
Dynamic Anchor Feature Selection for Single-Shot Object Detection

Shuai Li1,2, Lingxiao Yang1, Jianqiang Huang2, Xian-Sheng Hua2, Lei Zhang1,2 ∗

1The Hong Kong Polytechnic University 2DAMO Academy, Alibaba Group
{csshuaili, cslyang}@comp.polyu.edu.hk, jianqiang.hjq@alibaba-inc.com

huaxiansheng@gmail.com, cslzhang@comp.polyu.edu.hk

Abstract

The design of anchors is critical to the performance of
one-stage detectors. Recently, the anchor refinement mod-
ule (ARM) has been proposed to adjust the initialization of
default anchors, providing the detector a better anchor ref-
erence. However, this module brings another problem: all
pixels at a feature map have the same receptive field while
the anchors associated with each pixel have different posi-
tions and sizes. This discordance may lead to a less effec-
tive detector. In this paper, we present a dynamic feature
selection operation to select new pixels in a feature map
for each refined anchor received from the ARM. The pixels
are selected based on the new anchor position and size so
that the receptive filed of these pixels can fit the anchor ar-
eas well, which makes the detector, especially the regression
part, much easier to optimize. Furthermore, to enhance the
representation ability of selected feature pixels, we design
a bidirectional feature fusion module by combining features
from early and deep layers. Extensive experiments on both
PASCAL VOC and COCO demonstrate the effectiveness of
our dynamic anchor feature selection (DAFS) operation.
For the case of high IoU threshold, our DAFS can improve
the mAP by a large margin.

1. Introduction
Object detection is a prerequisite for many down-

stream computer vision applications, such as person re-
identification [2], autonomous driving [7], and action recog-
nition [12]. As such a fundamental and important task,
object detection has been extensively studied for several
decades. Due to the progressively promising development
in Convolutional Neural Network (CNN) recently, object
detection has seen significant improvements both in speed
and accuracy [14, 18, 33, 15, 3, 6, 35].

Based on the deep CNN feature, there are mainly two
dominant detection frameworks. One is two-stage detec-

∗Corresponding author. This work is supported by China NSFC grant
(no. 61672446) and Hong Kong RGC GRF grant (PolyU 152135/16E).

Table 1: The original IoU distribution of adjusted positive
anchors

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-1.0
0.02% 0.32% 9.0% 47.6% 27.9% 10.8% 4.4%

tors such as Faster-RCNN [29] and the other one is one-
stage detectors such as SSD [24]. Given color images as in-
put, both type of detectors employ a stack of convolutional
layers (usually some typical backbone like ResNet [14] or
VGG [33]) to extract several feature maps for the input. For
one stage detectors, classification scores are predicted and
bounding boxes are estimated directly on the feature maps
with respect to a set of default anchors using extra convolu-
tional layers. By contrast, two stage detectors also start with
anchors, but utilize a two-step cascade detector, where the
first step mainly aims to regress better initialized proposals
and eliminate a large number of negatives.

Inspired by the two stage detectors, some researchers
borrow the two-step cascade regression method into one-
stage detectors. One example is RefineDet [36]. It uses
an Anchor Refinement Module (ARM) to adjust the loca-
tions and sizes of anchors, and at the same time to filter
out easy negative anchors. Experiments show that the accu-
racy gain mainly results from the adjusted anchors. Table 1
shows the original IoU distribution of the new positive an-
chors (IoU >0.5). We can see that after the refinement, the
number of positive anchors greatly increases. Nearly 85%
of positive anchors come from negative anchors. However,
RefineDet keeps the feature points associated with each an-
chor unchanged, resulting in a discordance between the ad-
justed anchors and the receptive field of the feature points.
The discordance at each position of a feature map is differ-
ent from each other since the shapes of the adjusted anchors
become irregular, making the detector especially the regres-
sion part be sub-optimal.

Since the anchor positions are adjusted, why can not the
sampling feature points associated with the anchors be ad-
justed? Motivated by this, we propose a simple yet effective
feature selection operation to dynamically select suitable
feature points for each adjusted anchor basing on its new po-
sition and size. The selected feature points can cover most

1

Figure 1: Architecture of our proposed method. Four green feature maps, computed by the forward computation process,
are used to adjust the initialization of default anchors. The four blue feature maps, fused by the green features through
bidirectional feature fusion block, are the source detection layers. The adjusted anchors are then sent to the dynamic feature
selection module to do feature adaptation. The detector head takes the source feature maps and selected feature points as
input and outputs the classification score and regression positions with respect to the adjusted anchors.

part of the adjusted anchor, making the receptive filed of the
these feature points be well aligned with the new anchor.
The number of selected feature points keep the same with
the setting in original one-stage detectors so that we do not
need to change the structure of the final classifier and regres-
sor, which means we can maintain a quick inference speed.
We follow a similar network structure as RefineDet except
two modifications. First, in RefineDet, the features in the
first stage (Anchor Refinement Module) are transferred to
the second stage (Object Detection Module) by a Trans-
fer Connection Block (TCB). We replace the TCB with a
newly designed bidirectional feature fusion block (BFF). In
TCB, each feature map only receives information from its
upper layer while in BFF both lower layers and higher lay-
ers are combined to fuse the current feature map. Second,
we change the class-agnostic classifier in ARM to a class-
specific classifier in the first phase as this stronger regula-
tion contributes to more discriminative features in ARM. In
summary, Our contributions are twofold.

(1) We propose a simple yet effective dynamic anchor
feature selection (DAFS) operation to solve the discordance
between the adjusted anchor shapes and the receptive field
of feature maps, when the anchor refinement is used in
one-stage detectors. Extensive experiments are conducted
to show this operation can consistently improve the per-
formance over RefineDet on both PASCAL VOC [8] and
COCO [22].

(2) Different from TCB or FPN which use higher feature
maps to fuse lower feature maps through a top-down path,
we present a bidirectional feature fusion block to allow dif-
ferent level features to activate each other so that each fea-

ture map can capture both basic visual cues and high level
features.

2. Related Work
Two-stage detectors. Two-stage detectors adopt the two

stage, proposal based mechanism. A sparse set of clustered
proposals is generated in the first stage, which can be re-
alized by Region Proposal Network [29], Edge Boxes [40]
or Selective Search [34]. In the second stage, classifica-
tion scores and bounding box positions are predicted for
each proposal by training a detector head. Some typi-
cal two-stage detectors are R-CNN [11], Fast-RCNN [10]
and Faster-RCNN [29]. RFCN [4] is another special two
stage detector which replaces the detector head with some
position sensitive score maps. The predicted class label
and position offsets are directly sampled from the score
maps which greatly reduces inference time but requires a
much more memory footprint due to the large score maps.
Two-stage detectors have been leading top performances on
several benchmarks including PASCAL VOC [8] and MS
COCO [22] for many years.

One-stage detectors. Compared with two-stage detec-
tors, one-stage detectors predefine a set of default anchors
with various sizes and aspect ratios at each pixel of a feature
map. Classification and regression are applied directly on
the feature map with respect to these default anchors. Typ-
ical one stage detectors are YOLO [27] and SSD [24]. The
detection performance for one-stage detectors has been im-
proved continuously by a serious of methods focusing on
different aspects. For example, semantic information on
different layers is enhanced in [9, 31, 37, 23] to boost the

discrimination. New loss functions are proposed in [19, 21]
to deal with class imbalance issues. Multi-level feature
pyramid network [38] is used to detect objects with differ-
ent sizes on different level feature maps. RefineDet [36]
introduces anchor refinement into SSD to improve the qual-
ity of reference anchors. One stage detectors can run at a
fast speed but in accuracy still trail of two stage detectors.
CornerNet [17] is another type of detector which regards the
detecting objects as detecting paired keypoints. Although it
achieves remarkable performance, it still suffers from a low
inference speed.

Detector head. Generally, a detector head includes a
classifier and a regressor. How to prepare the inputs for
the detector head is a major difference between two-stage
detectors and one-stage detectors. Proposal features are ex-
tracted using RoIPooling [10] or RoIAlign [13]. The ex-
tracted features, which are the inputs of the detector head,
are processed independently further by a small network
(usually two fully connected layers) before being feed to
the classifier and the regressor. While in the one-stage de-
tectors, a 3 × 3 convolutional filter is applied on each po-
sition at a feature map to directly give predictions with re-
spect to default anchors. Sometimes before the 3 × 3 con-
volution filter, the feature map will be processed by a stack
of convolution layers, which has been proved to be more
important than some hyper parameters in [21]. In this pa-
per, we only change the sampling positions for this 3 × 3
detection filter to make the new selected features be more
aligned with the anchors. We never separate the anchor fea-
tures from the feature map and independently process them
as what two-stage detectors do, which is a key characteristic
for two-stage detectors.

Feature aggregation network. Image features used to
perform classification and regression have attracted the ma-
jority of attention in modern one-stage detectors. SSD [24]
utilizes a multi-scale feature pyramid to detect objects with
different sizes. This strategy is adopted by succedent mod-
ern detectors with modifications to augment the representa-
tion ability further. FPN [20] introduces a top-down archi-
tecture with lateral connections to build high level seman-
tic feature maps at all levels. Similar module can be seen
in TDM [32], SharpMask [26], DSSD [9], DES [37] and
DSOD [31]. RefineDet [36] uses TCB to transfer the fea-
ture from anchor refinement module into object detection
module. This transfer is necessary as directly sharing fea-
tures between two modules will influence the optimization
of both parts, demonstrated by experiments in the later part.

3. Dynamic Anchor Feature Selection
We illustrate the network structure in Fig 1, which is

based on RefineDet [36]. A feature selection operation is
added before the detector head to select suitable feature
points for each classifier and regressor. We also replace the

transfer connection block with our own bidirectional fea-
ture fusion (BFF) block, which utilizes both a bottom-up
path and a top-down path to combine different layers.

3.1. Anchor refinement module

Anchor refinement module is a RPN-like module used
in one-stage detectors, which is first proposed by [36]. It
attaches two convolutional kernels (a regressor and a bi-
nary classifier) on each detection source layer under a multi-
scale detection framework. The main aim of ARM is to
assign background/foreground scores and predict adjusted
locations for each anchor. The binary classification scores
are used to filter out easy negatives and the refined anchors
are sent to the final object detection module (ODM), which
is exactly the same with the detector head in SSD. Accord-
ing to the experiment results in [37], the performance gain
mainly comes from the well initialized anchors.

In order to better analyze the influence of ARM on the
detector, we first give a definition of bounding box regres-
sion and classification in the detector head.

Figure 2: Detector head in SSD. The green, blue and yellow
boxes are three anchors on a feature map, centering on the
same feature point. A 3 × 3 sliding window (red points)
in the feature map is chosen as the shared feature for the
input of the three functions f , each of which has its own
prediction weights.

3.2. Bounding box regression

For one-stage detectors, the task of bounding box regres-
sion is to regress an anchor a into a target bounding box g,
using a regressor f(x, a). Both the anchor a and bounding
box g are defined with four coordinates (x, y, w, h). The
regressor f is learned by optimizing the function:

Rloc[f] =

N∑
i=1

Lloc(f(xi, ai), gi) (1)

where Lloc is a smoothed L1 loss function in SSD. xi is
the input associated with anchor a. During training, Lloc

optimizes on the distance vector d = (dx, dy, dw, dh) to
achieve regression invariance. d is defined as:

dx = (gx − ax)/ax dy = (gy − ay)/ay (2)

dw = log(gw/aw) dh = log(gh/ah) (3)

In SSD, each pixel point in a detection feature map is asso-
ciated with several kinds of anchors, which have different
sizes and aspect ratios. For example in Fig 2, blue, yel-
low and green are three kinds of anchors attached on a fea-
ture map. The 3 × 3 red feature points are the input xi
for the regressor. Note that the actual receptive filed of xi
doesn’t necessarily need to match the anchors. The regres-
sor f() can automatically learn to be responsive to particu-
lar scales of boxes g as in each position for a regressor, the
anchor coordinates aw, ah are the same, which can be seen
as constant values. This means that for each kind of anchor,
the variance of its size distribution is zero. In RefineDet,
the same kind of anchors will shift towards various direc-
tions approaching the ground truth box g. This makes the
distance vector d smaller than the distance in SSD, which
seems to make the regressor easier to optimize. However,
this is not the truth as each kind of adjusted anchors be-
come more various after ARM, which means the aw and ah
become variables in the distance vector, not constant val-
ues any more. What’s more, the inputs for the regressor in
ODM keep the same as original, so they are not aware of
the particular shape of adjusted anchors because aw and ah
are dynamically predicted by ARM.

3.3. Classification

The classifier h(x) in one-stage detectors aims to assign
a M+1-dimensional estimate of posterior distribution over
classes, where 0 means background and M is the remaining
classes. H(x) is trained by minimizing a classification loss
function:

Rcls[h] =

N∑
i=1

Lcls(h(xi), yi) (4)

An anchor is defined as positive if its maximal IoU with
any ground truth box is larger than 0.5. This metric is used
both in ARM and ODM. Some default negative anchors
will become positive after ARM if the IoU of new adjusted
anchors are larger than 0.5, which is possible as the neg-
ative anchors does not contribute to the regression loss in
the ARM. This could lead to a sub-optimal classifier as the
feature points are too far from their associated anchors that
they are not representative enough to be classified as a fore-
ground class label. As shown in Table 1, for over 47% of ad-
justed anchors, their IoU before the refinement is less than
0.4.

3.4. Dynamic Feature selection

As we can see from above analysis, ARM will cause a
discordance between the receptive field of the input feature
points and their associated new refinement anchors. This
discordance may lead to a sub-optimal detector, especially
for the regression part. A simple solution is to sample fea-
ture points for the detector head dynamically basing on the
new shape of anchors. In this way, the feature points are

able to perceive the existence of anchors. The feature selec-
tion function s can be written as:

p = s(aw, ah, x, y) (5)

where aw, ah are the width and height of an adjusted an-
chor a. x, y describe the position on a feature map which
the anchor is associated with. p ∈ H ×W × C, is the co-
ordinates of selected feature points for the detector head.
The coordinates along H and W axis are the same for each
channel so we can reduce the matrix to H × W . In Re-
fineDet [36] and SSD [24], H and W are set to 3× 3 and p
is set to a 3 × 3 sliding window centered on (x, y). In this
paper, we want to make use of the shape of the adjusted an-
chors. Inspired by the RoIAlign [13], we simply divide the
anchor a into Ha × Wa sub-windows uniformly. In each
sub-window, we select the center position c as the repre-
sentative position for this sub-window. Then we will have
Ha ×Wa representative positions. The feature at each po-
sition is a weighted sum of features from other positions in
the feature map, which can be written as:

fc =

N∑
i=1

wi × fi (6)

wi = max(1−|xc − xi| , 0)×max(1−|yc − yi| , 0) (7)

where fi is a feature point whose coordinates are int. xc, xi
are the x coordinates for position c and i. yc, yi are the y
coordinates for position c and i. wi is the weight assigned to
fi. Now we have a feature matrix F ∈ Ha ×Wa. To fit the
input size of the regressor and classifier, we use maxpooling
to reduce the size of F to H ×W .

There are some alternatives to sample the feature posi-
tions for an anchor. RoIPooling [10] can be used to directly
pool a H × W feature matrix based on the adjusted an-
chor, but it needs to compare all the points within the an-
chor which is time consuming. DeformConv [5] can also
be utilized to predict the sampling positions for an anchor
by an extra branch, the input of which is the feature map.
This is not efficient as the memory and computation com-
plexity will increase. Related experiments are conducted in
the ablation study.

3.5. Bidirectional feature fusion

Directly sharing features between ARM and ODM is not
a good choice as these two modules have different goals. So
a bridge is needed to link the feature from ARM to ODM. In
RefineDet, a transfer connection block (TCB) is proposed
to build a feature pyramid using a top-down path for ODM.
In this paper, we replace TCB with a Bidirectional Feature
Fusion (BFF) block as shown in Fig 1, where both a top-
down path and a bottom-up path are used to fuse different
layers. Specifically, each layer receives more abstract infor-
mation from its upper layer and meanwhile gets more basic
cues from its lower layer. We find this small modification

over TCB can improve the detection performance one step
further with negligible computation cost increase.

4. Training settings
Backbone VGG16 [33] and ResNet101 [14], which

are pretrained on the standard ImageNet-1k classification
task [30], are used as our backbone networks. Other settings
keep the same with RefineDet [36]. For VGG16, conv4 3,
conv5 3, fc7 and an extra layer conv6 2 are used as the
multi-level detection layers. L2 normalization [25] is ap-
plied to scale the feature norms in conv4 3 and conv5 3.
For ResNet101, the last three blocks together with an extra
block res6 are used for multi-scale detection. These four
feature maps have strides {8,16,32,64} respectively.

Anchors and matching strategy Anchors associated
with each feature map have one specific size (4 times of the
feature stride). For aspect ratios, we try different combina-
tions selected from a group settings (1/2, 1/3, 1/1) and find
only using 1/1 can reach comparable accuracy. Relevant re-
sults will be discussed in the ablation study. An anchor is
set to positive if its maximal IoU with ground truth is larger
than 0.5 in both two stages.

Loss function Our feature selection operation doesn’t
change the form of loss function except that in ARM, we
adopt a class-specific classifier. For hard negative min-
ing, we select negatives according the loss value to ensure
the ratio between the positives and negatives is 1:3. Focal
loss [21] can also be used but this is not the focus of this
paper. The loss function can be formulated as:

L(I; θ) = αLarm(a, y, p, t) + Lodm(a′, y′, p′, t′) (8)

Larm(a, y, p, t) = Lcls(p, y) + 1[y > 0]Lloc(a, t) (9)

Lodm(a′, y′, p′, t′) = Lcls(p
′, y′) + 1[y′ > 0]Lloc(a

′, t′)
(10)

where I is the input image, {a, y, p, t} are the coordinates,
class label, predicted confidence and predicted anchor co-
ordinates for the default anchor, and {a′, y′, p′, t′} are the
coordinates, class label, predicted confidence and predicted
coordinates for the adjusted anchor. The classification loss
Lcls is set as the cross entropy loss and the localization loss
Lloc is set as the smoothed L1 loss [10]. We simply set
α = 1 in all our experiments.

5. Experiments
In this section, we first conduct ablation analysis of the

proposed feature selection operation. We then make com-
parison with the competing methods as well as state-of-the-
arts. All our models are trained under the PyTorch frame-
work with SGD solver on NVIDIA GeForce 1080Ti GPUs.

Datasets. Experiments are conducted on two dominant
datasets: PASCAL VOC [8] and MS COCO [22], which
have 20 and 80 classes, respectively. For VOC2007, models

Table 2: Results of ablation study.

Aspect ratio Num of anchors AP AP50 AP60 AP70 AP80 AP90

1 1 57.0 80.6 75.7 65.4 46.0 17.3

0.5,1,2 3 58.1 80.2 75.8 66.4 48.6 19.7

0.3,1,3 3 58.1 80.4 76.0 66.1 48.2 19.8

0.3,0.5,1,2,3 5 58.2 80.3 76.0 66.0 48.5 20.4

(a) Impact of anchor number.

AP AP50 AP60 AP70 AP80 AP90

(3,3,3,3) 56.7 80.7 76.0 65.4 45.7 15.9

(3,3,6,6) 57.0 80.6 75.7 65.4 46.0 17.3

(6,6,6,6) 56.5 80.3 75.3 65.4 45.4 16.0

(6,6,9,9) 56.6 80.6 75.5 64.9 45.7 16.2

(9,9,9,9) 56.7 81.0 75.9 64.8 45.6 16.1

(b) Comparison of different selected feature points.

Transfer module AP AP50 AP60 AP70 AP80 AP90

None 56.0 80.3 74.4 64.2 45.4 15.9

TCB 56.6 80.5 75.8 64.9 45.1 16.5

BFF 57.0 80.6 75.7 65.4 46.0 17.3

(c) BFF block performance.

Feature selection AP AP50 AP60 AP70 AP80 AP90

Anchor Pooling based (R) 50.9 79.5 73.6 59.3 34.1 7.6

Deformable convolution (D) 53.6 79.9 73.7 62.1 41.4 10.9

DAFS 57.0 80.6 75.7 65.4 46.0 17.3

(d) Alternatives for feature point selection.

Classifier in ARM AP AP50 AP60 AP70 AP80 AP90

Class-agnostic 56.6 80.3 74.8 64.9 46.1 16.6

Class-specific 57.0 80.6 75.7 65.4 46.0 17.3

(e) Classifier in ARM.

are trained on the union of VOC2007 trainval and VOC2012
trainval. For VOC2012, the training data is the union of
VOC2007 trainval and 2007 test plus VOC2012 trainval
set. Following the conventional splitting method, we use the
2014 trainval35k set which contains around 135k images to
train our model, and validate the performance on the 2015
test-dev dataset which contains around 20k images.

Experimental setting. We set the batchsize as 32 for
all datasets. The momentum is fixed to 0.9 and the weight
decay is set to 0.0005, which is consistent with the original
SSD settings. We start the learning rate with 10−3 for 100
epochs and decay it to 10−4 and 10−5 for another 50 and 30
epochs respectively in VOC datasets. For COCO, we train
the model longer due to its large size. The learning rate is
initialized to 10−3 for 150 epochs and is decayed to 10−4

and 10−5 for another 40 and 30 epochs, respectively. Dur-
ing training, we initialize the newly added layers by drawing
weights from a zero-mean Gaussian distribution with stan-
dard deviation 0.001. All other layers are initialized by the

Table 3: PASCAL VOC 2007 detection results. The first section lists some representative baselines in two stage detectors.
The second section presents the results of state-of-the-art one stage detectors with small resolution input images, and the third
section presents the results with high resolution input images. ‘+’ means that the model is evaluated with multi-scale testing
strategy.

Method Train set Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster R-CNN [29] 07+12 VGG16 73.2 76.5 79 70.9 65.5 52.1 83.1 84.7 86.4 52 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83 72.6
Faster R-CNN [14] 07+12 ResNet101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72

ION [1] 07+12 VGG16 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87 54.4 80.6 73.8 85.3 88.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4
R-FCN [4] 07+12 ResNet101 80.5 79.9 87.2 81.5 72 69.8 86.8 88.5 89.8 67 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

CoupleNet [39] 07+12 ResNet101 82.7 85.7 87.0 84.8 75.5 73.3 88.8 89.2 89.6 69.8 87.5 76.1 88.9 89.0 87.2 86.2 59.1 83.6 83.4 87.6 80.7
SSD300 [24] 07+12 VGG16 77.5 79.5 83.9 76 69.6 50.5 87 85.7 88.1 60.3 81.5 77 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8
SSD321 [24] 07+12 ResNet101 77.1 76.3 84.6 79.3 64.6 47.2 85.4 84.0 88.8 60.1 82.6 76.9 86.7 87.2 85.4 79.1 50.8 77.2 82.6 87.3 76.6
DSSD321 [9] 07+12 ResNet101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78 80.9 87.2 79.4

RON384++ [16] 07+12 VGG16 77.6 86.0 82.5 76.9 69.1 59.2 86.2 85.5 87.2 59.9 81.4 73.3 85.9 86.8 82.2 79.6 52.4 78.2 76.0 86.2 78.0
DES300 [37] 07+12 VGG16 79.7 83.5 86.0 78.1 74.8 53.4 87.9 87.3 88.6 64.0 83.8 77.2 85.9 88.6 87.5 80.8 57.3 80.2 80.4 88.5 79.5

RFB Net300 [23] 07+12 VGG16 80.5 -
RefineDet320 [36] 07+12 VGG16 80.0 83.9 85.4 81.4 75.5 60.2 86.4 88.1 89.1 62.7 83.9 77.0 85.4 87.1 86.7 82.6 55.3 82.7 78.5 88.1 79.4
DAFS320 (ours) 07+12 VGG16 80.6 85.4 86.3 82.4 73.0 63.9 87.8 88.9 89.1 64.9 85.6 77.7 85.6 85.1 87.7 83.4 53.6 83.1 80.3 89.0 79.6
DAFS320 (ours) 07+12 ResNet101 81.1 86.6 87.6 82.4 76.4 61.2 86.4 88.0 88.3 66.5 86.3 77.2 86.3 89.4 87.0 82.4 56.9 83.0 81.8 88.4 80.4

DAFS320+ (ours) 07+12 VGG16 85.3 90.2 89.3 86.0 83.0 76.9 89.2 89.7 90.2 73.3 89.2 83.1 87.9 90.0 89.8 87.8 65.9 88.2 83.7 89.0 83.7
SSD512 [24] 07+12 VGG16 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0
SSD513 [24] 07+12 ResNet101 80.6 84.3 87.6 82.6 71.6 59.0 88.2 88.1 89.3 64.4 85.6 76.2 88.5 88.9 87.5 83.0 53.6 83.9 82.2 87.2 81.3
DSSD513 [9] 07+12 ResNet101 81.5 86.6 86.2 82.6 74.9 62.5 89 88.7 88.8 65.2 87 78.7 88.2 89 87.5 83.7 51.1 86.3 81.6 85.7 83.7
DES512 [37] 07+12 VGG16 81.7 87.7 86.7 85.2 76.3 60.6 88.7 89.0 88.0 67.0 86.9 78.0 87.2 87.9 87.4 84.4 59.2 86.1 79.2 88.1 80.5

RFB Net512 [23] 07+12 VGG16 82.2 -
RefineDet512 [36] 07+12 VGG16 81.8 88.7 87.0 83.2 76.5 68.0 88.5 88.7 89.2 66.5 87.9 75.0 86.8 89.2 87.8 84.7 56.2 83.2 78.7 88.1 82.3
DAFS512 (ours) 07+12 VGG16 82.4 89.6 88.3 84.2 77.4 69.8 88.6 89.6 89.6 66.2 87.6 76.4 86.7 89.6 87.8 85.0 57.3 84.6 80.8 88.9 80.5

RefineDet320 [36] 07+12+COCO VGG16 84.0 88.9 88.4 86.2 81.5 71.7 88.4 89.4 89.0 71.0 87.0 80.1 88.5 90.2 88.4 86.7 61.2 85.2 83.8 89.1 85.5
DAFS320 07+12+COCO VGG16 84.7 89.3 89.2 86.9 80.7 75.7 89.8 89.8 88.9 73.8 88.6 80.0 88.6 89.1 88.8 87.2 62.2 87.5 84.1 89.0 85.7

DAFS320+ 07+12+COCO VGG16 86.1 90.4 89.4 88.7 83.9 79.2 90.1 90.0 89.7 76.4 90.0 82.8 89.4 89.9 89.6 88.2 66.0 88.5 85.0 88.7 86.6

Table 4: PASCAL VOC 2012 detection results.
Method Train set Backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster R-CNN [14] 07++12 ResNet101 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6
ION [1] 07++12 VGG16 76.4 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5

R-FCN [4] 07++12 ResNet101 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9
SSD300 [24] 07++12 VGG16 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1
SSD321 [24] 07++12 ResNet101 75.4 87.9 82.9 73.7 61.5 45.3 81.4 75.6 92.6 57.4 78.3 65.0 90.8 86.8 85.8 81.5 50.3 78.1 75.3 85.2 72.5
DSSD321 [9] 07++12 ResNet101 76.3 87.3 83.3 75.4 64.6 46.8 82.7 76.5 92.9 59.5 78.3 64.3 91.5 86.6 86.6 82.1 53.3 79.6 75.7 85.2 73.9

RON384++ [16] 07++12 VGG16 75.4 86.5 82.9 76.6 60.9 55.8 81.7 80.2 91.1 57.3 81.1 60.4 87.2 84.8 84.9 81.7 51.9 79.1 68.6 84.1 70.3
DES300 [37] 07++12 VGG16 77.1 88.5 84.4 76.0 65.0 50.1 83.1 79.7 92.1 61.3 81.4 65.8 89.6 85.9 86.2 83.2 51.2 81.4 76.0 88.4 73.3

RefineDet320 [36] 07++12 VGG16 78.1 90.4 84.1 79.8 66.8 56.1 83.1 82.7 90.7 61.7 82.4 63.8 89.4 86.9 85.9 85.7 53.3 84.3 73.1 87.4 73.9
DAFS320(ours) 07++12 VGG16 79.1 89.4 85.9 78.5 67.7 60.0 85.3 83.3 91.9 63.7 83.3 64.3 90.1 87.8 86.2 86.6 56.3 83.3 75.0 87.8 75.2

DAFS320+ 07++12 VGG16 83.1 92.4 88.3 83.8 73.6 70.6 87.3 88.2 93.9 68.9 87.2 69.7 92.4 89.5 89.3 89.9 63.5 88.3 76.4 90.4 80.2
SSD512 [24] 07++12 VGG16 78.5 90.0 85.3 77.7 64.3 58.5 85.1 84.3 92.6 61.3 83.4 65.1 89.9 88.5 88.2 85.5 54.4 82.4 70.7 87.1 75.6
SSD513 [24] 07++12 ResNet101 79.4 90.7 87.3 78.3 66.3 56.5 84.1 83.7 94.2 62.9 84.5 66.3 92.9 88.6 87.9 85.7 55.1 83.6 74.3 88.2 76.8
DSSD513 [9] 07++12 ResNet101 80.0 92.1 86.6 80.3 68.7 58.2 84.3 85.0 94.6 63.3 85.9 65.6 93.0 88.5 87.8 86.4 57.4 85.2 73.4 87.8 76.8
DES512 [37] 07++12 VGG16 80.3 91.1 87.7 81.3 66.5 58.9 84.8 85.8 92.3 64.7 84.3 67.8 91.6 89.6 88.7 86.4 57.7 85.5 74.4 89.2 77.6

RefineDet512 [36] 07++12 VGG16 80.1 90.2 86.8 81.8 68.0 65.6 84.9 85.0 92.2 62.0 84.4 64.9 90.6 88.3 87.2 87.8 58.0 86.3 72.5 88.7 76.6
DAFS512 (ours) 07++12 VGG16 81.0 91.8 87.5 82.5 71.2 65.6 85.4 86.2 92.8 64.0 85.9 64.7 91.6 89.0 88.7 87.9 59.2 87.5 73.5 88.8 76.8

RefineDet320 [36] 07++12+COCO VGG16 82.7 93.1 88.2 83.6 74.4 65.1 87.1 87.1 93.7 67.4 86.1 69.4 91.5 90.6 91.4 89.4 59.6 87.9 78.1 91.1 80.0
DAFS320 (ours) 07++12+COCO VGG16 83.9 92.5 89.7 84.8 75.4 71.0 87.0 87.9 93.9 68.8 86.8 69.7 92.4 91.4 90.2 90.0 64.4 88.4 80.0 91.3 82.4

DAFS320+ 07++12+COCO VGG16 86.9 94.7 91.5 88.4 79.3 79.1 89.5 91.6 95.3 74.1 89.6 72.5 93.8 93.3 92.4 92.4 70.7 91.7 81.4 93.1 84.9

standard VGG16 [33] or ResNet101 [14].

5.1. Ablation study

For the purpose of faster ablation study, models in this
section are trained on VOC2007 trainval + VOC2012 train-
val and tested on VOC2007 test. We report the performance
of all the models under a set of different thresholds (e.g.
0.5,0.6,0.7,0.8,0.9) in order to compare them convincingly.

Number of default anchors. To validate how the
number of anchors influences the model performance with
DAFS plugged in, we design some experiments by associat-
ing different number of anchors at each pixel on the feature
map. Results are summarized on Table 2a. With low thresh-
olds such as 0.5 or 0.6, the mAPs are almost the same. But
increasing the number of anchors can obviously improve
the mAP under higher threshold by a large margin, which
indicates that more anchors can help train a better regressor.

Number of feature sampling points. Note that we
select Ha × Wb features points for each anchor and
then maxpool them to 3 × 3 to fit the input size of the
classifier and regressor. In order to validate the influ-
ence of the sampling points, we set a group of settings

:{(3,3,3,3),(3,3,6,6),(6,6,6,6),(6,6,9,9),(9,9,9,9)}. The four
numbers in each setting represent the value of Ha on four
detection layers. Ha equals Hb in our model. The re-
sults are shown in Table 2b, from which we can see adding
more feature sampling points doesn’t promise a better per-
formance. If not specified, all our models are trained using
(3,3,6,6).

The impact of BFF block. To investigate the effect of
BFF, we design another two models. For one model, the
two modules ARM and ODM directly share features with-
out any transfer block between them. For the second model,
we replace BFF with TCB and others remain the same with
first model. Table 2c shows the comparison results. The
first feature-shared model performs worst, indicating it is
necessary to transfer the feature of first stage to the second
stage. The model with BFF block performs best, demon-
strating BFF is better at fusing features of different layers
than TCB.

Alternatives for feature selection. We use two alterna-
tives to perform the feature selection process: RoIPooling
and deformable convolution, which we refer to ’R’ and ’D’.
For RoIPooling, we compare all the feature pixels within a

Table 5: Detection results on COCO 2015 test-dev.

Method Train set Backbone FPS AP AP50 AP75 APS APM APL

Faster R-CNN [29] trainval VGG16 7 21.9 42.7 - - - -
R-FCN [4] trainval ResNet101 9 29.2 51.5 - 10.3 32.4 43.3

CoupleNet [39] trainval ResNet101 8.2 34.4 54.8 37.2 13.4 38.1 52.0
YOLOv2 [28] trainval35k DarkNet-19 [27] 19.8 21.6 44.0 19.2 5.0 22.4 35.5
SSD300 [24] trainval35k VGG16 43 25.1 43.1 25.8 6.6 25.9 41.4

RON384++ [16] trainval VGG16 15 27.4 49.5 27.1 - - -
SSD321 [9] trainval35k ResNet101 - 28.0 45.4 29.3 6.2 28.3 49.3

DSSD321 [9] trainval35k ResNet101 9.5 28.0 46.1 29.2 7.4 28.1 47.6
DES300 [37] trainval35k VGG16 - 28.3 47.3 29.4 8.5 29.9 45.2

M2Det320 [38] trainval35k VGG16 33.4 33.5 52.4 35.6 14.4 37.6 47.6
RefineDet320 [36] trainval35k VGG16 38.7 29.4 49.2 31.3 10.0 32.0 44.4
RefineDet320 [36] trainval35k ResNet101 - 32.0 51.4 34.2 10.5 34.7 50.4
DAFS320 (ours) trainval35k VGG16 46.0 31.2 50.8 33.4 10.8 34.0 47.1
DAFS320 (ours) trainval35k ResNet101 - 33.2 52.7 35.7 10.9 35.1 52.0

SSD512 [24] trainval35k VGG16 22 28.8 48.5 30.3 10.9 31.8 43.5
SSD513 [9] trainval35k ResNet101 - 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [9] trainval35k ResNet101 5.5 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet500 [21] trainval35k ResNet101 11.1 34.4 53.1 36.8 14.7 38.5 49.1

DES512 [37] trainval35k VGG16 - 32.8 53.2 34.6 13.9 36.0 47.6
CornerNet511 [17] trainval35k Hourglass-104 4.4 40.5 56.5 43.1 19.4 42.7 53.9

M2Det512 [38] trainval35k VGG16 18.0 37.6 56.6 40.5 18.4 43.4 51.2
RefineDet512 [36] trainval35k VGG16 22.3 33.0 54.5 35.5 16.3 36.3 44.3
RefineDet512 [36] trainval35k ResNet101 - 36.4 57.5 39.5 16.6 39.9 51.4
DAFS512 (ours) trainval35k VGG16 35 33.8 52.9 36.9 14.6 37.0 47.7
DAFS512 (ours) trainval35k ResNet101 - 38.6 58.9 42.2 17.2 42.2 54.8

Table 6: Results on PASCAL VOC2007 with strict evalua-
tion metric. For SSD and RefineDet, we re-implement the
models according to the settings in their papers.

Method Backbone AP AP50 AP60 AP70 AP80 AP90

SSD300 [24] VGG16 52.8 77.8 72.3 60.3 40.9 12.7
RefineDet320 [36] VGG16 54.7 80.0 74.2 63.5 43.3 12.2

DAFS320 VGG16 57.0 80.6 75.7 65.4 46.0 17.3
DAFS320 Resnet101 58.7 81.0 76.3 66.9 49.2 20.0

sub-window and select the maximal one as the representa-
tive feature point for this sub-window. For deformable con-
volution, we add one extra layer on each detection layer to
predict the new selected feature positions for each adjusted
anchor. Comparison results are shown in Table 2d. As we
can see, model ’R’ performs worst under higher thresholds.
The reason behind this may be that RoIPooling can cause
dis-alignment between the feature and anchor. The accu-
racy of model ’D’ is higher than model ’R’ but still lower
than the base model. One possible explanation is that some
of the predicted positions may be outside the anchor, which
is not very helpful for training the detector.

Class-agnostic or class-specific. For the classifier in
ARM, we try class-agnostic and class-specific respectively
and compare the results in Table 2e. We can see a class-
specific classifier results in a higher accuracy than a class-
agnostic classifier. The reason maybe that the loss function

based on a class-specific classifier can provide stronger su-
pervision for the network, thus the feature in ARM can be
transferred to the final detector better.

Figure 3: Examples of detection results. Up: DAFS320.
Bottom: RefineDet320.

5.2. Comparison with Competing Networks

If not specified, for all the models in this part, Ha and
Hb on four detection layers are set to (3,3,6,6) and only one
aspect ration (1:1) is used due to limited computation re-
sources.

PASCAL VOC 2007. We compare our method with
the state-of-the-art detectors in Table 3. DES300 [37],
DSSD320 [9] and RFB Net300 [23] are methods that aim
to increase the representation ability of feature maps by in-
troducing semantic loss, a feature pyramid network and an

inception-like fusion block, respectively. Compared with
these one-stage detectors which are based on semantic en-
hancement, DAFS320 achieves 80.6% mAP and 81.1%
mAP with VGG and ResNet respectively, higher than all of
them. DAFS320 is also 0.6% higher than RefineDet [36]
with the same VGG16 backbone. Since our detector is
based on RefineDet, the comparison with it can demon-
strate the effectiveness of our model convincingly. As can
be seen in Table 3, DAFS320 even outperforms ResNet101
based SSD models (e.g., 77.1% for SSD321 [9], 78.6% for
DSSD321 [9]), which are much deeper than VGG. By us-
ing a larger input size 512, DAFS512 produces 82.4% mAP,
improving RefineDet512 by 0.6%. These results clearly
demonstrate the effectiveness of the feature selection op-
eration.

PASCAL VOC 2012. Following the VOC 2012 proto-
col, we submit our detection results to the evaluation server.
We compare our method against some representative meth-
ods and the results are shown in Table 4. Similar find-
ings to those in VOC2007 can be made. With a small in-
put size 320, DAFS320 achieves 79.1% accuracy, higher
than SSD321 [24] and RefineDet320 by 3.7 points and 1.0
points. DAFS512 achieves 81.0% mAP, a 0.9 points boost
over RefineDet512.

PASCAL VOC with strict metric. We evaluate the per-
formance on PASCAL VOC2007 with a COCO-style met-
ric and compare our method with two baseline detectors,
SSD300 and RefineDet320. The results are shown in Ta-
ble 6. As shown in Table 6, although RefineDet boosts
SSD300 under the official VOC evaluation threshold (0.5)
by 2.2 points, it decreases the performance for AP@0.9. By
contrast, our model can consistently improve SSD under all
thresholds and for AP@0.9, the boost is nearly 7 points.
DAFS320 achieves 57% AP with the coco-style metric, 2.3
points higher than RefineDet320. This further demonstrates
that our model can greatly improve the localization ability
of the detector.

MS COCO. Table 5 shows the comparison results on
COCO 2015test set. In order to compare the speed fairly,
we test the inference time using Titan X with batch size 1.
With the standard COCO evaluation metric, SSD321 scores
28.0% AP with ResNet101 backbone, and DAFS320 im-
proves it to 31.2% AP with a shallower backbone VGG16.
Note that with 320 × 320 input size, DAFS even brings a
2.4 points boost compared with SSD512 based on VGG16.
When increasing the input size to 512, DAFS512 gains a 5.0
and 2.6 points boost compared with VGG16 based SSD512
and ResNet101 based SSD512, respectively. Since our
model is based on RefineDet [36], directly comparing with
it can demonstrate the effectiveness of DAFS. DSFS320 im-
proves the AP of RefineDet320 from 29.4% to 31.2%, a
1.8 absolute points gain. DAFS512 is also higher than Re-
fineDet512, with 1.4 points improvement for AP@75. This

again demonstrates that our DAFS can significantly boost
the localization ability of one-stage detectors.

We also compare our method against some other excel-
lent one-stage detectors (e.g., DES [37], CornerNet [17],
M2Det [38]). DES [37] produces 28.3% AP and 32.8% AP
with input size 300 and 512. Our method improves them
by 2.9 points and 1 points, respectively. CornetNet regards
detecting objects as paired keypoints, a very different detec-
tion framework from the anchor based detectors like SSD.
Although Cornernet achieves a remarkable accuracy, it can
only run at 4.4 fps. M2Det utilizes a multi-level feature
pyramid network to improve the representation ability of
feature maps. Compared with M2Det, DAFS has a rela-
tive lower AP but it has a much faster inference speed than
M2Det. It is noteworthy to mention that, if built upon this
network, the performance of our model can improve further.

Figure 3 shows some visual results for DAFS (up) and
RefineDet (bottom). Due to the inconsistency between the
receptive field of feature map and anchor areas, RefineDet
may cause some unsatisfactory results such as overlapped
boxes (first column), missing detection (second column)
and low quality bounding box (third column).

Table 7: Generality of DAFS on VOC2007
Method Backbone AP AP50 AP60 AP70 AP80 AP90

SSD320 [24] VGG16 47.1 72.2 64.8 52.7 34.2 11.6
(DAFS+SSD)320 VGG16 49.8 74.2 67.6 55.7 38.3 13.2

DSSD320 [9] VGG16 51.1 74.6 68.6 57.1 40.0 15.3
(DAFS+DSSD)320 VGG16 52.7 76.0 69.9 58.8 42.1 16.8
RetinaNet320 [21] ResNet101 52.8 74.4 68.5 58.8 43.6 19.0

(DAFS+RetinaNet)320 ResNet101 53.9 75.0 69.4 60.4 45.2 19.3

5.3. Generality

To verify the effectiveness of DAFS on other one stage
detectors, we conducted experiments on three representa-
tive detectors, including SSD [24], DSSD [9] and Reti-
naNet [21], on VOC2007. Note that DSSD is a combina-
tion of SSD and FPN [20]. Four feature maps are used
for final detection and one scale anchor is used for each
pixel. The results are shown in Table 7. We can see that our
method can bring 1.6, 2.7 and 1.1 points gains for DSSD,
SSD and RetinaNet, respectively. This validates the gener-
ality of DAFS to one-stage detectors.

6. Conclusion
This work was focused on the discordance problem be-

tween the feature receptive field and anchors brought by Re-
fineDet. A simple yet effective anchor feature selection op-
eration was proposed to dynamically select feature points
for the detector head based on the shapes of adjusted an-
chors. Extensive experiments demonstrated that our meth-
ods improved the performance over RefineDet consistently
while keeping a fast inference speed. Our work indicated
that apart from enhancing the representational power of
CNNs, it is also important to investigate the anchor feature
extraction process of one-stage detectors.

References
[1] Sean Bell, C Lawrence Zitnick, Kavita Bala, and Ross Gir-

shick. Inside-outside net: Detecting objects in context with
skip pooling and recurrent neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2874–2883, 2016.

[2] Xiaobin Chang, Timothy M Hospedales, and Tao Xiang.
Multi-level factorisation net for person re-identification. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2109–2118, 2018.

[3] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017.

[4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object
detection via region-based fully convolutional networks. In
Advances in neural information processing systems, pages
379–387, 2016.

[5] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE international confer-
ence on computer vision, pages 764–773, 2017.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. 2009.

[7] Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Per-
ona. Pedestrian detection: A benchmark. 2009.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision, 88(2):303–
338, June 2010.

[9] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi,
and Alexander C Berg. Dssd: Deconvolutional single shot
detector. arXiv preprint arXiv:1701.06659, 2017.

[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014.

[12] Georgia Gkioxari, Ross Girshick, Piotr Dollár, and Kaiming
He. Detecting and recognizing human-object interactions.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8359–8367, 2018.

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In 2017 IEEE International Conference
on Computer Vision (ICCV),, pages 2980–2988. IEEE, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017.

[16] Tao Kong, Fuchun Sun, Anbang Yao, Huaping Liu, Ming Lu,
and Yurong Chen. Ron: Reverse connection with objectness
prior networks for object detection. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 1, page 2,
2017.

[17] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 734–750, 2018.

[18] Yann Lecun and Yoshua Bengio. Convolutional networks for
images, speech, and time series. MIT Press, 1998.

[19] Buyu Li, Yu Liu, and Xiaogang Wang. Gradient harmonized
single-stage detector. arXiv preprint arXiv:1811.05181,
2018.

[20] Tsung-Yi Lin, Piotr Dollár, Ross B Girshick, Kaiming He,
Bharath Hariharan, and Serge J Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 2017.

[21] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. IEEE
transactions on pattern analysis and machine intelligence,
2018.

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014.

[23] Songtao Liu, Di Huang, et al. Receptive field block net for
accurate and fast object detection. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pages 385–
400, 2018.

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016.

[25] Wei Liu, Andrew Rabinovich, and Alexander C Berg.
Parsenet: Looking wider to see better. arXiv preprint
arXiv:1506.04579, 2015.

[26] Pedro O Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr
Dollár. Learning to refine object segments. In European
Conference on Computer Vision, pages 75–91. Springer,
2016.

[27] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[28] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. arXiv preprint, 2017.

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[31] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang,
Yurong Chen, and Xiangyang Xue. Dsod: Learning deeply
supervised object detectors from scratch. In The IEEE Inter-
national Conference on Computer Vision (ICCV), 2017.

[32] Abhinav Shrivastava, Rahul Sukthankar, Jitendra Malik, and
Abhinav Gupta. Beyond skip connections: Top-down modu-
lation for object detection. arXiv preprint arXiv:1612.06851,
2016.

[33] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[34] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-
ers, and Arnold WM Smeulders. Selective search for ob-
ject recognition. International journal of computer vision,
104(2):154–171, 2013.

[35] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1492–
1500, 2017.

[36] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and
Stan Z Li. Single-shot refinement neural network for ob-
ject detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018.

[37] Zhishuai Zhang, Siyuan Qiao, Cihang Xie, Wei Shen, Bo
Wang, and Alan L Yuille. Single-shot object detection with
enriched semantics. Technical report, Center for Brains,
Minds and Machines (CBMM), 2018.

[38] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ying Chen,
Ling Cai, and Haibin Ling. M2det: A single-shot object
detector based on multi-level feature pyramid network. arXiv
preprint arXiv:1811.04533, 2018.

[39] Yousong Zhu, Chaoyang Zhao, Jinqiao Wang, Xu Zhao, Yi
Wu, Hanqing Lu, et al. Couplenet: Coupling global structure
with local parts for object detection. In IEEE International
Conference on Computer Vision (ICCV), volume 2, 2017.

[40] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locat-
ing object proposals from edges. In European conference on
computer vision, pages 391–405. Springer, 2014.

