Quantum algorithms for computing short discrete logarithms and factoring RSA integers

Martin Ekerå^{1,2} Johan Håstad¹

¹ KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

² Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden PQCrypto 2017, 8th International Workshop, Utrecht, June 26-28, 2017

Introduction

Our contribution

- We modify Shor's algorithms to more efficiently solve
 - the short discrete logarithm problem
 - ▶ the *RSA* integer factoring problem

► The main hurdle is to exponentiate group elements. We shorten the exponents.

The integer factoring problem

The integer factoring problem (IFP)

▶ Given an integer *N* compute its prime factors.

The integer factoring problem

The integer factoring problem (IFP)

► Given an integer *N* compute its prime factors.

The RSA integer factoring problem (RSA IFP)

• N = pq where p and $q \neq p$ are two large primes of similar size

The integer factoring problem

The integer factoring problem (IFP)

▶ Given an integer *N* compute its prime factors.

The RSA integer factoring problem (RSA IFP)

▶ N = pq where p and $q \neq p$ are two large primes of similar size

▶ We focus on the RSA IFP since it is of cryptographic significance.

The discrete logarithm problem

The discrete logarithm problem (DLP)

• Given a generator g of some group \mathbb{G} and $x = g^d$ compute $d = \log_q x$.

The discrete logarithm problem

The discrete logarithm problem (DLP)

• Given a generator g of some group \mathbb{G} and $x = g^d$ compute $d = \log_g x$.

The short discrete logarithm problem (short DLP)

- ▶ *d* ≪ *r* where *r* is the order of G
- r may be assumed known or unknown

Reasons for studying the short DLP

Reasons for studying the short DLP

- 1. The RSA IFP may be reduced to the short DLP.
- 2. The short DLP arises in some parameterizations of DLP-based schemes.

Reducing RSA IFP to a short DLP [HSS93]

- 1. Let N = pq be the RSA integer to be factored.
- 2. Pick a random $g \in \mathbb{Z}_N^*$. Compute

 $x = g^N \equiv g^{p+q-1}$ since the order of \mathbb{Z}_N^* is pq - p - q + 1.

- 3. Compute d = p + q 1 given g and x.
- 4. Solve N = pq and d = p + q 1 for p and q.

▶ An RSA IFP may be reduced to a short DLP in a group of unknown order.

Domain parameters for DLP-based schemes

Group	Prime p	Order r	Exponent d	Classical security
Elliptic curve $E(\mathbb{F}_{p})$	200	200	200	100
Safe-prime $\mathbb{G} \subset \mathbb{F}_p^*$	2048	2047	2047	* 100
— short d	2048	2047	200	* 100
Schnorr $\mathbb{G}\subset \mathbb{F}_p^*$	2048	200	200	* 100

* ballpark figure — various models exist for estimating these security levels

- ▶ The short DLP arises when short exponents are used with safe-prime groups.
- Important to understand quantum implications of parameterization choices.

Shor's algorithms [Shor94]

Shor's algorithms

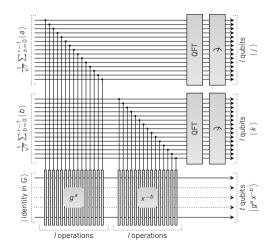
- ▶ Shor's algorithms solve the IFP and the DLP in \mathbb{F}_{ρ}^* .
- ▶ May be generalized to solve the DLP in any finite cyclic group.

1. Compute the superposition

$$\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^{a} x^{-b} \rangle$$

where $\langle g \rangle = \mathbb{G}$ of order $r \sim 2^{l}$.

- 2. Compute two QFTs of size *r*.
- 3. Observe frequencies *j* and *k*.
- 4. Solve $dj + k \equiv 0 \pmod{r}$.

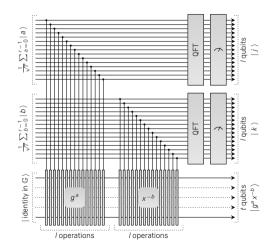


1. Compute the superposition

$$\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^a x^{-b} \equiv g^{(a-bd) \mod r} \rangle$$

where
$$\langle g \rangle = \mathbb{G}$$
 of order $r \sim 2^{l}$.

- 2. Compute two QFTs of size *r*.
- 3. Observe frequencies *j* and *k*.
- 4. Solve $dj + k \equiv 0 \pmod{r}$.



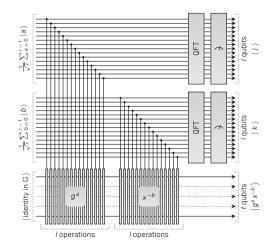
1. Compute the superposition

$$\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^{a} x^{-b} \equiv g^{(a-bd) \mod r} \rangle$$

where $\langle g \rangle = \mathbb{G}$ of order $r \sim 2^{\prime}$.

- 2. Compute two QFTs of size 2'.
- 3. Observe frequencies *j* and *k*.
- 4. Solving for *d* yields

$$d \equiv \left\lfloor \frac{kr}{2^l} \right\rfloor z^{-1} \pmod{r}$$
 where $z = \frac{\{jr\}_{2^l} - jr}{2^l} \in \mathbb{Z}.$



1. Compute the superposition

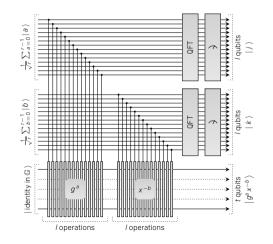
$$\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^{a} x^{-b} \equiv g^{(a-bd) \mod r} \rangle$$

where $\langle g \rangle = \mathbb{G}$ of order $r \sim 2^{l}$.

- 2. Compute two QFTs of size 2^{\prime} .
- 3. Observe frequencies *j* and *k*.
- 4. Solving for *d* yields

$$d \equiv \left\lfloor \frac{kr}{2^{\prime}} \right
ceil z^{-1} \pmod{r}$$
 where $z = \frac{\{jr\}_{2^{\prime}} - jr}{2^{\prime}} \in \mathbb{Z}$.

Group	Prime p	Order r	Exponent d	Classical security
Elliptic curve $E(\mathbb{F}_p)$	200	200	200	100
Safe-prime $\mathbb{G} \subset \mathbb{F}_p^*$	2048	2047	2047	* 100
- short d	2048	2047	200	* 100
Schnorr $\mathbb{G} \subset \mathbb{F}_p^*$	2048	200	200	* 100



1. Compute the superposition

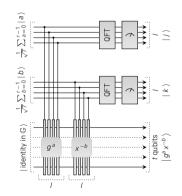
$$\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^{a} x^{-b} \equiv g^{(a-bd) \mod r} \rangle$$

where $\langle g \rangle = \mathbb{G}$ of order $r \sim 2^{\prime}$.

- 2. Compute two QFTs of size 2^{\prime} .
- 3. Observe frequencies *j* and *k*.
- 4. Solving for *d* yields

$$d \equiv \left\lfloor \frac{kr}{2^l} \right\rfloor z^{-1} \pmod{r}$$
 where $z = \frac{\{jr\}_{2^l} - jr}{2^l} \in \mathbb{Z}.$

Group	Prime p	Order r	Exponent d	Classical security
Elliptic curve $E(\mathbb{F}_p)$	200	200	200	100
Safe-prime $\mathbb{G} \subset \mathbb{F}_p^*$	2048	2047	2047	* 100
— short d	2048	2047	200	* 100
Schnorr $\mathbb{G} \subset \mathbb{F}_p^*$	2048	200	200	* 100



1. Compute the superposition

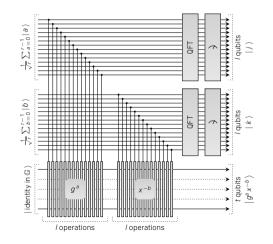
$$\frac{1}{r} \sum_{a=0}^{r-1} \sum_{b=0}^{r-1} |a, b, g^{a} x^{-b} \equiv g^{(a-bd) \mod r} \rangle$$

where $\langle g \rangle = \mathbb{G}$ of order $r \sim 2^{l}$.

- 2. Compute two QFTs of size 2^{\prime} .
- 3. Observe frequencies *j* and *k*.
- 4. Solving for *d* yields

$$d \equiv \left\lfloor \frac{kr}{2^{\prime}} \right
ceil z^{-1} \pmod{r}$$
 where $z = \frac{\{jr\}_{2^{\prime}} - jr}{2^{\prime}} \in \mathbb{Z}$.

Group	Prime p	Order r	Exponent d	Classical security
Elliptic curve $E(\mathbb{F}_p)$	200	200	200	100
Safe-prime $\mathbb{G} \subset \mathbb{F}_p^*$	2048	2047	2047	* 100
- short d	2048	2047	200	* 100
Schnorr $\mathbb{G} \subset \mathbb{F}_p^*$	2048	200	200	* 100



Our algorithm for the short DLP

Our improvements

- 1. We make the exponent length depend on *d*.
- 2. We enable tradeoffs between the exponent length and the number of runs.
 - ▶ This parallels Seifert's modification [Seifert01] of Shor's order finding algorithm.

▶ We provide a full analysis of the algorithm and rigorous proofs.

Our algorithm for the short DLP [Ekerå16] — single pair

1. Compute the superposition

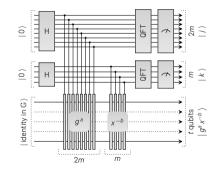
$$\frac{1}{\sqrt{2^{3m}}} \sum_{a=0}^{2^{2m}-1} \sum_{b=0}^{2^m-1} |a, b, g^a x^{-b} = g^{a-bd} \rangle$$

where $\langle g \rangle = \mathbb{G}$ of order *r* and $d < 2^m \ll r$.

- 2. Compute QFTs of size 2^{2m} and 2^m .
- 3. Observe frequencies *j* and *k*.
- 4. Solve $| \{ dj + 2^m k \}_{2^{2m}} | \le 2^{m-2}$ for *d*.

The probability of a good pair is $\geq 1/8$. Need a single good pair to solve for *d*. The order *r* may be unknown.

Group	Prime p	Order r	Exponent d	Classical security
Elliptic curve $E(\mathbb{F}_p)$	200	200	200	100
Safe-prime $\mathbb{G} \subset \mathbb{F}_p^*$	2048	2047	2047	* 100
— short d	2048	2047	200	* 100
Schnorr $\mathbb{G} \subset \mathbb{F}_p^*$	2048	200	200	* 100



Our algorithm for the short DLP — multiple pairs

1. Compute the superposition

$$\frac{1}{\sqrt{2^{2\ell+m}}} \sum_{a=0}^{2^{\ell+m}-1} \sum_{b=0}^{2^{\ell}-1} |a, b, g^a x^{-b} = g^{a-bd} \rangle$$

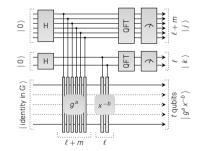
where $d < 2^m \ll r$ and $\ell \approx m/s$ for small s.

- 2. Compute QFTs of size $2^{\ell+m}$ and 2^{ℓ} .
- 3. Observe frequencies *j* and *k*.

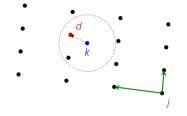
Expect $| \{ dj + 2^m k \}_{2^{\ell+m}} | \le 2^{m-2} .$

The probability of a good pair is $\geq 1/8$. Need at least *s* good pairs to solve for *d*. The order *r* may be unknown.

Group	Prime p	Order r	Exponent d	Classical security
Elliptic curve $E(\mathbb{F}_p)$	200	200	200	100
Safe-prime $\mathbb{G} \subset \mathbb{F}_{\rho}^*$	2048	2047	2047	* 100
— short d	2048	2047	200	* 100
Schnorr $\mathbb{G} \subset \mathbb{F}_p^*$	2048	200	200	* 100



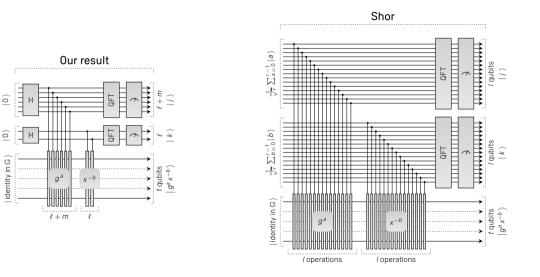
Classical post-processing



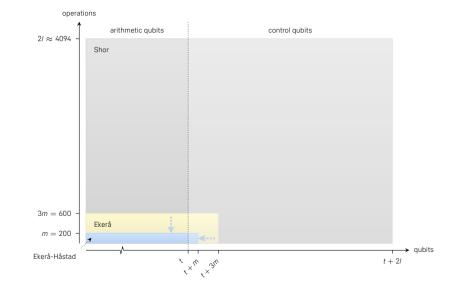
Classical post-processing

- Solve s good pairs (j, k) for d using lattice-based techniques.
 - ▶ For *provable* success, execute *cs* times and solve all subsets of *s* pairs.
- ▶ In *practice* the condition on (j, k) may be relaxed. May trade radius for dimension.

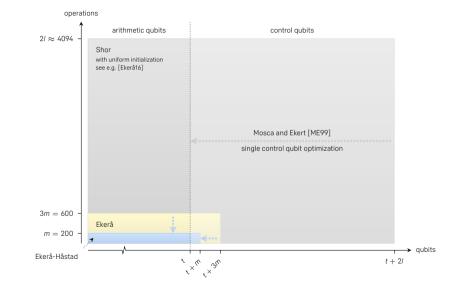
Our advantage when solving an *m* bit short DLP



Short m=200 bit DLP in safe-prime group $\mathbb{G}\subset \mathbb{F}_p^*$ for $ppprox 2^{2048}$



Short m=200 bit DLP in safe-prime group $\mathbb{G}\subset \mathbb{F}_p^*$ for $ppprox 2^{2048}$



Shor's algorithm for the IFP

▶ Factors *N* by computing the order *r* of a random element $g \in \mathbb{Z}_N^*$.

Shor's order finding algorithm [Shor94] – factoring $N \in \mathbb{Z}$

1. Compute the superposition

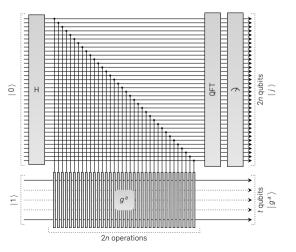
$$\frac{1}{2^n}\sum_{a=0}^{2^{2n}-1}\left|a,g^a\right\rangle$$

where $g \in \mathbb{Z}_N^*$ and $n \sim \log_2 N$.

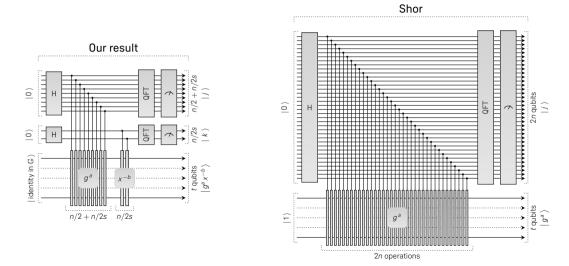
- 2. Compute a QFT of size 2^{2n} .
- 3. Observe frequency *j*.
- 4. Expect

$$rac{z}{r} pprox rac{j}{2^{2n}}$$
 for some $z \in \mathbb{Z}.$

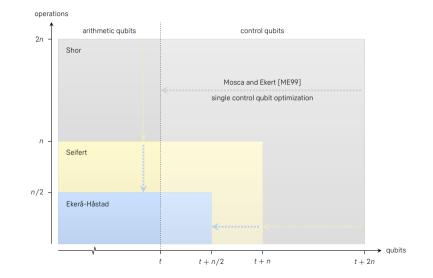
Solve via continued fractions expansion.



Our advantage when solving an *n* bit RSA IFP



Our advantage when solving an *n* bit RSA IFP



Summary and conclusion

Solving short *m* bit DLP

• Exponent reduced to m + 2m/s bits for small $s \ge 1$.

► The group order may be unknown.

Factoring *n* bit RSA integers

- Exponent reduced from 2n bits to n/2 + n/s bits for small $s \ge 2$.
- ▶ Reduced number of group operations, circuit depth, execution and coherence times.
- May result in a reduced number of control qubits.

Summary and conclusion

Implications for parameterization

- Safe-prime groups with short $d \sim 2^m$ yield m + 2m/s bit exponents.
- Schnorr groups of order $r \sim 2^m$ yield 2m bit exponents.
 - Expect reduction to m + 2m/s using tradeoffs.
 - ▶ Not a reason to prefer safe-prime groups with short *d* over Schnorr groups.

Additional contributions

▶ We provide a full analysis of the algorithm and rigorous proofs.

