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Abstract

While deep convolutional neural networks (CNNs) have
achieved impressive success in image denoising with addi-
tive white Gaussian noise (AWGN), their performance re-
mains limited on real-world noisy photographs. The main
reason is that their learned models are easy to overfit on
the simplified AWGN model which deviates severely from
the complicated real-world noise model. In order to im-
prove the generalization ability of deep CNN denoisers, we
suggest training a convolutional blind denoising network
(CBDNet) with more realistic noise model and real-world
noisy-clean image pairs. On the one hand, both signal-
dependent noise and in-camera signal processing pipeline
is considered to synthesize realistic noisy images. On the
other hand, real-world noisy photographs and their nearly
noise-free counterparts are also included to train our CBD-
Net. To further provide an interactive strategy to rectify de-
noising result conveniently, a noise estimation subnetwork
with asymmetric learning to suppress under-estimation of
noise level is embedded into CBDNet. Extensive experi-
mental results on three datasets of real-world noisy pho-
tographs clearly demonstrate the superior performance of
CBDNet over state-of-the-arts in terms of quantitative met-
rics and visual quality. The code has been made available
at https://github.com/GuoShi28/CBDNet.

1. Introduction

Image denoising is an essential and fundamental prob-
lem in low-level vision and image processing. With decades
of studies, numerous promising approaches [3, 12, 17,
53, 11, 61] have been developed and near-optimal per-
formance [8, 31, 50] has been achieved for the removal
of additive white Gaussian noise (AWGN). However, in
real camera system, image noise comes from multiple
sources (e.g., dark current noise, short noise, and thermal
noise) and is further affected by in-camera processing (ISP)
pipeline (e.g., demosaicing, Gamma correction, and com-
pression). All these make real noise much more different

(a) “0002 02” from DND [45]

(b) Noisy

(c) BM3D [12]

(d) DnCNN [61] (e) FFDNet+ [62] (f) CBDNet

Figure 1: Denoising results of different methods on real-
world noisy image “0002 02” from DND [45].

from AWGN, and blind denoising of real-world noisy pho-
tographs remains a challenging issue.

In the recent past, Gaussian denoising performance has
been significantly advanced by the development of deep
CNNs [61, 38, 62]. However, deep denoisers for blind
AWGN removal degrades dramatically when applied to real
photographs (see Fig. 1(d)). On the other hand, deep de-
noisers for non-blind AWGN removal would smooth out
the details while removing the noise (see Fig. 1(e)). Such
an phenomenon may be explained from the characteristic of
deep CNNs [39], where their generalization largely depends
on the ability of memorizing large scale training data. In
other words, existing CNN denoisers tend to be over-fitted
to Gaussian noise and generalize poorly to real-world noisy
images with more sophisticated noise.

https://github.com/GuoShi28/CBDNet


In this paper, we tackle this issue by developing a convo-
lutional blind denoising network (CBDNet) for real-world
photographs. As indicated by [39], the success of CNN de-
noisers are significantly dependent on whether the distribu-
tions of synthetic and real noises are well matched. There-
fore, realistic noise model is the foremost issue for blind de-
noising of real photographs. According to [14, 45], Poisson-
Gaussian distribution which can be approximated as het-
eroscedastic Gaussian of a signal-dependent and a station-
ary noise components has been considered as a more appro-
priate alternative than AWGN for real raw noise modeling.
Moreover, in-camera processing would further makes the
noise spatially and chromatically correlated which increases
the complexity of noise. As such, we take into account both
Poisson-Gaussian model and in-camera processing pipeline
(e.g., demosaicing, Gamma correction, and JPEG compres-
sion) in our noise model. Experiments show that in-camera
processing pipeline plays a pivot role in realistic noise mod-
eling, and achieves notably performance gain (i.e., > 5 dB
by PSNR) over AWGN on DND [45].

We further incorporate both synthetic and real noisy im-
ages to train CBDNet. On one hand, it is easy to access
massive synthetic noisy images. However, the noise in real
photographs cannot be fully characterized by our model,
thereby giving some leeway for improving denoising per-
formance. On the other hand, several approaches [43, 1]
have suggested to get noise-free image by averaging hun-
dreds of noisy images at the same scene. Such solution,
however, is expensive in cost, and suffers from the over-
smoothing effect of noise-free image. Benefited from the
incorporation of synthetic and real noisy images, 0.3 ∼ 0.5
dB gain on PSNR can be attained by CBDNet on DND [45].

Our CBDNet is comprised of two subnetworks, i.e.,
noise estimation and non-blind denoising. With the intro-
duction of noise estimation subnetwork, we adopt an asym-
metric loss by imposing more penalty on under-estimation
error of noise level, making our CBDNet perform robustly
when the noise model is not well matched with real-world
noise. Besides, it also allows the user to interactively rectify
the denoising result by tuning the estimated noise level map.
Extensive experiments are conducted on three real noisy im-
age datasets, i.e., NC12 [29], DND [45] and Nam [43]. In
terms of both quantitative metrics and perceptual quality,
our CBDNet performs favorably in comparison to state-of-
the-arts. As shown in Fig. 1, both non-blind BM3D [12] and
DnCNN for blind AWGN [61] fail to denoise the real-world
noisy photograph. In contrast, our CBDNet achieves very
pleasing denoising results by retaining most structure and
details while removing the sophisticated real-world noise.

To sum up, the contribution of this work is four-fold:

• A realistic noise model is presented by considering
both heteroscedastic Gaussian noise and in-camera
processing pipeline, greatly benefiting the denoising

performance.

• Synthetic noisy images and real noisy photographs are
incorporated for better characterizing real-world image
noise and improving denoising performance.

• Benefited from the introduction of noise estimation
subnetwork, asymmetric loss is suggested to improve
the generalization ability to real noise, and interactive
denoising is allowed by adjusting the noise level map.

• Experiments on three real-world noisy image datasets
show that our CBDNet achieves state-of-the-art results
in terms of both quantitative metrics and visual quality.

2. Related Work
2.1. Deep CNN Denoisers

The advent of deep neural networks (DNNs) has led to
great improvement on Gaussian denoising. Until Burger
et al. [6], most early deep models cannot achieve state-of-
the-art denoising performance [22, 49, 57]. Subsequently,
CSF [53] and TNRD [11] unroll the optimization algo-
rithms for solving the fields of experts model to learn stage-
wise inference procedure. By incorporating residual learn-
ing [19] and batch normalization [21], Zhang et al. [61]
suggest a denoising CNN (DnCNN) which can outperform
traditional non-CNN based methods. Without using clean
data, Noise2Noise [30] also achieves state-of-the-art. Most
recently, other CNN methods, such as RED30 [38], Mem-
Net [55], BM3D-Net [60], MWCNN [33] and FFDNet [62],
are also developed with promising denoising performance.

Benefited from the modeling capability of CNNs, the
studies [61, 38, 55] show that it is feasible to learn a single
model for blind Gaussian denoising. However, these blind
models may be over-fitted to AWGN and fail to handle real
noise. In contrast, non-blind CNN denoisiers, e.g., FFD-
Net [62], can achieve satisfying results on most real noisy
images by manually setting proper or relatively higher noise
level. To exploit this characteristic, our CBDNet includes a
noise estimation subnetwork as well as an asymmetric loss
to suppress under-estimation error of noise level.

2.2. Image Noise Modeling

Most denoising methods are developed for non-blind
Gaussian denoising. However, the noise in real images
comes from various sources (dark current noise, short noise,
thermal noise, etc.), and is much more sophisticated [44].
By modeling photon sensing with Poisson and remaining
stationary disturbances with Gaussian, Poisson-Gaussian
noise model [14] has been adopted for the raw data of imag-
ing sensors. In [14, 32], camera response function (CRF)
and quantization noise are also considered for more practi-
cal noise modeling. Instead of Poisson-Gaussian, Hwang et
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Figure 2: Illustration of our CBDNet for blind denoising of real-world noisy photograph.

al. [20] present a Skellam distribution for Poisson photon
noise modeling. Moreover, when taking in-camera image
processing pipeline into account, the channel-independent
noise assumption may not hold true, and several approaches
[25, 43] are proposed for cross-channel noise modeling.
In this work, we show that realistic noise model plays a
pivot role in CNN-based denoising of real photographs, and
both Poisson-Gaussian noise and in-camera image process-
ing pipeline benefit denoising performance.

2.3. Blind Denoising of Real Images

Blind denoising of real noisy images generally is more
challenging and can involve two stages, i.e., noise estima-
tion and non-blind denoising. For AWGN, several PCA-
based [48, 34, 9] methods have been developed for estimat-
ing noise standard deviation (SD.). Rabie [49] models the
noisy pixels as outliers and exploits Lorentzian robust esti-
mator for AWGN estimation. For Poisson-Gaussian model,
Foi et al. [14] suggest a two-stage scheme, i.e., local estima-
tion of multiple expectation/standard-deviation pairs, and
global parametric model fitting.

In most blind denoising methods, noise estimation is
closely coupled with non-blind denoising. Portilla [46, 47]
adopts a Gaussian scale mixture for modeling wavelet
patches of each scale, and utilizes Bayesian least square
to estimate clean wavelet patches. Based on the piece-
wise smooth image model, Liu et al. [32] propose a uni-
fied framework for the estimation and removal of color
noise. Gong et al. [15] model the data fitting term as the
weighted sum of the L1 and L2 norms, and utilize a spar-
sity regularizer in wavelet domain for handling mixed or un-
known noises. Lebrun et al. [28, 29] propose an extension
of non-local Bayes approach [27] by modeling the noise
of each patch group to be zero-mean correlated Gaussian
distributed. Zhu et al. [63] suggest a Bayesian nonpara-
metric technique to remove the noise via the low-rank mix-

ture of Gaussians (LR-MoG) model. Nam et al. [43] model
the cross-channel noise as a multivariate Gaussian and per-
form denoising by the Bayesian nonlocal means filter [24].
Xu et al. [59] suggest a multi-channel weighted nuclear
norm minimization (MCWNNM) model to exploit chan-
nel redundancy. They further present a trilateral weighted
sparse coding (TWSC) method for better modeling noise
and image priors [58]. Except noise clinic (NC) [28, 29],
MCWNNM [59], and TWSC [58], the codes of most blind
denoisers are not available. Our experiments show that they
are still limited for removing noise from real images.

3. Proposed Method

This section presents our CBDNet consisting of a noise
estimation subnetwork and a non-blind denoising subnet-
work. To begin with, we introduce the noise model to gener-
ate synthetic noisy images. Then, the network architecture
and asymmetric loss. Finally, we explain the incorporation
of synthetic and real noisy images for training CBDNet.

3.1. Realistic Noise Model

As noted in [39], the generalization of CNN largely de-
pends on the ability in memorizing training data. Exist-
ing CNN denoisers, e.g., DnCNN [61], generally does not
work well on real noisy images, mainly due to that they may
be over-fitted to AWGN while the real noise distribution is
much different from Gaussian. On the other hand, when
trained with a realistic noise model, the memorization abil-
ity of CNN will be helpful to make the learned model gen-
eralize well to real photographs. Thus, noise model plays a
critical role in guaranteeing performance of CNN denoiser.

Different from AWGN, real image noise generally is
more sophisticated and signal-dependent [35, 14]. Practi-
cally, the noise produced by photon sensing can be mod-
eled as Poisson, while the remaining stationary disturbances



can be modeled as Gaussian. Poisson-Gaussian thus pro-
vides a reasonable noise model for the raw data of imaging
sensors [14], and can be further approximated with a het-
eroscedastic Gaussian n(L) ∼ N (0, σ2(L)) defined as,

σ2(L) = L · σ2
s + σ2

c . (1)

where L is the irradiance image of raw pixels. n(L) =
ns(L) + nc involves two components, i.e., a stationary
noise component nc with noise variance σ2

c and a signal-
dependent noise component ns with spatially variant noise
variance L · σ2

s .
Real photographs, however, are usually obtained after in-

camera processing (ISP), which further increases the com-
plexity of noise and makes it spatially and chromatically
correlated. Thus, we take two main steps of ISP pipeline,
i.e., demosaicing and Gamma correction, into considera-
tion, resulting in the realistic noise model as,

y = f(DM(L+ n(L))), (2)

where y denotes the synthetic noisy image, f(·) stands
for the camera response function (CRF) uniformly sampled
from the 201 CRFs provided in [16]. And L = Mf−1(x) is
adopted to generate irradiance image from a clean image x.
M(·) represents the function that converts sRGB image to
Bayer image and DM(·) represents the demosaicing func-
tion [37]. Note that the interpolation in DM(·) involves
pixels of different channels and spatial locations. The syn-
thetic noise in Eqn. (2) is thus channel and space dependent.

Furthermore, to extend CBDNet for handling com-
pressed image, we can include JPEG compression in gen-
erating synthetic noisy image,

y = JPEG(f(DM(L+ n(L)))). (3)

For noisy uncompressed image, we adopt the model in
Eqn. (2) to generate synthetic noisy images. For noisy com-
pressed image, we exploit the model in Eqn. (3). Specifi-
cally, σs and σc are uniformly sampled from the ranges of
[0, 0.16] and [0, 0.06], respectively. In JPEG compression,
the quality factor is sampled from the range [60, 100]. We
note that the quantization noise is not considered because it
is minimal and can be ignored without any obvious effect
on denoising result [62].

3.2. Network Architecture

As illustrated in Fig. 2, the proposed CBDNet includes a
noise estimation subnetwork CNNE and a non-blind denos-
ing subnetwork CNND. First, CNNE takes a noisy obser-
vation y to produce the estimated noise level map σ̂(y) =
FE(y;WE), where WE denotes the network parameters
of CNNE . We let the output of CNNE be the noise level
map due to that it is of the same size with the input y and
can be estimated with a fully convolutional network. Then,
CNND takes both y and σ̂(y) as input to obtain the final de-
noising result x̂ = FD(y, σ̂(y);WD), where WD denotes

the network parameters of CNND. Moreover, the introduc-
tion of CNNE also allows us to adjust the estimated noise
level map σ̂(y) before putting it to the the non-blind denos-
ing subnetwork CNND. In this work, we present a simple
strategy by letting %̂(y) = γ ·σ̂(y) for interactive denoising.

We further explain the network structures of CNNE and
CNND. CNNE adopts a plain five-layer fully convolu-
tional network without pooling and batch normalization op-
erations. In each convolution (Conv) layer, the number of
feature channels is set as 32, and the filter size is 3 × 3.
The ReLU nonlinearity [42] is deployed after each Conv
layer. As for CNND, we adopt an U-Net [51] architec-
ture which takes both y and σ̂(y) as input to give a pre-
diction x̂ of the noise-free clean image. Following [61],
the residual learning is adopted by first learning the resid-
ual mapping R(y, σ̂(y);WD) and then predicting x̂ =
y + R(y, σ̂(y);WD). The 16-layer U-Net architecture
of CNNE is also given in Fig. 2, where symmetric skip
connections, strided convolutions and transpose convolu-
tions are introduced for exploiting multi-scale information
as well as enlarging receptive field. All the filter size is 3×3,
and the ReLU nonlinearity [42] is applied after every Conv
layer except the last one. Moreover, we empirically find that
batch normalization helps little for the noise removal of real
photographs, partially due to that the real noise distribution
is fundamentally different from Gaussian.

Finally, we note that it is also possible to train a sin-
gle blind CNN denoiser by learning a direct mapping from
noisy observation to clean image. However, as noted in
[62, 41], taking both noisy image and noise level map as
input is helpful in generalizing the learned model to images
beyond the noise model and thus benefits blind denoising.
We empirically find that single blind CNN denoiser per-
forms on par with CBDNet for images with lower noise
level, and is inferior to CBDNet for images with heavy
noise. Furthermore, the introduction of noise estimation
subnetwork also makes interactive denoising and asymmet-
ric learning allowable. Therefore, we suggest to include the
noise estimation subnetwork in our CBDNet.

3.3. Asymmetric Loss and Model Objective

Both CNN and traditional non-blind denoisers perform
robustly when the input noise SD. is higher than the
ground-truth one (i.e., over-estimation error), which encour-
ages us to adopt asymmetric loss for improving general-
ization ability of CBDNet. As illustrates in FFDNet [62],
BM3D/FFDNet achieve the best result when the input noise
SD. and ground-truth noise SD. are matched. When the
input noise SD. is lower than the ground-truth one, the re-
sults of BM3D/FFDNet contain perceptible noises. When
the input noise SD. is higher than the ground-truth one,
BM3D/FFDNet can still achieve satisfying results by grad-
ually wiping out some low contrast structure along with



the increase of input noise SD. Thus, non-blind denois-
ers are sensitive to under-estimation error of noise SD.,
but are robust to over-estimation error. With such property,
BM3D/FFDNnet can be used to denoise real photographs
by setting relatively higher input noise SD., and this might
explain the reasonable performance of BM3D on the DND
benchmark [45] in the non-blind setting.

To exploit the asymmetric sensitivity in blind denoising,
we present an asymmetric loss on noise estimation to avoid
the occurrence of under-estimation error on the noise level
map. Given the estimated noise level σ̂(yi) at pixel i and the
ground-truth σ(yi), more penalty should be imposed to their
MSE when σ̂(yi) < σ(yi). Thus, we define the asymmetric
loss on the noise estimation subnetwork as,

Lasymm =
∑
i

|α− I(σ̂(yi)−σ(yi))<0| · (σ̂(yi)− σ(yi))2 , (4)

where Ie = 1 for e < 0 and 0 otherwise. By setting 0 <
α < 0.5, we can impose more penalty to under-estimation
error to make the model generalize well to real noise.

Furthermore, we introduce a total variation (TV) regu-
larizer to constrain the smoothness of σ̂(y),

LTV = ‖∇hσ̂(y)‖22 + ‖∇vσ̂(y)‖22 , (5)

where∇h (∇v) denotes the gradient operator along the hor-
izontal (vertical) direction. For the output x̂ of non-blind
denoising, we define the reconstruction loss as,

Lrec = ‖x̂− x‖22 . (6)

To sum up, the overall objective of our CBDNet is,

L = Lrec + λasymmLasymm + λTV LTV , (7)

where λasymm and λTV denote the tradeoff parameters for
the asymmetric loss and TV regularizer, respectively. In
our experiments, the PSNR/SSIM results of CBDNet are
reported by minimizing the above objective. As for qualita-
tive evaluation of visual quality, we train CBDNet by further
adding perceptual loss [23] on relu3 3 of VGG-16 [54] to
the objective in Eqn. (7).

3.4. Training with Synthetic and Real Noisy Images

The noise model in Sec. 3.1 can be used to synthesize
any amount of noisy images. And we can also guarantee the
high quality of the clean images. Even though, the noise in
real photographs cannot be fully characterized by the noise
model. Fortunately, according to [43, 45, 1], nearly noise-
free image can be obtained by averaging hundreds of noisy
images from the same scene, and several datasets have been
built in literatures. In this case, the scenes are constrained
to be static, and it is generally expensive to acquire hun-
dreds of noisy images. Moreover, the nearly noise-free im-
age tends to be over-smoothing due to the averaging effect.
Therefore, synthetic and real noisy images can be combined
to improve the generalization ability to real photographs.

In this work, we use the noise model in Sec. 3.1 to gen-
erate the synthetic noisy images, and use 400 images from
BSD500 [40], 1600 images from Waterloo [36], and 1600
images from MIT-Adobe FiveK dataset [7] as the training
data. Specifically, we use the RGB image x to synthesize
clean raw image L = Mf−1(x) as a reverse ISP process
and use the same f to generate noisy image as Eqns. (2) or
(3), where f is a CRF randomly sampled from those in [16].
As for real noisy images, we utilize the 120 images from the
RENOIR dataset [4]. In particular, we alternatingly use the
batches of synthetic and real noisy images during training.
For a batch of synthetic images, all the losses in Eqn. (7) are
minimized to update CBDNet. For a batch of real images,
due to the unavailability of ground-truth noise level map,
only Lrec and LTV are considered in training. We empiri-
cally find that such training scheme is effective in improving
the visual quality for denoising real photographs.

4. Experimental Results
4.1. Test Datasets

Three datasets of real-world noisy images, i.e.,
NC12 [29], DND [45] and Nam [43], are adopted:

NC12 includes 12 noisy images. The ground-truth clean
images are unavailable, and we only report the denoising
results for qualitative evaluation.

DND contains 50 pairs of real noisy images and the cor-
responding nearly noise-free images. Analogous to [4],
the nearly noise-free images are obtained by carefully post-
processing of the low-ISO images. PSNR/SSIM results are
obtained through the online submission system.

Nam contains 11 static scenes and for each scene the
nearly noise-free image is the mean image of 500 JPEG
noisy images. We crop these images into 512×512 patches
and randomly select 25 patches for evaluation.

4.2. Implementation Details

The model parameters in Eqn. (7) are given by α = 0.3,
λ1 = 0.5, and λ2 = 0.05. Note that the noisy images from
Nam [43] are JPEG compressed, while the noisy images
from DND [45] are uncompressed. Thus we adopt the noise
model in Eqn. (2) to train CBDNet for DND and NC12, and
the model in Eqn. (3) to train CBDNet(JPEG) for Nam.

To train our CBDNet, we adopt the ADAM [26] algo-
rithm with β1 = 0.9. The method in [18] is adopted for
model initialization. The size of mini-batch is 32 and the
size of each patch is 128 × 128. All the models are trained
with 40 epochs, where the learning rate for the first 20
epochs is 10−3, and then the learning rate 5× 10−4 is used
to further fine-tune the model. It takes about three days to
train our CBDNet with the MatConvNet package [56] on a
Nvidia GeForce GTX 1080 Ti GPU.



Table 1: The quantitative results on the DND benchmark.

Method Blind/Non-blind Denoising on PSNR SSIM

CDnCNN-B [61] Blind sRGB 32.43 0.7900
EPLL [64] Non-blind sRGB 33.51 0.8244
TNRD [11] Non-blind sRGB 33.65 0.8306
NCSR [13] Non-blind sRGB 34.05 0.8351
MLP [6] Non-blind sRGB 34.23 0.8331
FFDNet [62] Non-blind sRGB 34.40 0.8474
BM3D [12] Non-blind sRGB 34.51 0.8507
FoE [52] Non-blind sRGB 34.62 0.8845
WNNM [17] Non-blind sRGB 34.67 0.8646
GCBD [10] Blind sRGB 35.58 0.9217
CIMM [5] Non-blind sRGB 36.04 0.9136
KSVD [3] Non-blind sRGB 36.49 0.8978
MCWNNM [59]. Blind sRGB 37.38 0.9294
TWSC [58] Blind sRGB 37.94 0.9403

CBDNet(Syn) Blind sRGB 37.57 0.9360
CBDNet(Real) Blind sRGB 37.72 0.9408
CBDNet(All) Blind sRGB 38.06 0.9421

4.3. Comparison with State-of-the-arts

We consider four blind denoising approaches, i.e.,
NC [29, 28], NI [2], MCWNNM [59] and TWSC [58] in our
comparison. NI [2] is a commercial software and has been
included into Photoshop and Corel PaintShop. Besides,
we also include a blind Gaussian denoising method (i.e.,
CDnCNN-B [61]), and three non-blind denoising methods
(i.e., CBM3D [12], WNNM [17], FFDNet [62]). When ap-
ply non-blind denoiser to real photographs, we exploit [9]
to estimate the noise SD..

NC12. Fig. 3 shows the results of an NC12 images. All
the competing methods are limited in removing noise in the
dark region. In comparison, CBDNet performs favorably in
removing noise while preserving salient image structures.

DND. Table 1 lists the PSNR/SSIM results released on
the DND benchmark website. Undoubtedly, CDnCNN-
B [61] cannot be generalized to real noisy photographs
and performs very poorly. Although the noise SD. is pro-
vided, non-blind Gaussian denoisers, e.g., WNNM [17],
BM3D [12] and FoE [52], only achieve limited perfor-
mance, mainly due to that the real noise is much different
from AWGN. MCWNNM [59] and TWSC [58] are spe-
cially designed for blind denoising of real photographs, and
also achieve promising results. Benefited from the realis-
tic noise model and incorporation with real noisy images,
our CBDNet achieves the highest PSNR/SSIM results, and
slightly better than MCWNNM [59] and TWSC [58]. CBD-
Net also significantly outperforms another CNN-based de-
noiser, i.e., CIMM [5]. As for running time, CBDNet takes
about 0.4s to process an 512 × 512 image. Fig. 4 pro-
vides the denoising results of an DND image. BM3D and
CDnCNN-B fail to remove most noise from real photo-
graph, NC, NI, MCWNNM and TWSC still cannot remove
all noise, and NI also suffers from the over-smoothing ef-
fect. In comparison, our CBDNet performs favorably in
balancing noise removal and structure preservation.

Table 2: The quantitative results on the Nam dataset [43].

Method Blind/Non-blind PSNR SSIM

NI [2] Blind 31.52 0.9466
CDnCNN-B [61] Blind 37.49 0.9272
TWSC [58] Blind 37.52 0.9292
MCWNNM [59] Blind 37.91 0.9322
BM3D [12] Non-blind 39.84 0.9657
NC [29] Blind 40.41 0.9731
WNNM [17] Non-blind 41.04 0.9768

CBDNet Blind 40.02 0.9687
CBDNet(JPEG) Blind 41.31 0.9784

Table 3: PSNR/SSIM results by different noise models.

Method DND [45] Nam [43]

CBDNet(G) 32.52 / 0.79 37.62 / 0.9290
CBDNet(HG) 33.70 / 0.9084 38.40 / 0.9453
CBDNet(G+ISP) 37.41 / 0.9353 39.03 / 0.9563
CBDNet(HG+ISP) 37.57 / 0.9360 39.20 / 0.9579
CBDNet(JPEG) — 40.51 / 0.9745

Nam. The quantitative and qualitative results are given in
Table 2 and Fig. 5. CBDNet(JPEG) performs much better
than CBDNet (i.e., ∼ 1.3 dB by PSNR) and achieves the
best performance in comparison to state-of-the-arts.

4.4. Ablation Studies
Effect of noise model. Instead of AWGN, we consider
heterogeneous Gaussian (HG) and in-camera processing
(ISP) pipeline for modeling image noise. On DND and
Nam, we implement four variants of noise models: (i)
Gaussian noise (CBDNet(G)), (ii) heterogeneous Gaus-
sian (CBDNet(HG)), (iii) Gaussian noise and ISP (CBD-
Net(G+ISP)), and (iv) heterogeneous Gaussian and ISP
(CBDNet(HG+ISP), i.e., full CBDNet. For Nam, CBD-
Net(JPEG) is also included. Table 3 shows the PSNR/SSIM
results of different noise models.
G vs HG. Without ISP, CBDNet(HG) achieves about
0.8 ∼ 1 dB gain over CBDNet(G). When ISP is included,
the gain by HG is moderate, i.e., CBDNet(HG+ISP) only
outperforms CBDNet(G+ISP) about 0.15 dB.
w/o ISP. In comparison, ISP is observed to be more crit-
ical for modeling real image noise. In particular, CBD-
Net(G+ISP) outperforms CBDNet(G) by 4.88 dB, while
CBDNet(HG+ISP) outperforms CBDNet(HG) by 3.87 dB
on DND. For Nam, the inclusion of JPEG compression in
ISP further brings a gain of 1.31 dB.
Incorporation of synthetic and real images. We imple-
ment two baselines: (i) CBDNet(Syn) trained only on syn-
thetic images, and (ii) CBDNet(Real) trained only on real
images, and rename our full CBDNet as CBDNet(All). Fig.
7 shows the denoising results of these three methods on a
NC12 image. Even trained on large scale synthetic image
dataset, CBDNet(Syn) still cannot remove all real noise,
partially due to that real noise cannot be fully character-
ized by the noise model. CBDNet(Real) may produce over-
smoothing results, partially due to the effect of imperfect



(a) Noisy image (b) WNNM [17] (c) FFDNet [62] (d) NC [29]

(e) NI [2] (f) MCWNNM [59] (g) TWSC [58] (h) CBDNet

Figure 3: Denoising results of another NC12 image by different methods.

(a) Noisy image (b) BM3D [12] (c) CDnCNN-B [61] (d) NC [29]

(e) NI [2] (f) MCWNNM [59] (g) TWSC [58] (h) CBDNet

Figure 4: Denoising results of a DND image by different methods.

(a) Noisy image (b) WNNM [17] (c) CDnCNN-B [61] (d) NC [29]

(e) NI [2] (f) MCWNNM [59] (g) TWSC [58] (h) CBDNet

Figure 5: Denoising results of a Nam image by different methods.



(a) Noisy (b) γ = 0.4 (c) γ = 0.7 (d) γ = 1.0 (e) γ = 1.3 (f) γ = 1.6

Figure 6: Results by interactive image denoising on two DND images.

(a) Noisy image (b) CBDNet(Syn)

(c) CBDNet(Real) (d) CBDNet(All)

Figure 7: Denoising results of CBDNet trained by different data.

noise-free images. In comparison, CBDNet(All) is effec-
tive in removing real noise while preserving sharp edges.
Also quantitative results of the three models on DND are
shown in Table 1. CBDNet(All) obtains better PSNR/SSIM
results than CBDNet(Syn) and CBDNet(Real).

Asymmetric loss. Fig. 8 compares the denoising results
of CBDNet with different α values, i.e., α = 0.5, 0.4 and
0.3. CBDNet imposes equal penalty to under-estimation
and over-estimation errors when α = 0.5, and more penalty
is imposed on under-estimation error when α < 0.5. It can
be seen that smaller α (i.e., 0.3) is helpful in improving the
generalization ability of CBDNet to unknown real noise.

4.5. Interactive Image Denoising

Given the estimated noise level map σ̂(y), we introduce
a coefficient γ (> 0) to interactively modify σ̂(y) to %̂ =
γ · σ̂(y). By allowing the user to adjust γ, the non-blind
denoising subnetwork takes %̂ and the noisy image as input
to obtain denoising result. Fig. 6 presents two real noisy
DND images as well as the results obtained using different
γ values. By specifying γ = 0.7 to the first image and

(a) Noisy image

noisy α = 0.5

α = 0.4 α = 0.3

(b) Denoised patches

Figure 8: Denoising results of CBDNet with different α values

γ = 1.3 to the second, CBDNet can achieve the results
with better visual quality in preserving detailed textures and
removing sophisticated noise, respectively. Such interactive
scheme can thus provide a convenient means for adjusting
the denosing results in practical scenario.

5. Conclusion
We presented a CBDNet for blind denoising of real-

world noisy photographs. The main findings of this work
are two-fold. First, realistic noise model, including het-
erogenous Gaussian and ISP pipeline, is critical in making
the learned model from synthetic images be applicable to
real-world noisy photographs. Second, the denoising per-
formance of a network can be boosted by incorporating both
synthetic and real noisy images in training. Moreover, by
introducing a noise estimation subnetwork into CBDNet,
we were able to utilize asymmetric loss to improve its gen-
eralization ability to real-world noise, and perform interac-
tive denoising conveniently.
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