Quantum algorithms for computing short discrete logarithms and factoring RSA integers

Martin Ekerå^{1,2} Johan Håstad¹

¹ KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

² Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden PQCrypto 2017, 8th International Workshop, Utrecht, June 26-28, 2017

Introduction

Our contribution

- ▶ We modify Shor's algorithms to more efficiently solve
	- ▶ the *short* discrete logarithm problem
	- ▶ the *RSA* integer factoring problem

 \triangleright The main hurdle is to exponentiate group elements. We shorten the exponents.

The integer factoring problem

The integer factoring problem (IFP)

▶ Given an integer *N* compute its prime factors.

The integer factoring problem

The integer factoring problem (IFP)

▶ Given an integer *N* compute its prime factors.

The RSA integer factoring problem (RSA IFP)

 \triangleright *N* = *pq* where *p* and *q* \neq *p* are two large primes of similar size

The integer factoring problem

The integer factoring problem (IFP)

▶ Given an integer *N* compute its prime factors.

The RSA integer factoring problem (RSA IFP)

 \triangleright *N* = *pq* where *p* and *q* \neq *p* are two large primes of similar size

 \triangleright We focus on the RSA IFP since it is of cryptographic significance.

The discrete logarithm problem

The discrete logarithm problem (DLP)

 \blacktriangleright Given a generator g of some group $\mathbb G$ and $x=g^d$ compute $d=\log_g x.$

The discrete logarithm problem

The discrete logarithm problem (DLP)

 \blacktriangleright Given a generator g of some group $\mathbb G$ and $x=g^d$ compute $d=\log_g x.$

The short discrete logarithm problem (short DLP)

- ▶ *d* ≪ *r* where *r* is the order of G
- ▶ *r* may be assumed known or unknown

Reasons for studying the short DLP

Reasons for studying the short DLP

- 1. The RSA IFP may be reduced to the short DLP.
- 2. The short DLP arises in some parameterizations of DLP-based schemes.

Reducing RSA IFP to a short DLP [HSS93]

- 1. Let $N = pq$ be the RSA integer to be factored.
- 2. Pick a random $g \in \mathbb{Z}_N^*$. Compute

x = g^N \equiv g^{p+q-1} since the order of \mathbb{Z}_N^* is *pq − p − q* + 1*.*

- 3. Compute *d* = *p* + *q −* 1 given *g* and *x*.
- 4. Solve *N* = *pq* and *d* = *p* + *q −* 1 for *p* and *q*.

 \triangleright An RSA IFP may be reduced to a short DLP in a group of unknown order.

Domain parameters for DLP-based schemes

∗ ballpark figure — various models exist for estimating these security levels

- \triangleright The short DLP arises when short exponents are used with safe-prime groups.
- ▶ Important to understand quantum implications of parameterization choices.

Shor's algorithms [Shor94]

Shor's algorithms

- ► Shor's algorithms solve the IFP and the DLP in $\mathbb{F}_p^*.$
- \blacktriangleright May be generalized to solve the DLP in any finite cyclic group.

1. Compute the superposition

$$
\frac{1}{r}\sum_{a=0}^{r-1}\sum_{b=0}^{r-1} |a, b, g^{a}x^{-b}\rangle
$$

- 2. Compute two QFTs of size *r*.
- 3. Observe frequencies *j* and *k*.
- 4. Solve $dj + k \equiv 0 \pmod{r}$.

1. Compute the superposition

$$
\frac{1}{r}\sum_{a=0}^{r-1}\sum_{b=0}^{r-1} |a, b, g^{a}x^{-b} \equiv g^{(a-bd) \mod r}
$$

where
$$
\langle g \rangle = \mathbb{G}
$$
 of order $r \sim 2^l$.

- 2. Compute two QFTs of size *r*.
- 3. Observe frequencies *j* and *k*.
- 4. Solve $dj + k \equiv 0 \pmod{r}$.

1. Compute the superposition

$$
\frac{1}{r}\sum_{a=0}^{r-1}\sum_{b=0}^{r-1} |a, b, g^{a}x^{-b} \equiv g^{(a-bd) \mod r}
$$

- 2. Compute two QFTs of size 2 *l* .
- 3. Observe frequencies *j* and *k*.
- 4. Solving for *d* yields

$$
d \equiv \left\lfloor \frac{kr}{2^l} \right\rfloor z^{-1} \text{ (mod } r \text{) where } z = \frac{\{jr\}_{2^l} - jr}{2^l} \in \mathbb{Z}.
$$

1. Compute the superposition

$$
\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^{a} x^{-b} \equiv g^{(a-bd) \mod r}
$$

- 2. Compute two QFTs of size 2 *l* .
- 3. Observe frequencies *j* and *k*.
- 4. Solving for *d* yields

$$
d \equiv \left\lfloor \frac{kr}{2^l} \right\rfloor z^{-1} \text{ (mod } r \text{) where } z = \frac{\{jr\}_{2^l} - jr}{2^l} \in \mathbb{Z}.
$$

1. Compute the superposition

$$
\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^{a} x^{-b} \equiv g^{(a-bd) \mod r}
$$

- 2. Compute two QFTs of size 2 *l* .
- 3. Observe frequencies *j* and *k*.
- 4. Solving for *d* yields

$$
d \equiv \left\lfloor \frac{kr}{2^l} \right\rfloor z^{-1} \text{ (mod } r \text{) where } z = \frac{\{jr\}_{2^l} - jr}{2^l} \in \mathbb{Z}.
$$

1. Compute the superposition

$$
\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^{a} x^{-b} \equiv g^{(a-bd) \mod r}
$$

- 2. Compute two QFTs of size 2 *l* .
- 3. Observe frequencies *j* and *k*.
- 4. Solving for *d* yields

$$
d \equiv \left\lfloor \frac{kr}{2^l} \right\rfloor z^{-1} \text{ (mod } r \text{) where } z = \frac{\{jr\}_{2^l} - jr}{2^l} \in \mathbb{Z}.
$$

Our algorithm for the short DLP

Our improvements

- 1. We make the exponent length depend on *d*.
- 2. We enable tradeoffs between the exponent length and the number of runs.
	- \triangleright This parallels Seifert's modification [Seifert01] of Shor's order finding algorithm.

 \triangleright We provide a full analysis of the algorithm and rigorous proofs.

Our algorithm for the short DLP [Ekerå16] *— single pair*

1. Compute the superposition

$$
\frac{1}{\sqrt{2^{3m}}} \sum_{a=0}^{2^{2m}-1} \sum_{b=0}^{2^m-1} |a, b, g^a x^{-b} = g^{a-bd} \rangle
$$

where $\langle g \rangle$ $=$ \mathbb{G} of order *r* and $d < 2^m \ll r$.

- 2. Compute QFTs of size 2²*^m* and 2*^m*.
- 3. Observe frequencies *j* and *k*.
- 4. Solve $| \{ dj + 2^mk \}_{2^{2m}} | ≤ 2^{m-2}$ for *d*.

The probability of a good pair is *≥* 1*/*8. Need a single good pair to solve for *d*. The order *r* may be unknown.

Our algorithm for the short DLP *— multiple pairs*

1. Compute the superposition

$$
\frac{1}{\sqrt{2^{2\ell+m}}} \sum_{a=0}^{2^{\ell+m}-1} \sum_{b=0}^{2^{\ell}-1} |a, b, g^{a}x^{-b} = g^{a-bd} \rangle
$$

where $d < 2^m \lll r$ and $\ell \approx m/s$ for small *s*.

- 2. Compute QFTs of size 2*^ℓ*+*^m* and 2*^ℓ* .
- 3. Observe frequencies *j* and *k*.

 $\mathsf{Expected} | \{ dj + 2^m k \}_{2^{\ell+m}} | \leq 2^{m-2}$.

The probability of a good pair is *≥* 1*/*8. Need at least *s* good pairs to solve for *d*. The order *r* may be unknown.

Classical post-processing

Classical post-processing

 \triangleright Solve *s* good pairs (j, k) for *d* using lattice-based techniques.

▶ For *provable* success, execute *cs* times and solve all subsets of *s* pairs.

 \triangleright In *practice* the condition on (j, k) may be relaxed. May trade radius for dimension.

Our advantage when solving an *m* bit short DLP

⁰ *⟩*

Short $m=200$ bit DLP in safe-prime group $\mathbb{G} \subset \mathbb{F}^*_p$ $_{\rho}^{\ast}$ for $\rho\approx 2^{2048}$

Short $m=200$ bit DLP in safe-prime group $\mathbb{G} \subset \mathbb{F}^*_p$ $_{\rho}^{\ast}$ for $\rho\approx 2^{2048}$

Shor's algorithm for the IFP

▶ Factors *N* by computing the order *r* of a random element *g ∈* Z *∗ N* .

Shor's order finding algorithm [Shor94] – *factoring N ∈* Z

1. Compute the superposition

$$
\frac{1}{2^n}\sum_{a=0}^{2^{2n}-1} |a,g^a\rangle
$$

 w here $g \in \mathbb{Z}_N^*$ and $n \sim \log_2 N$.

- 2. Compute a QFT of size 2²*ⁿ* .
- 3. Observe frequency *j*.
- 4. Expect

$$
\frac{z}{r} \approx \frac{j}{2^{2n}} \quad \text{for some} \quad z \in \mathbb{Z}.
$$

Solve via continued fractions expansion.

Our advantage when solving an *n* bit RSA IFP

Our advantage when solving an *n* bit RSA IFP

Summary and conclusion

Solving short *m* bit DLP

▶ Exponent reduced to $m + 2m/s$ bits for small $s > 1$.

 \blacktriangleright The group order may be unknown.

Factoring *n* bit RSA integers

- ▶ Exponent reduced from 2*n* bits to $n/2 + n/s$ bits for small $s > 2$.
- \triangleright Reduced number of group operations, circuit depth, execution and coherence times.
- \blacktriangleright May result in a reduced number of control qubits.

Summary and conclusion

Implications for parameterization

- ▶ Safe-prime groups with short *d ∼* 2 *^m* yield *m* + 2*m/s* bit exponents.
- ▶ Schnorr groups of order *r ∼* 2 *^m* yield 2*m* bit exponents.
	- Expect reduction to $m + 2m/s$ using tradeoffs.
- ▶ Not a reason to prefer safe-prime groups with short *d* over Schnorr groups.

Additional contributions

 \triangleright We provide a full analysis of the algorithm and rigorous proofs.

