
LEVERAGING
VMWARE'S RPC
INTERFACE FOR

FUN AND PROFIT
Brian Gorenc

Jasiel Spelman
Abdul-Aziz Hariri

• Introduction

• VMware General Architecture (Simplified)

• Host <-> Guest Communication
• Backdoor Interface

• VM RPC Interface
• Functions
• Recording Guest -> Host RPC requests

• Developing tools to query the RPC Interface
• C++
• Python

• C Extension
• CTypes

• Fuzzing RPC Interface
• Architecture
• In Memory

• VMware UAF Exploitation
• Controlling Freed Objects
• Finding Exploit primitives
• Demo

• Conclusion

Agenda

3

Introductions

• BS in Computer Engineering – Texas A&M University
• MS in Software Engineering – Southern Methodist University
• Director of Vulnerability Research at Trend Micro

• Leads the Zero Day Initiative
• Organizes Pwn2Own
• Approver of Payments

• Past Experiences
• Lead Developer at Lockheed Martin

• Past research:
• Microsoft Bounty submission
• Patents on Exploit Mitigation Technologies
• Bug hunting in many products

• Twitter: @MaliciousInput

Brian Gorenc

• BS in Computer Sciences – University of Balamand
• Currently a Senior Security Researcher at ZDI

• Root Cause analysis / Vulnerability Research / Exploit development
• ZDI Case Lead
• Pwn2Own Preparation / Judging entries

• Past Experiences
• Bits Arabia, Insight-Tech and Morgan Stanley

• Past research:
• Pwn4Fun 2014 renderer exploit writer
• Microsoft Bounty submission
• Patents on Exploit Mitigation Technologies
• Adobe Reader research

• Twitter: @abdhariri

Abdul-Aziz Hariri

• BA in Computer Science – University of Texas at Austin
• Currently a Senior Security Researcher at ZDI

• Root Cause analysis / Vulnerability Research / Exploit development
• ZDI Research Lead
• Pwn2Own Invigilator

• Past Experiences
• TippingPoint Digital Vaccine team

• Past research:
• Pwn4Fun 2014 sandbox escape exploit writer
• Patents on zero day protection technologies
• Windows kernel information leaks
• Adobe Flash RE & RCE vulnerabilities

• Twitter: @WanderingGlitch

Jasiel Spelman

VMware General
Architecture

VMware Simplified Architecture

Hypervisor

Guest

vmware-vmx

CPU

Guest

vmware-vmx

CPU

vmware tools libs

I/O

I/O

Management Layer

What’s going on here?

Host <-> Guest Communication

Hypervisor
(host)

Guest
(vm)

Backdoor Channel

TCLO

RPCI
Low-bandwidth

High-bandwidth

Backdoor Channel

Other

• VMware implements an interface called “Backdoor”
• Hijacks the IN/OUT instructions
• Supports multiple commands
• Supports two protocols: RPCI and TCLO
• Communication is done by accessing special I/O ports

• Can be used to:
• Extract host information
• Send Guest->Host RPC requests

• Backdoor interface is enabled by default

Host <-> Guest Communication

• Supports multiple commands/functions
• Commands can be found in the open-vm-tools on

github
• backdoor_def.h defines these commands

• Guest can invoke more of these commands
than you think…

Backdoor Commands

• Invoking Backdoor functions is simple:

Invoking Backdoor

mov eax, 564D5868h /* magic number */
mov ebx, command-specific-parameter
mov cx, command-number /* 1001e = RPC */
mov dx, 5658h /* VMware I/O port */
in eax, dx

• Supports multiple commands
• Rpctool.exe can be used to query some of the commands.
• Rpctool.exe is open source and can be found in the open-vm-tools
• These RPC commands can be found in vmware-vmx.exe and sprinkled throughout the

open-vm-tools source

RPCI

RPCI

• Backdoor Interface is used for Host/Guest communication

• Hijacks in/out instructions

• RPCI is used from guest -> host
• TCLO is used from host -> guest

• RPCI commands can be found in vmware-vmx{.exe}

• open-vm-tools is a goldmine!

Summary

VM RPC Interface

• The RPC requests are sent through the “backdoor” channel

• Specifically, the BDOOR_CMD_MESSAGE (0x1E)

• The Guest Messages are defined in guest_msg_def.h

• GuestRPC supports multiple message types:

GuestRPC

GuestRPC

• Example of a simple GuestRPC message:

mov eax, 0x564D5868
mov ecx, 0x001e //MESSAGE_TYPE_OPEN

mov edx, 0x5658
mov ebx, 0xC9435052

in eax, dx

mov eax, 0x564D5868

mov ecx, 0x1001e //MESSAGE_TYPE_SENDSIZE

mov edx, 0x5658
mov ebx, SIZE

in eax, dx

mov eax, 0x564D5868
mov ecx, 0x6001e //MESSAGE_TYPE_CLOSE
mov edx, 0x5658
mov ebx, SIZE
in eax, dx

• GuestRPC requests are parsed within vmware-vmx{.exe}

• GuestRPC Messages/Functions are also implemented inside vmware-vmx{.exe}

• If we look closely inside GuestRPC_Funcs we will notice the following:

GuestRPC

• The function takes the RPC request as an argument

• Checks if the RPC function being passed is valid

• Checks if we have enough permissions to execute the function
• Executes it

ExecRPCRequest

• Since this is exactly where RPC requests are parsed, we can actually hook this
function and sniff the requests being sent

• For this task we used pykd
• Set a breakpoint on the ExecRPCRequest function
• A pointer pointing to the request is set in the r8 register
• The length of the request is set in the r9 register

• Should look similar to the following

Sniffing RPC Requests

Sniffing the Backdoor

Developing tools to query
the RPC Interface

• One of the challenging problems with VMware and RPC is tools development for:
• Case analysis
• Exploit development
• Fuzzing

• While we can definitely use the open-vm-tools to develop tools in C++, there are
still challenges:

• There are functions that definitely needs to be implemented in ASM
• Without ASM we’ll need to use the exports from vmtools.dll

• Still a little bit of a hustle

Tool Development

• Add the open-vm-tools headers to the Include Directories

C++, Take 1

• Use Assembly

• Since some function are not fully
implemented in the tools, thus in order to
step out of the vmtools.dll we’d need to
implement some functions in ASM

C++, Take 2

• As for implementing a function to send RPC
requests through the backdoor channel in ASM,
it should be pretty simple

C++, Take 2

• All that is still not enough

• We need something for FAST tools development

• Python? Yup, we implemented simple ways to send RPC requests through
python:

• C Extensions
• Ctypes

• Unfortunately, Josh (@kernelsmith) (our DevOps manager) wanted to implement
something similar in Ruby.

Python

• C Extensions are awesome

• It’s a shared Library (.pyd) on Windows which exports an initialization function

• The shared library can be imported from python

Python, C Extensions

Python, C Extensions

• Ctypes provides C compatible data types

• Allows calling functions in DLLs or shared libraries

Python, CTypes

Teasing the Backdoor

Fuzzing the RPC Interface

• Fuzzing the RPC interface requires tooling both on the GuestOS and the HostOS

• Some problems that we’d need to tackle:
• Detecting Crashes from the host (Mostly debugging vmware-vmx in this case)
• Testcase generation (can be on the GuestOS but we want the guest to stay light)
• GuestOS VM(s) management from the HostOS

Fuzzing the RPC Interface

Fuzzing the RPC Interface

Host VMWare
WorkStation

Framework

Manage through vmrun

attach

Agent

monitor

Send test cases

mutator

start vmx

• Since we know exactly were the RPC requests are being parsed, we can actually
do InMemory fuzzing:

• Hook ExecRPCRequest (on the HostOS)
• Modify the RPC request before it gets parsed
• Wait for crashes

• Additional tooling required:
• Crash Detection (From HostOS)
• Record modifications (From the HostOS)

InMemory Fuzzing

VMware Drag and Drop UAF

• The Free is triggered when the DnD version is changed multiple times

• The re-use happens when a random DnD function is called after the Free

• The PoC is relatively simple:

Root Cause

• If triggered successfully
we should end up in a
crash similar to the following:

• To verify further,
!heap –p –a @RCX will
show us where the
Free happened:

Root Cause

• Next, we will need to get the size of the Free’d object

• In order to do that, we will need to break right before the Free happens and run
!heap –p –a on the address before it gets Freed

Root Cause

• First we will need to find a way to
control the Freed object before
it gets re-used

• This can be done by sending an
arbitrary GuestRPC request
through the backdoor channel

• For example through the
tools.capability.guest_temp_directory
RPC function

Exploiting the vulnerability

• Next question is where should I put my ROP chain? Should I heap spray?

• The answer was in the unity.window.contents.start RPC function

Exploiting the vulnerability

• What does the plan of action look like now?
• Send a unity.window.contents.start request with a ROP chain that sets RSP to RDI.
• Trigger the free.
• Overwrite the freed object with another one. The freed object should contain the address of

vmware_vmx+0xb870f8.
• Trigger the re-use using a request that contains the ROP chain to gain RCE.

• There is an RWX region in vmware-vmx, so you know what the ROP chain should
do ;)

Exploiting the vulnerability

VMware DnD UAF Exploit

Conclusion

www.zerodayinitiative.com
@thezdi

