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Abstract

Hashing has been widely applied to approximate near-
est neighbor search for large-scale multimedia retrieval.
Supervised hashing improves the quality of hash coding
by exploiting the semantic similarity on data pairs and
has received increasing attention recently. For most ex-
isting supervised hashing methods for image retrieval,
an image is first represented as a vector of hand-crafted
or machine-learned features, then quantized by a sepa-
rate quantization step that generates binary codes. How-
ever, suboptimal hash coding may be produced, since
the quantization error is not statistically minimized and
the feature representation is not optimally compatible
with the hash coding. In this paper, we propose a novel
Deep Quantization Network (DQN) architecture for su-
pervised hashing, which learns image representation for
hash coding and formally control the quantization error.
The DQN model constitutes four key components: (1)
a sub-network with multiple convolution-pooling layers
to capture deep image representations; (2) a fully con-
nected bottleneck layer to generate dimension-reduced
representation optimal for hash coding; (3) a pairwise
cosine loss layer for similarity-preserving learning; and
(4) a product quantization loss for controlling hashing
quality and the quantizability of bottleneck representa-
tion. Extensive experiments on standard image retrieval
datasets show the proposed DQN model yields substan-
tial boosts over latest state-of-the-art hashing methods.

Introduction
While image big data with large volume and high dimension
are pervasive in search engines and social networks, it has
attracted increasing attention to enable approximate nearest
neighbors (ANN) retrieval of images with both computation
efficiency and search quality. An advantageous solution is
hashing methods (Wang et al. 2014), which transform high-
dimensional data into compact binary codes and generate
similar binary codes for similar data items. In this paper, we
focus on learning to hash methods that build data-dependent
hash coding for efficient image retrieval, which have shown
better performance than data-independent hashing methods,
e.g. Locality-Sensitive Hashing (LSH) (Gionis et al. 1999).
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Many learning to hash methods have been proposed to en-
able efficient ANN search using Hamming distance (Kulis
and Darrell 2009; Gong and Lazebnik 2011; Norouzi and
Blei 2011; Fleet, Punjani, and Norouzi 2012; Liu et al. 2012;
Wang, Kumar, and Chang 2012; Liu et al. 2013; Gong et al.
2013; Yu et al. 2014; Xia et al. 2014; Zhang et al. 2014;
Shen et al. 2015; Lai et al. 2015; Erin Liong et al. 2015).
Hash learning can be divided into unsupervised methods and
supervised methods. While unsupervised methods are more
general and can be trained without semantic labels or rel-
evances, they are restricted by the semantic gap dilemma
(Smeulders et al. 2000) that high-level semantic description
of an object often differs from low-level feature descriptors.
Supervised methods can incorporate semantic labels or rele-
vances to mitigate the semantic gap and improve the hashing
quality, i.e. achieve accurate search with fewer bits of codes.

Recently, deep learning to hash methods (Xia et al. 2014;
Lai et al. 2015) have shown that both feature representation
and hash coding can be learned more effectively using deep
neural networks (Krizhevsky, Sutskever, and Hinton 2012;
Lin, Chen, and Yan 2014), which can naturally encode any
nonlinear hashing functions. These deep hashing methods
have created state-of-the-art results on many benchmarks.
However, a crucial disadvantage of these deep learning to
hash methods is that the quantization error is not statistically
minimized and the feature representation is not optimally
compatible with binary hash coding. Note that, not all input
vectors can be quantized effectively using vector quantiza-
tion (VQ)—if input vectors do not exhibit a cluster structure,
then they may not be quantized accurately (Ge et al. 2014).
Hence it is important to improve the quantizability of the
deep image representations such that they can be quantized
more effectively. Another limitation is that these methods do
not adopt a well-specified pairwise loss to link the pairwise
distances with the similarity labels, i.e. to classify whether
a data pair is similar or dissimilar (pairwise classification)
based on the pairwise distances. Therefore, suboptimal hash
coding may be produced by existing deep hashing methods.

In this paper, we put forward a novel Deep Quantization
Network (DQN) architecture for supervised hashing, which
learns deep image representation compatible for hash coding
and formally controls the quantization error in an optimiza-
tion framework. The DQN architecture constitutes four key
components: (1) a sub-network with multiple convolution-



pooling layers to capture good image representations; (2)
a fully connected bottleneck layer to generate dimension-
reduced representation that is optimal for hash coding; (3) a
pairwise cosine loss layer for similarity-preserving learning;
and (4) a product quantization loss for controlling hashing
quality and the quantizability of bottleneck representation.
Extensive experiments on standard image retrieval datasets
show that the proposed DQN architecture yields substantial
improvements over current state-of-the-art hashing methods.

Related Work
Existing learning to hash methods can be categorized in two
categories: unsupervised hashing and supervised hashing.
We refer readers to (Wang et al. 2014) for a recent survey.

Unsupervised hashing methods learn hash functions that
can encode input data points to binary codes only using the
unlabeled training data. Typical learning criteria include re-
construction error minimization (Salakhutdinov and Hinton
2007; Jegou, Douze, and Schmid 2011), neighborhood pre-
serving as graph-based hashing (Weiss, Torralba, and Fergus
2009; Liu et al. 2011), and quantization error minimization
as Iterative Quantization (ITQ) (Gong and Lazebnik 2011).

Supervised hashing explores supervised information (e.g.,
class labels, relative similarity, or relevance feedback) to
learn compact hash coding. Binary Reconstruction Embed-
ding (BRE) (Kulis and Darrell 2009) pursues hash functions
by minimizing the squared errors between the distances of
data points and the distances of corresponding hash codes.
Minimal Loss Hashing (MLH) (Norouzi and Blei 2011) and
Hamming Distance Metric Learning (Norouzi, Blei, and
Salakhutdinov 2012) learn hash codes by minimizing hinge-
like loss functions based on relative similarity of data points.
Supervised Hashing with Kernels (KSH) (Liu et al. 2012)
is a kernel-based method that builds compact binary codes
by minimizing the Hamming distances on similar pairs and
maximizing the Hamming distances on dissimilar pairs.

Recent revolution in deep learning shows that deep convo-
lutional neural network (CNN) (Krizhevsky, Sutskever, and
Hinton 2012; Lin, Chen, and Yan 2014; Bengio, Courville,
and Vincent 2013) can automatically learn effective image
representations that yield breakthrough performance on gen-
eral computer vision tasks. Xia et al. proposed CNNH (Xia
et al. 2014) that decomposes the hash learning process into
a stage of learning approximate hash codes, followed by a
deep-network-based stage of simultaneously fine-tuning the
image features and hash functions. Lai et al. improved the
two-stage CNNH by proposing DNNH (Lai et al. 2015), a si-
multaneous feature learning and hash coding deep network
such that image representations and hash codes can improve
each other in the joint learning process. DNNH has created
the latest state-of-the-art results on many benchmarks.

This work further improves DNNH by exploiting three
key problems: (1) control the quantization error in a prin-
cipled way, (2) devise a pairwise cosine loss to better link
the pairwise cosine distances with the similarity labels, and
(3) learn the similarity-preserving deep representation that is
optimal for hash coding. The three improvements constitute
the proposed Deep Quantization Network (DQN) approach.

Deep Quantization Network
In similarity retrieval, we are given a training set of N points
{xi}Ni=1, each represented as D-dimensional feature vector
x 2 RD. Some pairs of points are associated with similarity
labels sij , where sij = 1 implies xi and xj are similar and
sij = �1 indicates xi and xj are dissimilar. Our goal is to
learn nonlinear hashing function f : x 7! h 2 {�1, 1}B to
encode each point x in compact B-bit hash code h = f(x)
such that the similarity between given pairs is preserved. In
supervised hashing, S = {sij} is usually constructed from
the semantic labels within the data points or the relevance
feedback from click-through data in image retrieval systems.

In this paper, we propose a Deep Quantization Network
(DQN) architecture for hash learning, as shown in Figure 1.
This architecture accepts input images in a pairwise form
(xi,xj , sij) and processes them through the deep represen-
tation learning and hash coding pipeline: (1) a sub-network
with multiple convolution-pooling layers to extract good im-
age representations; (2) a fully-connected bottleneck layer
to generate optimal dimension-reduced representation; (3) a
pairwise cosine loss layer for similarity-preserving learning;
and (4) a product quantization loss for controlling hashing
quality and the quantizability of bottleneck representation.

Model Formulation
We start with AlexNet (Krizhevsky, Sutskever, and Hinton
2012), the deep convolutional neural network (CNN) com-
prised of five convolutional layers (conv1–conv5) and three
fully connected layers (fc6–fc8). Each fc layer ` learns
a nonlinear mapping z`

i = a`
�
W `z`�1

i + b`
�
, where z`

i

is the `-th layer hidden representation of point xi, W ` and
b` are the weight and bias parameters of the `-th layer, and
a` is the activation function, taken as rectifier units (ReLU)
a`(x) = max(0,x) for all hidden layers conv1–fc7. For
hash learning, we replace the fc8 layer of the softmax clas-
sifier in the original AlexNet with a new bottleneck layer fcb
of R units, which transforms the fc7 layer representation to
R-dimensional bottleneck representation zl

i, where l = 8 is
the total number of layers. To encourage the fcb layer rep-
resentation zl

i to be optimal for hash coding, we use the hy-
perbolic tangent (tanh) activation function al(x) = tanh(x)
to produce nonlinear dimension-reduced representation.

In this paper, we guarantee that the fcb representation zl
i

will be optimal for hash coding by jointly (1) preserving the
similarity between given pairs in S , (2) controlling the quan-
tization error of binarizing the fcb representation zl

i into bi-
nary codes hi, and (3) improving the quantizability of the
fcb representation zl

i so that it can be quantized effectively.

Pairwise Cosine Loss For a pair of binary codes hi and
hj , there is a nice relationship between their Hamming dis-
tance distH(·, ·) and inner product h·, ·i: distH (hi,hj) =

1
2 (B � hhi,hji). Hence, we can use the inner product as a
surrogate of the Hamming distance to quantify the pairwise
similarity. However, as our goal is to learn the optimal fcb
representation zl

i for hash coding while zl
i is continuous, the

range of inner product
⌦
zl
i, z

l
j

↵
2 [�R,R] is not consistent

with the binary labels sij 2 {�1, 1}. Therefore, we propose
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Figure 1: Deep Quantization Network (DQN) with multiple convolution-pooling layers conv1–fc7 for representation learning,
a fully-connected bottleneck layer fcb for optimal dimensionality reduction, a pairwise cosine loss for similarity-preserving
learning, and a product quantization loss for controlling the hashing quality and the quantizability of bottleneck representation.

a novel pairwise squared loss using the cosine distance to
quantify the similarity between pairs of fcb representations
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where k ·k is the vector length. The range of cosine distance⌦
zl
i, z

l
j

↵
/
��zl

i

�� ��zl
j

�� 2 [�1, 1] is consistent with the binary
similarity labels sij 2 {�1, 1}, hence making Equation (1)
a well-specified loss for preserving the pairwise similarity
information conveyed in S . In real-world retrieval systems,
cosine distance is widely adopted to mitigate the diversity of
vector lengths and improve the retrieval quality, while it has
not been well explored for supervised hash learning (Wang
et al. 2014). It is worth noting that, the proposed pairwise co-
sine loss (1) is better-specified than the widely-used pairwise
inner-product loss L =

P
sij2S

�
sij � 1

B

⌦
zl
i, z

l
j

↵�2 (Liu et
al. 2012; Xia et al. 2014), because 1

B

⌦
zl
i, z

l
j

↵
2 [�1, 1] will

not hold for representation {zl
i} with continuous relaxation.

Product Quantization Loss We propose to employ the
state-of-the-art product quantization (PQ) (Ge et al. 2014)
approach to construct compact binary hash code hi from the
similarity-preserving bottleneck representation zl

i. PQ is a
solution to Vector Quantization (VQ) when an exponentially
large number of codewords are desired to accurately recon-
struct the input vectors. The key idea is to decompose the
original vector space into the Cartesian product of M low-
dimensional subspaces and quantize each subspace into K
codewords (clusters) via K-means clustering. Specifically,
we partition the bottleneck representation into M subspaces,
i.e. zl

i = [zl
i1; . . . ; z

l
iM ], where zl

im 2 RR/M is the sub-
vector of zl

i associated with the m-th subspace. Then we
quantize all sub-vectors {zl

im}Ni=1 of each subspace m into
K clusters (codewords) independently through K-means as

Q =

MX

m=1

NX

i=1

��zl
im �Cmhim

��2
2

khimk0 = 1,him 2 {0, 1}K ,

(2)

where Cm = [cm1, . . . , cmK ] 2 R R
M ⇥K denotes the code-

book of K codewords (cluster centers) in the m-th subspace,
and him is the one-of-K encoding indicating which one
(and only one) of the K codewords in the m-th codebook

Cm is selected to approximate the i-th point zl
i. Denote by

hi = [hi1; . . . ;hiM ] 2 RMK the encoding of point zl
i that

concatenates all M subspace one-of-K encodings {him}.
Since each him can be compressed in log2K bits, the final
hash codes hi can be compacted in B = M log2K bits.

To guarantee that the fcb representation zl
i will be optimal

for hash coding, we jointly (1) control the quantization error
of binarizing the fcb representation zl

i into binary codes hi,
and (2) improve the quantizability of the fcb representation
zl
i so that it can be quantized effectively. In this regard, we

can rewrite Equation (2) in compact matrix form as follows

Q =

NX

i=1

��zl
i �Chi

��2
2
, (3)

where codebook C 2 RR⇥MK is a block diagonal matrix

C = diag (C1,C2, . . . ,CM ) =

2

664

C1 0 · · · 0

0 C2 · · · 0

...
...

. . .
...

0 0 · · · CM

3

775 .

(4)
By minimizing Equation (3), we can control the quantization
error of converting the continuous bottleneck representation
zl
i into compact binary code hi. Moreover, we can improve

the quantizability of the bottleneck representation zl
i such

that it can be quantized more effectively. As shown in (Ge et
al. 2014), not all input vectors can be quantized effectively
using the product quantization (PQ)—if input vectors do not
exhibit a cluster structure, then they may not be quantized
accurately, as is a common sense for data clustering. In this
paper, we propose to update {zl

i} by Equation (3) such that
they can be reconstructed more accurately with codebook C
and binary code {hi}. Hence, we can make the bottleneck
representation well quantizable and optimal for hash coding.

Optimization Problem In this paper, we perform simulta-
neous representation learning and hash coding by integrating
Equation (1) and (3) into a unified optimization problem as

min

⇥,C,H
L+ �Q, (5)

where � > 0 is trade-off parameter between pairwise cosine
loss L and product quantization loss Q, and ⇥ ,

�
W `, b`

 

denotes the set of network parameters. Through joint op-
timization problem (5), we can achieve statistically optimal



learning of the hash codes, by jointly preserving the pairwise
similarity in training data and controlling the quantization
error of binarizing continuous embeddings to binary codes.

Approximate Nearest Neighbor Search Approximate
nearest neighbor (ANN) search with Euclidean distance is a
powerful task for quantization techniques. Given a database
of DQN hash codes {hi}Ni=1, we follow (Jegou, Douze, and
Schmid 2011) and use the Asymmetric Quantizer Distance

(AQD) as similarity metric, which computes the Euclidean
distance between query q and database point xi as follows,

AQD (q,xi) =

MX

m=1

��zl
qm �Cmhim

��2
2
, (6)

where zl
q is the bottleneck representation of query q, and

him is the binary code of point xi associated with the m-
th codebook Cm. For computation speedup, for each query
q, the Euclidean distances between q and all the codewords
in M codebooks can be pre-computed and stored in a query-
specific M⇥K lookup table, which is used to compute AQD
between the query and all database points hi, each entails M
table lookups and additions and is only slightly more costly
than Hamming distance (Jegou, Douze, and Schmid 2011).
We can also build the inverted multi-indexing (Babenko and
Lempitsky 2015) of the DQN hash codes for non-exhaustive
search, but will not elaborate it here due to space limitation.

Learning Algorithm

Learning ⇥ We derive the learning algorithm for the DQN
model (5), and show rigorously that both pairwise cosine
loss and product quantization loss can be optimized effi-
ciently through the standard back-propagation (BP) proce-
dure. For notation brevity, we denote the point-wise cost as

Ci = Li + �Qi

=

X

j:sij2S

 
sij �

⌦
zl
i, z

l
j

↵
��zl

i

�� ��zl
j

��

!2

+ �
��zl

i �Chi

��2
2
.

(7)
Then we derive the gradient of point-wise cost Ci w.r.t. W `

k ,
the network parameter of the k-th unit in the `-th layer as

@Ci

@W `
k

=

@Li

@W `
k

+ �
@Qi

@W `
k

=

✓
@Li

@ẑ`ik
+ �

@Qi

@ẑ`ik

◆
@ẑ`ik
@W `

k

= �`ikz
`�1
i ,

(8)

where ẑ`
i = W `z`�1

i + b` is the output of the `-th layer
before activation function a`(·), and �`ik , @Li

@ẑ`
ik

+ � @Qi

@ẑ`
ik

is
the point-wise residual term that measures how much the k-
th unit in the `-th layer is responsible for the error of point xi

in the network output. For an output unit k, we can directly
measure the difference between the network’s activation and

the true target value, and use it to define the residual �lik as

�lik =

X

j:sij2S

" ⌦
zl
i, z

l
j

↵
��zl

i

�� ��zl
j

�� � sij

!
zljk

#
ȧl
�
ẑlik

�

+ �
�
zlik � ck⇤hi

�
ȧl
�
ẑlik

�
,

(9)

where l = 8 denotes the index of the output layer, ȧl(·) is
the derivative of the l-th layer activation function, and ck⇤ is
the k-th row of codebook matrix C in Equation (4). For a
hidden unit k in the (`�1)-th layer, we compute the residual
�`�1
ik based on a weighted average of the errors of all the

units k0 = 1, . . . , u` in the `-th layer that involve z`�1
i as an

input, which is just consistent with standard BP procedure,

�`�1
ik =

 
uX̀

k0=1

�`ik0W `
k0k

!
ȧ`�1

�
ẑ`�1
ik

�
, (10)

where u` is the number of hidden units in the `-th layer. The
residuals in all layers can be computed by back-propagation.

An important property of the proposed algorithm is that,
only computing the residual of the output layer involves the
pairwise summation as in Equation (9). For all hidden lay-
ers, all the residuals can be simply computed recursively by
Equation (10), which does not involve pairwise summation.
Hence we do not need to modify the implementation of BP
in all hidden layers 1  `  l�1. We only need modify stan-
dard BP by replacing the output residual with Equation (9).

Since the only difference between standard BP and our al-
gorithm is Equation (9), we analyze the computational com-
plexity based on Equation (9). Denote the number of simi-
larity pairs S available for training as |S|, then it is easy to
verify that the computational complexity is linear O(|S|).
Learning C and H Given bottleneck representation {zl

i}
fixed, codebook C = diag(C1, . . . ,CM ) and binary codes
H = [h1, . . . ,hN ] can be learned through M independent
K-means by optimizing Equation (2). Specifically, for each
subspace m, we perform the K-means algorithm as follows

min

Cm,him2{0,1}K

NX

i=1

��zl
im �Cmhim

��2
2
. (11)

This product quantization can be computed for each epoch,
with linear-time sample complexity O(N) (Ge et al. 2014).

Theoretical Analysis
Given a query q and a database point xi with hash code
hi, their Euclidean distance can be computed as d (q,xi) =��zl

q � zl
i

��
2
, where zl

q and zl
i are the deep representations

of q and xi respectively. The motivation of hashing is that
computing the Euclidean distance directly on real-valued
vectors is too costly for large-scale image retrieval. Hence,
we compute AQD (6) between query q and binary code xi to
approximate the Euclidean distance, and we need to analyze
approximation error. Denote ẑl

i = Chi the reconstruction
of zl

i, then AQD (q,xi) = d (q, x̂i)+✏ where ✏ is a constant.
Theorem 1 (Error Bound). The error of using AQD (6) to

approximate original Euclidean distance is bounded by (3)
|AQD (q,xi)� d (q,xi)| 6

��zl
i �Chi

��
2
+ |✏|. (12)



Proof. From the triangle inequality, it follows that

|AQD (q,xi)� d (q,xi)| = |(d (q, x̂i) + ✏)� d (q,xi)|
6 |d (q, x̂i)� d (q,xi)|+ |✏|
6 d (xi, x̂i) + |✏|
=

��zl
i �Chi

��
2
+ |✏| .

The above theorem confirms that the error of using AQD
to approximate the Euclidean distance on real-valued vec-
tors is statistically bounded by DQN quantization loss (3).
Thus DQN is more accurate than sign thresholding methods
that do not control the quantization error (Lai et al. 2015).

Experiments
We conduct extensive experiments to evaluate the efficacy
of the proposed DQN model against several state-of-the-art
hashing methods on three widely-used benchmark datasets.
The codes and configurations will be made available online.

Evaluation Setup
We conduct extensive empirical evaluation on three public
benchmark datasets, NUS-WIDE, CIFAR-10, and Flickr.

• NUS-WIDE1 is a public web image dataset. We follow
the settings in (Liu et al. 2011; Lai et al. 2015) and use the
subset of 195,834 images that are associated with the 21
most frequent concepts, where each concept consists of at
least 5,000 images. We resize all images into 256⇥256.

• CIFAR-102 is a dataset containing 60,000 color images in
10 classes, and each class has 6,000 images in size 32⇥32.

• Flickr3 consists of 25,000 images collected from Flickr,
where each image is labeled with one of the 38 semantic
concepts. We resize images of this subset into 256⇥256.

We follow the experimental protocols in (Lai et al. 2015).
In NUS-WIDE and CIFAR-10, we randomly select 100 im-
ages per class as the test query set, and 500 images per class
as the training set. In Flickr, we randomly select 1000 im-
ages as the test query set, and 4000 images as the train-
ing set. The similarity pairs for training are randomly con-
structed using image labels: each pair is considered similar
(dissimilar) if they share at least one (none) semantic label.

We follow (Lai et al. 2015) to evaluate the image retrieval
quality based on three widely-adopted evaluation metrics:
Mean Average Precision (MAP) for different numbers of
bits, Precision-Recall curves, and Precision curves with re-
spect to different numbers of top returned samples. For fair
comparison, all methods use identical training and test sets.

We evaluate and compare the retrieval performance of the
proposed DQN approach and its variants with nine state-of-
the-art hashing methods, including three unsupervised meth-
ods LSH (Gionis et al. 1999), SH (Weiss, Torralba, and Fer-
gus 2009) and ITQ (Gong and Lazebnik 2011), and seven

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://www.cs.toronto.edu/kriz/cifar.html
3http://press.liacs.nl/Flickr/

supervised methods DNNH (Lai et al. 2015), CNNH (Xia
et al. 2014), KSH (Liu et al. 2012), MLH (Norouzi and
Blei 2011), BRE (Kulis and Darrell 2009) and ITQ-CCA
(Gong and Lazebnik 2011). To highlight the advantage of
DQN, we also report the results of KSH-D, the best shallow
baseline KSH using DeCAF7 features (Donahue et al. 2014)
extracted from the AlexNet model pre-trained on ImageNet.

For the deep learning based methods, including CNNH,
DNNH and DQN, we directly use the raw image pixels as
the input. For the shallow learning based methods, we fol-
low (Liu et al. 2012; Lai et al. 2015; Srivastava and Salakhut-
dinov 2014) to represent each image in NUS-WIDE by a
500-dimensional bag-of-words vector, to represent each im-
age in CIFAR-10 by a 512-dimensional GIST vector, and to
represent each image in Flickr by a 3,857-dimensional vec-
tor concatenated by local SIFT feature, global GIST feature,
etc. All image features are available at the datasets’ website.

To guarantee that our results directly comparable to most
published results, the results of LSH, BRE, ITQ, ITQ-CCA,
KSH, MLH and SH on both the NUS-WIDE and CIFAR-10
datasets are directly reported from the latest work (Lai et al.
2015), while the results on the Flickr dataset are obtained
by the implementations provided by their authors, following
standard cross-validation procedures for model selection.

We implement the DQN model based on the open-source
Caffe framework (Jia et al. 2014). We employ the AlexNet
architecture (Krizhevsky, Sutskever, and Hinton 2012), fine-
tune convolutional layers conv1–conv5 and fully-connected
layers fc6–fc7 that were copied from the pre-trained model,
and train hashing layer fch, all via back-propagation. As the
fch layer is trained from scratch, we set its learning rate to
be 10 times that of the lower layers. We use the mini-batch
stochastic gradient descent (SGD) with 0.9 momentum and
the learning rate annealing strategy implemented in Caffe,
and cross-validate learning rate from 10

�5 to 10

�2 with a
multiplicative step-size 10. We also fix the mini-batch size
of images as 64 and the weight decay parameter as 0.0005.

For the product quantization loss, we cross-validate the �
from 10

�5 to 1 with a multiplicative step-size 10. We fol-
low (Ge et al. 2014) and adopt K = 256 codewords for each
codebook in each subspace. For each data point, the binary
hash code associated with the Cartesian product of all the
M subspaces requires B = M log2 K = 8M bits (i.e. M
bytes) for compact hash coding, where we set M = B/8.
We follow similar strategy in (Lai et al. 2015) and set the
bottleneck dimension R = 16M such that the product quan-
tizer can quantize the bottleneck representations accurately.

Results and Discussions
The MAP results of all methods are listed in Table 1, which
show the proposed DQN method substantially outperforms
all the comparison methods. Specifically, compared to the
best baseline using traditional hand-crafted visual features,
KSH, we achieve absolute increases of 20.5%, 22.9% and
15.1% in average MAP for different bits on NUS-WIDE,
CIFAR-10, and Flickr respectively. It is desirable that DQN
significantly outperforms KSH-D (the best shallow baseline
KSH using DeCAF7 features) by 7.5%, 2.5% and 6.4%
increments in average MAP for three benchmark datasets.



Table 1: Mean Average Precision (MAP) of Hamming Ranking for Different Number of Bits on Three Image Datasets

Method NUS-WIDE CIFAR-10 Flickr
12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

SH 0.433 0.426 0.426 0.423 0.131 0.135 0.133 0.130 0.531 0.533 0.531 0.529
LSH 0.403 0.421 0.426 0.441 0.121 0.126 0.120 0.120 0.499 0.513 0.521 0.548
ITQ 0.452 0.468 0.472 0.477 0.162 0.169 0.172 0.175 0.544 0.555 0.560 0.570

ITQ-CCA 0.435 0.435 0.435 0.435 0.264 0.282 0.288 0.295 0.513 0.531 0.540 0.555
MLH 0.500 0.514 0.520 0.522 0.182 0.195 0.207 0.211 0.610 0.618 0.629 0.634
BRE 0.485 0.525 0.530 0.544 0.159 0.181 0.193 0.196 0.571 0.592 0.599 0.604
KSH 0.556 0.572 0.581 0.588 0.303 0.337 0.346 0.356 0.690 0.702 0.702 0.706

KSH-D 0.673 0.705 0.717 0.725 0.502 0.534 0.558 0.563 0.777 0.786 0.792 0.793
CNNH 0.617 0.663 0.657 0.688 0.484 0.476 0.472 0.489 0.749 0.761 0.768 0.776
DNNH 0.674 0.697 0.713 0.715 0.552 0.566 0.558 0.581 0.783 0.789 0.791 0.802
DQN 0.768 0.776 0.783 0.792 0.554 0.558 0.564 0.580 0.839 0.848 0.854 0.863
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Figure 2: The results of comparison methods on the NUS-WIDE and CIFAR-10 datasets: (a)-(b) precision-recall curves @ 48
bits; (c)-(d) precision w.r.t. top returned samples curves @ 48 bits. DQN is superior for precision-oriented retrieval systems.

Compared to the state-of-the-art deep-network-based hash-
ing method, DNNH, the proposed DQN approach outper-
forms it by very large margins of 8.0% and 5.9% in aver-
age MAP for different bits on the NUS-WIDE and Flickr
datasets respectively, and achieve comparable MAP results
on the CIFAR-10 dataset. It is somewhat unexpected that
KSH-D even significantly outperforms CNNH and achieves
comparable results with DNNH. This highlights the impor-
tance of designing well-specified loss functions for training
deep hashing networks. DNNH uses a fixed-margin loss and
piecewise-linear activation function to train deep networks,
which may cause information loss and objective oscillations
in back propagation. In the proposed DQN approach, (1) we
design a novel pairwise cosine loss for training CNN such
that the pairwise distances can be better linked with the sim-
ilarity labels; and (2) we further update the bottleneck repre-
sentation by minimizing the PQ loss to improve the quantiz-
ability of the bottleneck representation. Both improvements
of DQN contribute significantly to its superior performance.

Figures 2 shows the precision-recall curves and precision
w.r.t. top returned samples curves @ 48 bits on NUS-WIDE
and CIFAR-10, respectively. From the curves, we can ob-
serve that DQN outperforms all the comparison methods
by very large margins, including the latest state-of-the-art
method DNNH. It is also worth noting that, although DQN
obtains comparable MAP results with DNNH on CIFAR-10,
DQN significantly outperforms DNNH in the two curves on
the CIFAR-10 dataset, demonstrating that DQN can be more

favorable for the precision-oriented image retrieval systems.

Empirical Analysis
To evaluate the effectiveness of the pairwise cosine loss for
similarity-preserving learning and the product quantization
loss for controlling hash quality, we design three variants of
the proposed DQN approach: (1) a two-step method DQN2,
which separately learns the bottleneck representations via
CNN and the compositional binary codes via PQ (Jegou,
Douze, and Schmid 2011); (2) DQN2+, an enhanced variant
of DQN2 using optimized PQ (OPQ) (Ge et al. 2014); (3)
DQNip, a DQN variant that utilizes the widely-adopted pair-
wise inner-product loss L =

P
sij2S

�
sij � 1

B

⌦
zl
i, z

l
j

↵�2

(Liu et al. 2012; Xia et al. 2014) instead of the proposed
pairwise cosine loss (1). The MAP results w.r.t. different
numbers of bits on the three datasets are reported in Table 2.

We can observe that, by simultaneously preserving sim-
ilarity information using pairwise cosine loss (1) and con-
trolling hashing quality using product quantization loss (3),
DQN outperforms DQN2 and DQN2+ by 1.8%, 2.6%, 3.3%
and 2.4%, 2.9%, 3.7% respectively in average MAP. Fur-
thermore, DQN2 using PQ performs even slightly better than
DQN2+ with OPQ, testifying that the quantizability of deep
representations cannot be simply improved by optimizing
shallow quantization models. It is indispensable to improve
the quantizability of deep representations by optimizing the
product quantization loss when training the deep networks.



Table 2: Mean Average Precision (MAP) Results of DQN and Its Variants, DQN2, DQN2+, and DQNip on Three Datasets

Method NUS-WIDE CIFAR-10 Flickr
12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

DQN2 0.755 0.763 0.764 0.766 0.533 0.537 0.542 0.545 0.806 0.815 0.821 0.831
DQN2+ 0.750 0.754 0.756 0.764 0.528 0.534 0.538 0.541 0.804 0.809 0.815 0.829
DQNip 0.623 0.646 0.655 0.673 0.506 0.513 0.519 0.529 0.748 0.756 0.759 0.775
DQN 0.768 0.776 0.783 0.792 0.554 0.558 0.564 0.580 0.839 0.848 0.854 0.863

Another crucial observation is that, by using the pairwise
cosine loss (1), DQN can outperform DQNip using the pair-
wise inner-product loss by very large margins of 9.1%, 4.7%
and 13.1% in average MAP. The pairwise inner-product loss
has been widely adopted in previous work (Liu et al. 2012;
Xia et al. 2014). However, this loss does not link well the
pairwise distances between points (taking values in (�R,R)

when using continuous relaxation) to the pairwise similarity
labels (taking binary values {-1,1}). In contrast, the pairwise
cosine loss is inherently consistent with the training pairs.

Conclusion
In this paper, we have formally approached the problem of
supervised deep hashing in a joint optimization framework.
The proposed Deep Quantization Network (DQN) architec-
ture simultaneously optimizes the pairwise cosine loss on se-
mantic similarity pairs and the product quantization loss on
compact hash codes. Extensive experiments on standard im-
age retrieval datasets show that the DQN architecture yields
substantial boosts over the state-of-the-art hashing methods.
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