabatic conditions:

(airbag)  (vent hole)
(1116)

Therefore, the exit velocity is given by:

(1117)

with  the averaged density of the gas and  the fraction of massic

averages of heat capacities at constant pressure and constant volume.

The mass flow rate is given by:

(1118)

The energy flow rate is given by:

(1119)

The total mass flow rate is given by:

(1120)

Where,

Vent hole surface.

The vent hole area or scale factor area, , can be defined in two ways:

• a constant area taking into account a discharge coefficient

• a variable area equal to the area of a specified surface multiplied by a discharge coefficient.

Supersonic Outlet Flow
Vent pressure  is equal to external pressure  for unshocked flow. For shocked flow,  is equal
to critical pressure  and  is bounded to critical sound speed:
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(1121)

And,

Outgoing Mass per Gas

The mass flow of gas  is , where  is the volume occupied by gas  and satisfies:

 (from  and ).

It comes finally

(1122)

Porosity
The isenthalpic model is also used for porosity. In this case, one can define the outgoing surface by:

(1123)

Where,

Area of the specified surface

Scale factor

Pressure of the gas

Time

It is also possible to define closure of the porous surface in the case of contact.

The second model integrated in Radioss is called the Chemkin model, in which the mass flow due to the
porosity is computed by:

(1124)

Where,  is the user-defined function, represented as:

(1125)
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Initial Conditions
To avoid initial disequilibrium and mathematical discontinuity for zero mass or zero volume, following
initial conditions are set:

•

•

If the initial volume is less than  a constant small volume is added to obtain an initial volume:

•

Initial mass energy density is defined from the above values.

There is no need to define an injected mass at time zero.

Jetting Effect
The jetting effect is modeled as an overpressure applied to each element of the airbag (Figure 251).

(1126)

with:

Being the normalized vector between the projection of the center
of the element upon segment ( , ) and the center of element
as shown in Figure 251.

The angle between the vector  and the vector .

The distance between the center of the element and its projection
of a point upon segment ( , ).

The projection upon the segment ( , ) is defined as the projection of the point in direction 
upon the line ( , ) if it lies inside the segment ( , ). If this is not the case, the projection of the
point upon segment ( , ) is defined as the closest node  or . If  coincides to , the dihedral
shape of the jet is reduced to a conical shape.
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Figure 251: Jetting Effect Schema

Reference Metric
This option can be used to inflate an airbag instead of simulating the real unfolding which is difficult
numerically. A jetting effect can be added in order to set a preferential direction for the unfolding.

An initial State (airbag geometry input by the user in the initial deck D00) is given.

Reference Metric is a reference state with no strains. This state is defined from a file containing the
nodal coordinates, the connectivities of the airbag being the same as in the Initial State. The format
of this file is the same as the format of Nodal Coordinates of a Radioss Starter input. The file is read
according to /XREF keyword of a Radioss Starter input deck. The default name is RunNameRS0.

The Reference Metric method consists in the calculation for the Initial State of the initial strains,
stresses and energy.

Compatible with:

• 4-node shells

• 3-node shells

• large strain option

• small strain option

• material LAW1

• material LAW19

Figure 252: Reference Metric Schema
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Tank Experiment
Injected mass curve and injection temperature can be obtained from:

• the airbag manufacturer

• a tank test

With a tank test it is possible to measure temperature at injection point or in the middle of the tank. For
pressure the two values are equal.

Figure 253: Tank Experiment Schema

Tin and P are known
(1127)

T and P are known
(1128)

Or,

(1129)

(1130)

Or,

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.399

(1131)

And if  is constant: .

COMMU1 Type
The airbag simulation used by Radioss adopts a special uniform pressure airbag. Hence, regardless of
the state of inflation or shape, the pressure is uniform.

Perfect gas law and adiabatic conditions are assumed. Injected mass and temperature are defined as a
time function. A sensor can define the inflate start time.

Deflation of vent hole is available after reaching a pressure ( ) or time ( ) criteria.

Figure 254: Chambered Airbag Schema

The key assumptions are:

• Uniform airbag pressure  kinetic energy is negligible

• Adiabatic conditions

The airbag simulation must include:

• Injection of energy and mass

• Bag mechanics (that is, unfolding, expansion, membrane tension, impacts, ...)

• Exhaust through vent holes
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͢͢

This option is used to simulate chambered airbags and may be used to unfold an airbag.

Each COMMU1 type monitored volume works like an AIRBAG type monitored volume with possible vent 
communication with some other monitored volume of COMMU1 type. A chambered airbag is therefore 
modeled with two or more COMMU1 type monitored volumes.

Each monitored volume can have an inflater and an atmospheric vent hole.

Monitored volume 1 can communicate with monitored volume 2 with or without communication from 2 
to 1. Communicating area, deflation pressure or time from 1 to 2 can be different from corresponding 
values from 2 to 1. It is thereby possible to model a valve communication.

Thermodynamical Equations
Same equations as for AIRBAG type monitored volume are used. Refer to Thermodynamical Equations.

External Work Variation
Same equations as for AIRBAG type monitored volume are used. Refer to Energy Variation Within a 
Time Step.

Mass Injection
Same equations as for AIRBAG type monitored volume are used. Refer to Mass Injection.

Venting
Same equations as for AIRBAG type monitored volume are used. Refer to Venting Outgoing Mass 
Determination.

The mass flow rate is given by:

(1132)

The energy flow rate is given by:

(1133)

These mass and energy flux are removed from the current volume and added to the communicating
volume at next cycle.
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Supersonic Outlet Flow
Same equations as for AIRBAG type monitored volume is used. Refer to Supersonic Outlet Flow.

Jetting Effect
Same explanation as for AIRBAG type monitored volume is used. Refer to Jetting Effect.

Reference Metric
Same explanation as for AIRBAG type monitored volume is used. Refer to Reference Metric.

COMMU1 Type Examples

Example: Communication between the 2 Volumes
Volume 1 communicates with volume 2 and vice-versa.

Monitored volume 1 communicates with monitored volume 2 with or without communication from 
2 to 1. The communicating area, deflation pressure or time from 1 to 2 can be different from the 
corresponding values from 2 to 1. It is thereby possible to model a valve communication.

Figure 255: Communication between the 2 Volumes
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Example: No Communication between 2 and 3
Volume 1 communicates with volume 2 and volume 2 with volumes 1 and 3, but there is no
communication from 3 to 2.

Two COMMU1 type monitored volume communications can have common nodes or common shell
property sets but this is optional.

To model a folded airbag, one COMMU1 type monitored volume is used for each folded part. The
boundary between two folded parts is closed with a dummy property set (fictitious property). The
pressure in each folded part will be different and the area of communication will increase during
inflation. With this model, the volume with inflater will inflate first and before than folded parts (better
than "jetting" model).

Figure 256: No Communication between 2 and 3

Example: Monitored Volume with Communication Coefficient
Volume 1 and volume 2 with common property set.
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Figure 257: Monitored Volume with Communication Coefficient

Example: Folded Airbag
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Static
Explicit scheme is generally used for time integration in Radioss, in which velocities and displacements
are obtained by direct integration of nodal accelerations.

With this approach, the time step is often small due to stability condition. For the static solution of
structural mechanical problems as the steady state is a part of the transient response for a temporal-
step load, the use of explicit scheme is usually possible if the computation time remains reasonable.
However, in static or slow dynamic computations as duration of the study is large, many cycles are
necessary to carry out the simulation.

To resolve static problems, an alternative to explicit method is the implicit time-integration scheme.
In this method, a system of nonlinear equations is obtained and then resolved by Newton-Raphson
method. It can be shown that the implicit scheme is always stable. That results in a large time step
with the explicit method. However, as a global stiffness matrix should be assembled and inverted, the
method is relatively high cost per loading step.

The primary difference between the explicit and implicit methods is that an explicit algorithm obtains
the next value from known previous values. An implicit method assumes a solution to a problem and
solves the equations simultaneously. As the global equilibrium equation is generally nonlinear, an
iterative numerical resolution is generally used.

The implicit method might fail when:

• The material law is highly nonlinear. Complicated material behavior is easier to accommodate using
an explicit method.

• The number of elements is too large.

• Explicit method does not require large matrix inversion, the I/O is less important and the memory
required is also less.

• Matrices must be re-evaluated at each time step and for most of the iterations.

In such cases the CPU time of an explicit solution becomes competitive:

• The problem includes several contacts. Contact algorithms are very efficient in explicit programs.

• The static analysis is a pre-loading case before a fully dynamic behavior phase. In this case, the
coupling of two phases is very common.

• Explicit approaches furnish an alternative to the previous cases.

As of Radioss V5 both implicit and explicit methods are available to study the static behavior of
systems. The choice a method depends on the nature of the problem and the engineer's feeling. The
explicit approach is especially attractive for problems with highly nonlinear geometric and material
behavior as all quantities may be treated as vectors, resulting in low storage requirements. The number
of cycles to achieve convergence may be quite large, but global efficiency is generally observed. The
implicit method is introduced to study efficiently static applications such as spring back in sheet metal
forming or gravity loading or other initial state computations before/after dynamic simulations.

Static Solution by Explicit Time Integration
Explicit algorithms are very useful for modeling a dynamic simulation. However, they cannot model a
quasi-static or static simulation as easily. This is due to the fact that in an explicit approach, first the
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nodal accelerations are found by resolving the equilibrium equation at time . Other DOFs are then
computed by explicit time integration. This procedure implies that the nodal acceleration must exist;
however, some numerical methods may be employed for the simulation of a static process.

Slow Dynamic Computation
The loading is applied at a rate sufficiently slow to minimize the dynamic effects. The final solution is
obtained by smoothing the curves.

In case of elasto-plastic problems, one must minimize dynamic overshooting because of the
irreversibility of the plastic flow.

Dynamic Relaxation or Nodal Damping (/DYREL)

This method was first introduced by Otter 118 and has been used in several hydrodynamic codes. A
nodal damping  is added to the momentum equation:

(1134)

The dashpot force is calculated by:

(1135)

The internal force is calculated by:

(1136)

(1137)

The total acceleration is given by:

(1138)

(1139)

(1140)

(1141)

You have:

(1142)

(1143)
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(1144)

Approximation  after the variable is changed, , you obtain:

(1145)

(1146)

Which gives the expression of  as a proportional matrix to  with:

 and 
(1147)

or

(1148)

(1149)

Combining Equation 1147 and Equation 1148, and you obtain:

(1150)

Where,  is the relaxation coefficient whose recommended value is 1.  is less than or equal to the

highest period of the system. These are the input parameters used in /DYREL option.

The explicit time integration scheme is changed to compute the new velocities. The explicit time 

integration in Dynamic Analysis gives (Central Difference Algorithm, Equation 192):
(1151)

which is now written as:

(1152)

Where,

(1153)

118. Otter J.R.H., Mechanical Engineering and Design 3, 1965.
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Energy Discrete Relaxation
This empirical methodology consists in setting to zero the nodal velocities each time the Kinetic Energy
reaches a maximum.

The loading is applied at a rate sufficiently slow to minimize the dynamic effects. The final solution is
obtained by smoothing the curves.

In case of elasto-plastic problems, one must minimize dynamic overshooting because of the
irreversibility of the plastic flow.

Rayleigh Damping (/DAMP)
In this method a proportional damping matrix is defined as:

(1154)

Where,  and  are the pre-defined constants. In modal analysis, the use of a proportional damping
matrix allows to reduce the global equilibrium equation to n-uncoupled equations by using an
orthogonal transformation.

If the global equilibrium equation is expressed as:

(1155)

The transformed uncoupled system of equations can be written as:

(1156)

With

(1157)

Each uncoupled equation is written as:

(1158)

With

(1159)

Where,

The ith natural frequency of the system

The ith damping ratio

This leads to a system of  equations with two unknown variables  and . Regarding to the range of
the dominant frequencies of system, two frequencies are chosen. Using the pair of the most significant
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frequencies, two equations with two unknown variables can be resolved to obtain values for  and
. For high frequencies the role of  is more significant. However, for lower frequencies  plays an

important role (Figure 258).

Figure 258: Rayleigh Damping Variation for Natural Frequencies

The Rayleigh damping method applied to explicit time-integration method leads to the following
equations:

(1160)

With 

(1161)

(1162)

(1163)

Neglecting  and , in  evaluation you have:

(1164)

And finally:

(1165)

(1166)

(1167)
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The three approaches available in Radioss are Dynamic Relaxation (/DYREL), Energy Discrete Relaxation
(/KEREL) and Rayleigh Damping (/DAMP). Refer to Example Guide for application examples.

The loading is applied at a rate sufficiently slow to minimize the dynamic effects. The final solution is
obtained by smoothing the curves.

In case of elasto-plastic problems, one must minimize dynamic overshooting because of the
irreversibility of the plastic flow.

Acceleration Convergence
For every method, an acceleration of the convergence to the static solution is desirable. The constant
time step is one of the more usual methods. In fact, in quasi-static analysis, the duration of the study
is proportional to the maximum period of the structure. The total number of computation cycles is then

proportional to the ratio .

Where,

Largest period of the structure

Time step

The number of time steps necessary to reach the static solution is minimal if all the elements have the
same time step. An initial given time step  can be obtained by increasing or decreasing the density of
each element. The constant nodal time step option ensures a homogenous time step over the structure.
However, in usual static problems the change is expected to be small, but one may think of increasing
the density of the element which gives the critical time step in such a way that .

Static Solution by Implicit Time-Integration
The static behavior of many structures can be characterized by a load-deflection or force-displacement
response. If the response plot is nonlinear, the structure behavior is nonlinear. From computational
point of view the resolution of a nonlinear problem is much more complex with respect to the linear
case. However, the use of relatively recent resolution methods based on sparse iterative techniques
allows saving substantially in memory.

Linear Static Solver
A linear structure is a mathematical model characterized by a linear fundamental equilibrium path for all
possible choices of load and deflection variables.

This implies that:

• The response to different load systems can be obtained by superposition,

• Removing all loads returns the structure to the reference position.

The requirements for such a model to be applicable are:

• Perfect linear elasticity for any deformation,

• Infinitesimal deformation,

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.410

• Infinite strength.

Despite of obvious physically unrealistic limitations, the linear model can be a good approximation of
portions of nonlinear response. As the computational methods for linear problems are efficient and low
cost, Radioss linear solvers can be used to find equilibrium of quasi-linear systems. The Preconditioned
Conjugate Gradient method is the iterative linear solver available in Radioss. The algorithm enables
saving a lot of memory for usual application of Radioss as a sparse storage method is used. This
means that only the non-zero terms of the global stiffness matrix are saved. In addition, the symmetry
property of both stiffness and preconditioning matrices is worthwhile to save memory.

The performance of conjugate gradient method depends highly to the preconditioning method. Several
options are available in Radioss using the card /IMPL/SOLV/1. The simplest method is a so-called Jacobi
method in which only the diagonal terms are taken into account. This choice allows saving considerable
memory space; however, the performance may be poor. The incomplete Choleski is one of the best
known effective preconditioning methods. However, it can result in negative pivots in some special
cases even if the stiffness matrix is definite positive. This results a low convergence of PCG algorithm.

The problem can be resolved by using a stabilization method. 119 Finally, the Factored Approximate
Inverse method may be the best choice which is used by default in Radioss.

Nonlinear Static Solver
As explained in the beginning of this chapter, a nonlinear behavior is characterized by a nonlinear
load-deflection diagram called path. The tangent to an equilibrium path may be formally viewed as
the limit of the ratio force increment on displacement increment. This is the definition of a stiffness or
more precisely the tangent stiffness related to a given equilibrium state. The reciprocal ratio is called
flexibility. The sign of the tangent stiffness is closely associated with the stability of an equilibrium state.
A negative stiffness is necessary associated with unstable equilibrium. A positive stiffness is necessary
but not sufficient for stability.

The problem of nonlinear analysis can be viewed as that of minimising the total potential energy 
which is a function of the total displacement . A truncated Taylor series then leads to:

(1168)

Where the subscripts  and  denote respectively final and initial configurations. The term   can be

identified as the out-of-balance forces or gradient , of the total potential energy which is the difference

between the internal force vector  and the external force vector . The term  describes the

tangent stiffness matrix . The principle of minimum energy and the equilibrium of stable state give:

(1169)

Which is implied in Equation 1168:

119. Ajiz M.A. and Jennings A., “A robust incomplete Choleski-conjugate gradient algorithm”, Int. J.
Method Eng., Vol. 20, pp. 949-966, 1984.
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(1170)

The tangent matrix  should be defined positive at the equilibrium point for stable case:

(1171)

Equation 1170 can handle the solution of the nonlinear problem when an incremental method is used. 
The solution methods are generally based on continuous incremental and corrective phases. The most 
important class of corrective methods concerns the Newton-Raphson method and its numerous variants 
as modified, modified-delayed, damped, quasi and so forth. All of these Newton-like methods require 
access to the past solution. In the following section the conventional and modified Newton methods 
under general increment control are studied.

Newton and Modified New Methods
As you will often prefer to trace the complete load/deflection response or in other words, the 
equilibrium path, it is useful to combine the incremental and iterative solution procedures. You can 
recall that the purpose is to solve Nonlinear Static Solver, Equation 1170 which can be written in 
residual form:

(1172)

with . This equation represents a system of n algebraic nonlinear equations
depending on only one loading parameter . If the loading depends to only one loading variable
independent to the state of deflection, you have:

(1173)

Several techniques are available to resolve Equation 1172. In some situations, the parameter  is fixed,
and the equations are resolved to determine n components of  in order to verify Equation 1172. In
this case, the technique is called load control method. Another technique called displacement control
consists in fixing a component of  and searching for  and 'n-1' other components of displacement
vector . A generalization of displacement control technique will enable to imply several components
of displacement vector by using an Euclidian norm. The method is called arc-length control and
intended to enable solution algorithms to pass limit points (that is, maximum and minimum loads). The
techniques making possible to obtain the load-deflection curve by finding point by point the solution are
called piloting techniques.

When the piloting technique is chosen for a given step, the associated solution is obtained by an

iterative resolution of so-called Newton-Raphson methods. At iteration , the residual vector  is:

(1174)

A correction  and  can be considered with:

(1175)

Combining Equation 1175 with Equation 1174, you obtain:
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(1176)

as  and:

(1177)

The tangent matrix  is obtained by assembling the elementary matrices . It corresponds to:

(1178)

Using load control technique, the standard Newton-Raphson method resolves Equation 1176 to
Equation 1178 by applying a known load increment  as illustrated in Figure 259. The tangent matrix
is updated and triangulized at each iteration. This insures a quadratic convergence to exact solution.

Figure 259: Standard Newton-Raphson Resolution in the Case of Load Control Technique
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Figure 260: Modified Newton-Raphson Resolution in the Case of Load Control Technique

However, it is possible to save computation time which depends on the size of the problem and on the 
degree of the nonlinearity of the problem. The method is called modified Newton-Raphson which is 
based on the conservation of the tangent matrix for all iterations (Figure 260). This method can also be 
combined with the acceleration techniques as line-search explained in Line Search Method to Optimize 
the Resolution.

The convergence criteria may be based on Euclidian norm of residual forces, residual displacements or 
energy where an allowable tolerance is defined.

Line Search Method to Optimize the Resolution
The Newton-Raphson resolution of Newton and Modified New Methods, Equation 1176
implies updating the variables at each iteration with Newton and Modified New Methods,

Equation 1177. The new estimation of  does not satisfy Newton and Modified New Methods,

Equation 1176 only if . In order to reduce the number of iterations the line-search method
is used. The line-search technique is an important feature of most numerical techniques used in

optimization problems. 120 The method consists in introducing a parameter , such as:

(1179)

Where,  is obtained to minimize the total potential energy or to satisfy the principle of virtual works.
The techniques to determine   use often a Raleigh-Ritz procedure with only one unknown parameter.

The principle of virtual work can be written in the general form:

 For all kinematical acceptable 
(1180)

Considering Equation 1179, write:

(1181)
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and:

 for all 
(1182)

Then,  is determined from:

(1183)

which leads to a three-order polynomial equation in  for elastic materials:

(1184)

The coefficients , ,  and  can be expressed in terms of displacements  and the increment of

displacements .

Arc Length Method
To obtain the load-deflection behavior of a structure, the load or the displacement of a given point
of the structure must be parameterized. Up to now, you have parameterized the load by the time .
However, a single parameter is not always sufficient to control in an optimum way the time step. On the
other hand, it is not possible to pass limit points with "snap-through" and "snap-back" when using load-
controlled or displacement-controlled techniques. This is due to the fact that the increase in load or in a
given displacement component may result a dynamic response losing a part of load-deflection curve as
shown in Table 9 (a) and (b).

Table 9: Various Load-deflection Curves and Step-by-Step Solution by Arc-length Method

(a) Snap-through (b) Snap-backs

120. Flectcher R., “Practical methods of optimization”, 2nd edition, Wiley, 1987.
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(c) Arc-length method: intersection of the
equilibrium branch with the circle about the last
solution

(d) Buckling with or without imperfections

The tracing of equilibrium branches are quite difficult. In arc-length method, instead of incrementing the
load parameter, a measure of the arc length in the displacement-load parameter space is incremented.
This is accomplished by adding a controlling parameter to the equilibrium equations.

The arc-length method was originally introduced by Riks 121 and Wempner. 122 Considering a function
 implying several components of the displacement vector , the arc-length method consists in

determining in each step the Euclidian norm of the increase in :

(1185)

This leads to:

(1186)

And

(1187)

With:

; 

; 
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In each of the Newton-Raphson iterations, Equation 1187 must be resolved to select a real root. If there
is no root,  should be reduced. The most closed root to the last solution is retained in the case of
two real roots.

Table 9(c) illustrates the intersection of the equilibrium branch with the circle about the last solution.

121. Riks E., “An incremental approach to the solution of snapping and buckling problems”, Int. J. Solids
& Structs, Vol. 15, pp. 529-551, 1979.

122. Wempner G.A., “Discrete approximations related to nonlinear theories of solids”, Int. J. Solids &
Structs, Vol. 7, pp. 1581-1599, 1971.
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Radioss Parallelization
The performance criterion in the computation was always an essential point in the architectural
conception of Radioss. At first, the program has been largely optimized for the vectored super-
calculators like CRAY. Then, a first parallel version SMP made possible the exploration of shared memory
on processors.

In the case of analysis of systems with high number of DOFs, the use of shared memory parallel
machine architectures is common. In Radioss, there are two models of parallel programming:

• SMP: Shared Memory Processors,

• SPMD: Single Program Multiple Data.

In this section, the principle of Radioss parallelization is described.

Measure of Performance
The Speed-Up is the ratio of sequential time  and the parallel time on  processors :

(1188)

The efficiency is defined as:

(1189)

The Amdahl’s law for multitasking is used to determine the speed-up:

(1190)

Where,  and  are the computation times respectively related to parallel and non-parallel parts.
As , write:

(1191)

The limit value can be obtained when the process number tends to infinite:

(1192)

Table 10 provides the Speed-Up in function of number of processors and the rate of parallelization in the
program. It can be seen that if the rate of parallelization is less 95%, the computation acceleration will
not be greater than 20; however, the number of processors. This means that to obtain a good scalability
of a code, at least 99% of the program must be parallel.
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Table 10: Speed-up in Function of Process Number and Parallelization

Process Number

Seq / P 2 4 8 16 32 64 128

100% 2.0 4.0 8.0 16.0 32.0 64.0 128.

99% 2.0 3.9 7.5 13.9 24.4 39.3 56.4 100.

98% 2.0 3.8 7.0 12.3 19.8 28.3 36.2 50.0

97% 1.9 3.7 6.6 11.0 16.5 22.1 26.6 33.3

96% 1.9 3.6 6.3 10.0 14.3 18.2 21.1 25.0

95% 1.9 3.5 5.9 9.1 12.5 15.4 17.4 20.0

90% 1.8 3.0 4.7 6.4 7.8 8.7 9.3 10.0

50% 1.3 1.6 1.8 1.9 1.9 2.0 2.0 2.0

Shared Memory Processors (SMP)
Radioss SMP version is based on the concept of computers with shared memory as the architecture is
described in Figure 261.

Figure 261: Architecture of Shared Memory

In this case, all processors can access to a common memory space. From programming point of view,
each process called parallel task, reach to the entire memory space allocated by the program. It is
necessary to manage properly the access to this shared memory by introducing barriers and locking
mechanisms. The SMP model programming has the advantage to be managed easily. However, the
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performance of the method depends on the ratio between the memory access speed and the CPU
speed.

The parallelism approach used in Radioss SMP is a multi-task programming type. The tasks are explicitly
managed by the programmer. The computation tasks are attributed to the processors by a dynamic
procedure as they are available. This approach is especially adapted to the super-computers used as
computation server where the load of a given processor varies with respect to others. The SMP version
is developed for computers with shared memory architecture and cannot be used efficiently on the
super-computers with distributed memory or cluster structures.

The Radioss SMP version is constantly improved since the first release. However, the efficiency of
SMP version has to be updated to take into account the evolution of computer architecture in memory
management and CPU speed.

Single Program Multiple Data (SPMD)
The development of the first SPMD version of Radioss is started in 1994. The version became a real
alternative to SMP version after a long period of parallelization and optimization of the code. In fact,
the scalability of the version is much better than the SPM version. The SPMD version allows using more
processors with a better efficiency. It makes possible to use up to 64 processors. In addition, all Radioss
Crash options are available in this version including "Arithmetic Parallel" option.

The principle of program is based on Single Program Multiple Data, where the same program runs with
different data. Radioss Starter carries out domain decomposition. Then, Radioss Engine has just to
send data to different processors in an initialization step. Thereafter, each program runs over each sub
domain. It is necessary to communicate information between processors to manage data on the border
of domains. This is carried out in Radioss using MPI (Message Passing Interface) library.

Figure 262 illustrates the architecture of multi-processor computers with distributed memory. The
Radioss SPMD version runs independently to architecture of memory as well on the computers with
shared memory or distributed memory or a set of work stations in a network.
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Figure 262: Architecture with Distributed Memory

Hybrid Massively Parallel Program (HMPP)
The Hybrid MPP combines the best of the SMP and SPMD parallel versions inside a unique code.

Benefits
This new approach allows reaching an impressive level of scalability. Radioss HMPP can scale up to 512
cores and more for a real performance breakthrough.

Radioss HMPP is independent of the computer architecture, more flexible and efficiently adapted to
any hardware resources. It can run on distributed memory machines, shared memory machines,
workstation cluster, or a high performance computation cluster. It can better exploit the inside power of
highly multi-core machine and optimize the software according to the hardware.

It decreases installation and maintenance costs by having a unique parallel version instead of two types
of executables.

It improves the quality of the code in term of numerical results by having a full convergence between
SMP and SPMD results. /PARITH/ON provides a unique answer independent of the number of SPMD
domains and the number of SMP threads used.

Hybrid Usage Example
In the example below, the hardware is composed of N nodes of a cluster. Each node is a dual processor
machine and each processor is a dual core. On each node the memory is shared between processors
but the memory is distributed between the nodes.
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Figure 263: Hybrid Version Run with 2 SMP Threads per SPMD Domains

With the Hybrid version, it is easy to optimize the software to run on such complex architecture.
Figure 263 shows that each SPMD domain is computed by a different processor. The number of threads
per domain is set to the number of cores per processor (two).

So, each processor computes a SPMD domain using two SMP threads, one per core.

Making it Work
For SPMD version, Radioss Starter divides the model into several SPMD domains and writes multiple
RESTART files.

Then, mpirun command is used to start all the SPMD programs. Each program computes a SPMD
domain using the number of SMP threads set. Indeed, each MPI program is a SMP parallel program.
The management of computation at the frontiers of the domains remains and it is necessary to
communicate some information between programs using MPI.

Execution Example
Radioss Starter is run from the command line. Here, the number of SPMD domains (Nspmd) with option
-nspmd 16 is specified:

./s_11.0_linux64 -nspmd 16 -i ROOTNAME_0000.rad

The number of SMP threads (Nthread) is set through the use of environment variable
OMP_NUM_THREADS:

setenv OMP_NUM_THREADS 2

Then, Radioss Engine is run using mpirun command:

mpirun -np 16 ./e_11.0_linux64_impi -i ROOTNAME_0001.rad
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Note:

• -np value of mpirun must match -nspmd value

• The total number of processes is equal to Nspmd*Nthread (32 in this example)

Recommended Setup
As seen in the example above, a good rule is to set the number of SPMD domains equal to the number
of sockets and to set the number of SMP threads equal to the number of cores per socket.

With a low number of cores (below 32), a pure SPMD run might be more effective but the performance
gap should be small if the setup explained above is respected.

With a very high number of cores (1024), it is possible to increase the number of SMP threads up to the
number of cores per node and set only one SPMD domain per node to maximize performance if the limit
of scalability of the interconnect network is reached.
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ALE, CFD and SPH Theory Manual

ALE Formulation
ALE or Arbitrary Lagrangian Eulerian formulation is used to model the interaction between fluids and
solids; in particular, the fluid loading on structures. It can also be used to model fluid-like behavior, as
seen in plastic deformation of materials.

ALE derives its name from a combination of two different finite element modeling techniques.

• Lagrangian Formulation - where the observer follows material points.

• Eulerian Formulation - where the observer looks at fixed points in space.

• Arbitrary Lagrangian Eulerian Formulation - where the observer follows moving points in space.

Referential Domain
At any location in space x and time t, there is one material point, identified by its space coordinates x at
time t=0, and one grid point identified by its coordinates  at time t=0. Figure 264 provides a pictorial
representation and defines the velocities in each formulation.

Figure 264: ALE Formulation

The derivative of any physical quantity can be computed either following the material point or following
the grid point. They can then be related to each other.

Given that  is a function f of space and time representing a physical property:
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• The spatial domain is given by 

• The material domain is given by 

• The mixed domain is given by 

Therefore,

(1193)

Also:

(1194)

This relates to acceleration by:

(1195)

Where,

Material velocity

Grid velocity

Conservation of Momentum
Conservation of momentum, expressed in terms of a finite element formulation, is given by:

(1196)

Where,

Weight functions

Material density

Velocity

Stress matrix

Body acceleration vector

Volume

This can be rewritten in a form similar to the explicit Lagrangian formulation with the addition of a new
nodal force , accounting for transport of momentum:

(1197)
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Where,

Transport of momentum forces

Momentum Transport Force
By default, since version 2018.0 a streamline upwind technique is used to computed transportation
forces (SUPG). This formulation enables to get rid of false diffusion (numerical issue with classical
upwind technique). Nevertheless, SUPG method can be disabled in order to retrieve numerical solution
obtained with classical upwind technique from versions prior to 2017. For this purpose, Engine keyword
must be define: /ALE/SUPG/OFF. Using this keyword, momentum transport forces are computed using
the classical upwind technique which was the default method up to version 2017.

(1198)

The classical upwinding technique is introduced to add numerical diffusion to the scheme, which
otherwise is generally under diffuse and thus unstable.

(1199)

  Upwind coefficient, given in input.

Full upwind  (default value) is generally used and can be tuned with  parameter from /UPWIND

keyword (now obsolete with SUPG formulation).

Figure 265:

Conservation of Mass
The finite element formulation of the Lagrangian form of the mass conservation equation is given by:

(1200)

When transformed into the ALE formulation it gives:

(1201)
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Applying a Galerkin variation form for the solution of Equation 1201:

(1202)

Where,  is the Weighting function.

Using a finite volume formulation

Where, =1

 = constant density over control volume .

Therefore:

(1203)

Using the divergence theorem leads to:

(1204)

Further expansion gives:

(1205)

This formula is still valid if density  is not assumed uniform over volume .

Figure 266: Mass Flux Across a Surface

The density, , is given computed:

(1206)

Where,  is the upwind coefficient given on the input card.
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If =0, there is no upwind.

Therefore, .

If =1, there is full upwind.

The smaller the upwind factor, the faster the solution; however, the solution is more stable with a
large upwind factor. This upwind coefficient can be tuned with parameter from /UPWIND keyword (not
recommended, this keyword has been obsolete as of version 2018).

For a free surface: =

Conservation of Internal Energy
Conservation of internal energy is used to model temperature dependent material behavior. It also
allows an energy balance evaluation.

However, internal energy is only calculated if it is turned on, to reduce computation time in problems
not involving heat transfer.

The conservation of energy is given by:

(1207)

Where,

Internal energy in Joules (Nm)

Fluid pressure

Applying a Galerkin variation form for the solution gives:

(1208)

Making the following assumptions:

=1

 = constant over control volume 

Equation 1208 reduces to:

(1209)

Applying the divergence theorem gives:

(1210)
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Hence:

(1211)

This formula is still valid if  is not assumed uniform over volume .

New formulation based on total energy conservation are under investigation.

Rezoned Quantities
The deviatoric stress tensor and the equivalent plastic strain must be rezoned and recalculated after
every time step due to the ability of one element to contain a different amount of material.

ALE Materials
The following materials may be used with the ALE formulation.

Law Number

2

3

4

6

10 and 21

22 and 23

20

37

11

16

18

Description

Elasto-plastic - /MAT/PLAS_JOHN

Elasto-plastic-Hydrodynamic - /MAT/HYDPLA

Johnson-Cook - /MAT/HYD_JCOOK

Hydrodynamic Viscous - /MAT/HYD_VISC

Rock Concrete Foam - /MAT/LAW10 or /MAT/DPRAG

Elasto-plastic with Damage - /MAT/DAMA or /MAT/LAW23 

Bimaterial - /MAT/BIMAT

Hydrodynamic - Bi-phase liquid gas - /MAT/BIPHAS 

Boundary - Stagnation conditions in flow calculations - /MAT/

BOUND

Gray Model - Multiphase Gray E.O.S + Johnson's shear law - 
/MAT/GRAY

Thermal Conductivity, purely thermal material - /MAT/THERM

Numerical Integration
The numerical integration techniques used are the same as those used for any other analysis type.

The flow chart of calculations can be seen in Figure 267.

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.429

Figure 267: Flow Chart

Improved Integration Method
This method can only be used with the CFD version of Radioss, and only available in Eulerian
formulation. An eight Gauss point integration scheme is used to determine the shape functions. The
shape functions are condensed to one point. This gives an eight point integration scheme with constant
stress.

Momentum Transport Force
This scheme is only used with the ALE formulation (Arbitrary Lagrangian Eulerian) and in the CFD
version of Radioss. The force is calculated using the relation:

(1212)

Where,

Grid velocity

Material velocity

Element volume
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Upwind coefficient (user-defined, default = 1 for full upwind)

When a Lagrangian formulation is used, the values of  and  are equal. Thus, Equation 1212 is equal
to zero.

Upwinding Technique
An upwinding technique is introduced to add numerical diffusion to the scheme; otherwise it is generally
under diffusive and thus unstable. The upwind coefficient used in Equation 1212 is calculated by:

(1213)

Development of a less diffusive flux calculation is currently under investigation.

(1214)

This option is activated with the flag INTEG (only in the CFD version).

Stability
The Courant condition (neglecting viscosity effects) is used to determine the stability of an ALE process.

The maximum time step is calculated by:

(1215)

Where,

Coefficient

Smallest characteristic length of an element

Material speed of sound

Material velocity

Grid velocity

The speed of sound is determined by:

(1216)

Where,

Density

Dynamic viscosity
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Pressure

The relative velocity between the material and grid motion ( - ) is computed by:

(1217)

Where,

Number of nodes of the considered element (usually =8)

ALE Kinematic Conditions

Boundary Conditions
Boundaries with Lagrangian materials are declared automatically Lagrangian.

Nodes can be declared Lagrangian.

Constraints can be applied separately or simultaneously on:

• Material velocity

• Grid velocity

These constraints can be applied in one or several directions of a skew reference frame.

When the flag is set to 1, boundary condition is activated with global reference frame or skew reference
frame.

Figure 268:

i = DOF with respect to global reference frame or skew reference frame

VELOCITY: Vi = 0

ACCELERATION: π i = 0

The boundary conditions can be changed during Engine runs with /BCS or /BCSR Engine options.
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ALE Links
An ALE link is identical to a rigid link. The secondary node sets' grid velocity can be controlled by two
main nodes, M1 and M2.

There are three options to choose from:

Option 0
Velocity is linearly interpolated with respect to order of input.

(1218)

Option 1
Velocity is set to maximum absolute velocity of main nodes.

(1219)

Option 2
Velocity is set to minimum absolute velocity of main nodes.

(1220)

The input data is specified at each restart run.

Automatic Grid Computation
There are three different grid velocity formulations that can be used in an ALE simulation. New
keywords define the type of method used. The different formulations are:

• 0 - J. Donea Grid Formulation: use keyword /DONEA

(NWALE =0 for version < 4.1)

• 1 - Average Displacement Formulation: use keyword /DISP

(NWALE =1 for version < 4.1)

• 2 - Nonlinear Spring Formulation: use keyword /SPRING

(NWALE =2 for version < 4.1)

J. Donea Grid Formulation (/DONEA)

This formulation 123 124 computes grid velocity using:

(1221)

Where,

Number of nodes connected to node I

Distance between node I and node J
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α, adimensional factors given in input

Therefore, the grid displacement is given by:

(1222)

Average Displacement Formulation (/DISP)
The average displacement formulation calculates average velocity to determine average displacement.

(1223)

Nonlinear Spring Formulation (/SPRING)
Each grid node is connected to neighboring grid nodes through a nonlinear viscous spring, similar to
that shown in Figure 269.

Figure 269: Spring Force Graph

The input parameters required are:

Typical time step (Must be greater than the time step of the
current run.)

Nonlinearity factor

Damping coefficient

V Shear factor (stiffness ratio between diagonal springs and springs
along connectivities)

This formulation is the best of the three, but it is the most computationally expensive.

 

123. Donea J., “An Arbitary Lagrangian-Eulerian finite element method for transient dynamic fluid-
structure interactions”, Computer methods in applied mechanics, 1982.

124. Brooks A.N. and Hughes T.J.R., “Streamline Upwind /Petrov-Galerkin Formulations for Convection
Dominated Flows with particular Emphasis on the Incompressible Navier-Stokes Equations”,
Computer Methods in Applied Mechanics and Engineering, Vol. 32, 1982.
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Fluid-Structure Interaction (TYPE 1 Interface)
TYPE1 interface is used to model fluid-structure interactions, as shown in Figure 270.

Figure 270: Fluid-Structure Interaction

This interface allows Lagrangian elements (structure) to interact with ALE (Arbitrary Lagrangian
Eulerian) elements, which model a viscous fluid. Full slip conditions are applied at the boundary
between the two domains.

The acceleration of the Lagrange node is computed by:

(1224)

The acceleration of the ALE node is computed by:

(1225)

The grid velocity of the ALE node is equal to the material velocity of the Lagrange node:

(1226)

The normal material velocities of Lagrange and ALE nodes are equal. Therefore:

(1227)

Example: High Velocity Impacts
A typical application of the ALE method is using high velocity impacts.

Here a cylinder, moving at 227 m/s, impacts with a rigid wall. The material is copper, with a yield stress
of 400 MPa. The initial diameter is 6.4 mm and initial length is 32.4 mm. The simulation was performed
using two different methods: ALE and standard Lagrangian. The results can be seen in Figure 271.
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Figure 271: Cylinder Impact Deformation

It can be seen that the cylinder mesh using ALE remains regular, unlike the Lagrange method, where
large element deformation creates very small and skewed elements. This reduces the time step, leading
to more time step cycles. However, each ALE cycle takes longer than a Lagrangian.
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Computational Aero-Acoustic
This section presents a resumed state-of-the-art of simulation in aero-acoustic domain. 125 Aero-
Acoustics is the engineering field dealing with noise generated generally (but not necessarily) by a
turbulent fluid flow interacting with a vibrating structure. This field differs from the pure acoustic
domain where the object is the propagation of acoustic pressure waves, including reflections,
diffractions and absorptions, in a medium at rest. Aero-Acoustic questions arise in many industrial
design problems and are heavily represented in the noise nuisances related to the transportation
industry.

A classification of Aero-Acoustic problems can be made using the following categories:

External wind noise
transmitted to the inside
through a structure

In the automotive industry, a pillar, side mirror and windshield
wipers noise are typical problems of this category.

Internal flow noise transmitted
to the outside through a
structure

Examples of this class of problems are exhaust, HVAC and Intakes
noises.

Rotating machine noise Axial and centrifugal fans are noisy components that bring with
them many interesting Aero-Acoustic problems.

Most of the Aero-Acoustic R&D works are performed experimentally but this method has some critical
pitfalls. Although it is relatively simple to setup a microphone, measure a noise level and derive a
spectrum at any given location in space, the correct analysis of an Aero Acoustic problem involves
the use of advanced experimental techniques and is complex to use. The Aero Acoustic engineering
community seeks more and more the help of CAE tools as they become available. Those tools
complement the experimentations and allow a thorough visualization and understanding of the pressure
and velocity fields as well as the structural vibrations. Furthermore, parametric studies can be carried
out with little added cost since a numerical model modification is often straightforward and the CPU
time is becoming cheaper and cheaper.

CFD codes are available since over several years, able to predict with a reasonable precision steady
state flows (drag and lift) and slow transient flows like heating and defrosting. Highly transient flows
involved in the Aero-Acoustic phenomena have not been treated since they were not in the bulk of the
needs and they required way too much CPU to be industrially feasible. Acoustic Propagation numerical
tools have also been industrially available since quite a few years. These tools operate in the frequency
domain and are able to propagate a given boundary condition signal in a fluid at rest, including the
noise reflections, diffractions, transmissions and attenuations thanks to the various geometrical
obstacles and different materials.

Attempts have been made to combine existing CFD and Acoustic propagation tools to predict Aero-
Acoustic problems. Most methodologies are based on the Lighthill and Curle method, developed in the

mid 1950's and Ffowcs Williams and Hawkings contributions made in the late 1960's. 126 127 128 129 The
ideas underlying these methods are to decouple the flow pressure field and the acoustic pressure field.
The fluid flow can then be computed by a standard CFD code and the noise derived from the curvature
and turbulent intensities of the flow. A propagation tool is then used to compute the noise on a sub grid
of the CFD computational domain loosing therefore quite some local information and high frequency
content. First attempts were made with incompressible steady state CFD simulations and were not able
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to deliver valuable result in many cases. A good example of these limitations is highlighted by the study

of the noise generated by a simple side mirror shape written by R. Siegert. 130 Recent developments of
this family of techniques require the use of transient simulations and filtering to avoid loosing to much
information on the coarser acoustic mesh. Reasonable success has been met in specific areas involving
low frequencies (up to a couple hundred Hz) and considerable CPU time is needed.

An alternative methodology is to incorporate in a single numerical tool, right from the beginning, the
ingredients that are necessary to perform direct Aero-Acoustic numerical simulation. They are:

Compressible Navier Stokes To be able to propagate pressure waves and therefore take into
account in a single simulation the flow and the noise, including all
possible cavity modes.

Fluid structure coupling To be able to treat the problems involving a turbulent flow on one
side of the structure and the noise radiation on the other side.

Small time step To be able to deal accurately with frequencies going up to several
thousand Hertz.

Transient turbulence modeling Unlike the Reynolds Averaged Navier Stokes (RANS) methods that
makes the assumption that the flow is a combination of a steady
state and turbulent fluctuations. Aero-Acoustic noise is directly
linked to the small scale turbulence fluctuations and strongly time
dependant.

Acoustic boundaries with
prescribed impedance

This is a critical point of a good Aero-Acoustic simulation.
Boundaries need to be able to perform tasks such as giving a
free field impedance to an inlet with fixed velocity, prescribing
a specific impedance at the outlet of a duct to make sure long
wavelength stay trapped inside, treat exterior air impedance
effect on a vibrating structure and be used to model absorbing
materials (carpet, foams,and so on) that are used to coat many
components.

These ingredients have been implemented in a single numerical code. The outcome is Radioss solver
which is different from the existing CFD codes in its capabilities and particularly well suited to short time
transient analysis.

     

125. Nicolopoulos D., Périé F., and Jacques A., “Direct numerical simulation of Aero-Acoustic
phenomena”, M-CUBE, Internal Report, February 2004.

126. Lighthill M.J., “On Sound Generated Aerodynamically, Part I: General Theory”, Proc. Roy. Soc.,
A211, 564-587, 1952.

127. Lighthill M.J., “On Sound Generated Aerodynamically, Part II: Turbulence as a source of sound”,
Proc. Roy. Soc., A222, 1-32, 1954.

128. Curle N., “The influence of solid boundaries upon aerodynamic sound”, Proc. Roy. Soc. Lond., A23,
505-514, 1955.
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Modeling Methodology
The process of defining a numerical model for a given CAA application unfolds in four consecutive
phases. The quality of the results is directly tight to the quality of the numerical model developed in the
points 1 and 2 below. It is, therefore, critical to define precisely the questions the model is supposed to
answer to before starting any development:

1. Mesh definition: Targeting specific answers to engineering questions and constrained by the
available computer resources.

2. Numerical model construction, including material, boundary conditions and desired output.

3. Run monitoring.

4. Post-processing of the time domain data. Including 3D visualization, time history and frequency
content analysis.

Mesh Definition
The mesh building process is the art of building models able to solve the CFD and the CAA problem
for a given set of boundary conditions and range of frequencies while keeping the model as small as
possible to minimize the compute time. To do so, a set of practical rules have been developed. These
rules should be used as initial guidelines to get started on a given problem.

However each class of problems has its own requirements and subtleties and a good knowledge of the
problem physics through experimental data and/or numerical simulations will be necessary to refine
these rules and get the best possible results.

Post-processing
Post-processing of the numerical simulation is very similar to the post-processing of a detailed
experimental study of the same problem. The analysis will be carried out by using:

• FFT's of recorded time domain signal to access the frequency domain content at any given location
of the computational domain.

• Visualization and analysis of intensities on the structures

• Propagation in the far field (if and when needed) of the pressure signal. Typically, this is required
for simulations where the measurement locations are not located in the computational domain.
In most of the internal flow problems for instance the limit of the domain is the structure and a
boundary elements layer to represent the outside air impedance (exhaust, HVAC, and so on). The
noise is often measured at a given distance outside the ducts in still air where there is no reason
to have an expensive CAA solution. This propagation can be performed by a simple monopolar
approximation that gives satisfactory results in the free conditions or by more sophisticated tools
such as BEM methods.

129. Ffowcs Williams, J.E. and Hawkings D.L., “Sound Generation by Turbulence and Surfaces in
Arbitrary Motion”, Phil.Trans.Roy.Soc., A, Vol. 264, No. 1151, pp. 321-344, 1969.

130. Siegert R., “Numerical simulation of aero-acoustic sound generated by a simplified side mirror
model.”, SIA, 1999.
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Application and Validation
As the aim of this manual is not to describe the modeling techniques, the readers are invited to consult

the available publications (for example 131 132 133 134 and the proceeding of International Radioss User
Conference).

   

Conclusion
Along the whole development process, the CAA orientation has been kept in mind for all the decisions
and lead to the choice of the following methods:

• Compressible 3D Navier stokes solver

• Transient explicit time integration

• LES Turbulence

• Acoustic boundary conditions

• Fluid Structure coupling

These ingredients are needed to perform CAA simulations with no particular assumptions on the flow
(except for the use of a turbulence model), the fluid structures coupling or the vibrations, making
Radioss a fairly general code.

Further developments are considered among which can cite the ability to deal with bent flows. In
the real world, in many interesting cases, the object to be studied is not positioned on a flat ground
but embedded within a complex geometrical shape (for example a side mirror on a car). The flow,
which hits the component, is distorted by this geometry. Simulation of the whole vehicle with a CAA
method is not practical beyond a few hundred Hertz because of the huge number of elements needed
in the propagation zone. Therefore, a method mixing a steady state simulation of the far field to get
proper bent boundary conditions and Radioss close to the component and the acoustic sources zones is
currently under development to perform CAA analysis of this kind of problem well beyond 1000 Hz.

131. Sakurai M., Endo M., and Périé F., “Development of the exhaust systems radiation noise
technology”, Proceedings of Insert ASMEFEDSM'03, ASME 2003 Fluids Engineering Division
Summer Meeting, Honolulu, Hawaii, USA, July 6-11, 2003.

132. Vergne S., Auger J.M., G'Styr N., and Périé F., “Simulation of cavity Aero-Elastic Noise induced by
an external turbulent flow perturbed by a small ruler”, Workshop on LES for Acoustics October
2002, DLR Goettingen, Germany 2002.

133. Obrist D., Nicolopoulos D., and Jacques A., “Aero Acoustic Simulation of a side mirror compared
with experimental results”, The 2002 International Congress and Exposition on Noise Control
Engineering, Dearborn, 2002.

134. Fukui Y. and Périé F., “Methodological developments for vibrating pipes noise prediction”, The 2002
International Congress and Exposition on Noise Control Engineering, Dearborn, 2002.
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Smooth Particle Hydrodynamics
Smooth Particle Hydrodynamics (SPH) is a meshless numerical method based on interpolation theory.
It allows any function to be expressed in terms of its values at a set of disordered point's so-called
particles.

SPH is not based on the particle physics theory. The conservation laws of continuum dynamics, in
the form of partial differential equations, are transformed into integral equations through the use of

kernel approximation. A comprehensive state-of-the-art of the method. 135 136 137 These techniques

were initially developed in astrophysics. 138 139 During the 1991-1995 periods, SPH has become widely
recognized and has been used extensively for fluid and solid mechanics type of applications. SPH
method is implemented in Radioss in Lagrangian approach whereby the motion of a discrete number of
particles is followed in time.

SPH is a complementary approach with respect to ALE method. When the ALE mesh is too distorted
to handle good results (for example in the case of vortex creation), SPH method allows getting a
sufficiently accurate solution.

    

SPH Approximation of a Function

Let  the integral approximation of a scalar function  in space:

(1228)

with  the so-called smoothing length and  a kernel approximation such that:

(1229)

and in a suitable sense

(1230)

 denotes the Dirac function.

135. Bonet J., TSL Lok, “Variational and Momentum Preservation Aspects of Smooth Particle
Hydrodynamic Formulations”, Computer Methods in Applied Mechanics and Engineering, Vol. 180,
pp. 97-115 (1999).

136. Randles P.W. and Libersky L.D., “Smoothed Particle Hydrodynamics: Some recent improvements
and applications”, Computer Methods Appl. Mech. Engrg. Vol. 139, pp. 375-408, 1996.

137. Balsara D.S., “Von Neumann Stability Analysis of Smoothed Particle Hydrodynamics Suggestions for
Optimal Algorithms”, Journal of Computational Physics, Vol. 121, pp. 357-372, 1995.

138. Lucy L.B., “A numerical approach to the testing of the fission hypothesis”, Astro. J., Vol. 82, 1013,
1977.

139. Gingold R.A. and Monaghan J.J., “SPH: Theory and application to non-spherical stars”, Mon. Not. R.
Astron. Soc., Vol. 181, 375, 1977.
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Let a set of particles =1, n at positions  ( =1,n) with mass  and density . The smoothed

approximation of the function  is (summation over neighboring particles and the particle  itself):

(1231)

The derivatives of the smoothed approximation are obtained by ordinary differentiation.

(1232)

The following kernel 140 which is an approximation of Gaussian kernel by cubic splines was chosen
(Figure 272):

(1233)

(1234)

and

(1235)

Figure 272: Kernel Based on Spline Functions
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This kernel has compact support, so that for each particle , only the closest particles contribute
to approximations at  (this feature is computationally efficient). The accuracy of approximating
Equation 1228 by Equation 1231 depends on the order of the particles.

Corrected SPH Approximation of a Function

Corrected SPH formulation 141 142 has been introduced in order to satisfy the so-called consistency
conditions:

(1236)

(1237)

These equations insure that the integral approximation of a function f coincides with f for constant and
linear functions of space.

CSPH is a correction of the kernel functions:

 with 
(1238)

Where the parameters   and   are evaluated by enforcing the consistency condition, now given
by the point wise integration as:

(1239)

(1240)

These equations enable the explicit evaluation of the correction parameters   and   as:

(1241)

(1242)

Since the evaluation of gradients of corrected kernel (which are used for the SPH integration of
continuum equations) becomes very expensive, corrected SPH limited to order 0 consistency has been
introduced. Therefore, the kernel correction reduces to the following equations:

140. Monaghan J.J., “Smoothed Particle Hydrodynamics”, Annu.Rev.Astron.Astro-phys; Vol. 30; pp.
543-574, 1992.
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(1243)

that is

(1244)

(1245)

Note:  SPH corrections generally insure a better representation even if the particles are not
organized into a hexagonal compact net, especially close to the integration domain frontiers.
SPH corrections also allow the smoothing length  to values different to the net size  to be
set.

 

SPH Integration of Continuum Equations
In order to keep an almost constant number of neighbors contributing at each particle, use smoothing
length varying in time and in space.

Consider  the smoothing length related to particle ;

 and  if kernel correction
(1246)

or

 and  without kernel correction
(1247)

At each time step, density is updated for each particle , according to:

(1248)

with

141. Bonet J., TSL Lok, “Variational and Momentum Preservation Aspects of Smooth Particle
Hydrodynamic Formulations”, Computer Methods in Applied Mechanics and Engineering, Vol. 180,
pp. 97-115 (1999).

142. Bonet J. and Kulasegram S., “Correction and Stabilization of Smooth Particle Hydrodynamics
Methods with Applications in Metal Forming Simulations”, Int. Journal Num. Methods in
Engineering, Vol. 47, pp. 1189-1214, 2000.
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(1249)

Where,

Mass of a particle 

Density

Velocity

Strain tensor is obtained by the same way when non pure hydrodynamic laws are used or in the other
words when law uses deviatoric terms of the strain tensor:

(1250)

Next the constitutive law is integrated for each particle. Then Forces are computed according to:

(1251)

Where  and  are pressures at particles  and , and  is a term for artificial viscosity. The

expression is more complex for non pure hydrodynamic laws.

Note:  The previous equation reduces to the following one when there is no kernel
correction:

(1252)

since 

Then, in order particles to keep almost a constant number of neighbors into their kernels (   is kept
constant), search distances are updated according to:

(1253)

Artificial Viscosity

As usual in SPH 143 implementations, viscosity is rather an inter-particles pressure than a bulk pressure.
It was shown that the use of Equation 1254 and Equation 1255 generates a substantial amount of
entropy in regions of strong shear even if there is no compression.
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(1254)

with

(1255)

Where,   (resp. ) indicates the position of particle I (resp. ) and  (resp ) is the sound speed
at location  (resp. ), and  and  are constants. This leads us to introduce Equation 1256 and

Equation 1257. 144 The artificial viscosity is decreased in regions where vorticity is high with respect to
velocity divergence.

(1256)

with

(1257)

Default values for  and  are respectively set to 2 and 1.

 

Time Step Control Stability
The stability conditions of explicit scheme in SPH formulation can be written over cells or on nodes.

Cell Time Step
In case of cell stability computation (when no nodal time step is used), the stable time step is computed
as:

(1258)

143. Monaghan J.J., “Smoothed Particle Hydrodynamics”, Annu.Rev.Astron.Astro-phys; Vol. 30; pp.
543-574, 1992.

144. Balsara D.S., “Von Neumann Stability Analysis of Smoothed Particle Hydrodynamics Suggestions for
Optimal Algorithms”, Journal of Computational Physics, Vol. 121, pp. 357-372, 1995.
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 is the user-defined coefficient (Radioss option /DT or /DT/SPHCEL). The value of   =0.3 is

recommended. 145

Nodal Time Step
In case of nodal time step, stability time step is computed in a more robust way:

 at particle 
(1259)

Use the following notations, if kernel correction:

(1260)

Or, if no kernel correction:

(1261)

Recalling that apart from the artificial viscosity terms:

(1262)

write

(1263)

Where,  is the relative displacement of particles  and . Keeping the only first order terms leads
to:

(1264)

Where,

(1265)

that is

(1266)

Same reasoning leads to:

Proprietary Information of Altair Engineering



Altair Radioss 2022
Theory Manual p.447

(1267)

So that

(1268)

Stiffness around node  is then estimated as:

(1269)

Conservative Smoothing of Velocities
It can be shown that the SPH method is unstable in tension. The instability is shown to result from an
effective stress with a negative modulus (imaginary sound speed) being produced by the interaction
between the constitutive relation and the kernel function, and is not caused by the numerical time

integration algorithm. 146 D.S Balsara 147 states, use special filtering of velocities (so called conservative
smoothing, because momentum quantities are not modified):

(1270)

 

SPH Cell Distribution
It is recommended to distribute the particles through a hexagonal compact or a cubic net.

Hexagonal Compact Net
A cubic centered faces net realizes a hexagonal compact distribution and this can be useful to build the
net (Figure 273). The nominal value  is the distance between any particle and its closest neighbor.
The mass of the particle  may be related to the density of the material  and to the size  of the
hexagonal compact net, with respect to:

145. Monaghan J.J., “Smoothed Particle Hydrodynamics”, Annu.Rev.Astron.Astro-phys; Vol. 30; pp.
543-574, 1992.

146. Swegle J.W., Hicks D.L., and Attaway S.W., “Smoothed Particle Hydrodynamics: Stability Analysis”,
Journal of Computational Physics, Vol. 116, pp. 123-134, 1995.

147. Balsara D.S., “Von Neumann Stability Analysis of Smoothed Particle Hydrodynamics Suggestions for
Optimal Algorithms”, Journal of Computational Physics, Vol. 121, pp. 357-372, 1995.
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(1271)

Since the space can be partitioned into polyhedras surrounding each particle of the net, each one with a
volume:

(1272)

But, due to discretization error at the frontiers of the domain, mass consistency better corresponds to

 .

Where,

Total volume of the domain and  the number of particles
distributed in the domain

Figure 273: Local View of Hexagonal Compact Net and Perspective View of Cubic Centered Faces Net

Note:  Choosing  for the smoothing length insures naturally consistency up to order 1 if
the previous equation is satisfied.

Weight functions vanish at distance  where  is the smoothing length. In an hexagonal compact net
with size , each particle has exactly 54 neighbors within the distance  (Table 11).

Table 11: Number of Neighbors in a Hexagonal Compact Net

Distance d
Number of
Particles at
Distance d

Number of
Particles within

Distance d

12 12

6 18
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Distance d
Number of
Particles at
Distance d

Number of
Particles within

Distance d

24 42

12 54

24 78

Cubic Net
Let  the side length of each elementary cube into the net. The mass of the particles  should be
related to the density of the material  and to the size  of the net, with respect to the following
equation:

(1273)

By experience, a larger number of neighbors must be taken into account with the hexagonal compact
net, in order to solve the tension instability as explained in following sections. A value of the smoothing
length between 1.25c and 1.5c seems to be suitable. In the case of smoothing length h=1.5c, each
particle has 98 neighbors within the distance .

Table 12: Number of Neighbors in a Cubic Net

Distance d
Number of
Particles at
Distance d

Number of
Particles within

Distance d

6 6

12 18

8 26

2c 6 32

24 56

24 80

2 12 92

3c 6 98
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Appendix A: Basic Relations of Elasticity

Isotropic Material

Hooke Law 3D (Principal Stress and Strain)

Hooke Law for 2D Plan Stress

; 
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; 

Hooke Law for 2D Plane Strain

; 

; 

Table 13: Material Constants Relations

E, E,G E,B G, G, B B, 

E E E E 2(1+v)G 3(1-2v)B

G G G

B=K B B B

Orthotropic Material

General 3D Orthotropic Case
The strain-stress relations are defined using 9 material constants:

• Three Young's modulus in orthotropic directions 1, 2 and 3: , , 

• Three shear modulus in planes 12, 13 and 23: , , 

• Three Poisson ratio's satisfying the relations:
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; ; 

;

2D In-plane Orthotropic Material
• Orthotropic plane 1-2, isotropic plane 2-3

◦ Orthotropy coefficients in the plane 1-2: 

◦ Isotropy coefficients in plane 2-3: 

• Five independent coefficients

; 

Stiffness Matrix of Beam Element
Terms of the stiffness matrix:
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For a rectangle cross-section:
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