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Abstract

Knowledge embedding, which projects triples in a given knowledge base to d-dimensional vec-
tors, has attracted considerable research efforts recently. Most existing approaches treat the given
knowledge base as a set of triplets, each of whose representation is then learned separately. How-
ever, as a fact, triples are connected and depend on each other. In this paper, we propose a graph
aware knowledge embedding method (GAKE), which formulates knowledge base as a directed
graph, and learns representations for any vertices or edges by leveraging the graph’s structural
information. We introduce three types of graph context for embedding: neighbor context, path
context, and edge context, each reflects properties of knowledge from different perspectives. We
also design an attention mechanism to learn representative power of different vertices or edges.
To validate our method, we conduct several experiments on two tasks. Experimental results
suggest that our method outperforms several state-of-art knowledge embedding models.

1 Introduction

Knowledge bases, such as DBpedia, YAGO, and Freebase, are important resources to store complex
structured facts about the real world in the form of triplets as (head entity, relation, tail entity). These
knowledge bases have benefited many applications, such as web search and question answer. In the
meanwhile, knowledge base embedding, which aims to learn a D-dimensional vector for each subject
(i.e., an entity or a relation) in a given knowledge base, has attracted considerable research efforts re-
cently (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015b; Ji et al., 2015). For instance, TransE
method (Bordes et al., 2013) regards the relation in a triplet as a translation between the embedding of
the two entities. In other words, TransE learns a preference of h+ r = t for each triple, where h, r, and
t are the representation vector of head entity, relation, and tail entity respectively. Similar ideas are also
proposed in TransH (Wang et al., 2014), TransR (Lin et al., 2015b), TransSparse (Ji et al., 2016), etc.

Despite the success of above methods in learning knowledge representations, most of them mainly
consider knowledge base as a set of triples and models each triple separately and independently. How-
ever, in reality, triples are connected to each other and the whole knowledge base could be regarded as a
directed graph consisting of vertices (i.e., entities) and directed edges (i.e., relations). In this way, we see
that most of existing methods only consider “one hop” information about directed linked entities while
miss more global information, such as multiple-steps paths, K-degree neighbors of a given vertex, etc.
We call these different structural information as graph context inspired by textural context utilized in
learning a given word’s representation (Tomas Mikolov, 2013).

In this paper, we present a novel method to learn the representations of knowledge by utilizing graph
context. Figure 1 gives an example to further explain the motivation of our work. In Figure 1(a), we
are given a knowledge base organized as a directed graph which shores the facts about the singer Taylor
Swift and president Barack Obama. We then demonstrate three kinds of graph context utilized to encode
“Taylor Swift” and “Barack Obama”.
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Figure 1: An illustration of three types of graph context, given by a knowledge base.

Neighbor context, as shown in Figure 1(b), consists of the target entity (e.g., “Taylor Swift”) and its
directed linked entities (e.g., “Singer”) along with their relations (e.g., “Occupation”). It is the most
common context and is used in all knowledge base embedding methods.

Edge context, which is shown in Figure 1(c), indicates all kinds of relations relevant to the target
entity, such as “SingSong”, “BoyFriend−1”(a reverse relation of ‘BoyFriend”), “Nationality”, and “Oc-
cupation” relations of “Taylor Swift”. The relations together would be helpful identify the target entity.
For example, “SingSong” and several “BoyFriend−1” relations represent the fact that Taylor, as a singer,
has quite a few boy friends in reality. Please notice that different relations has different representation
power. For instance, “SingSong” is a very unique relation and is very helpful to identify a singer. Mean-
while, “Nationality” occurs with every human being, so that gains less value. We will introduce how to
handle this issue by utilizing an attention mechanism in our proposed method latter.

Path context is defined as paths in the given graph containing the target entity. Figure 1(d) gives
an example of several 3-step paths containing “Taylor Swift” or “Barack Obama”. The two paths

United States
Nationality−1

−−−−−−−−−→Taylor Swift/Barack Obama
SpeakLanguage−−−−−−−−−−→ English represent that the two

target entities are similar in terms of nationality and language and suggests their embedding vectors
should be somehow similar from this perspective.

There are several challenges when learning knowledge representation by graph context. First, there are
quite a few different types of graph context while each has unique structural properties. How to propose
a general framework that is able to handle all kinds of graph context is one of the challenges in this work.
Second, as we have mentioned previously, in the same type of graph context, different entities/relations
have different representation power. For example, in edge context, the “SingSong” relation is more
powerful than the “occupation” relation as the former one is less frequent and more unique for singers.
How to learn the representation power of each entity/relation is the second challenge we meet. Third,
how to estimate model parameters by utilizing real data is also a challenge.

Our contributions in this work include: (1) We treat a given knowledge base as a directed graph instead
of a set of independent triples, and extract different types of graph context to study the representation of
knowledge. (2) We propose a novel and general representation learning approach, GAKE (Graph Aware
Knowledge Embedding), which can be easily extended to consider any type of graph context. (3) We
propose an attention mechanism in our approach to learn representation power of different entities and
relations.

The rest of this paper are organized as follows. In Section 2, we introduce some related works. In
Section 3, we detail the proposed method of graph aware knowledge embedding. Section 4 describes the
data and presents experimental results to validate our method. Section 5 concludes the paper.



Table 1: A summary of different knowledge embedding methods.

Method Triple Path Edge
NTN(Socher et al., 2013) X × ×

TransE(Bordes et al., 2013) X × ×
TransH(Wang et al., 2014) X × ×
TransR(Lin et al., 2015b) X × ×

TransD(Ji et al., 2015) X × ×
TranSparse(Ji et al., 2016) X × ×
PTransE(Lin et al., 2015a) X X ×
Traversing(Gu et al., 2015) X X ×

GAKE(ours) X X X

2 Related Work

In this section, we review some existing work relevant to our paper. Generally, our work is closely related
to the following two topics: (1) knowledge base embedding (2) Graph embedding.

2.1 Knowledge Base Embedding

A variety of approaches have been explored for knowledge base embedding, such as general linear
based models, such as SE (Bordes et al., 2011), bilinear based models, like LFM (Jenatton et al., 2012;
Sutskever et al., 2009), neural network based models, like SLM (Socher et al., 2013), NTN (Socher
et al., 2013), and translation based models (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015a).
The mainstream models for knowledge base embedding are translation based models including TransE
(Bordes et al., 2013) and its variant models.

Translation-based models all share quite similar principle h+ r ≈ t, where h, r and t are the embed-
ding vectors of a triple (h, r, t), though these models differ in score functions. The score function of the
translation based models is designed as: fr(h, t) = hr + r − tr, where hr and tr are the embedding
vectors of head and tail entities which projected into the relation-specific space.

In TransE (Bordes et al., 2013), the entity and relation embedding vectors are in the same space, say
hr = h, tr = t. In TransH (Wang et al., 2014), entity embedding vectors are projected into a relation-
specific hyperplane wr, say hr = h − w>r hwr, tr = t − w>r twr. In TransR (Lin et al., 2015b),
hr = hMr, tr = tMr, where entities are projected from the entity space to the relation space by Mr.
In TransD (Ji et al., 2015), hr = Mrhh, tr = Mrtt, where the mapping matrices Mrh and Mrt are both
related to the entity and relation. In TransSparse (Ji et al., 2016), hr = Mr(θr)h , tr = Mr(θr)t, where
Mr is an adaptive sparse matrix, whose sparse degrees are determined by the number of entities linked
by the relations.

In addition, there are still some works(Xiao et al., 2016b; Xiao et al., 2016a) follow the principle
h+ r ≈ t, although they do not share the same form of score function. Particularly, (Xiao et al., 2016b)
proposes to use a generative model to deal with multiple semantic meanings of a relation. To accommon-
date more flexible knowledge embedding, (Xiao et al., 2016a) proposes a manifold principle instead of a
point-wise estimation of entity and relation embeddings. There are some other works incorporate addi-
tional information, such as text(Toutanova and Chen, 2015; Toutanova et al., 2015) and entity types(Guo
et al., 2015).

Above knowledge base embedding models all treat the knowledge base as a set of triples. However,
in fact, knowledge base is a graph with its graph structure which can be used to better embed the entities
and relations in knowledge base. Although (Gu et al., 2015) and PTransE(Lin et al., 2015a) introduce the
relation path instead of only considering the direct relations between entities, they just treat the relation
path as a new relation and the path length is limited to the model complexity.

However, (Feng et al., 2016) claims the principle h + r ≈ t is too strict to model the complex and
diverse entities and relations and propose a novel principle Flexible Translation to address these issues
without increasing the model complexity.

Table 1 compares different knowledge representation learning methods by types of information each
method considers. In the table, Triple means using each fact as the context when embedding an entity



(or a relation); Path stands for treating multiple steps of (undirected) linked entities as the context; Edge
indicates using all relations that connect to the target entity as the context.

2.2 Graph Embedding

A growing literature has been studying the embedding of graph structure. For example, DeepWalk (Per-
ozzi et al., 2014) uses local information obtained from truncated random walks to learn latent represen-
tations by treating walks as the equivalent of sentences. Line (Tang et al., 2015) is a network embedding
method that preserves both the local and global network structures.

Although the graph embedding models use the network structures to learn the latent representations,
the proposed models are still not suit for us to learn the embeddings of knowledge base. The first reason
is that, the knowledge base embedding should learn the representations of both entities(vertices) and
relations(edges), but network embedding models only learn the representations for vertices. Second, the
assumptions which is the foundation of their models do not hold in knowledge base. For instance, in
Line (Tang et al., 2015), it assumes that two vertices which are connected through a strong tie should be
similar and be placed closely. But, in knowledge base the head entity and tail entity of a triple may be
totally different, such as in triple (Barack Obama, Gender,Male), entity “Barack Obama” and “Male”
are not the same at all.

In this paper, we propose a novel approach to learn the representations of entities and relations by for-
mulating a given knowledge base as a directed graph and leveraging the graph’s structural information.

3 Our Approach

In the following, we present our approach, GAKE (Graph Aware Knowledge Embedding), for learning
representations of a given knowledge graph. We describe our approach in steps, adding complexity, and
start with necessary notations and definitions.

3.1 Preliminaries

A traditional knowledge graph is a set of triples, each describes a fact, as (Barack Obama, SpeakLan-
guage, English). In this work, we use a directed graph to represent these facts by treating head/tail
entities as vertices and relations as directed edges. More formally, we have

Definition 1 (Knowledge Graph) A knowledge graph G = (V ,E) is a directed graph, where V is the
set of vertices (i.e., entities), and E is the set of edges, where each directed edge e = (vi, vj) represents
the relation from the entity vi to the entity vj (vi, vj ∈ V ).

The way to build a knowledge graph as we defined from given facts (or triples) is as follows: for each
fact (h, t, r), where h and t are two terms to represent head entity and tail entity respectively, we first
create two corresponding vertices vi and vj in the graph G, where i and j are unique index of h and t
respectively. After that, we create a directed edge e, which represents the relation r, from vi to vj , along
with a reverse relation r−1 from vj to vi. This is a common trick, which is similar to “back translation”
in machine translation, to allow us to fully utilize the structural information of knowledge graph and
improve the performance. The above process keeps running until all facts are included in the graph G.

Moreover, we use s = (t, k) to represent a subject (i.e., a vertex or an edge) of the knowledge graph
G, where t indicates subject type, and k is the index of the corresponding vertex or edge. Specifically,
we let t = 0 to denote a vertex and let t = 1 to denote an edge. We use a set S = {si} to represent all
subjects in G.

Given a subject si, we define its context as a set of other subjects to indicates vertices or edges relevant
to si:

Definition 2 (Graph Context) Given a subject si, its graph context c(si) is a set of other subjects rele-
vant to si: {sw|sw ∈ S, sw relevant to si}.

Different types of graph context defines the “relevance” between subjects differently. In this work, we
use three types of graph context as examples, which will be introduced in detail later.



The objective of GAKE is to learn the representation of each subject in a given knowledge graph G
according to its graph context. More formally, we target the problem of Knowledge Graph Embedding
as

Problem 1 (Knowledge Graph Embedding) Given a knowledge graph G = (V ,E), the problem of
knowledge graph embedding aims to represent each vertex v ∈ V and each edge r ∈ E by a d-
dimensional vector with real numbers.

Then, we introduce te notations used in GAKE. In detail, s is a subject (i.e., a vertex or an edge); C(s)
means graph context of the subject s; φ(s) is embedding vector of the subject s; π(C(s)) is translation of
subject s’s context; a(s) means attention model of a given subject s; θ is parameters used in the attention
model.

3.2 Framework
We then introduce our approach in detail. Generally, the learning objective of GAKE is to predict missing
subjects given by their context. (e.g., given two vertices, predicting whether there is a missing link from
one to another). More formally, we define the probability of si given one of its contexts c(si):

P (si|c(si)) =
exp(φ(si)

>π(c(si))∑|S|
j=1 exp(φ(sj)

>π(c(si)))
(1)

where φ : si ∈ S 7−→ R|S|×D is the embedding vector of a given subject si, and π(·) is a function that
represents the translation of a graph context. In this work, we define π(·) as follows:

π(c(si)) =
1

|c(si)|
∑

sj∈c(si)

φ(sj) (2)

We then introduce how to construct different types of graph context. Specifically, to take advantage of
the graph structure, given a subject si, we consider three types of context: neighbor context CN (si), path
context CP (si), and edge context CE(si). Please notice that we take these context as examples while our
approach is flexible and could easily be extended to other types of graph context.

Neighbor context. Given a subject si, taking an entity as an example, we regard each of its out-
neighbors, along with their relations, as the neighbor context. Formally, when si is an entity, its neighbor
context cN (si) is a pair of subjects (e, v), where v is an another vertex in G and e is a directed edge links
si and v. In the case of si is a relation, its neighbor context cN (si) is a pair (v, v′), where v and v′ are
two vertices connected by si. One thing worth to notice is that neighbor context is equivalent to using
triplets relevant to the given subject si.

The objective function of taking neighbor context into consideration is to maximize the log-likelihood
of all subjects given by their neighbor contexts. Based on Eq. 1, we have

ON =
∑
si∈S

∑
cN (si)∈CN (si)

log p(si|cN (si)) (3)

where CN (si) is the set of neighbor context of subject si.

Path context. A path in a given knowledge graph reflects both direct and indirect relations between

entities. For example, the path v1
BornInCity−−−−−−−→ v2

CityInState−−−−−−−→ v3
StateInCountry−−−−−−−−−−→ v4 indicates the

relation “Nationality” between v1 and v4.
In this work, given a subject si, we use random walk to collect several paths starting from si. For more

details, we first sample a integer L uniformly to indicates the length of the path (i.e., number of edges)
we aim to generate. After that, at each step, the random walk will choose a neighbor randomly and will
terminate once L edges have been collected. We define the path context cP (si) as a set of vertices and
edges that are contained in a generated path. Similar methods are also used in (Spielman and Teng, 2004)
and (Perozzi et al., 2014).
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Figure 2: Illustration of the attention for a path context when predicting the entity “English”. Darker
cells indicate greater attentions.

We then aim to maximize the probability of a subject si given by all paths starting from si:

OP =
∑
si∈S

∑
cP (si)∈CP (si)

log p(si|cP (si)) (4)

Edge context. All relations connecting a given entity are representative to that entity, while all entities
linked with a given relation are also able to represent that relation. For example, a relation connected
with “United Kingdom”, “France”, “China”, and “United States” is most likely to be “Nationality”. We
define he edge context cE(si) of a subject si as all other subjects directly linked with si. When si is a
vertex, cE(si) is a set of edges of si, while when si is an edge, cE(si) consists of all vertices connected
with si. Similar with other two types of graph context, we define the objective function of learning
knowledge representation when considering edge context as follows:

OE =
∑
si∈S

log p(si|cE(si)) (5)

Context extension. To utilize other types of graph context, one could first define c(si) and the algo-
rithm used to extract the context from the given knowledge graph G. After that, the remaining steps for
knowledge representation learning would be exactly the same with other types of graph context. Thus,
our framework is general and flexible to extend different types of graph context easily.

3.3 Attention Mechanism
So far, the translation of a graph context, π(·), takes the embedding results of each subject contained
in the context equally. However, in reality, different subjects may have different power of influence to
represent the target subject. As an example shown in Figure 1, in edge context, “SingSong” relation is
more unique and preventative than “Nationality” as only few people like singers will connect with this
“SingSong” while everyone has “Nationality”. In this work, we model representative powers of different
subjects in graph context by an attention mechanism (Ling et al., 2015; Hermann et al., 2015).

The basic idea of the attention mechanism is using an attention model a(si) to represent how subject
si selectively focuses on representing another subject sj when si is a part of sj’s context (Kelvin Xu,
2015). In this work, we define the attention model a(si) as

a(si) =
exp(θi)∑

sj∈C(si)
exp(θj)

(6)

where θ is the parameters we aim to estimate. Figure 2 illustrates the attention for a path context when
predicting the entity “English”, where darker color indicates a greater attention. We see that entities like



“Washington” and relations like “LocateInCountry” have less attentions, while the entity “UnitedStates”
and the relation “SpeakLanguage” have greater attentions on representing “English”.

We then re-define the translation of a given graph context, taking the embedding vector of each subject
with different weights by further considering attention mechanism. Specifically, we have

π(c(si)) =
∑

sj∈c(si)

a(sj)φ(sj) (7)

3.4 Model Learning
To utilize these three types of context, we combine them by jointly maximizing the objective functions:

O = λNON + λPOP + λEOE (8)

We define λT , λP and λN to represent the prestige of neighbor context, path context and edge context
separately. We then use a Stochastic gradient descent (SGD) algorithm to estimate model parameters
by optimizing Eq. 8. The derivatives are calculated using the back-propagation algorithm. The learning
rate for SGD is initially set to 0.1 at first and decreased linearly with the number of training instances.
Furthermore, to speed up the training process, we use Hierarchical Softmax (Bengio et al., 2006; Mikolov
et al., 2013) to reduce the time complexity of normalization.

4 Experiments

We evaluate our proposed approach with two experiments: (1) triple classification (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015b), which determines whether a given triple is correct or not, and (2)
link prediction (Wang et al., 2014; Xiao et al., 2016b), which aims to predict missing entities. For the
data, we adopt dataset from Freebase (Bollacker et al., 2008): FB15K (Bordes et al., 2013). We then
demonstrate the effectiveness of GAKE in the two tasks respectively. In all experiments, we set the
dimension of embedding vectors to 100, λT = 1, , λP = 0.1 and λE = 0.1. The code and data used in
this work are publicly available1.

4.1 Triple classification.
Setup. In this task, given a knowledge base and a triple (h, r, t), we aim to determine whether it
is correct (i.e., existing in the given knowledge base) or not. This task is also constructed in several
previous work (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015b) and is widely used in many
NLP scenarios such as question answering. For example, the result of triple classification can be directly
applied to answer questions like “Does Taylor Swift publish the song Fifteen”. We use the data set
FB15K (Lin et al., 2015b), which contains 1,345 relations among 14,951 entities. We use 483,142 triples
as training data to learn embeddings of all subjects. We then use 50,000 triples as validation data and
59,071 triples as test data.

We compare the proposed GAKE method with several state-of-art knowledge base embedding base-
lines, which includes NTN (Socher et al., 2013), TransE (Bordes et al., 2013), TransH (Wang et al.,
2014), TransR (Lin et al., 2015b) and TransD (Ji et al., 2015). For each baseline method, we first learn
representations of all entities and relations. For a query (h, r, t), we define a relation-specific thresh-
old ρr by maximizing the classification accuracy on validation set. After that, we calculate the condi-
tional probability P (t|h, r) by regarding h and r as the context of t, while in GAKE, we construct the
neighbor context with h and r’s corresponding subjects. At last, we say (h, r, t) is positive (correct) if
P (t|h, r) ≥ ρr, where ρr is estimated according to the validation data.

Results. We show the evaluation results on triple classification in Figure 3. As the figure shows, it is
clear that our approach outperforms others by 11.04% in terms of accuracy on average, as the graph con-
text brings more information especially indirect relations between entities when learning the knowledge
representations.

1https://github.com/JuneFeng/GAKE
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Figure 4: Attentions of subjects as the path context of the entity “Terminate2:JudgementDay”.

Furthermore, to better understand the attention mechanism in our approach, we demonstrate at-
tentions of 6 different subjects when they are regarded as the path context of the entity “Termi-
nate2:JudgementDay”, which indicates a movie. Figure 4 shows the results. From the figure, we see
that two entities, “Action” and “Sequel”, have the largest attention to represent the target entity, as “Ac-
tion” reflects the type of the movie while only some of the movies have sequels. Meanwhile, the relation
“Genre” has the least attention as every movie entity connects with “Genre”.

4.2 Link Prediction.

Setup. As reported in (Bordes et al., 2011; Bordes et al., 2013), link prediction is to predict the missing
h or t given (h, r) or (r, t) respectively. In this task, we conduct the evaluation by ranking the set of
candidate entities in knowledge graph, instead of offering a best matching entity. This experiment is
conducted on FB15K.

For the baseline methods, we compare our model models with the baselines which include
Unstructured (Bordes et al., 2014), RESCAl (Nickel et al., 2011), SE (Bordes et al., 2011),
SME(linear/bilinear) (Bordes et al., 2014), LFM (Jenatton et al., 2012) and TransE (Bordes et al., 2013).

Following the protocol in TransE (Bordes et al., 2013), for each test triple (h, r, t), we replace the
head entity h by every entity in the knowledge graph, and rank these corrupted triples in descending
order by the similarity score which is given by fr. Similarly, we repeat this procedure by replacing the



Table 2: Experimental results on link prediction.

Data Sets FB15K

Metric
Mean Rank Hits@10(%)
Raw Filter Raw Filter

Unstructured (Bordes et al., 2014) 1,074 979 4.5 6.3
RESCAl (Nickel et al., 2011) 828 683 28.4 44.1

SE (Bordes et al., 2011) 273 162 28.8 39.8
SME (linear) (Bordes et al., 2014) 274 154 30.7 40.8

SME (bilinear) (Bordes et al., 2014) 284 158 31.3 41.3
LFM (Jenatton et al., 2012) 283 164 26.0 33.1
TransE (Bordes et al., 2013) 243 125 34.9 47.1

GAKE (ours) 228 119 44.5 64.8

tail entity t. After collecting all these triples, we use two evaluation metrics: the mean rank of the correct
entities (denotes as Mean Rank); the proportion of correct entity ranks within 10 (denotes as Hits@10).
We expect lower Mean Rank and higher Hits@10 for a better predictor. However, some corrupted triples
should be considered as correct ones, since they actually exist in knowledge graph. Ranking such triples
ahead of the original correct one should not be counted as an error. To eliminate such cases, we filter out
those corrupted triples which appear either in the training, validation or test datasets. We term the former
evaluation setting as ”Raw” and the latter as ”Filter”.

Results. Table 2 lists the results on link prediction. It shows that our method GAKE, gets better ex-
periment results than other baselines including Untructured, RESCAL, SE, SME (linear/bilinear), LFM
and TransE models. The result demonstrates the superiority of the idea that fully utilizes the graph
information to learn representations for entities and relations.

5 Conclusion

In this paper, we propose a graph aware knowledge embedding model to address graph-level contexts.
Most existing methods regard knowledge graph as a set of independent triples, and ignore the indirect
dependency between subjects (i.e., entities or relations). To deal with this issue, we propose a novel
method, GAKE, for learning the representation of a given knowledge graph by formulating a given
knowledge base as a directed graph and leveraging graph context, which includes path context, neighbor
context, and edge context. We further design an attention mechanism to learn representative power of
different subjects. To validate our model, we conduct extensive experiments on benchmark datasets
for two tasks, i.e., triple classification and link classification. Experimental results show that GAKE
outperforms several state-of-art knowledge embedding methods.

Learning knowledge graph representations is an interesting and new research direction, and there are
many potential future directions for this work. For instance, it will be interesting to incorporate the power
of explicit knowledge (Wang et al., 2015) into our method to further improve the performance. In addi-
tion, the framework of this model is flexible to handle sundry information except the graph context. In
other words, we can also build text context by using descriptions of entities or additional text information
from other sources like Wikipedia.
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