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Introduction

Our contribution

▶ Wemodify Shor’s algorithms to more efficiently solve

▶ the short discrete logarithm problem
▶ the RSA integer factoring problem

▶ The main hurdle is to exponentiate group elements. We shorten the exponents.



The integer factoring problem

The integer factoring problem (IFP)

▶ Given an integer N compute its prime factors.
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The integer factoring problem

The integer factoring problem (IFP)

▶ Given an integer N compute its prime factors.

The RSA integer factoring problem (RSA IFP)

▶ N = pq where p and q ̸= p are two large primes of similar size

▶ We focus on the RSA IFP since it is of cryptographic significance.



The discrete logarithm problem

The discrete logarithm problem (DLP)

▶ Given a generator g of some group G and x = gd compute d = logg x.



The discrete logarithm problem

The discrete logarithm problem (DLP)

▶ Given a generator g of some group G and x = gd compute d = logg x.

The short discrete logarithm problem (short DLP)

▶ d ≪ r where r is the order of G
▶ rmay be assumed known or unknown



Reasons for studying the short DLP

Reasons for studying the short DLP

1. The RSA IFP may be reduced to the short DLP.

2. The short DLP arises in some parameterizations of DLP-based schemes.



Reducing RSA IFP to a short DLP [HSS93]

1. Let N = pq be the RSA integer to be factored.

2. Pick a random g ∈ Z∗
N. Compute

x = gN ≡ g p+q−1 since the order of Z∗
N is pq− p− q+ 1.

3. Compute d = p+ q− 1 given g and x.

4. Solve N = pq and d = p+ q− 1 for p and q.

▶ An RSA IFP may be reduced to a short DLP in a group of unknown order.



Domain parameters for DLP-based schemes

Group Prime p Order r Exponent d Classical security

Elliptic curve E(Fp) 200 200 200 100

Safe-prime G ⊂ F∗
p 2048 2047 2047 ∗ 100

— short d 2048 2047 200 ∗ 100

Schnorr G ⊂ F∗
p 2048 200 200 ∗ 100

∗ ballpark figure — various models exist for estimating these security levels

▶ The short DLP arises when short exponents are used with safe-prime groups.
▶ Important to understand quantum implications of parameterization choices.



Shor’s algorithms [Shor94]

Shor’s algorithms

▶ Shor’s algorithms solve the IFP and the DLP in F∗
p.

▶ May be generalized to solve the DLP in any finite cyclic group.



Shor’s algorithm for the DLP [Shor94]

1. Compute the superposition

1
r

r− 1∑
a= 0

r− 1∑
b= 0

∣∣ a, b, g a x−b ⟩
where ⟨g ⟩ = G of order r ∼ 2l.

2. Compute two QFTs of size r.

3. Observe frequencies j and k.

4. Solve dj+ k ≡ 0 (mod r).
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Shor’s algorithm for the DLP [Shor94]

1. Compute the superposition

1
r

r− 1∑
a= 0

r− 1∑
b= 0

∣∣ a, b, g a x−b ≡ g (a−bd)mod r ⟩
where ⟨g ⟩ = G of order r ∼ 2l.

2. Compute two QFTs of size 2l.

3. Observe frequencies j and k.

4. Solving for d yields

d ≡
⌊
kr
2l

⌉
z−1 (mod r) where z =

{jr}2l − jr
2l

∈ Z.
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Our algorithm for the short DLP

Our improvements

1. We make the exponent length depend on d.

2. We enable tradeoffs between the exponent length and the number of runs.

▶ This parallels Seifert’s modification [Seifert01] of Shor’s order finding algorithm.

▶ We provide a full analysis of the algorithm and rigorous proofs.



Our algorithm for the short DLP [Ekerå16]— single pair

1. Compute the superposition

1√
23m

22m − 1∑
a= 0

2m − 1∑
b= 0

∣∣ a, b, g a x−b = g a−bd ⟩
where ⟨g ⟩ = G of order r and d < 2m ≪ r.

2. Compute QFTs of size 22m and 2m.

3. Observe frequencies j and k.

4. Solve | {dj+ 2mk}22m | ≤ 2m−2 for d.

The probability of a good pair is ≥ 1/8.
Need a single good pair to solve for d.
The order rmay be unknown.
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Our algorithm for the short DLP —multiple pairs

1. Compute the superposition

1√
22ℓ+m

2ℓ+m − 1∑
a= 0

2ℓ − 1∑
b= 0

∣∣ a, b, g a x−b = g a−bd ⟩
where d < 2m ≪ r and ℓ ≈ m/s for small s.

2. Compute QFTs of size 2ℓ+m and 2ℓ.

3. Observe frequencies j and k.

Expect | {dj+ 2mk}2ℓ+m | ≤ 2m−2 .

The probability of a good pair is ≥ 1/8.
Need at least s good pairs to solve for d.
The order rmay be unknown.
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Classical post-processing

j

d

k

Classical post-processing

▶ Solve s good pairs ( j, k ) for d using lattice-based techniques.

▶ For provable success, execute cs times and solve all subsets of s pairs.

▶ In practice the condition on ( j, k )may be relaxed. May trade radius for dimension.



Our advantage when solving anm bit short DLP

Our result
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Shortm = 200 bit DLP in safe-prime group G ⊂ F∗
p for p ≈ 22048
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Shortm = 200 bit DLP in safe-prime group G ⊂ F∗
p for p ≈ 22048

Shor
with uniform initialization
see e.g. [Ekerå16]
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Shor’s algorithm for the IFP [Shor94]

Shor’s algorithm for the IFP

▶ Factors N by computing the order r of a random element g ∈ Z∗
N.



Shor’s order finding algorithm [Shor94] – factoring N ∈ Z

1. Compute the superposition

1
2n

22n−1∑
a= 0

∣∣ a, g a ⟩
where g ∈ Z∗

N and n ∼ log2 N.

2. Compute a QFT of size 22n.

3. Observe frequency j.

4. Expect

z
r
≈ j
22n

for some z ∈ Z.

Solve via continued fractions expansion.
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Our advantage when solving an n bit RSA IFP

Our result
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Our advantage when solving an n bit RSA IFP

Shor

Seifert

Ekerå-Håstad

Mosca and Ekert [ME99]

single control qubit optimization
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Summary and conclusion

Solving shortm bit DLP

▶ Exponent reduced tom+ 2m/s bits for small s ≥ 1.

▶ The group order may be unknown.

Factoring n bit RSA integers

▶ Exponent reduced from 2n bits to n/2+ n/s bits for small s ≥ 2.

▶ Reduced number of group operations, circuit depth, execution and coherence times.
▶ May result in a reduced number of control qubits.



Summary and conclusion

Implications for parameterization

▶ Safe-prime groups with short d ∼ 2m yieldm+ 2m/s bit exponents.

▶ Schnorr groups of order r ∼ 2m yield 2m bit exponents.
▶ Expect reduction tom+ 2m/s using tradeoffs.

▶ Not a reason to prefer safe-prime groups with short d over Schnorr groups.

Additional contributions

▶ We provide a full analysis of the algorithm and rigorous proofs.
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