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Introduction

This book is devoted to a theory of gradient flows in spaces which are not neces-
sarily endowed with a natural linear or differentiable structure. It is made of two
parts, the first one concerning gradient flows in metric spaces and the second one
devoted to gradient flows in the L2-Wasserstein space of probability measures1 on
a separable Hilbert space X (we consider the Lp-Wasserstein distance, p ∈ (1,∞),
as well).

The two parts have some connections, due to the fact that the Wasserstein
space of probability measures provides an important model to which the “metric”
theory applies, but the book is conceived in such a way that the two parts can
be read independently, the first one by the reader more interested to Non-Smooth
Analysis and Analysis in Metric Spaces, and the second one by the reader more
oriented to the applications in Partial Differential Equations, Measure Theory and
Probability.

The occasion for writing this book came with the NachDiplom course taught
by the first author in the ETH in Zürich in the fall of 2001. The course covered
only part of the material presented here, and then with the contribution of the
second and third author (in particular on the error estimates of Part I and on the
generalized convexity properties of Part II) the project evolved in the form of the
present book. As a result, it should be conceived in part as a textbook, since we
try to present as much as possible the material in a self-contained way, and in part
as a research book, with new results never appeared elsewhere.

Now we pass to a more detailed description of the content of the book,
splitting the presentation in two parts; for the bibliographical notes we mostly
refer to each single chapter.

Part I

In Chapter 1 we introduce some basic tools from Analysis in Metric Spaces. The
1This distance is also commonly attributed in the literature to Kantorovich-Rubinstein. Actu-

ally Prof. V.Bogachev kindly pointed out to us that the correct spelling of the name Wasserstein
should be “Vasershtein” [124] and that the attribution to Kantorovich and Rubinstein is much
more correct. We kept the attribution to Wassertein and the wrong spelling because this termi-
nology is by now standard in many recent papers on the subject (gradient flows) closely related
to our present work



2 Introduction

first one is the metric derivative: we show, following the simple argument in [7], that
for any metric space (S , d) and any absolutely continuous map v : (a, b) ⊂ R → S
the limit

|v′|(t) := lim
h→0

d (v(t + h), v(t))
|h|

exists for L 1-a.e. t ∈ (a, b) and d(v(s), v(t)) ≤ ∫ t

s
|v′|(r) dr for any interval (s, t) ⊂

(a, b). This is a kind of metric version of Rademacher’s theorem, see also [12] and
the references therein for the extension to maps defined on subsets of Rd.
In Section 1.2 we introduce the notion of upper gradient, a weak concept for the
modulus of the gradient, following with some minor variants the approach in [81],
[41]. We say that a function g : S → [0, +∞] is a strong upper gradient for
φ : S → (−∞,+∞] if for every absolutely continuous curve v : (a, b) → S the
function g ◦ v is Borel and

∣∣φ(v(t))− φ(v(s))
∣∣ ≤ ∫ t

s

g(v(r))|v′|(r) dr ∀ a < s ≤ t < b. (1)

In particular, if g ◦ v|v′| ∈ L1(a, b) then φ ◦ v is absolutely continuous and

|(φ ◦ v)′(t)| ≤ g(v(t))|v′|(t) for L 1-a.e. t ∈ (a, b). (2)

We also introduce the concept of weak upper gradient, where we require only that
(2) holds with the approximate derivative of φ ◦ v, whenever φ ◦ v is a function of
(essential) bounded variation. Among all possible choices of upper gradients, the
local [52] and global slopes of φ are canonical and respectively defined by:

|∂φ|(v) := lim sup
w→v

(
φ(v)− φ(w)

)+
d(v, w)

, lφ(v) := sup
w �=v

(
φ(v)− φ(w)

)+
d(v, w)

. (3)

In our setting, lφ(·) provides the natural “one sided” bounds for difference quo-
tients modeled on the analogous one [41] for Lipschitz functionals, where the pos-
itive part of φ(v)− φ(w) is replaced by the modulus.

We prove in Theorem 1.2.5 that the function |∂φ| is a weak upper gradient
for φ and that, if φ is lower semicontinuous, lφ is a strong upper gradient for φ.
In Section 1.3 we introduce our main object of study, the notion of curve of max-
imal slope in a general metric setting. The presentation here follows the one in
[8], on the basis of the ideas introduced in [52] and further developed in [53], [95].
To illustrate the heuristic ideas behind, let us start with the classical setting of a
gradient flow

u′(t) = −∇φ (u(t)) (4)

in a Hilbert space. If we take the modulus in both sides we have the equation
|u′|(t) = |∇φ(u(t))| which makes sense in a metric setting, interpreting the left
hand side as the metric derivative and the right hand side as an upper gradient
of φ (for instance the local slope |∂φ|, as in [8]). However, in passing from (4) to



Introduction 3

a scalar equation we clearly have a loss of information. This information can be
retained by looking at the derivative of the energy:

d

dt
φ (u(t)) = 〈u′(t),∇φ (u(t))〉 = −|u′(t)||∇φ (u(t)) | = −1

2
|u′|2(t)− 1

2
|∇φ (u(t)) |2.

The second equality holds iff u′ and −∇φ(u) are parallel and the third equality
holds iff |u′| and |∇φ(u)| are equal, so that we can rewrite (4) as

1
2
|u′|2(t) +

1
2
|∇φ (u(t)) |2 = − d

dt
φ (u(t)) .

Passing to an integral formulation and replacing |∇φ(u)| with g(u), where g is an
upper gradient of φ, we say that u is a curve of maximal slope with respect to g if

1
2

∫ t

s

(
|u′|2(r) + |g (u(r)) |2

)
dr ≤ φ (u(s))− φ (u(t)) (5)

for L 1-a.e. s, t with s ≤ t. In the case when g is a strong upper gradient, the
energy is absolutely continuous in time, the inequality above is an equality and it
holds for any s, t ≥ 0 with s ≤ t.
This concept of curve of maximal slope is very natural, as we will see, also in
connection with the problem of the convergence of the implicit Euler scheme.
Indeed, we will see that (5) has also a discrete counterpart, see (11) and (3.2.4).
A brief comparison between the notion of curves of maximal slope and the more
usual notion of gradient flows in Banach spaces is addressed in Section 1.4. We
shall see that the metric approach is useful even in a linear framework, e.g. when
the Banach space does not satisfy the Radon-Nikodým property (so that there
exist absolutely continuous curves which are not a.e. differentiable) and therefore
gradient flows cannot be characterized by a differential inclusion.

In Chapter 2 we study the problem of the existence of curves of maximal slope
starting from a given initial datum u0 ∈ S and the convergence of (a variational
formulation of) the implicit Euler scheme. Given a time step τ > 0 and a discrete
initial datum U0

τ ≈ u0, we use the classical variational problem

Un
τ ∈ argmin

{
φ(v) +

1
2τ

d2(v, Un−1
τ ) : v ∈ S

}
(6)

to find, given Un−1
τ , the next value Un

τ . We consider also the case of a variable
time step when τ depends on n as well (see Remark 2.0.3). Also, we have preferred
to distinguish the role played by the distance d (which, together with φ, governs
the direction of the flow) by the role played by an auxiliary topology σ on S , that
could be weaker than the one induced by d, ensuring compactness of the sublevel
sets of the minimizing functional of (6) (this ensures existence of minimizers in
(6)). In this introductory presentation we consider for simplicity the case of a
uniform step size τ independent of n and of an energy functional φ whose sublevel
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sets {φ ≤ c}, c ∈ R, are compact with respect to the distance topology; we also
suppose that U0

τ = u0, φ(u0) < +∞. This ensures a compactness property of the
discrete trajectories and therefore the existence of limit trajectories as τ ↓ 0 (the
so-called generalized minimizing movements in De Giorgi’s terminology, see [51]).
In Section 2.3 we state some general existence results for curves of maximal slope.
The first result is stated in Theorem 2.3.1 and it is the more basic one: we show
that if the relaxed slope

|∂−φ|(u) := inf
{

lim inf
n→∞ |∂φ|(un) : un → u, sup

n
{d(un, u), φ(un)} < +∞

}
(7)

is a weak upper gradient for φ, and if φ is continuous along bounded sequences in
S on which both φ and |∂φ| are bounded, then any limit trajectory is a curve of
maximal slope with respect to |∂−φ|(u). If |∂−φ|(u) is a strong upper gradient we
can drop the continuity assumption on φ and obtain in Theorem 2.3.3 that any
limit trajectory is a curve of maximal slope with respect to |∂−φ|(u). In particular
this leads to the energy identity

1
2

∫ t

s

(
|u′|2(r) + |∂−φ|2(u(r))

)
dr = φ (u(s))− φ (u(t)) (8)

for any interval [s, t] ⊂ [0,+∞). One can also show strong L2 convergence of several
quantities associated to discrete trajectories to their continuous counterpart, see
(2.3.6) and (2.3.7).
In Section 2.4 we consider the case of convex functionals. Here convexity or, more
generally, λ-convexity has to be understood (see [84], [97]) in the following sense:

φ(γt) ≤ (1− t)φ(γ0) + tφ(γ1)− 1
2
λ t(1− t)d2(γ0, γ1) ∀t ∈ [0, 1] (9)

for any constant speed minimal geodesic γt : [0, 1] → S (but more general class
of interpolating curves could also be considered). We show that for λ-convex func-
tionals with λ ≥ 0 the local and global slopes coincide. Moreover, for any λ-convex
functional the local slope |∂φ| is a a strong upper gradient and it is lower semicon-
tinuous, therefore the results of the previous section apply and we obtain existence
of curves of maximal slope with respect to |∂φ| and the energy identity (8). As-
suming λ > 0 we prove some estimates which imply exponential convergence of
u(t) to the minimum point of the energy as t → +∞. At this level of generality
an open problem is the uniqueness of curves of maximal slope: this problem is
open even in the case when S is a Banach space. We are able to get uniqueness,
together with error estimates for the Euler scheme, only under stronger convexity
assumptions (see Chapter 4 and also Section 11.1.2 in Part II, where uniqueness
is obtained in the Wasserstein space using its differentiable structure). Finally,
we prove in Theorem 2.4.15 a metric counterpart of Brezis’ result [28, Theorem
3.2, page. 57], showing that the right metric derivative of t �→ u(t) and the right
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derivative of t �→ φ (u(t)) exist at any t > 0; in addition the equation

d

dt+
φ(u(t)) = −|∂φ|2(u(t)) = −|u′

+|2(t) = −|∂φ|(u(t)) |u′
+|(t)

holds in a pointwise sense in (0,+∞).
Chapter 3 is devoted to some proofs of the convergence and regularity the-

orems stated in the previous chapter. We study in particular the Moreau–Yosida
approximation φτ of φ (a natural object of study in connection with (6)), defined
by

φτ (u) := inf
{

φ(v) +
1
2τ

d2(v, u) : v ∈ S

}
u ∈ S , τ > 0. (10)

Notice that since v = u is admissible in the variational problem defining φτ , we
have the obvious inequality

1
2τ

d2(u, uτ ) ≤ φ(u)− φ(uτ )

for any minimizer uτ (here we assume that for τ > 0 sufficiently small the infimum
is attained). Following an interpolation argument due to De Giorgi this elementary
inequality can be improved (see Theorem 3.1.4), getting

d2(uτ , u)
2τ

+
∫ τ

0

d2(ur, u)
2r2

dr = φ(u)− φ(uτ ). (11)

Combining this identity with the slope estimate (see Lemma 3.1.3)

|∂φ|(uτ ) ≤ d(uτ , u)
τ

,

we obtain the sharper inequality

d2(uτ , u)
2τ

+
∫ τ

0

|∂φ|2(ur)
2

dr ≤ φ(u)− φ(uτ ).

If we interpret r �→ ur as a kind of “variational” interpolation between u and uτ ,
and if we apply this estimate repeatedly to all pairs (u, uτ ) = (Un−1

τ , Un
τ ) arising

in the Euler scheme, we obtain a discrete analogue of (5). This is the argument
underlying the basic convergence Theorem 2.3.1. Notice that this variational in-
terpolation does not coincide (being dependent on φ), even in a linear framework,
with the standard piecewise linear interpolation.

Chapter 4 addresses the general questions related to the well posedness of
curves of maximal slope, i.e. uniqueness, continuous dependence on the initial
datum, convergence of the approximation scheme and possibly optimal error es-
timates, asymptotic behavior. All these properties have been deeply studied for
l.s.c. convex functionals φ in Hilbert spaces, where it is possible to prove that
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the Euler scheme (6) converges (with an optimal rate depending on the regular-
ity of u0) for each choice of initial datum in the closure of the domain of φ and
generates a contraction semigroup which exhibits a regularizing effect and can be
characterized by a system of variational inequalities.

We already mentioned the lackness of a corresponding Banach space theory:
if one hopes to reproduce the Hilbertian result in a purely metric framework it is
natural to think that the so called “parallelogram rule”∥∥∥γ0 + γ1

2

∥∥∥2

+
∥∥∥γ0 − γ1

2

∥∥∥2

=
1
2
‖γ0‖2 +

1
2
‖γ1‖2, (12)

which provides a metric characterization of Hilbertian norms, should play a crucial
role.

It is well known that (12) is strictly related to the uniform modulus of
convexity of the norm: in fact, considering a general convex combination γt =
(1− t)γ0 + tγ1 instead of the middle point between γ0 and γ1, and evaluating the
distance d(γt, v) := ‖γt− v‖ from a generic point v instead of 0, we easily see that
(12) can be rephrased as

d(γt, v)2 = (1− t)d(γ0, v)2 + td(γ1, v)2 − t(1− t)d(γ0, γ1)2 ∀ t ∈ [0, 1]. (13)

It was one of the main contribution of U. Mayer [96] to show that in a general
geodesically complete metric space the 2-convexity inequality

d(γt, v)2 ≤ (1− t)d(γ0, v)2 + td(γ1, v)2 − t(1− t)d(γ0, γ1)2 ∀ t ∈ [0, 1]. (14)

(where now γt is a constant speed minimal geodesic connecting γ0 to γ1: cf. (9))
is a sufficient condition to prove a well posedness result by mimicking the cele-
brated Crandall-Ligget generation result for contraction semigroups associated to
m-accretive operators in Banach spaces.

For a Riemannian manifold (14) is equivalent to a global nonpositivity condi-
tion on the sectional curvature: Aleksandrov introduced condition (14) for general
metric spaces, which are now called NPC (Non Positively Curved) spaces.

Unfortunately, the L2-Wasserstein space, which provides one of the main
motivating example of the present theory, satisfies the opposite (generally strict)
inequality, which characterizes Positively Curved space.

Our main result consists in the possibility to choose more freely the family of
connecting curves, which do not have to be geodesics any more: we simply suppose
that for each triple of points γ0, γ1, v there exists a curve γt connecting γ0 to γ1

and satisfying (14) and (9); we shall see in the second Part of this book that this
considerably weaker condition is satisfied by various interesting examples in the
L2-Wasserstein space.
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Even if the Crandall-Ligget technique cannot be applied under these more
general assumptions, we are able to prove a completely analogous generation result
for a regularizing contraction semigroup, together with the optimal error estimate
(here λ = 0) at each point t of the discrete mesh

d2(u(t), Uτ (t)) ≤ τ
(
φ(u0)− φτ (u0)

)
≤ τ2

2
|∂φ|2(u0).

Part II

Chapter 5 contains some preliminary and basic facts about Measure Theory and
Probability in a general separable metric space X . In the first section we introduce
the narrow convergence and discuss its relation with tightness, lower semicontinu-
ity, and p-uniform integrability; a particular attention is devoted in Section 5.1.2
to the case when X is an Hilbert space and the strong or weak topologies are con-
sidered. In the second section we introduce the push-forward operator µ �→ r#µ
between measures and discuss its main properties. Section 5.3 is devoted to the
disintegration theorem for measures and to the related and classical concept of
measure-valued map. The relationships between convergence of maps and narrow
convergence of the associated plans, typical in the theory of Young measures (see
for instance [128, 129, 23, 123, 20]), are presented in Section 5.4.
Finally, the last section of the chapter contains a discussion on the area formula
for maps f : A ⊂ Rd → Rd under minimal regularity assumptions on f (in the
same spirit of [77]), so that the classical formula for the change of density

f#

(
ρL d

)
=

ρ

|det∇f | ◦ f−1|f(A)L
d

still makes sense. These results apply in particular to the classical case when f is
the gradient of a convex function (this fact was proved first by a different argument
in [97]). In the same section we introduce the classical concepts of approximate
continuity and approximate differentiability which will play an important role in
establishing the existence and the differentiability of optimal transport maps.

Chapter 6 is entirely devoted to the general results on optimal transportation
problems between probability measures µ, ν: in the first section they are studied
in a Polish/Radon space X with a cost function c : X2 → [0,+∞]. We consider
the strong formulation of the problem with transport maps due to Monge, see
(6.0.1), and its weak formulation with transport plans

min
{∫

X2
c(x, y) dγ : γ ∈ Γ(µ, ν)

}
(15)

due to Kantorovich. Here Γ(µ, ν) denotes the class of all γ ∈ P(X2) such that
π1

#γ = µ and π2
#γ = ν (πi : X2 → X , i = 1, 2 are the canonical projections) and

in the following we shall denote by Γo(µ, ν) the class of optimal plans for (15).
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In Section 6.1 we discuss the duality formula

min (15) = sup
{∫

X

ϕ dµ +
∫

X

ψ dν : ϕ(x) + ψ(y) ≤ c(x, y)
}

for the Kantorovich problem and the necessary and sufficient optimality conditions
for transport plans. These can be expressed in two basically equivalent ways (under
suitable a-priori estimates from above on the cost function): a transport plan γ is
optimal if and only if its support is c-monotone, i.e.

n∑
i=1

c(xi, yσ(i)) ≥
n∑

i=1

c(xi, yi) for any permutation σ of {1, . . . , n}

for any choice of (xi, yi) ∈ supp γ, 1 ≤ i ≤ n. Alternatively, a transport plan γ is
optimal if and only if there exist (ϕ, ψ) such that ϕ(x) + ψ(y) ≤ c(x, y) for any
(x, y) and

ϕ(x) + ψ(y) = c(x, y) γ-a.e. in X ×X. (16)

The pair (ϕ, ψ) can be built in a canonical way, independent of the optimal plan
γ, looking for maximizing pairs in the duality formula (6.1.1). In the presentation
of these facts we have been following mostly [14], [71], [112], [126]; see also [61].
Section 6.2 is devoted to the problem of the existence of optimal transport maps
tν
µ, under the assumption that X is an Hilbert space and the initial measure

µ is absolutely continuous (in the infinite dimensional case we assume that the
measure µ vanishes on all Gaussian null sets); we consider mostly the case when
the cost function is the p-power, with p > 1, of the distance. We include also (see
Theorem 6.2.10) an existence result in the case when X is a separable Hilbert space
(compare with the results [68, 69, 89] in Wiener spaces, where the cost function
c(x, y) is finite only when x−y is in the Cameron-Martin space). The proofs follow
the by now standard approach of differentiating with respect to x the relation (16)
to obtain that for µ-a.e. x there is a unique y such that (16) holds (the relation
x �→ y then gives the desired optimal transport map y = tν

µ(x)).
The Wasserstein distances and their geometric properties are the main sub-

jects of Chapter 7. In Section 7.1 we define the p-Wasserstein distance and we
recall its basic properties, emphasizing the fact that the space Pp(X) endowed
with this distance is complete and separable but not locally compact when the
underlying space X is not compact.
The second section of Chapter 7 deals with the characterization of constant speed
geodesics in Pp(X) (here X is an Hilbert space), parametrized on the unit interval
[0, 1]. Given the endpoints µ0, µ1 of the geodesic, we show that there exists an
optimal plan γ between µ0 and µ1 such that

µt =
(
tπ2 + (1− t)π1

)
#

γ ∀t ∈ [0, 1]. (17)

Conversely, given any optimal plan γ, the formula above defines a constant speed
geodesic. In the case when plans are induced by transport maps, (17) reduces to

µt =
(
t tµ1

µ0
+ (1− t)i

)
#

µ0 ∀t ∈ [0, 1]. (18)
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We show also in Lemma 7.2.1 that there is a unique transport plan joining a point
in the interior of a geodesic to one of the endpoints; in addition this transport
plan is induced by a transport map (this does not require any absolute continuity
assumption on the endpoints and will provide a useful technical tool to approxi-
mate plans with transports).
In Section 7.3 we focus our attention on the L2-Wasserstein distance: we will prove
a semi-concavity inequality for the squared distance function ψ(t) := 1

2W 2
2 (µt, µ)

from a fixed measure µ along a constant speed minimal geodesic µt, t ∈ [0, 1]

W 2
2 (µt, µ) ≥ tW 2

2 (µ1, µ) + (1− t)W 2
2 (µ0, µ)− t(1− t)W 2

2 (µ0, µ1) (19)

and we discuss its geometric counterpart; we also provide a precise formula to
evaluate the time derivative of ψ and we show trough an explicit counterexample
that ψ does not satisfy any λ-convexity property, for any λ ∈ R. Conversely, (19)
shows that ψ is semi-concave and that P2(X) is a Positively curved (PC) metric
space.

Chapter 8 plays an important role in the theory developed in this book. In
the first section we review some classical results about the continuity/transport
equation

d

dt
µt +∇ · (vtµt) = 0 in X × (a, b) (20)

in a finite dimensional euclidean space X and the representation formula for its
solution by the Characteristics method, when the velocity vector field vt satisfies
a p-summability property with respect to the measures µt and a local Lipschitz
condition. When this last space-regularity properties does not hold, one can still
recover a probabilistic representation result, through Young measures in the space
of X-valued time dependent curves: this approach is presented in Section 8.2.
The main result of this chapter, presented in Section 8.3, is that the class of solu-
tions of the transport equation (20) (in the infinite dimensional case the equation
can still be interpreted in a weak sense using cylindrical test functions) coincides
with the class of absolutely continuous curves µt with values in the Wasserstein
space. Specifically, given an absolutely continuous curve µt one can always find
a “velocity field” vt ∈ Lp(µt;X) such that (20) holds; in addition, by construc-
tion we get that the norm of the velocity field can be estimated by the metric
derivative:

‖vt‖Lp(µt) ≤ |µ′|(t) for L 1-a.e. t ∈ (a, b). (21)

Conversely, any solution (µt, vt) of (20) with
∫ b

a
‖vt‖Lp(µt) dt < +∞ induces an

absolutely continuous curve µt, whose metric derivative can be estimated by
‖vt‖Lp(µt) for L 1-a.e. t ∈ (a, b). As a consequence of (8.2.1) we see that among
all velocity fields vt which produce the same flow µt, there is an optimal one with
smallest Lp norm, equal to the metric derivative of µt; we view this optimal field
as the “tangent” vector field to the curve µt. To make this statement more precise,
let us consider for instance the case when p = 2 and X is finite dimensional: in this
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case the tangent vector field is characterized, among all possible velocity fields, by
the property

vt ∈ {∇ϕ : ϕ ∈ C∞
c (X)}L2(µt;X)

for L 1-a.e. t ∈ (a, b). (22)

In general one has to consider a duality map jq between Lq and Lp (since gradi-
ents are thought as covectors, and therefore as elements of Lq) and gradients of
cylindrical test functions if X is infinite dimensional.
In the next Section 8.4 we investigate the properties of the above defined tangent
vector. A first consequence of the characterization of absolutely continuous curves
is a result, given in Proposition 8.4.6, concerning the infinitesimal behaviour of
the Wasserstein distance along absolutely continuous curves µt: given the tangent
vector field vt to the curve, we show that

lim
h→0

Wp(µt+h, (i + hvt)#µt)
|h| = 0 for L 1-a.e. t ∈ (a, b). (23)

Moreover the optimal transport plans between µt and µt+h, rescaled in a suit-
able way, converge to the optimal transport plan (i× vt)#µt associated to vt (see
(8.4.6)). This Proposition shows that the infinitesimal behaviour of the Wasser-
stein distance is governed by transport maps even in the situations when globally
optimal transport maps fail to exist (recall that the existence of optimal transport
maps requires assumptions on the initial measure µ).
Another interesting result is a formula for the derivative of the distance from a
fixed measure along any absolutely continuous curve µt in Pp(X): one can show
for any p ∈ (1,∞) that

d

dt
W p

p (µt, µ̄) = p

∫
X2
〈vt(x1), x1 − x2〉|x1 − x2|p−2 dγt(x1, x2) (24)

for any optimal plan γt between µt and µ̄; here vt is any admissible velocity
vector field associated to µt through the continuity equation (20). This “generic”
differentiability along absolutely continuous curves is sufficient for our purposes,
see for instance Theorem 11.1.4 where uniqueness of gradient flows is proved.
Another consequence of the characterization of absolutely continuous curves in
P2(X) is the variational representation formula

W 2
2 (µ0, µ1) = min

{∫ 1

0

‖vt‖2L2(µt)
dt :

d

dt
µt +∇ · (vtµt) = 0

}
. (25)

Again, these formulas still hold with the necessary adaptations if either p ∈
(1, +∞) (in this case we have a kind of Finsler metric) or X is infinite dimen-
sional. We also show that optimal transport maps belong to TanµPp(X) under
quite general conditions.
The characterization (22) of velocity vectors and the additional properties we
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listed above, strongly suggest to consider the following “regular” tangent bundle
to P2(X)

TanµP2(X) := {∇ϕ : ϕ ∈ C∞
c (X)}L2(µ;X) ∀µ ∈ P2(X), (26)

endowed with the natural L2 metric. Up to a L 1-negligible set in (a, b), it contains
and characterizes all the tangent velocity vectors to absolutely continuous curves.
In this way we recover in a general framework the Riemannian interpretation of the
Wasserstein distance developed by Otto in [107] (see also [106], [83] and also [38]):
indeed, the right hand side in (25) is nothing but the minimal length, computed
with respect to the metric tensor, of all absolutely continuous curves connecting
µ0 to µ1. This formula was independently discovered also in [21], and used for
numerical purposes. In the original paper [107], instead, (25) is derived using
formally the concept of Riemannian submersion and the family of maps φ �→ φ#µ
(indexed by µ) from Arnold’s space of diffeomorphisms into the Wasserstein space.
In the last Section 8.5 we compare the “regular” tangent space 26 with the tangent
cone obtained by taking the closure in Lp(µ;X) of all the optimal transport maps
and we will prove the remarkable result that these two notions coincide.

In Chapter 9 we study the convexity properties of functionals φ : Pp(X) →
(−∞, +∞]. Here “convexity” refers to convexity along geodesics (as in [97], [107],
where these properties have been first studied), whose characterization has been
given in the previous Section 7.2. More generally, as in the metric part of the
book, we consider λ-convex functionals as well, and in Section 9.2 we investigate
some more general convexity properties in P2(X). The motivation comes from the
fact, discussed in Part I, that error estimates for the implicit Euler approximation
of gradient flows seem to require joint convexity properties of the functional and
of the squared distance function. As shown by a formal computation in [107],
the function W 2

2 (·, µ) is not 1-convex along classical geodesics µt and we have
actually the reverse inequality (19) (cf. Corollary 7.3.2). It is then natural to look
for different kind of interpolating curves, along which the distance behaves nicely,
and for functionals which are convex along this new class of curves.
To this aim, given an absolutely continuous measure µ, we consider the family of
“generalized geodesics”

µt :=
(
(1− t)tµ0

µ + t tµ1
µ

)
#

µ t ∈ [0, 1],

among all possible optimal transport maps tµ0
µ , tµ1

µ . As usual we get rid of the
absolute continuity assumption on µ by considering the family of 3-plans{

γ ∈ P(X3) : (π1, π2)#γ ∈ Γo(µ, µ0), (π1, π3)#γ ∈ Γo(µ, µ1)
}

,

and the corresponding family of generalized geodesics:

µt :=
(
(1− t)π2 + tπ3

)
#

γ t ∈ [0, 1].
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We prove in Lemma 9.2.1 the key fact that W 2
2 (·, µ) is 1-convex along these gen-

eralized geodesics. Thanks to the theory developed in Part I, the convexity of
W 2

2 (·, µ) along the generalized geodesics leads to error estimates for the Euler
scheme, provided the energy functional φ is λ-convex, for some λ ∈ R, along any
curve in this family. It turns out that almost all the known examples of convex
functionals along geodesics, which we study in some detail in Section 9.3, sat-
isfy this stronger convexity property; following a terminology introduced by C.
Villani, we will consider functionals which are the sum of three different kinds of
contribution: the potential and the interaction energy, induced by convex functions
V, W : X → (−∞,+∞]

V(µ) =
∫

X

V (x) dµ(x), W(µ) =
∫

X2
W (x− y) dµ× µ(x),

and finally the internal energy

F(µ) :=
∫

Rd

F
( dµ

dL d
(x)

)
dL d(x), (27)

F : [0, +∞) → R being the energy density, which should satisfy an even stronger
condition than convexity.
The last Section 9.4 discusses the link between the geodesic convexity of the Rel-
ative Entropy functional (without any restriction on the dimension of the space;
we also consider a more general class of relative integral functionals, obtained
replacing L d in (27) by a general probability measure γ in X)

H(µ|γ) :=

⎧⎨⎩
∫

X

dµ

dγ
log

(
dµ

dγ

)
dγ if µ � γ,

+∞ otherwise,
(28)

and the “log” concavity of the reference measure γ, a concept which is strictly
related to various powerful functional analytic inequalities. The main result here
states that H(·|γ) is convex along geodesics in Pp(X) (here the exponent p can
be freely chosen, and also generalized geodesics in P2(X) can be considered) if
and only if γ is “log” concave, i.e. for every couple of open sets A, B ⊂ X we have

log γ((1− t)A + tB) ≥ (1− t) log γ(A) + t log γ(B) t ∈ [0, 1].

When X = Rd and γ � L d, this condition is equivalent to the representation
γ = e−V ·L d for some l.s.c. convex potential V : Rd → (−∞,+∞] whose domain
has not empty interior in Rd.

One of the goal of the last two chapters is to establish a theory sufficiently
powerful to reproduce in the Wasserstein framework the nice results valid for
convex functionals and their gradient flows in Hilbert spaces. In this respect an
essential ingredient is the concept of (Fréchet) subdifferential of a l.s.c. functional
φ : Pp(X) → (−∞,+∞] (see also [37, 38]), which is introduced and systematically
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studied in Chapter 10.
In order to motivate the relevant definitions and to suggest a possible guideline for
the development of the theory, we start by recalling five main properties satisfied
by the Fréchet subdifferential in Hilbert spaces. In Section 10.1 we prove that
a natural transposition of the same definitions in the Wasserstein space P2(X),
when only regular measures belong to the proper domain of φ (or even of its metric
slope |∂φ|), is possible and they enjoy completely analogous properties as in the
flat case. Since this exposition is easier to follow than the one of Section 10.3 for
arbitrary measures, here we briefly sketch the main points.
First of all, the subdifferential ∂φ(µ) contains all the vectors ξ ∈ L2(µ;X) such
that

φ(ν)− φ(µ) ≥
∫

X

〈ξ, tν
µ − i〉 dµ + o (W2(ν, µ)) . (29)

If µ is a minimizer of φ, then 0 ∈ ∂φ(µ); more generally, if µτ ∈ P2(X) minimizes

ν �→ 1
2τ

W 2
2 (ν, µ) + φ(ν),

then the corresponding “Euler” equation reads

tµ
µτ
− i

τ
∈ ∂φ(µτ ).

As in the linear case, when φ is convex along geodesics, the subdifferential (29)
can also be characterized by the global system of variational inequalities

φ(ν)− φ(µ) ≥
∫

X

〈ξ, tν
µ − i〉 dµ ∀ ν ∈ P2(X), (30)

and it is “monotone”, since

ξi ∈ ∂φ(µi), i = 1, 2 =⇒
∫

X

〈ξ2(t
µ2
µ1

(x))− ξ1(x), tµ2
µ1

(x)− x〉 dµ1(x) ≥ 0;

the fact that ξ2 is evaluated on tµ2
µ1

in the above formula should not be surprising,
since subdifferentials of φ in different measures µ1, µ2 belong to different vector
(L2(µi;X)) spaces (like in Riemannian geometry), so that they can be added or
subtracted only after a composition with a suitable transport map.
Closure properties like

µh → µ in P2(X), ξh ⇀ ξ, ξh ∈ ∂φ(µh) =⇒ ξ ∈ ∂φ(µ), (31)

(here one should intend the weak convergence of the vector fields ξh, which are
defined in the varying spaces L2(µh; X), according to the notion we introduced in
Section 5.4) play a crucial role: they hold for convex functionals and define the
class of “regular” functionals. In this class the minimal norm of the subdifferential
coincides with the metric slope of the functional

|∂φ|(µ) = min
{
‖ξ‖L2(µ;X) : ξ ∈ ∂φ(µ)

}
,
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and we can prove the chain rule

d

dt
φ(µt) =

∫
X

〈ξ,vt〉 dµt ∀ ξ ∈ ∂φ(µt),

for L 1-a.e. (approximate) differentiability point of t �→ φ(µt) along an absolutely
continuous curve µt, whose metric velocity is vt.
Section 10.2 is entirely devoted to study the (sub- and super-) differentiability
properties of the p-Wasserstein distances: here the assumption that the measures
are absolutely continuous w.r.t. the Lebesgue one is too restrictive, and our efforts
are mainly devoted to circumvent the difficulty that optimal transport maps do
not exist in general. Thus we should deal with plans instead of maps and the
results we obtain provide the right way to introduce the concept of subdifferential
in full generality, i.e. without restriction to absolutely continuous measures, in the
next Section 10.3.
To this aim, we need first to define, for given γ ∈ P(X2) and µ := π1

#γ, the class
of 3-plans

Γo(γ, ν) :=
{
γ ∈ P(X3) : (π1, π2)#µ = γ, (π1, π3)#µ ∈ Γo(µ, ν)

}
.

Notice that in the particular case when γ = (i × ξ)#µ is induced by a transport
map and µ is absolutely continuous, then Γo(γ, ν) contains only one element

Γo(γ, ν) =
{(

i× ξ × tν
µ

)
#

µ
}

(32)

Thus we say that γ ∈ P(X2) is a general plan subdifferential in ∂φ(µ) if its
first marginal is µ, its second marginal has finite q-moment, and the asymptotic
inequality (29) can be rephrased as

φ(ν)− φ(µ)−
∫

X3
〈x2, x3 − x1〉 dµ(x1, x2, x3) ≥ o

(
W2(µ, ν)

)
, (33)

for some 3-plan µ (depending on ν) in Γo(γ, ν).
When φ is convex (a similar characterization also holds for λ-convexity) along
geodesics, this asymptotic property can be reformulated by means of a system of
variational inequalities, analogous to (30): γ ∈ ∂φ(µ) if and only if

∀ ν ∈ Pp(X) ∃µ ∈ Γo(γ, ν) : φ(ν) ≥ φ(µ) +
∫

X3
〈x2, x3 − x1〉 dµ. (34)

If condition (32) holds then conditions (33) and (34) reduce of course to (29) and
(30) respectively.
This general concept of subdifferential, whose elements are transport plans rather
than tangent vectors (or maps) is useful to establish the typical identities of Convex
Analysis: we extend to this more general situation all the main properties we
discussed in the linear case and we also show that in the λ-convex case tools of
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Γ-convergence theory fit quite well in our approach, by providing flexible closure
and approximation results for subdifferentials.
In particular, we prove in Theorem 10.3.10 that, as in the classical Hilbert setting,
the minimal norm of the subdifferential (in the present case, the q-moment of its
second marginal) coincides with the descending slope:

min
{∫

X2
|x2|q dγ : γ ∈ ∂φ(µ)

}
= |∂φ|q(µ), (35)

and the above minimum is assumed by a unique plan ∂◦φ(µ), which provides the
so called “minimal selection” in ∂φ(µ) and enjoys many distinguished properties
among all the subdifferentials in ∂φ(µ). Notice that this result is more difficult
than the analogous property in linear spaces, since the q-moment of (the second
marginal of) a plan is linear map, and therefore it is not strictly convex. Besides
its intrinsic interest, this result provides a “bridge” between De Giorgi’s metric
concept of gradient flow, based on the descending slope, and the concepts of gra-
dient flow which use the differentiable structure (we come to this point later on).
The last Section 10.4 collects many examples of subdifferentials for the various
functionals considered in Chapter 9; among the others, here we recall Example
10.4.6, where the geometric investigations of Chapter 7 yield the precise expres-
sion for the subdifferential of the opposite 2-Wasserstein distance, Example 10.4.8,
where we show that even in infinite dimensional Hilbert spaces the Relative Fisher
Information coincides with the squared slope of the Relative Entropy H(·|γ), when
γ is log-concave, and 10.4.7 where the subdifferential of a general functional re-
sulting from the sum of the potential, interaction, and internal energies

φ(µ) =
∫

Rd

V (x) dµ(x) +
∫

R2d

W (x− y) dµ× µ(x, y) +
∫

Rd

F (dµ/dL d) dx,

is characterized: under quite general assumptions on V, W, F (which allow for
potentials with arbitrary growth and also assuming the value +∞) we will show
that the minimal selection ∂◦φ(µ) is in fact induced by the transport map w =
∂◦φ(µ) ∈ Lq(µ; Rd) defined by

ρw = ∇LF (ρ) + ρ∇v + ρ(∇W ∗ ρ), µ = ρ ·L d, LF (ρ) = ρF ′(ρ)− F (ρ).

In the last Chapter 11 we define gradient flows in Pp(X), X being a separable
Hilbert space, and we combine the main points presented in this book to study
these flows under many different points of view.
For the sake of simplicity, in this introduction we consider only the more relevant
case p = 2: a locally absolutely continuous curve µt : (0, +∞) → P2(X), with
|µ′| ∈ L2

loc(0, +∞) is said to be a gradient flow relative to the functional φ :
P2(X) → (−∞, +∞] if its velocity vector vt satisfies

−vt ∈ ∂φ(µt), for L 1-a.e. t ∈ (0, +∞). (36)
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For functionals φ satisfying the regularity property (31), in Theorem 11.1.3 we
show that this “differential” concept of gradient flow is equivalent to the “metric”
concept of curve of maximal slope introduced in Part I, see in particular Section 1.3
in Chapter 1. The equivalence passes through the pointwise identity (35).
When the functional is λ-convex along geodesics, in Theorem 11.1.4 we show that
gradient flows are uniquely determined by their initial condition

lim
t↓0

µt = µ0.

The proof of this fact depends on the differentiability properties of the squared
Wasserstein distance studied in Section 8.3. When the measures µt are absolutely
continuous and the functional is λ-convex along geodesics, this condition reduces
to the system ⎧⎪⎪⎪⎨⎪⎪⎪⎩

µ̇t +∇ · (vtµt) = 0 in X × (0,+∞),

φ(ν) ≥ φ(µt)−
∫

X

〈vt, t
ν
µt
− i〉 dµt + λW 2

2 (ν, µt)

∀ν ∈ P2(X), for L 1-a.e. t > 0.

(37)

Section 11.1.3 is devoted to a general convergence result (up to extraction of
a suitable subsequence) of the Minimizing Movement scheme, following a direct
approach, which is intrinsically limited to the case when p = 2 and the measures
µt are absolutely continuous. Apart from these restrictions, the functional φ could
be quite general, so that only a relaxed version of (36) can be obtained in the
limit.
Existence of gradient flows is obtained in Theorem 11.2.1 for initial data µ0 ∈ D(φ)
and l.s.c. functionals which are λ-convex along generalized geodesics in P2(X):
this strong result is one of the main applications of the abstract theory developed
in Chapter 4 to the Wasserstein framework and, besides optimal error estimates for
the convergence of the Minimizing Movement scheme, it provides many additional
informations on the regularity the semigroup properties, the asymptotic behaviour
as t → +∞, the pointwise differential properties, the approximations, and the
stability w.r.t. perturbations of the functional of the gradient flows. Applications
are then given in Section 11.2.1 to various evolutionary PDE’s in finite and infinite
dimensions, modeled on the examples discussed in Section 10.4.
In Section 11.3 we consider the wider class of regular functionals in Pp(X) even
for p �= 2 and we prove existence of gradient flows when µ0 belongs to the domain
of φ and suitable local compactness properties of the sublevel of φ are satisfied.
This approach uses basically the compactness/energy arguments of the theory
developed in Chapter 2 and the equivalence between gradient flows and curves of
maximal slope.

The Appendix collects some auxiliary results: the first two sections are de-
voted to lower semicontinuity and convergence results for integral functionals on
product spaces, when the integrand satisfies only a normal or Carathéodory con-
dition, and one of the marginals of the involved sequence of measures is fixed.
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In the last two sections we follow the main ideas of the theory of Positively
curved (PC) metric space and we are able to identify the geometric tangent cone
TanµP2(X) to P2(X) at a measure µ. In a general metric space this tangent
space is obtained by taking the completion in a suitable distance of the abstract
set of all the curve which are minimal constant speed geodesics at least in a small
neighborhood of their starting point µ.
In our case, by identifying these geodesics with suitable transport plans, we can
give an explicit characterization of the tangent space and we will see that, if
µ ∈ Pr

2 (X), it coincides with the closure in L2(µ; X) of the gradients of smooth
functions and with the closed cone generated by all optimal transport maps, thus
with the tangent space (10.4.1) we introduced in Section 8.4.
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Notation

|v′|(t) Metric derivative of v : (a, b) → S , see Theorem 1.1.2
ACp(a, b;S ) Absolutely continuous v : (a, b) → S with |v′| ∈ Lp(a, b)
Br(x) Open ball of radius r centered at x in a metric space
D(φ) Domain of the functional φ, see (1.2.1)
|∂φ|(v), lφ(v) Local and global slopes of φ, see Definition 1.2.4
Lip(φ, A) Lipschitz constant of the function φ in the set A
∂φ(v) Fréchet subdifferential of φ in Banach (1.4.7), Hilbert (10.0.1),

or Wasserstein spaces, see Definition 10.1.1 and (10.3.12)
∂◦φ(µ) Minimal selection map in the subdifferential, see Section 1.4

and (10.1.14)
|∂−φ|(v) Relaxed slope of φ, see (2.3.1)
Φ(τ, u; v) Quadratic perturbation of φ by d2(u, ·)/2τ , see (2.0.3b)
Jτ [u] Resolvent operator, see (2.0.5)
Uτ (t) Piecewise constant interpolation of Un

τ , see (2.0.7)
MM(Φ; u0) Minimizing movement of φ, see Definition 2.0.6
GMM(Φ;u0) Generalized minimizing movement of φ, see Definition 2.0.6
φτ (u) Moreau–Yosida approximation of φ, see Definition 3.1.1
Ũτ (t) De Giorgi’s interpolation of Un

τ , see (3.2.1)
B(X) Borel sets in a separable metric space X
C0

b (X) Space of continuous and bounded real functions defined on X
C∞

c (Rd) Space of smooth real functions with compact support in Rd

P(X) Probability measures in a separable metric space X
Pp(X) Probability measures with finite p-th moment, see (5.1.22)
Ppq(X ×X) Probability measures with finite p, q-th moments, see (10.3.2)
Lp(µ; X) Lp space of µ-measurable X-valued maps, see (5.4.3)
X� The Hilbert space X endowed with a weaker (normed) topolo-

gy, see Section 5.1.2
f̃ , ∇̃f Approximate limit and differential of a function f , see

Definition 5.5.1
supp µ Support of µ, see (5.0.1)
span C Linear envelope generated by a subset C of a vector space
r#µ Push-forward of µ through r, see (5.2.1)
πi, πi,j Projection operators on a product space X , see (5.2.9)
Γ(µ1, µ2) 2-plans with given marginals µ1, µ2

Γo(µ1, µ2) Optimal 2-plans with given marginals µ1, µ2

i Identity map
tν
µ Optimal transport map between µ and ν, see (7.1.4)

Wp(µ, ν) p-th Wasserstein distance between µ and ν
Wµ(µ, ν) Pseudo-Wasserstein distance induced by µ, see (7.3.2)
Wp,µ(µ, ν) Pseudo pth-Wasserstein distance induced µ, see (10.2.9)
πi→j

t , πi→j,k
t Interpolated projections, see (7.2.2)

jp Duality map between Lp and Lp′
, see (8.3.1)
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Πd(X) d-dimensional projections on a Hilbert space X, see
Definition 5.1.11

Cyl(X) Cylindrical test functions on a Hilbert space X, see
Definition 5.1.11

γ̄(x) Barycentric projection of a plan γ in P(X ×X), see (5.4.9)
Tanµt

Pp(X) Tangent bundle to Pp(X), see Definition 8.4.1
Γo(µ1 2, µ3) 3-plans γ such that π1,3

# γ ∈ Γo(π1
#µ1 2, µ3)

∂φ(µ) Extended Fréchet subdifferential of φ at µ, see
Definitions 10.3.1

∂◦φ(µ) Minimal selection plan in the subdifferential, see
Theorem 10.3.11
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Gradient Flow in Metric Spaces





Chapter 1

Curves and Gradients in Metric
Spaces

As we briefly discussed in the introduction, the notion of gradient flows in a metric
space S relies on two elementary but basic concepts: the metric derivative of
an absolutely continuous curve with values in S and the upper gradients of a
functional defined in S . The related definitions are presented in the next two
sections (a more detailed treatment of this topic can be found for instance in
[15]); the last one deals with curves of maximal slope.
When S is a Banach space and its distance is induced by the norm, one can
expect that curves of maximal slope could also be characterized as solutions of
(doubly, if S is not Hilbertian) nonlinear (sub)differential inclusions: this aspect
is discussed in the last part of this chapter.
Throughout this chapter (and in the following ones of this first part)

(S , d) will be a given complete metric space; (1.0.1)

we will denote by (a, b) a generic open (possibly unbounded) interval of R.

1.1 Absolutely continuous curves and metric derivative

Definition 1.1.1 (Absolutely continuous curves). Let (S , d) be a complete metric
space and let v : (a, b) → S be a curve; we say that v belongs to ACp(a, b; S ), for
p ∈ [1, +∞], if there exists m ∈ Lp(a, b) such that

d(v(s), v(t)) ≤
∫ t

s

m(r) dr ∀ a < s ≤ t < b. (1.1.1)

In the case p = 1 we are dealing with absolutely continuous curves and we will
denote the corresponding space simply with AC(a, b; S ).
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We recall also that a map ϕ : (a, b) → R is said to have finite pointwise
variation if

sup

{
n−1∑
i=1

|ϕ(ti+1)− ϕ(ti)| : a < t1 < · · · < tn < b

}
< +∞. (1.1.2)

It is well known that any bounded monotone function has finite pointwise varia-
tion and that any function with finite pointwise variation can be written as the
difference of two bounded monotone functions.

Any curve in ACp(a, b; S ) is uniformly continuous; if a > −∞ (resp. b <
+∞) we will denote by v(a+) (resp. v(b−)) the right (resp. left) limit of v, which
exists since S is complete. The above limit exist even in the case a = −∞ (resp.
b = +∞) if v ∈ AC(a, b; S ). Among all the possible choices of m in (1.1.1) there
exists a minimal one, which is provided by the following theorem (see [7, 8, 15]).

Theorem 1.1.2 (Metric derivative). Let p ∈ [1, +∞]. Then for any curve v in
ACp(a, b;S ) the limit

|v′|(t) := lim
s→t

d(v(s), v(t))
|s− t| (1.1.3)

exists for L 1-a.e. t ∈ (a, b). Moreover the function t �→ |v′|(t) belongs to Lp(a, b),
it is an admissible integrand for the right hand side of (1.1.1), and it is minimal
in the following sense:

|v′|(t) ≤ m(t) for L 1-a.e. t ∈ (a, b),
for each function m satisfying (1.1.1).

(1.1.4)

Proof. Let (yn) ⊂ S be dense in v((a, b)) and let dn(t) := d(yn, v(t)). Since all
functions dn are absolutely continuous in (a, b) the function

d(t) := sup
n∈N

|d′n(t)|

is well defined L 1-a.e. in (a, b). Let t ∈ (a, b) be a point where all functions dn are
differentiable and notice that

lim inf
s→t

d(v(s), v(t))
|s− t| ≥ sup

n∈N

lim inf
s→t

|dn(s)− dn(t)|
|s− t| = d(t).

This inequality together with (1.1.1) shows that d ≤ m L 1-a.e., therefore d ∈
Lp(a, b). On the other hand the definition of d gives

d(v(s), v(t)) = sup
n∈N

|dn(s)− dn(t)| ≤
∫ t

s

d(r) dr ∀s, t ∈ (a, b), s ≤ t,

and therefore

lim sup
s→t

d(v(s), v(t))
|s− t| ≤ d(t)

at any Lebesgue point t of d. �
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In the next remark we deal with the case when the target space is a dual
Banach space, see for instance [12].

Remark 1.1.3 (Derivative in Banach spaces). Suppose that S = B is a reflex-
ive Banach space (respectively: a dual Banach space): then a curve v belongs to
ACp(a, b;S ) if and only if it is differentiable (resp. weakly∗-differentiable) at L 1-
a.e. point t ∈ (a, b), its derivative v′ belongs to Lp(a, b; B) (resp. to Lp

w∗(a, b;B))
and

v(t)− v(s) =
∫ t

s

v′(r) dr ∀ a < s ≤ t < b. (1.1.5)

In this case,
‖v′(t)‖B = |v′|(t) L 1-a.e. in (a, b). (1.1.6)

Lemma 1.1.4 (Lipschitz and arc-length reparametrizations). Let v be a curve in
AC(a, b;S ) with length L :=

∫ b

a
|v′|(t) dt.

(a) For every ε > 0 there exists a strictly increasing absolutely continuous map

sε : (a, b) → (0, Lε) with sε(a+) = 0, sε(b−) = Lε := L + ε(b− a), (1.1.7)

and a Lipschitz curve v̂ε : (0, Lε) → S such that

v = v̂ε ◦ sε, |v̂′ε| ◦ sε =
|v′|

ε + |v′| ∈ L∞(a, b). (1.1.8)

The map sε admits a Lipschitz continuous inverse tε : (0, Lε) → (a, b) with Lips-
chitz constant less than ε−1, and v̂ε = v ◦ tε.
(b) There exists an increasing absolutely continuous map

s : (a, b) → [0, L] with s(a+) = 0, s(b−) = L, (1.1.9)

and a Lipschitz curve v̂ : [0, L] → S such that

v = v̂ ◦ s, |v̂′| = 1 L 1-a.e. in [0, L]. (1.1.10)

Proof. Let us first consider the case (a) with ε > 0; we simply define

sε(t) :=
∫ t

a

(
ε + |v′|(θ)

)
dθ, t ∈ (a, b); (1.1.11)

sε is strictly increasing with s′ε ≥ ε, sε

(
(a, b)

)
= (0, Lε), its inverse map tε :

(0, Lε) → (a, b) satisfies a Lipschitz condition with constant ≤ ε−1, and

t′ε ◦ sε =
1

ε + |v′| L 1-a.e. in (a, b).

Setting v̂ε := v ◦ tε, for every choice of ti = tε(si) with 0 < s1 < s2 < Lε we have

d(v̂ε(s1), v̂ε(s2)) = d(v(t1), v(t2)) ≤
∫ t2

t1

|v′|(t) dt

≤ sε(t2)− sε(t1)− ε(t2 − t1) = s2 − s1 − ε(t2 − t1),
(1.1.12)
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so that v̂ε is 1-Lipschitz and can be extended to [0, Lε] since v̂ε(0+) = v(a+) and
v̂ε(Lε−) = v; dividing the above inequality by s2 − s1 and passing to the limit as
s2 → s1 we get the bound

|v̂′ε| ◦ sε ≤ 1− ε

ε + |v′| =
|v′|

ε + |v′| L 1-a.e. in (a, b). (1.1.13)

On the other hand,

d(v(t2), v(t1)) = d(v̂ε(s2), v̂ε(s1)) ≤
∫ s2

s1

|v̂′ε|(s) ds

=
∫ t2

t1

|v̂′ε|(sε(t)) s′ε(t) dt ≤
∫ t2

t1

(|v̂′
ε| ◦ sε

) (
ε + |v′|) dt.

(1.1.14)

By (1.1.4) we obtain

|v′| ≤ (|v̂′ε| ◦ sε

) (
ε + |v′|) L 1-a.e. in (a, b),

which, combined with the converse inequality (1.1.13), yields (1.1.8).

(b) We define s := s0 for ε = 0 by (1.1.11) and we consider the left continuous,
increasing map

t(s) := min
{
t ∈ [a, b] : s(t) = s

}
, s ∈ [0, L],

which satisfies s(t(s)) = s in [0, L]. Moreover, still denoting by v its continuous
extension to the closed interval [a, b], we observe that

t(s(t)) ≤ t, v(t(s(t)) = v(t) ∀ t ∈ [a, b], (1.1.15)

since

d(v(t(s(t)), v(t)) =
∫ t

t(s(t))

|v′|(θ) dθ = s(t)− s(t) = 0.

Defining v̂ := v ◦ t as above, (1.1.12) (with ε = 0) shows that v̂ is 1-Lipschitz and
(1.1.15) yields v = v̂ ◦ s. Finally, (1.1.14) shows that |v̂′| ◦ s = 1 L 1-a.e. in (a, b).

�

1.2 Upper gradients

In this section we define a kind of “modulus of the gradient” for real valued
functions defined on metric spaces, following essentially the approach of [81, 41].

Let φ : S → (−∞,+∞] be an extended real functional, with proper effective
domain

D(φ) := {v ∈ S : φ(v) < +∞} �= ∅. (1.2.1)
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If S is a vector space and φ is differentiable, then |∇φ| has the following natural
variational characterization:

g ≥ |∇φ| ⇔
∣∣(φ ◦ v

)′∣∣ ≤ g(v)|v′|
for every regular curve v : (a, b) → S .

(1.2.2)

We want to define a notion of “upper gradient” g for φ modeled on (1.2.2). A first
possibility is to use an integral formulation of (1.2.2) along absolutely continuous
curves.

Definition 1.2.1 (Strong upper gradients, [81, 41]). A function g : S → [0,+∞]
is a strong upper gradient for φ if for every absolutely continuous curve v ∈
AC(a, b;S ) the function g ◦ v is Borel and

∣∣φ(v(t))− φ(v(s))
∣∣ ≤ ∫ t

s

g(v(r))|v′|(r) dr ∀ a < s ≤ t < b. (1.2.3)

In particular, if g ◦ v|v′| ∈ L1(a, b) then φ ◦ v is absolutely continuous and

|(φ ◦ v)′(t)| ≤ g(v(t))|v′|(t) for L 1-a.e. t ∈ (a, b). (1.2.4)

We also introduce a weaker notion, based on a pointwise formulation:

Definition 1.2.2 (Weak upper gradients). A function g : S → [0,+∞] is a weak
upper gradient for φ if every curve v ∈ AC(a, b;S ) such that

(i) g ◦ v|v′| ∈ L1(a, b);

(ii) φ ◦ v is L 1-a.e. equal in (a, b) to a function ϕ with finite pointwise variation
in (a, b);

we have
|ϕ′(t)| ≤ g(v(t))|v′|(t) for L 1-a.e. t ∈ (a, b). (1.2.5)

In this case, if φ ◦ v ∈ AC(a, b) then ϕ = φ ◦ v and (1.2.3) holds.

Remark 1.2.3 (Approximate derivative). Condition (ii) of Definition 1.2.2 is equiv-
alent to say that φ ◦ v has essential bounded variation in (a, b). Accordingly, con-
dition (1.2.5) could be stated without any reference to ϕ by replacing ϕ′(t) with
the approximate derivative of φ ◦ v (see Definition 5.5.1).

Among all the possible choices for an upper gradient of φ, we recall the
definition of the local and global slopes (see also [41], [52]):

Definition 1.2.4 (Slopes). The local and global slopes of φ at v ∈ D(φ) are defined
by

|∂φ|(v) := lim sup
w→v

(
φ(v)− φ(w)

)+
d(v, w)

, lφ(v) := sup
w �=v

(
φ(v)− φ(w)

)+
d(v, w)

. (1.2.6)
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Theorem 1.2.5 (Slopes are upper gradients). The function |∂φ| is a weak upper
gradient for φ. If φ is d-lower semicontinuous then lφ is a strong upper gradient
for φ.

Proof. In order to show that |∂φ| is a weak upper gradient we consider an ab-
solutely continuous curve v : (a, b) → S satisfying the assumptions of Definition
1.2.2; we introduce the set

A :=
{
t ∈ (a, b) : φ(v(t)) = ϕ(t), ϕ is differentiable at t, ∃ |v′|(t)}

and we observe that (a, b) \A is L 1-negligible.
If the derivative of ϕ vanishes at t ∈ A then (1.2.5) is surely satisfied, therefore

it is not restrictive to consider points t ∈ A such that ϕ′(t) �= 0. In order to fix
the ideas, let us suppose that t ∈ A and ϕ′(t) > 0; since d(v(s), v(t)) �= 0 when
s ∈ A \ {t} belongs to a suitable neighborhood of t we have

|ϕ′(t)| = ϕ′(t) = lim
s↑t,s∈A

φ(v(t))− φ(v(s))
t− s

= lim
s↑t,s∈A

φ(v(t))− φ(v(s))
d(v(s), v(t))

d(v(s), v(t))
t− s

≤ lim sup
s↑t,s∈A

φ(v(t))− φ(v(s))
d(v(s), v(t))

lim
s↑t,s∈A

d(v(s), v(t))
t− s

≤ |∂φ|(v(t)) |v′|(t).

In order to check the second part of the Theorem, we notice first that v �→ lφ(v) is
lower semicontinuous in S . Indeed, if w �= v and vh → v then w �= vh for h large
enough and therefore

lim inf
h→∞

lφ(vh) ≥ lim inf
h→∞

(
φ(vh)− φ(w)

)+
d(vh, w)

≥
(
φ(v)− φ(w)

)+

d(v, w)
.

By taking the supremum w.r.t. w the lower semicontinuity follows.
Let now v be a curve in AC(a, b; S ) satisfying lφ(v)|v′| ∈ L1(a, b) and notice

that lφ(v) is lower semicontinuous, therefore Borel. We apply Lemma 1.1.4 with
ε = 0, and for the increasing and absolutely continuous map s := s0 : [a, b] → [0, L]
defined by (1.1.11) we set

v̂(s) := v(t(s)), ϕ(s) := φ(v̂(s)), g(s) := lφ(v̂(s)) s ∈ (0, L)

and we observe that for each couple s1, s2 ∈ (0, L) we have (ϕ(s1) − ϕ(s2))+ ≤
g(s1)|s2 − s1|, hence

|ϕ(s1)− ϕ(s2)| ≤ max[g(s1), g(s2)] |s2 − s1|. (1.2.7)

The 1-dimensional change of variables formula gives∫ L

0

g(s) ds =
∫ b

a

lφ(v(t))|v′|(t) dt < +∞, (1.2.8)
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therefore g ∈ L1(0, L) and (1.2.7) shows that ϕ belongs to the metric Sobolev
space W 1,1

m (0, L) in the sense of Haj�lasz [80]. By a difference quotients argument
this condition implies (see Lemma 1.2.6 below and [15]) that ϕ belongs to the con-
ventional Sobolev space W 1,1(0, L) and we simply have to check that ϕ coincides
with its continuous representative. Since v̂ is a Lipschitz map we immediately see
that ϕ is lower semicontinuous in (0, L): therefore continuity follows if we show
that

lim sup
ε↓0

1
2ε

∫ ε

−ε

ϕ(s + r) dr ≤ ϕ(s) for all s ∈ (0, L). (1.2.9)

Invoking (1.2.7) we get

lim sup
ε↓0

1
2ε

∫ ε

−ε

(
ϕ(s + r)− ϕ(s)

)
dr ≤ lim sup

ε↓0

1
2ε

∫ ε

−ε

(
ϕ(s + r)− ϕ(s)

)+
dr

≤ lim sup
ε↓0

1
2ε

∫ ε

−ε

g(s + r) |r| dr ≤ lim sup
ε↓0

1
2

∫ ε

−ε

g(s + r) dr = 0.

Since φ(v(t)) = φ(v̂(s(t))) = ϕ(s(t)), we obtain the absolute continuity of φ ◦ v;
using the inequality lφ(v) ≥ |∂φ|(v) and the the fact that |∂φ| is an upper gradient
we conclude. �

Lemma 1.2.6. Let ϕ, g ∈ L1(a, b) with g ≥ 0 and assume that there exists a L 1-
negligible set N ⊂ (a, b) such that

|ϕ(s)− ϕ(t)| ≤ (g(s) + g(t)) |s− t| ∀s, t ∈ (a, b) \N.

Then ϕ ∈ W 1,1(a, b) and |ϕ′| ≤ 2g L 1-a.e. in (a, b).

Proof. For every ζ ∈ C∞
c (a, b) we have

T (ζ) : =
∫ b

a

ϕ(t) ζ ′(t) dt = lim
h→0

∫ b

a

ϕ(t)
ζ(t + h)− ζ(t)

h
dt

= lim
h→0

∫ b

a

ϕ(t− h)− ϕ(t)
h

ζ(t) dt ≤ lim sup
h→0

∫ b

a

(
g(t− h) + g(t)

)|ζ(t)| dt

= 2
∫ b

a

g(t)|ζ(t)| dt ≤ 2‖g‖L1(a,b) sup
[a,b]

|ζ|.

We obtain from Riesz representation theorem that T can be represented by a
signed measure λ in (a, b) having total variation less that 2‖g‖L1(a,b). Then, the
inequality ∣∣∣∣∣

∫ b

a

ζ(t) dλ

∣∣∣∣∣ ≤ 2
∫ b

a

|ζ(t)||g(t)| dt ∀ζ ∈ C∞
c (a, b)

immediately gives that |λ| ≤ 2|g|L 1. �
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1.3 Curves of maximal slope

The notion of curves of maximal slope have been introduced (in a slight different
form) in [52] and further developed in [53, 95]. Our presentation essentially follows
the ideas of [8], combining them with the “upper gradient” point of view.

In order to motivate the main Definition 1.3.2 of this section, let us initially
consider the finite dimensional case of the Euclidean space S := Rd with scalar
product 〈·, ·〉 and norm |·|. The gradient∇φ of a smooth real functional φ : S → R

can be defined taking the derivative of φ along regular curves, i.e.

g = ∇φ ⇔
(
φ ◦ v

)′ = 〈g(v), v′〉
for every regular curve v : (0, +∞) → S ,

(1.3.1)

and its modulus |∇φ| has the natural variational characterization (1.2.2). In this
case, a steepest descent curve u for φ, i.e. a solution of the equation

u′(t) = −∇φ(u(t)) t > 0, (1.3.2)

can be characterized by the following two scalar conditions in (0, +∞)(
φ ◦ u

)′ = −|∇φ(u)| |u′|, (1.3.3a)
|u′| = |∇φ(u)|; (1.3.3b)

in fact, (1.3.3a) forces the direction of the velocity u′ to be opposite to the gradi-
ent one, whereas the modulus of u′ is determined by (1.3.3b). (1.3.3a,b) are also
equivalent, via Young inequality, to the single equation

(
φ ◦ u

)′ = −1
2
|u′|2 − 1

2
|∇φ(u)|2 in (0,+∞). (1.3.3c)

It is interesting to note that we can impose (1.3.3a,b) or (1.3.3c) as a system of
differential inequalities in the couple (u, g), the first one saying that the function
g is an upper bound for the modulus of the gradient (an “upper gradient”, as we
have seen in the previous section)∣∣(φ ◦ v

)′∣∣ ≤ g(v)|v′| for every regular curve v : (0, +∞) → S , (1.3.4a)

the second one imposing that the functional φ decreases along u as much as possible
compatibly with (1.3.4a), i.e.(

φ ◦ u
)′ ≤ −g(u)|u′| in (0, +∞), (1.3.4b)

and the last one prescribing the dependence of |u′| on g(u)

|u′| = g(u) in (0,+∞), (1.3.4c)
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or even in a single formula(
φ ◦ u

)′ ≤ −1
2
|u′|2 − 1

2
g(u)2 in (0,+∞). (1.3.4d)

Whereas equations (1.3.1), (1.3.2) make sense only in a Hilbert-Riemannian frame-
work, the formulation (1.3.4a,b,c,d) is of purely metric nature and can be extended
to more general metric spaces (S , d), provided we understand |u′| as the metric
derivative of u. Of course, the concept of upper gradient provides only an up-
per estimate for the modulus of ∇φ in the regular case, but it is enough to define
steepest descent curves, i.e. curves which realize the minimal selection of d

dtφ(u(t))
compatible with (1.2.4).

Remark 1.3.1 (p, q variants). Instead of (1.3.2) we can consider more general
nonlinear coupling between time derivative and gradient, which naturally appears
when a non euclidean distance in S is considered: in the last section of the present
chapter we will briefly discuss the case of a Banach space.
In the easier Euclidean setting, the simplest generalization leads to an equation of
the type

j(u′(t)) = −∇φ(u(t)) t > 0, with j(v) = α(|v|) v

|v| (1.3.5)

for a continuous, strictly increasing and surjective map α : [0,+∞) → [0,+∞).
In this case, the velocity u′ still takes the opposite direction of ∇φ(u) yielding
(1.3.3a), but equation (1.3.3b) for its modulus is substituted by the monotone
condition

α(|u′|) = |∇φ(u)|. (1.3.6)

Introducing the strictly convex primitive function ψ of α and its conjugate ψ∗

ψ(z) :=
∫ z

0

α(r) dr, ψ∗(z∗) := max
x∈[0,+∞)

z∗x− ψ(x), z, z∗ ∈ [0,+∞), (1.3.7)

(1.3.5) is therefore equivalent to(
φ ◦ u

)′ ≤ −ψ(|u′|)− ψ∗(|∇φ(u)|) in (0, +∞), (1.3.8)

which, in the metric framework, could be relaxed to(
φ ◦ u

)′ ≤ −ψ(|u′|)− ψ∗(g((u)) in (0, +∞), (1.3.9)

for an upper gradient g satisfying (1.3.4a).
Even if many results could be extended to this general situation, for the sake of
simplicity in the present book we will consider only a p, q-setting, where p, q ∈
(1, +∞) are conjugate exponent p−1 + q−1 = 1, corresponding to the choices

α(z) := zp−1, ψ(z) =
1
p
zp, ψ∗(z∗) =

1
q
(z∗)q,
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and to the equation

jp(u′(t)) = −∇φ(u(t)), jp(v) :=

{
|v|p−2v for v �= 0,
0 if v = 0.

(1.3.10)

Thus the idea is that (1.3.3a) is still imposed and (1.3.3b) is substituted by

|u′|p−1 = |∇φ(u)| or, equivalently, |u′| = |∇φ(u)|q−1 (1.3.11)

and therefore, taking into account the strict convexity of | · |p, in the purely metric
framework we end up with the inequality(

φ ◦ u
)′ ≤ −1

p
|u′|p − 1

q
g(u)q in (0, +∞). (1.3.12)

Recalling (1.3.4a), (1.3.4d), and (1.3.12), we introduce the following defini-
tion:

Definition 1.3.2 (Curves of maximal slope). We say that a locally absolutely con-
tinuous map u : (a, b) → S is a p-curve of maximal slope, p ∈ (1,+∞) (we will
often omit to mention p in the quadratic case), for the functional φ with respect
to its upper gradient g, if φ ◦ u is L 1-a.e. equal to a non-increasing map ϕ and

ϕ′(t) ≤ −1
p
|u′|p(t)− 1

q
gq(u(t)) for L 1-a.e. t ∈ (a, b). (1.3.13)

Remark 1.3.3. Observe that (1.2.5) and (1.3.13) yield

|u′|p(t) = gq(u(t)) = −ϕ′(t) L 1-a.e. in (a, b), (1.3.14)

in particular u ∈ ACp
loc(a, b; S ) and g ◦ u ∈ Lq

loc(a, b). If u is a curve of maximal
slope for φ with respect to a strong upper gradient g, then φ(u(t)) ≡ ϕ(t) is a
locally absolutely continuous map in (a, b) and the energy identity

1
p

∫ t

s

|u′|p(r) dr +
1
q

∫ t

s

gq(r) dr = φ(u(s))− φ(u(t)) (1.3.15)

holds in each interval [s, t] ⊂ (a, b).

1.4 Curves of maximal slope in Hilbert and Banach
spaces

We conclude this chapter dedicated to slopes and upper gradients by giving a
closer look to the case when

S = B is a Banach space with norm ‖ · ‖; (1.4.1)
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we denote by 〈·, ·〉 the duality between B and its dual B′ and by ‖ · ‖∗ the dual
norm in B′.
Let us first consider a C1 functional φ : B → R: the chain rule (1.3.1) characterizes
the Frèchet differential Dφ : B → B′, which is defined by

g = Dφ(v) ⇔ lim
w→v

φ(w)− φ(v)− 〈g, w − v〉
‖w − v‖ = 0 ∀ v ∈ B.

Since the metric derivative |v′| of a regular curve v coincides with the norm of the
velocity vector ‖v′‖, it is easy to show that upper gradients involve the dual norm
of Dφ(v): by (1.2.2) g is an upper gradient for φ iff

g ≥ ‖Dφ(v)‖∗ ∀ v ∈ B. (1.4.2)

In this case, the steepest descent conditions (1.3.3a), (1.3.4b) become

〈Dφ(u), u′〉 =
(
φ ◦ u

)′ ≤ −‖u′‖ g(u) ≤ −‖u′‖ ‖Dφ(u)‖∗, (1.4.3)

whereas (1.3.3b) could take the more general p, q form (1.3.11) (but see also (1.3.6))

‖u′‖p−1 = ‖Dφ(u)‖∗. (1.4.4)

Combining (1.4.3) and (1.4.4) we end up with the doubly nonlinear differential
inclusion

Jp(u′(t)) � −Dφ(u(t)) t > 0, (1.4.5)

where Jp : B → 2B′
is the p-duality map defined by

ξ ∈ Jp(v) ⇔ 〈ξ, v〉 = ‖v‖p = ‖ξ‖q
∗ = ‖v‖ ‖ξ‖∗, (1.4.6)

which is single valued if the norm ‖ · ‖ of B is differentiable.
We want now to extend the previous considerations to a non-smooth setting.

Recall that the Fréchet subdifferential ∂φ(v) ⊂ B′ of a functional φ : B →
(−∞, +∞] at a point v ∈ D(φ) is defined by

ξ ∈ ∂φ(v) ⇐⇒ lim inf
w→v

φ(w)− (φ(v) + 〈ξ, w − v〉)
‖w − v‖B

≥ 0. (1.4.7)

As usual, D(∂φ) denotes the subset of B given by all the elements v ∈ D(φ) such
that ∂φ(v) �= ∅; ∂φ(v) is a (strongly) closed convex set and we will suppose that

∂φ(v) is weakly∗ closed ∀ v ∈ D(∂φ); (1.4.8)

(1.4.8) is surely satisfied if e.g. B is reflexive or φ is convex (see the next Propo-
sition 1.4.4). ∂◦φ(v) is the subset of elements of minimal (dual) norm in ∂φ(v),
which reduces to a single point if the dual norm of B is strictly convex. Notice
that

|∂φ|(v) = lim sup
w→0

φ(v)− φ(v + w)
‖w‖ ≤ lim sup

w→0
〈ξ, w

‖w‖〉 ≤ ‖ξ‖∗ ∀ ξ ∈ ∂φ(v).
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Therefore, if we extend the function v �→ ‖∂◦φ(v)‖∗ to +∞ outside of D(∂φ) we
have

|∂φ|(v) ≤ ‖∂◦φ(v)‖∗ ∀ v ∈ B, (1.4.9)

and we obtain from Theorem 1.2.5 that

the map v �→ ‖∂◦φ(v)‖∗ is a weak upper gradient for φ. (1.4.10)

In the next proposition we characterize the (L 1-a.e. differentiable) curves of max-
imal slope with respect to the upper gradient (1.4.10) as the solution of a suitable
doubly nonlinear differential inclusion: in the case when S is a reflexive Banach
space and φ is convex, these kind of evolution equations have been studied in
[43, 42]; we refer to these contributions and to [127] for many examples of partial
differential equations which can be studied by this abstract approach.

Proposition 1.4.1 (Doubly nonlinear differential inclusions). Let us consider a
proper l.s.c. functional φ : B → (−∞,+∞] satisfying (1.4.8) and a curve u ∈
ACp(a, b;B) which is differentiable at L 1-a.e. point of (a, b) (see Remark 1.1.3).
If u is a p-curve of maximal slope for φ with respect to the weak upper gradient
(1.4.10), then

Jp(u′(t)) ⊃ −∂◦φ(u(t)) �= ∅ for L 1-a.e. t ∈ (a, b); (1.4.11)

in particular, if the norm of B is differentiable, we have

Jp(u′(t)) = −∂◦φ(u(t)) for L 1-a.e. t ∈ (a, b). (1.4.12)

Conversely, if u satisfies (1.4.11) and φ ◦ u is (L 1-a.e. equal to) a non increasing
function, then u is a p-curve of maximal slope.

Proof. Let us suppose that u is a p-curve of maximal slope for φ with respect to
the upper gradient (1.4.10) and let ϕ be a non increasing map L 1-a.e. equal to
φ ◦ u satisfying (1.3.13).
Then we can find a L 1-negligible subset N ⊂ (a, b) such that for every t ∈ (a, b)\N
u and ϕ are differentiable at t, φ(u(t)) = ϕ(t), the inequality of (1.3.13) holds,
and Definition (1.4.13) yields the chain rule

ϕ′(t) = 〈ξ, u′(t)〉 ∀ ξ ∈ ∂◦φ(u(t)). (1.4.13)

It follows that for t ∈ (a, b) \N

〈ξ, u′(t)〉 = ϕ′(t) ≤ −1
p
‖u′(t)‖p − 1

q
‖ξ‖q

∗ ∀ ξ ∈ ∂◦φ(u(t)), (1.4.14)

which yields (1.4.11). When the norm of B is differentiable the duality map Jp is
single-valued and the dual norm ‖ · ‖∗ is strictly convex, so that ∂◦φ contains at
most one element: therefore (1.4.11) reduces to (1.4.12).
The converse implication follows by the same argument, since (1.4.11) and the
chain rule (1.4.13) yields (1.3.13). �
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Corollary 1.4.2 (Gradient flows in Hilbert spaces). If S = B = B′ is an Hilbert
space, usually identified with its dual through the Risz isomorphism J2, any 2-curve
of maximal slope u ∈ AC2

loc(a, b; B) with respect to ‖∂◦φ(v)‖ satisfies the gradient
flow equation

u′(t) = −∂◦φ(u(t)) for L 1-a.e. t ∈ (a, b). (1.4.15)

Remark 1.4.3 (Non reflexive Banach spaces). The previous Proposition 1.4.1
strongly depends on the L 1-a.e. differentiability of the considered curve and we
have seen in Remark 1.1.3 that absolutely continuous curves enjoy this property
if the underlying Banach space B satisfies the Radon-Nikodým property, e.g. if
it is reflexive. One of the advantage of the purely metric formulation (1.3.13) is
that it does not require any vector differentiability property of those curves and
therefore it can be stated in any Banach space.

The next section will provide general existence and approximation results for
curves of maximal slope with respect to the upper gradient |∂φ|: it is therefore
important to know if ‖∂◦φ(v)‖∗ = |∂φ|(v). In the following Proposition we deal
with the case when φ is convex and l.s.c., proving in particular that ‖∂◦φ(v)‖∗ is
a strong upper gradient and coincides with |∂φ|(v) and lφ(v).

Proposition 1.4.4 (Slope and subdifferential of convex functions). Let B be a
Banach space and let φ : B → (−∞, +∞] be convex and l.s.c. Then

ξ ∈ ∂φ(v) ⇐⇒ φ(w)− (φ(v) + 〈ξ, w − v〉) ≥ 0 ∀w ∈ B (1.4.16)

for any v ∈ D(φ), the graph of ∂φ in B ×B′ is strongly-weakly∗ closed (in par-
ticular (1.4.8) holds), with

ξn ∈ ∂φ(vn), vn → v, ξn ⇀∗ ξ =⇒ ξ ∈ ∂φ(v), φ(vn) → φ(v), (1.4.17)

and

|∂φ|(v) = min
{
‖ξ‖∗ : ξ ∈ ∂φ(v)

}
= ‖∂◦φ(v)‖∗ ∀ v ∈ B. (1.4.18)

Moreover
|∂φ|(v) = lφ(v) ∀ v ∈ B, (1.4.19)

so that, by Theorem 1.2.5, |∂φ|(v) is a strong upper gradient.

Proof. The equivalence (1.4.16) and the identity (1.4.19) are simple consequence
of the monotonicity of difference quotients of convex functions.

For every w ∈ B the map (v, ξ) �→ φ(w) − φ(v) − 〈ξ, w − v〉 is upper-
semicontinuous with respect to the strong-weak∗-topology in the product B×B′;
thus by (1.4.16) the graph of ∂φ is closed in this topology; this shows the first
implication of (1.4.17). the second one follows from (1.4.16), which yields

|φ(v)− φ(vn)| ≤ ‖vn − v‖(‖ξn‖∗ + ‖ξ‖∗
)
.
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The inequality

φ(v)− φ(v + w)
‖w‖ ≤ 〈ξ, w

‖w‖〉 ∀w ∈ B \ {0}

yields that lφ(v) can be estimated from above by ‖ξ‖B′ for any ξ ∈ ∂φ. Assuming
that lφ(v) is finite, to conclude the proof we need only to show the existence of
ξ ∈ ∂φ(v) such that ‖ξ‖B′ ≤ lφ(v). By definition we know that

−lφ(v)‖w‖ ≤ φ(v + w)− φ(v) ∀w ∈ B, (1.4.20)

i.e. the convex epigraph{
(w, r) ∈ B ×R : r ≥ φ(v + w)− φ(v)

}
of the function w �→ φ(v + w)− φ(v) is disjoint from the open convex hypograph
in B × R {

(w, r) ∈ B ×R : r < −lφ(v)‖w‖}
Therefore we can apply a geometric version of Hahn-Banach theorem to obtain
ξ ∈ B′, α ∈ R such that

−lφ(v)‖w‖ ≤ 〈ξ, w〉+ α ≤ φ(v + w)− φ(v) ∀w ∈ B.

Taking w = 0 we get α = 0; the first inequality shows that ‖ξ‖B′ ≤ lφ(v) and the
second one, according to (1.4.16), means that ξ ∈ ∂φ(v). �

The above results can be easily extended to C1 perturbations of convex
functions.

Corollary 1.4.5 (C1-perturbations of convex functions). Let us suppose that φ :
B → (−∞, +∞] admits the decomposition φ = φ1+φ2, where φ1 is a proper, l.s.c.,
and convex functional, whereas φ2 : B → R is of class C1. Then ∂φ = ∂φ1 + Dφ2

satisfies (1.4.17) and (1.4.18), and |∂φ|(v) is a strong upper gradient for φ.

Proof. The sum rule ∂φ = ∂φ1 + Dφ2 follows directly from Definition (1.4.7) and
the differentiability of φ2.
In order to check the closure property (1.4.17), we observe that if ξn ∈ ∂φ(vn) and
(vn, ξn) → (v, ξ) in the strong-weak∗ topology of B ×B′ then

ξn −Dφ2(vn) ∈ ∂φ1(vn), ξn −Dφ2(vn) ∗
⇀ ξ −Dφ2(v) ∈ ∂φ2(v),

since Dφ2 is continuous and φ1 is convex: we obtain ξ ∈ ∂φ(v) and φ1(vn) → φ1(v)
which yield (1.4.17) being φ2 continuous.

Finally, since we can add to φ1 and subtract to φ2 an arbitrary linear and
continuous functional, in order to prove (1.4.18) it is not restrictive to suppose
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that Dφ2(v) = 0; it follows that

|∂φ|(v) = lim sup
w→v

(
φ(w)− φ(v)

)+
‖w − v‖

≥ lim sup
w→v

(
φ1(w)− φ1(v)

)+

‖w − v‖ − lim sup
w→v

|φ2(w)− φ2(w)|
‖w − v‖

= |∂φ1|(v) = ‖∂◦φ1(v)‖∗ = ‖∂◦φ(v)‖∗.

Combining this inequality with the opposite one (1.4.9), we conclude. �
Let us rephrase the last conclusion of the previous Corollary, which is quite

interesting in the case B does not satisfy the Radon-Nikodým property.

Remark 1.4.6 (“Upper” chain rule for (even non reflexive) Banach spaces).
If φ : B → (−∞,+∞] is lower semicontinuou convex function (or a C1 perturba-
tion as in Corollary 1.4.5), v is a curve in AC(a, b;B) with ‖∂◦φ‖x∗ |v′| ∈ L1(a, b),
then φ◦v is absolutely continuous in (a, b); if B has the Radon-Nikodým property,
then

d

dt
φ ◦ v(t) = 〈∂◦φ(v(t)), v′(t)〉 for L 1-a.e. t in (a, b);

for general Banach spaces, one can always write the upper estimate∣∣∣ d

dt
φ ◦ v(t)

∣∣∣ ≤ ‖∂◦φ(v(t))‖∗|v′|(t) for L 1-a.e. t in (a, b). (1.4.21)

In the next chapter we will see how the last two proposition can be extended
to a general class of functions defined on metric spaces and satisfying suitable
geometric convexity conditions.





Chapter 2

Existence of Curves of Maximal
Slope and their Variational
Approximation

The main object of our investigation is the solution of the following Cauchy prob-
lem in the complete metric space (S , d):

Problem 2.0.1. Given a functional φ : S → (−∞, +∞] and an initial datum u0 ∈
D(φ), find a (p-)curve u of maximal slope in (0, +∞) for φ such that u(0+) = u0.

To keep our presentation simpler we focus our attention to the case p = 2;
at the end of each section we will add some comments on the validity of the main
statements in the general case p ∈ (1,+∞).

The interest of studying Problem 2.0.1 in such an abstract framework re-
lies also on the approximation scheme which can be used to construct a curve
of maximal slope. In the Euclidean setting one of the simplest ways to solve nu-
merically (1.3.2) is provided by the Implicit Euler Method: for a given sequence
τ := {τn}+∞

n=1 of (strictly positive) time steps with |τ | := supn τn < +∞ associated
to the partition of the time interval (0, +∞)

Pτ := {0 = t0τ < t1τ < · · · < tnτ < · · · }, In
τ := (tn−1

τ , tnτ ],

τn = tnτ − tn−1
τ , lim

n→∞ tnτ =
+∞∑
k=1

τk = +∞,
(2.0.1)

one should find an approximate solution Un
τ ≈ u(tnτ ), n = 1, . . ., by solving itera-

tively the equation in the unknown Un
τ starting from an initial value U0

τ ≈ u0

Un
τ − Un−1

τ

τn
= −∇φ(Un

τ ) n = 1, . . . (2.0.2)
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Since (2.0.2) is the Euler equation associated to the functional in the variable V

Φ(τn, Un−1
τ ;V ) :=

1
2τn

|V − Un−1
τ |2 + φ(V ) V ∈ S , (2.0.3a)

one can restrict the set of solutions of (1.3.14) to the minimum points of (2.0.3a),
which can also be settled in a general metric context, simply replacing the modulus
by the distance

Φ(τn, Un−1
τ ; V ) :=

1
2τn

d2(V, Un−1
τ ) + φ(V ) V ∈ S . (2.0.3b)

We thus end up with the recursive scheme⎧⎨⎩
U0

τ is given; whenever U1
τ , . . . , Un−1

τ are known,

find Un
τ ∈ S : Φ(τn, Un−1

τ ;Un
τ ) ≤ Φ(τn, Un−1

τ ;V ) ∀V ∈ S .
(2.0.4)

The (multivalued) operator which provides all the solution Un
τ of (2.0.4) for a

given Un−1
τ is sometimes called resolvent operator : for a general τ > 0 and U ∈ S

it is defined by

Jτ [U ] := argmin Φ(τ, U ; ·), i.e.
Uτ ∈ Jτ [U ] ⇔ Φ(τ, U ;Uτ ) ≤ Φ(τ, U ;V ) ∀V ∈ S .

(2.0.5)

Thus a sequence {Un
τ }+∞

n=0 solves the recursive scheme (2.0.4) if and only if

Un
τ ∈ Jτn

[Un−1
τ ] ∀n ≥ 1. (2.0.6)

Definition 2.0.2 (Discrete solution). Let us suppose that for a choice of τ and
U0

τ ∈ S a sequence {Un
τ }+∞

n=1 solving (2.0.4) exists, so that we can interpolate the
discrete values by the piecewise constant function Uτ , defined by

Uτ (0) = U0
τ , Uτ (t) ≡ Un

τ if t ∈ (tn−1
τ , tnτ ], n ≥ 1. (2.0.7)

We call Uτ a “discrete solution” corresponding to the partition Pτ .

Remark 2.0.3 (Uniform partitions). From a theoretical point of view, the simpler
choice of uniform partitions of time step τ > 0

Pτ := {0, τ, 2τ, · · · }, tnτ := nτ, τn := τ = |τ |, (2.0.8)

would be sufficient to state all the following existence results; in this case for
U0

τ := u0 we get
Uτ (t) ∈ (Jt/n)n[u0] with τ := t/n. (2.0.9)

On the other hand, we will also address the related issue of deriving optimal error
estimates for this kind of approximation scheme and in this case the possibility to
choose freely the time steps is a crucial feature from the numerical point of view.
The reader which is not interested in such a numerical issue can simply reformulate
all the following theorems in terms of the uniform choice (2.0.8).
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t
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τ
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U Uτ (t)

Figure 2.1: Partition of the time interval and piecewise constant interpolant.

We can thus state our main approximation problem:

Problem 2.0.4. Find conditions on (u0, U
0
τ , φ,S ) which ensure that the minimiza-

tion algorithm (2.0.4) is solvable and, up to a possible extraction of a subsequence
(τ k) of admissible partitions with |τ k| ↓ 0, the curves Uτk

converge to a solution
of Problem 2.0.1 with respect to a suitable topology σ on S .

Remark 2.0.5 (The choice of the topology σ). Since the simplest choice would be
to study the convergence of the scheme with respect to the topology induced by
the distance d on S , one may wonder about the opportunity to introduce another
topology σ on S . On the other hand, many examples (e.g. in the framework of
reflexive Banach spaces) show the importance to deal with an auxiliary weaker
topology, which allows for more flexibility to derive compactness properties. The
idea here is to distinguish between the role played by the distance d (which is an
essential ingredient of the approximation scheme through the functional Φ and
of the definition of gradient flow through the notions of metric derivative (1.1.3)
and upper gradient) and the convergence properties of the approximation scheme
(which a priori can be studied with respect to different topologies).
From now on we adopt the convention to write

un
σ
⇀ u for the convergence w.r.t. σ, un

d→ u for the convergence w.r.t. d.

Besides the natural Hilbertian setting (see e.g. [28, 115] and a more detailed
list of references in [102]), Problem 2.0.4 has been considered by many authors
in various particular contexts [93, 127, 6, 94, 98, 83, 107]; in [51] (see also [8])
E. De Giorgi proposed a general approach to this kind of problems, suggesting
that the iteration scheme itself could be used to define and select an appropriate
notion of “gradient flow” in a non Euclidean setting; similar ideas [45] occur in
the definition of the so called “mild solutions” for nonlinear evolution equations in
Banach spaces. Here we borrow and we adapt from [51] an important definition.
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Definition 2.0.6 (Minimizing movements). For a given functional Φ defined as in
(2.0.3b) and an initial datum u0 ∈ S we say that a curve u : [0,+∞) → S
is a mimimizing movement for Φ starting from u0 if for every partition τ (with
sufficiently small |τ |) there exists a discrete solution Uτ defined as in (2.0.4),
(2.0.7) such that

lim
|τ |↓0

φ(U0
τ ) = φ(u0), lim sup

|τ |↓0
d(U0

τ , u0) < +∞,

Uτ (t) σ
⇀ u(t) ∀ t ∈ [0,+∞).

(2.0.10)

We denote by MM(Φ; u0) the collection of all the minimizing movements for Φ
starting from u0.
Analogously, we say that a curve u : [0,+∞) → S is a generalized mimimizing
movement for Φ starting from u0 if there exists a sequence of partitions τ k with
|τ k| ↓ 0 and a corresponding sequence of discrete solutions Uτk

defined as in
(2.0.4), (2.0.7) such that

lim
k→∞

φ(U0
τk

) = φ(u0), lim sup
k→∞

d(U0
τk

, u0) < +∞,

Uτk
(t) σ

⇀ u(t) ∀ t ∈ [0, +∞).
(2.0.11)

We denote by GMM(Φ; u0) the collection of all the generalized minimizing move-
ments for Φ starting from u0.

The easiest question introduced by Problem 2.0.4, i.e. the existence of discrete
solutions corresponding to given partitions τ of (0, +∞), can be easily approached
by the direct method of the Calculus of Variations, which ensures the existence
of a minimum for (2.0.3b) under suitable lower semicontinuity, coercivity, and
compactness assumptions: in the next (sub)section we fix the main topological
properties we will deal with.

Remark 2.0.7 (The p-scheme). When we want to approximate p-curves of maximal
slope, we simply change the Definition (2.0.3b) of Φ as

Φ(τn, V ;Un
τ ) :=

1
p τp−1

n

dp(V, Un−1
τ ) + φ(V ) V ∈ S . (2.0.12)

2.1 Main topological assumptions

As usual, we are dealing with a complete metric space (S , d); in the sequel we are
supposing that

σ is an Hausdorff topology on S compatible with d,

in the sense that σ is weaker than the topology induced by d and d is sequentially
σ-lower semicontinuous:

(un, vn) σ
⇀ (u, v) ⇒ lim inf

n→∞ d(un, vn) ≥ d(u, v). (2.1.1)
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Here are the various kind of assumptions on the proper (see (1.2.1)) functional
φ : S → (−∞, +∞] we are dealing with:
2.1a: Lower semicontinuity. We suppose that φ is sequentially σ-lower semicontin-
uous on d-bounded sets

sup
n,m

d(un, um) < +∞, un
σ
⇀ u ⇒ lim inf

n→∞ φ(un) ≥ φ(u). (2.1.2a)

2.1b: Coercivity. There exist τ∗ > 0 and u∗ ∈ S such that

φτ∗(u∗) := inf
v∈S

Φ(τ∗, u∗; v) > −∞. (2.1.2b)

2.1c: Compactness. Every d-bounded set contained in a sublevel of φ is relatively
σ-sequentially compact: i.e.,

if (un) ⊂ S with supn φ(un) < +∞, supn,m d(un, um) < +∞,

then (un) admits a σ-convergent subsequence.
(2.1.2c)

Remark 2.1.1 (The case when σ is induced by d). Of course, the choice

“σ := the topology induced by the distance d ”

is always admissible: in this case Assumption 2.1a simply means that

φ is d-lower semicontinuous, (2.1.3a)

and 2.1c says that

d-bounded subsets of a sublevel of φ are relatively compact in S . (2.1.3b)

In particular, if

the sublevels
{

v ∈ S : φ(v) ≤ c
}

are (strongly) compact (2.1.3c)

then all the previous assumptions hold: this is the simplest situation which is cov-
ered by this framework.
Weakly lower semicontinuous functionals in reflexive (or dual) Banach spaces pro-
vides another example which fits in this setting.

In the following

we will always assume that φ is lower semicontinuous and coercive,
i.e. that the first two properties 2.1a,b hold;

we will see that, in some circumstances, compactness is not necessary, since the
structure of the minimization algorithm and stronger convexity assumptions on d
and φ will directly provide convergence estimates with respect to the distance d.

Remark 2.1.2. We did not try to present a minimal set of assumptions: e.g.,
compactness 2.1c implies that σ is weaker than d on the sublevels of φ, (2.1.1)
could be imposed only on the sublevel of φ,. . . On the other hand, as we already
said, we will not always assume 2.1c, therefore some redundancy at this initial
level simplifies the exposition in the sequel.
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2.2 Solvability of the discrete problem and compactness

of discrete trajectories

Observe that (2.1.2b) is surely satisfied by all τ∗ and u∗ ∈ S if φ is bounded from
below, i.e.

inf
S

φ > −∞; in this case φτ∗(u∗) ≥ inf
S

φ ∀u∗ ∈ S , τ∗ > 0. (2.2.1)

Taking into account (2.1.2b) it is natural to define

τ∗(φ) := sup
{
τ∗ > 0 : φτ∗(u∗) > −∞ for some u∗ ∈ S

}
. (2.2.2)

Lemma 2.2.1. If φτ∗(u∗) > −∞ as in Assumption 2.1b and τ < τ∗ ≤ τ∗(φ), then

φτ (u) ≥ φτ∗(u∗)− 1
τ∗ − τ

d2(u∗, u) > −∞ ∀u ∈ S , (2.2.3)

d2(v, u) ≤ 4ττ∗
τ∗ − τ

(
Φ(τ, u; v)− φτ∗(u∗) +

1
τ∗ − τ

d2(u∗, u)
)

∀u, v ∈ S . (2.2.4)

In particular, the sublevels of Φ(τ, u; ·) are bounded in S .

Proof. Invoking the Cauchy-type inequality

d2(v, u∗) ≤ (1 + ε)d2(v, u) + (1 + ε−1)d2(u∗, u) ∀ ε > 0, u, v ∈ S , (2.2.5)

we get for ε := (τ∗ − τ)/(τ∗ + τ)

1
2τ∗

d2(v, u∗) ≤ 1
τ + τ∗

d2(v, u) +
1

τ∗ − τ
d2(u∗, u),

so that (2.1.2b) yields for each u, v ∈ S and τ < τ∗

Φ(τ, u; v) =
τ∗ − τ

2τ (τ + τ∗)
d2(v, u) +

1
τ + τ∗

d2(v, u) + φ(v)

≥ τ∗ − τ

4ττ∗
d2(v, u) + φτ∗(u∗)− 1

τ∗ − τ
d2(u∗, u) (2.2.6)

≥ φτ∗(u∗)− 1
τ∗ − τ

d2(u∗, u). (2.2.7)

We obtain (2.2.3) by taking the infimum w.r.t. v in (2.2.7); (2.2.4) follows directly
from (2.2.6). �
Corollary 2.2.2 (Existence of the discrete solutions). If the topological assumptions
of Section 2.1 are verified, then for every τ < τ∗(φ) and u ∈ S the functional
Φ(τ, u; ·) admits a minimum in S ; in particular for every choice of U0

τ ∈ S and
of a partition Pτ with |τ | < τ∗(φ), there exists at least one discrete solution Uτ .
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Proof. (2.2.4) shows that both d(v, u) and φ(v) remain bounded on the sublevels
of Φ(τ, u; v). Lower semicontinuity and compactness yield

the sublevels
{
v ∈ S : Φ(τ, u; v) ≤ c

}
are σ-sequentially compact.

The existence of a minimum for (2.0.4) then follows by a well known compactness
and lower semicontinuity argument. �

The following preliminary result provides compactness for the family of dis-
crete solutions:

Proposition 2.2.3 (Compactness). Let us suppose that all the assumptions of Sec-
tion 2.1 hold and let Λ be a family of partitions with infτ∈Λ |τ | = 0. If the corre-
sponding family of initial data {U0

τ}τ∈Λ satisfies

sup
τ∈Λ

φ(U0
τ ) < +∞, sup

τ∈Λ
d(U0

τ , u0) < +∞, (2.2.8)

then there exist a sequence (τ k) ⊂ Λ with |τ k| ↓ 0 and a limit curve u ∈
AC2

loc([0,+∞); S ) such that

Uτk
(t) σ

⇀ u(t) ∀ t ∈ [0,+∞). (2.2.9)

In particular, if U0
τk

σ
⇀ u0 and φ(U0

τ k
) → φ(u0) as k →∞, then u(0+) = u0 and

u ∈ GMM(Φ;u0), which is therefore a nonempty set.

We prove this proposition in the next Section 3.

Remark 2.2.4 (p-estimates). In the general case p �= 2, Lemma 2.2.1 and Proposi-
tion 2.2.3 still hold (with different constants) simply replacing 2 with p: thus the
limiting curve belongs to ACp

loc([0,+∞); S ).

2.3 Generalized minimizing movements and curves of
maximal slope

In this section we present two different sets of general conditions which provide a
general answer for Problems 2.0.1, 2.0.4, and a direct connection between curves
of maximal slope and generalized minimizing movements. They are both related
to some kind of lower semicontinuity property of the local slope of φ, which can be
well expressed by its relaxed slope, i.e. (a slight modification of) the sequentially
σ-lower semicontinuous envelope of |∂φ|:

|∂−φ|(u) := inf
{

lim inf
n→∞ |∂φ|(un) : un

σ
⇀ u,

sup
n
{d(un, u), φ(un)} < +∞

}
.

(2.3.1)
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This following result holds (up to considering the appropriate p-scheme, cf. Remark
2.0.7) for every p ∈ (1,+∞). Notice that the compactness assumption 2.1c (which
was a crucial ingredient in Proposition 2.2.3) is not needed here: Theorems 2.3.1
and 2.3.3 hold whenever one knows that a curve u belongs to GMM(Φ; u0); besides
Proposition 2.2.3, they can be combined with any convergence results for the
variational Euler scheme (2.0.4), e.g. with the results of Chapter 4.

Theorem 2.3.1 (GMM(φ;u0) are curves of maximal slope I). Let us assume that
φ is lower semicontinuous and coercive according to Assumptions 2.1a,b; if

v ∈ S �→ |∂−φ|(v) is a weak upper gradient for φ, (2.3.2)

and φ satisfies the continuity condition

sup
n∈N

{
|∂φ|(vn), d(vn, v0), φ(vn)

}
< +∞, vn

σ
⇀ v ⇒ φ(vn) → φ(v), (2.3.3)

then every curve u ∈ GMM(Φ; u0) with u0 ∈ D(φ) is a curve of maximal slope
for φ w.r.t. |∂−φ|.
Remark 2.3.2. Observe that, in view of Theorem 1.2.5, (2.3.2) is always satisfied
if |∂φ| is σ-sequentially lower semicontinuous, i.e. |∂−φ| = |∂φ|.

In order to state our strongest result we define a piecewise constant function
|U ′

τ | on (0,+∞), relative to the partition Pτ , by

|U ′
τ |(t) =

d(Un
τ , Un−1

τ )
tnτ − tn−1

τ

if t ∈ (tn−1
τ , tnτ ). (2.3.4)

Our notation is justified by the fact that |U ′
τ | is really the modulus of the derivative

of the piecewise affine interpolant of Un
τ when S in an Hilbert space and d is

induced by its scalar product.

Theorem 2.3.3 (GMM(Φ; u0) are curves of maximal slope II (energy identity)).
Suppose that the lower semicontinuity and coercivity assumptions 2.1a,b hold; if

v ∈ S �→ |∂−φ|(v) is a strong upper gradient for φ,

then every curve u ∈ GMM(Φ; u0) with u0 ∈ D(φ) is a curve of maximal slope
for φ w.r.t. |∂−φ| and in particular u satisfies the energy identity

1
2

∫ T

0

|u′|2(t) dt + 1
2

∫ T

0

|∂−φ|2(u(t)) dt + φ(u(T )) = φ(u0) ∀T > 0. (2.3.5)

Moreover, if {Uτ k
}k∈N is a sequence of discrete solutions satisfying (2.2.8) and

(2.2.9), we have

lim
n→∞ φ(Uτn

(t)) = φ(u(t)) ∀ t ∈ [0, +∞), (2.3.6)

lim
n→∞ |∂φ|(Uτn

) = |∂−φ|(u) in L2
loc([0,+∞)), (2.3.7)

lim
n→∞ |U ′

τn
| = |u′| in L2

loc([0, +∞)). (2.3.8)



2.3. Generalized minimizing movements and curves of maximal slope 47

In the case p �= 2 the energy identity reads

1
p

∫ T

0

|u′|p(t) dt + 1
q

∫ T

0

|∂−φ|q(u(t)) dt + φ(u(T )) = φ(u0) ∀T > 0, (2.3.9)

and the limiting relations (2.3.7), (2.3.8) should be intended in Lq
loc([0, +∞)),

Lp
loc([0,+∞)) respectively.

Remark 2.3.4. Whenever the functional φ satisfies the topological assumptions of
Section 2.1, the previous theorems 2.3.1 and 2.3.3 can be applied by following at
least two different strategies:

(i) One can try to show that the slope |∂φ| is σ-lower semicontinuous (i.e.
|∂−φ| = |∂φ|). In the case when S is a Banach space and (1.4.18) holds,
as in Section 1.4, this property usually corresponds to a strong-weak∗ closure
of the graph of the Fréchet subdifferential of φ, as we will see in the next
example 2.3.5. Once the σ-lower semicontinuity of |∂φ| is proved, then one
has to check the continuity property (2.3.3) (for Theorem 2.3.1) or that |∂φ|
is a strong upper gradient for φ (for Theorem 2.3.3).

(ii) The second possibility, when the slope |∂φ| is not lower semicontinuous, is to
prove directly that the relaxed slope is an upper gradient for φ, i.e. it satisfies
a sort of chain rule. This approach is quite useful to dealing with gradient
flows of non regular perturbations of convex functional in Hilbert spaces
and has been applied to some evolution equations arising in quasi-stationary
phase field problems [114].

We postpone the proofs and more detailed statements of Theorems 2.3.1 and
2.3.3 to the next chapter and we conclude the present section by an important
application to the Banach case.

Example 2.3.5 (Doubly nonlinear evolution equations in Banach spaces). Let us
consider the Banach space setting S = B introduced in Section 1.4 and let us
suppose that B satisfies the Radon-Nikodym property, so that absolutely contin-
uous curves in B are L 1-a.e. differentiable.
We want to apply the previous metric results (following the first strategy of Re-
mark 2.3.4) to find solutions of the doubly nonlinear differential inclusion (1.4.11)
for a functional φ : B → (−∞,+∞]. Two properties seem crucial: the first one
establishes a link between the metric slope and the Fréchet subdifferential of φ

|∂φ|(v) = min
{
‖ξ‖∗ : ξ ∈ ∂φ(v)

}
= ‖∂◦φ(v)‖∗ ∀ v ∈ B, (2.3.10a)

and the second one is σ-weak∗ closure of the graph of ∂φ in B ×B′

ξn ∈ ∂φ(vn), vn
σ
⇀ v, ξn ⇀∗ ξ, sup

n
φ(vn) < +∞ =⇒ ξ ∈ ∂φ(v). (2.3.10b)

The following result is immediate:
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Lemma 2.3.6 (Lower semicontinuity of |∂φ|). Let us suppose that the functional
φ : B → (−∞, +∞] satisfies (2.3.10a) and (2.3.10b). Then |∂−φ| = |∂φ|.
Proof. If (vn) ⊂ B converges to v in the topology σ and |∂φ|(vn) → ρ < +∞
as n → ∞, by (2.3.10a) there exists ξn ∈ ∂φ(vn) such that ‖ξn‖∗ = |∂φ|(vn) is
uniformly bounded; up to an extraction of a suitable subsequence, we can suppose
that ξn ⇀∗ ξ and, by (2.3.10b), ξ ∈ ∂φ(v). Since the dual norm is weakly∗ lower
semicontinuous, a further application of (2.3.10a) yields

|∂φ|(v) ≤ ‖ξ‖∗ ≤ lim inf
n→∞ ‖ξn‖∗ ≤ ρ �

The following theorem is a variant of a result of [95]: notice that a per-
turbation of class C1 of the functional φ corresponds to a C0 perturbation of
its subdifferential and no general existence results are known for differential equa-
tions associated to C0 vector fields in infinite dimensional (even Hilbertian) vector
spaces.

Theorem 2.3.7 (Existence for C1 perturbation of convex functionals). Let φ :
B → (−∞, +∞] be a lower semicontinuous functional satisfying the coercivity
assumption (2.1.2b) and the (strong) compactness assumption (2.1.3b). If φ =
φ1 + φ2 admits the decomposition of Corollary 1.4.5 with respect to a convex l.s.c.
function φ1 and a C1 function φ2, then for every u0 ∈ D(φ) GMM(Φ; u0) is
non empty and its elements u are solutions of the doubly nonlinear differential
inclusion

Jp(u′(t)) ⊃ −∂◦φ(u(t)) t > 0; u(0+) = u0, (2.3.11)

that satisfy the energy identity∫ T

0

|u′(t)|p dt + φ(u(T )) = φ(u0) ∀T > 0. (2.3.12)

Proof. In this case σ is the strong topology of B, as in Remark 2.1.1. We can
combine Proposition 2.2.3 (GMM(Φ; u0) is non empty), Corollary 1.4.5, Lemma
2.3.6, and Theorem 2.3.3 (every u ∈ GMM(Φ; u0) is a curve of maximal slope
for |∂φ| and satisfies the energy identity (2.3.9)), Corollary 1.4.5 and Proposition
1.4.1 (curves of maximal slope for |∂φ| solve (2.3.11)). �

In fact, condition (2.3.10b) is almost enough to prove the existence of solu-
tions to (2.3.11):

Theorem 2.3.8 (Existence under the closure condition (2.3.10b)). Let φ : B →
(−∞, +∞] be a functional satisfying all the Assumptions of Section 2.1. If φ sat-
isfies (2.3.10b) and (2.3.3), then it also satisfies (2.3.10a). In particular, for every
u0 ∈ D(φ) GMM(Φ; u0) is non empty and its elements u are curves of maximal
slope which solve the doubly nonlinear differential inclusion (2.3.11).

The proof of this theorem relies on the implication (2.3.10b) ⇒ (2.3.10a) for
a functional φ which satisfies the assumptions of Section 2.1: we will prove the
above implication in the next chapter.
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We conclude this section by showing an example where the above theorem
can be applied by choosing an auxiliary topology σ weaker than the strong one;
the following situation is typical for evolution equations in unbounded domains.

Remark 2.3.9 (An example where σ is weaker than the strong topology of B).
Let us consider the Banach space B := Lp(Rd), 1 < p < +∞, and let F : R →
[0, +∞) be a nonnegative C1 convex function satisfying F (0) = 0. We consider
the functional

φ(v) :=

{∫
Rd

(
1
2
|∇v(x)|2 + F (v(x))

)
dx if ∇v ∈ L2(Rd), F (v) ∈ L1(Rd),

+∞ otherwise.
(2.3.13)

Since F ′ is increasing, it is not difficult to check that ξ ∈ Lq(Rd) belongs to ∂φ(v)
if and only if

∆v ∈ Lq(Rd), F ′(v) ∈ Lq(Rd), ξ = −∆v + F ′(v); (2.3.14)

the curve u of maximal slope associated to φ should be a solution of the Cauchy
problem {

|∂tu|p−2∂tu−∆u + F ′(u) = 0 in Rd × (0,+∞),

u(·, 0+) =u0(·) in Rd.
(2.3.15)

Moreover, if v satisfies (2.3.14), it enjoys the a priori estimates

‖F ′(v)‖Lq(Rd) ≤ ‖ξ‖Lq(Rd), ‖∆v‖Lq(Rd) ≤ 2‖ξ‖Lq(Rd).

Since φ is a convex functional in Lp(Rd), we know that |∂φ| is lower semicontinuous
w.r.t. the strong Lp(Rd) topology, but the sublevel sets{

v ∈ Lp(Rd) : ‖v‖Lp(Rd) + φ(v) ≤ c
}

are not compact in Lp(Rd).
Let us show that φ satisfies (2.3.10b) with respect to the weak Lp-topology σ. If
ξn = −∆vn + F ′(vn) ⇀ ξ in Lq(Rd) supn φ(vn) < +∞, and vn ⇀ v in Lp(Rd),
the a priori bounds and Rellich compactness theorem yields

ξ = −∆v + η, F ′(vn) ⇀ η in Lq(Rd), vn → v in L2
loc(R

d)

Up to extracting a further subsequence, we can assume that vn converges to v
L d-a.e. in Rd so that η = F ′(v) and therefore ξ ∈ ∂φ(v).

2.4 The (geodesically) convex case

In this section we will consider a notion of convexity along classes of curves in the
metric space S : a particular attention is devoted to functionals φ which are convex
along the geodesics of the metric space S . Let us first introduce the relevant
definitions.
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Definition 2.4.1 (λ-convexity along curves). A functional φ : S → (−∞, +∞] is
called convex on a curve γ : t ∈ [0, 1] �→ γt ∈ S if

φ(γt) ≤ (1− t)φ(γ0) + tφ(γ1) ∀t ∈ [0, 1]. (2.4.1)

More generally, we say that φ is λ-convex on γ for some λ ∈ R if

φ(γt) ≤ (1− t)φ(γ0) + tφ(γ1)− 1
2
λ t(1− t)d2(γ0, γ1) ∀t ∈ [0, 1]. (2.4.2)

Notice that we require that the usual convexity inequality holds with respect
to the initial and final point of the curve γ; of course, if φ◦γ is a real convex function
in [0, 1] then (2.4.1) surely holds. Among all the possible curves connecting points
in S , we are interested to the so called geodesics, i.e. to length minimizing curves.

Definition 2.4.2 (Constant speed geodesics). A curve γ : [0, 1] → S is a (constant
speed) geodesic if

d(γs, γt) = d(γ0, γ1)(t− s) ∀ 0 ≤ s ≤ t ≤ 1. (2.4.3)

Definition 2.4.3 (λ-geodesically convex functionals). We say that a functional φ :
S → (−∞,+∞] is λ-geodesically convex if for any v0, v1 ∈ D(φ) there exists a
constant speed geodesic γ with γ0 = v0, γ1 = v1 such that φ is λ-convex on γ.

Remark 2.4.4 (Euclidean case). In Euclidean spaces, the largest λ such that φ
is λ-convex along segments (canonically parametrized on [0, 1]) is, for smooth
functions φ, the infimum w.r.t. x of the smallest eigenvalue of ∇2φ(x). In this
case φ is λ-convex if and only if v �→ φ(v) − 1

2λ|v|2 is convex. In particular the
map v �→ 1

2
|v − w|2 is 1-convex, as the following elementary identity, depending

on t ∈ R, shows

|(1− t)v0 + tv1 − w|2 = (1− t)|v0 − w|2 + t|v1 − w|2 − t(1− t)|v0 − v1|2. (2.4.4)

It is not difficult to show that (2.4.4) forces the norm | · | to be induced by a scalar
product: in fact, choosing w = 0, t = 1/2 we see that | · | satisfies the parallelogram
rule (12). It is interesting that the same conclusion holds if (2.4.4) is replaced by
the corresponding 1-convexity inequality for t ∈ [0, 1].

λ-convexity along geodesics is the easiest assumption of geometric type, which
allows for a simple application of the theory presented in the previous Section 2.3,
as we shall see in a moment. This property results from the necessity to join
two points v0, v1 ∈ D(φ) by a curve along which both the distance (the curve
should be a geodesic) and the functional (λ-convexity) behave nicely. From the
“Minimizing Movement” point of view, its importance is clear, since the distance
and the functional are the two components of the family of variational functionals
v �→ Φ(τ, w; v) defined by (2.0.3b).

We can easily check that if φ : S → (−∞, +∞] is a λ-geodesically convex
functional, then for every couple of points v0, v1 ∈ D(φ) the functional v �→
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Φ(τ, v0; v) is (τ−1 + λ)-convex along a suitable geodesic γ connecting v0 to v1. In
fact in this case we have

Φ(τ, v0; γt) =
1
2τ

d2(v0, γt) + φ(γt) =
1
2τ

t2d2(v0, v1) + φ(γt)

≤ 1
2τ

t2d2(v0, v1) + (1− t)φ(v0) + tφ(v1)− 1
2

λt(1− t)d2(v0, v1)

= (1− t)φ(v0) + t
( 1

2τ
d2(v0, v1) + φ(v1)

)
− 1

2

(1
τ

+ λ
)
t(1− t)d2(v0, v1)

= (1− t)Φ(τ, v0; v0) + tΦ(τ, v0; v1)− 1
2

( 1
τ

+ λ
)
t(1− t)d2(v0, v1). (2.4.5)

On the other hand, one can ask if it is possible to formulate a more general
assumption directly on Φ: it is interesting that the results we are presenting in this
section hold even if there exists an arbitrary curve γ (not necessarily a geodesic)
along which Φ is (τ−1 + λ)-convex, for every τ > 0 such that τ−1 + λ > 0 (i.e.
0 < τ < 1

λ− , where 1
λ− = +∞ if λ ≥ 0).

Assumption 2.4.5 (Convexity of Φ). For a given λ ∈ R we suppose that for any
v0, v1 ∈ D(φ) there exists a curve γ with γ0 = v0, γ1 = v1 such that

v �→ Φ(τ, v0; v) is (τ−1 + λ)-convex on γ, ∀ 0 < τ <
1

λ− , (2.4.6)

where Φ(τ, v0; v) = 1
2τ d2(v0, v) + φ(v) is the functional introduced in (2.0.3b).

Any function φ satisfying the previous Assumption 2.4.5 for some λ ∈ R

trivially satisfies the same condition for all λ′ < λ.
(2.4.6) is equivalent, for every v0, v1 ∈ D(φ), to the existence of points vt, t ∈ [0, 1],
such that

1
2τ

d2(v0, vt) + φ(vt) (2.4.7a)

≤ (1− t)φ(v0) + tφ(v1) +
1
2τ

td2(v0, v1)− 1
2

(1
τ

+ λ
)
t(1− t)d2(v0, v1)

= (1− t)φ(v0) + tφ(v1) +
t

2τ

(
t− λτ(1− t)

)
d2(v0, v1) (2.4.7b)

Neglecting the first term in the left-hand side (2.4.7a) and dividing by t we also
get

φ(vt)− φ(v0)
t

≤ φ(v1)− φ(v0) +
1
2τ

(
t− λτ(1− t)

)
d2(v0, v1). (2.4.7c)

Remark 2.4.6 (vt are independent of τ ). For the sake of simplicity we supposed
that that the points vt in (2.4.7a) are independent of τ , even if many of the
following results still hold in the case when vt are allowed to depend on τ and φ is
coercive (2.1.2b). Here we make explicit two useful consequences of the fact that
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vt is independent of τ : first of all, multiplying the inequality (2.4.7a,b) by τ and
passing to the limit as τ → 0+ we get

d(v0, vt) ≤ td(v0, v1). (2.4.8)

When λ ≥ 0, we can pass to the limit as τ → +∞ in (2.4.7a,b) showing that φ is
λ-convex along the curve vt. Thus in this case (2.4.7c) becomes

φ(vt)− φ(v0)
t

≤ φ(v1)− φ(v0)− 1
2
λ(1− t)d2(v0, v1). (2.4.9)

Remark 2.4.7 (p-modulus of convexity). In the case of p-curves of maximal slope,
p �= 2, one should consider a related notion of modulus of convexity depending on
the p-power of the distance. Here we do not exploit this variant and we will often
assume directly (2.4.7a,b) with λ = 0.

λ-convexity assumption provides a useful information about the value of τ∗(φ)
as defined by (2.2.2) and on the existence of a minimum point for φ.

Lemma 2.4.8 (Coercivity for convex functionals). Assume that Assumption 2.4.5
holds for some λ ∈ R (with λ = 0 if p �= 2). If

∃u∗ ∈ D(φ), r∗ > 0 : m∗ := inf
{

φ(v) : v ∈ S , d(v, u∗) ≤ r∗
}

> −∞, (2.4.10)

(e.g. if either the coercivity 2.1b or the lower semicontinuity and compactness
2.1a,c assumptions hold), then

τ∗(φ) ≥ 1
λ− , in particular τ∗(φ) = +∞ if λ ≥ 0. (2.4.11)

If λ > 0 then φ is bounded from below and if it is lower semicontinuous then it
has a unique minimum point ū:

∃! ū ∈ S : φ(ū) = min
S

φ > −∞. (2.4.12)

Proof. Let u∗, r∗, m∗ as in (2.4.10), 0 < τ < 1
λ− . If v ∈ D(φ) and d(v, u∗) > r∗ we

apply the convexity property (2.4.7c) with v0 := u∗, v1 := v and t = r∗/d(u∗, v)
to find v∗ := vt ∈ D(φ) satisfying

φ(v)− λ

2
d2(v, u∗) ≥ φ(u∗) + c∗d(v, u∗), c∗ :=

φ(v∗)− φ(u∗)− 1
2
(τ−1 + λ)r2

∗
r∗

By (2.4.8) dv∗u ≤ r∗ and therefore φ(v∗) ≥ m∗ by (2.4.10); applying Young
inequality we get

φ(v)− λ− ε

2
d2(v, u∗) ≥ φ(u∗)− 1

2ε
c2
∗ ∀ v ∈ D(φ), ε > 0. (2.4.13)
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(2.4.13) shows that τ∗(φ) ≥ −λ−1 if λ < 0, and that φ is bounded from below if
λ > 0. If the lower semicontinuity-compactness Assumptions 2.1a,c hold, then the
existence of a minimum ū for φ follows directly from (2.4.13). We can also prove
the existence (and the uniqueness) of the minimum by a completeness argument,
thus assuming the φ is simply lower semicontinuous with respect to the distance
d and avoiding compactness: just take a minimizing sequence (vn) with

φ(vn) ≤ inf
S

φ + ωn, lim
n→∞ ωn = 0,

and apply the λ-convexity property of φ stated by Remark 2.4.6 along a curve
γn,m connecting vn to vm. Choosing t = 1/2 we obtain

λ

8
d2(vn, vm) ≤ 1

2
φ(vm) +

1
2
φ(vn)− φ(γn,m(1/2))

≤ 1
2
ωm +

1
2
ωn → 0 as n, m →∞.

�
The next result, though simple, provides the crucial estimate for λ-convex

functions; the reader could compare (2.4.14) with the classification introduced in
[95, page 293]: following the notation of that paper, it is not difficult to check that
λ-convex functions belongs to the class K(S ; 0, 2).

Theorem 2.4.9. If the convexity Assumption 2.4.5 holds for some λ ∈ R, then the
local slope |∂φ| admits the representation

|∂φ|(v) = sup
w �=v

(
φ(v)− φ(w)

d(v, w)
+

1
2
λd(v, w)

)+

∀ v ∈ D(φ). (2.4.14)

In particular, when λ ≥ 0 the local slope coincides with the global one, i.e.

|∂φ|(v) = sup
w �=v

(
φ(v)− φ(w)

)+
d(v, w)

= lφ(v) ∀ v ∈ D(φ). (2.4.15)

Proof. First of all we observe that

|∂φ|(v) = lim sup
w→v

(
φ(v)− φ(w)

)+

d(v, w)
= lim sup

w→v

(
φ(v)− φ(w)

d(v, w)
+ 1

2λ d(v, w)
)+

≤ sup
w �=v

(
φ(v)− φ(w)

d(v, w)
+ 1

2λd(v, w)
)+

.

In order to prove the opposite inequality it is not restrictive to suppose

v ∈ D(φ), w �= v with φ(v)− φ(w) + 1
2λd2(v, w) > 0; (2.4.16)

applying (2.4.7c) with v0 = v and v1 = w to get vt satisfying for every 0 < τ < 1
λ−

φ(v)− φ(vt)
d(v, vt)

≥
(

φ(v)− φ(w)
d(v, w)

+
1
2τ

(
λτ(1− t)− t

)
d(v, w)

)
t d(v, w)
d(v, vt)

.
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Since d(v, vt) ≤ td(v, w), the sign inequality of (2.4.16) yields

|∂φ|(v) ≥ lim sup
t↓0

φ(v)− φ(vt)
d(v, vt)

≥ φ(v)− φ(w)
d(v, w)

+ 1
2
λd(v, w) ∀w ∈ S .

Then (2.4.14) follows easily by taking the supremum with respect to w. �
Recalling the Definition (1.2.6) of global slope lφ, from (2.4.14) we easily get

|∂φ|(v) ≤ lφ(v) ≤ |∂φ|(v) +
λ−

2
diamS ∀ v ∈ S . (2.4.17)

The following corollary is an immediate consequence of the above upper bound.

Corollary 2.4.10. Suppose that φ : S → (−∞, +∞] satisfies the convexity assump-
tion 2.4.5 for some λ ∈ R and it is d-lower semicontinuous. Then |∂φ| is a strong
upper gradient for φ and it is d-lower semicontinuous.

Proof. In the case when λ ≥ 0 or S is bounded, we can simply apply The-
orem 1.2.5. In the case λ < 0 and diamS = +∞, recalling that |∂φ| is a
weak upper gradient, we should check that for any curve z ∈ AC(a, b; S ) with
|∂φ|(z)|z′| ∈ L1(a, b) the function φ ◦ z is absolutely continuous.
It is not restrictive to assume that (a, b) is a bounded interval and the curve z is
extended by continuity to [a, b]. We simply introduce the compact metric space
S0 := z([a, b]) with the metric induced by S and we consider the related global
slope of φ, denoted by l0φ(·); (2.4.14) yields

l0φ(v) = sup
w∈S0\{v}

(φ(v)− φ(w))+

d(v, w)
≤ |∂φ|(v)− 1

2
λ diam S0 ∀ v ∈ S0.

In particular lφ(z)|z′| ∈ L1(a, b) and therefore Theorem 1.2.5 yields the desired
absolute continuity of φ ◦ z.

In order to prove the lower semicontinuity of |∂φ| we argue as in the proof
of Theorem 1.2.5, where we proved that lφ is d-lower semicontinuous, and use
(2.4.14). �

We can now state two existence results for curves of maximal slope, the first
one assuming that there is compactness with respect to the topology induced by
d and the second one assuming that there is compactness with respect to σ. Both
of them hold even in the case of p-curves (with λ = 0 for p �= 2) and combine
Proposition 2.2.3 and Theorem 2.3.3 following the first strategy of Remark 2.3.4.

Corollary 2.4.11 (Existence of curves of maximal slope I). Suppose that φ : S →
(−∞, +∞] satisfies the convexity Assumption 2.4.5 for some λ ∈ R (with λ = 0
for p �= 2), and the lower semicontinuity-compactness Assumptions 2.1a,c for the
topology σ induced by the distance d, as in (2.1.3a,b) of Remark 2.1.1. Then every
u0 ∈ D(φ) is the initial point of a curve of maximal slope for φ with respect to
(the strong upper gradient) |∂φ| and the conclusions of Theorem 2.3.3 hold.
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Proof. By Lemma 2.2.1, φ also satisfies the coercivity Assumption 2.1b. Proposi-
tion 2.2.3 shows that GMM(Φ;u0) is not empty; moreover, the above corollaries
yield that |∂−φ| = |∂φ| is a strong upper gradient for φ, since the compactness
assumption of Section 2.1 holds for the topology induced by the distance. Then
we can apply Theorem 2.3.3. �

Corollary 2.4.12 (Existence of curves of maximal slope II). Suppose that the func-
tional φ : S → (−∞, +∞] satisfies the convexity Assumption 2.4.5 for some
λ ∈ R and the lower semicontinuity-compactness Assumptions 2.1a,c. If the map
v �→ |∂φ|(v) is σ-sequentially lower semicontinuous on d-bounded subsets of sub-
levels of φ, then every u0 ∈ D(φ) is the starting point of a curve of maximal slope
for φ with respect to |∂φ| and the conclusions of Theorem 2.3.3 hold.

Proof. Again we observe that Corollary 2.4.10 and our assumption yield that
|∂−φ| = |∂φ| is a strong upper gradient for φ. Invoking Proposition 2.2.3 and
Theorem 2.3.3 again we conclude. �

2-curves of maximal slopes of λ-convex functionals with λ > 0 exhibit expo-
nential convergence to the minimum point of the functional (which exists under
the weak condition (2.4.10) of Lemma 2.4.8), with exponential convergence to 0
of the energy. The crucial estimates are stated in the following lemma:

Lemma 2.4.13. Assume that φ : S → (−∞,+∞] is a d-lower semicontinuous
functional satisfying the convexity Assumption 2.4.5 with λ > 0. Then

φ(u)− inf
S

φ ≤ 1
2λ
|∂φ|2(u) ∀u ∈ D(φ). (2.4.18)

Moreover, if ū ∈ D(φ) is the (unique) minimizer for φ, then

λ

2
d2(u, ū) ≤ φ(u)− φ(ū) ≤ 1

2λ
|∂φ|2(u) ∀u ∈ D(φ). (2.4.19)

Proof. (2.4.18) is an immediate consequence of Young inequality and (2.4.14),
which for every v ∈ D(φ) with φ(v) ≤ φ(u) yields

φ(u)− φ(v) ≤ |∂φ|(u) d(u, v)− λ

2
d(u, v)2 ≤ 1

2λ
|∂φ|2(u). (2.4.20)

On the other hand, if ū is a minimum for φ, we can apply (2.4.9) with v0 := ū
and v1 := u: since φ(vt) ≥ φ(ū) we obtain

λ

2
(1− t)d2(u, ū) ≤ φ(u)− φ(ū);

taking the limit as t ↓ 0 we conclude. �
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Theorem 2.4.14. Assume that φ : S → (−∞,+∞] is a d-lower semicontinuous
functional satisfying the convexity Assumption 2.4.5 with λ > 0 and having a
minimum point ū. Then any curve of maximal slope u w.r.t. to |∂φ| satisfies for
every t ≥ t0 > 0

1
2λd2(u(t), ū) ≤ φ(u(t))− φ(ū) ≤ (φ(u(t0))− φ(ū))e−2λ(t−t0). (2.4.21)

Proof. Since the time derivative of (the absolutely continuous map, since |∂φ| is
a strong upper gradient) ∆(t) := φ(u(t)) − φ(ū) is −|∂φ|2(u(t)), we obtain the
differential inequality ∆′(t) ≤ −2λ∆(t), whence the second inequality in (2.4.21)
follows; the first one is simply (2.4.19). �

Even in a metric framework, if a curve of maximal slope is a Generalized
Minimizing Movement, it exhibits a sort of regularizing effect allowing for a finer
description of the differential equation at each point of the interval, if we consider
right derivatives. It is interesting to compare the next theorem with Brezis’ result
[28, Theorem 3.2, page. 57].

Theorem 2.4.15. Let us suppose that φ : S → (−∞, +∞] is d-lower semicontinu-
ous, and it satisfies (2.4.10) and the convexity Assumption 2.4.5 for some λ ∈ R.
If u0 ∈ D(φ) then each element u ∈ GMM(u0; Φ) is locally Lipschitz in (0, +∞)
and satisfies the following properties:

(i) The right metric derivative

|u′
+|(t) := lim

s↓t

d(u(s), u(t))
s− t

(2.4.22)

exists and u(t) ∈ D(|∂φ|) for all t > 0.

(ii) The map t �→ e−2λ−tφ(u(t)) is convex; the map t �→ eλt|∂φ|(u(t)) is non-
increasing, right continuous, and satisfies

T
2 |∂φ|2(u(T )) ≤ e2λ−T

(
φ(u0)− φT (u0)

)
, (2.4.23)

T |∂φ|2(u(T )) ≤ (1 + 2λ+ T )e−2λT
(
φ(u0)− inf

S
φ
)
, (2.4.24)

where φT (u0) is the Moreau-Yosida approximation of φ defined as in (2.1.2b)

φT (u0) := inf
v∈S

Φ(T, u0; v) = inf
v∈S

1
2T

d2(v, u0) + φ(v). (2.4.25)

(iii) The equation

d

dt+
φ(u(t)) = −|∂φ|2(u(t)) = −|u′

+|2(t) = −|∂φ|(u(t)) |u′
+|(t) (2.4.26)

is satisfied at every point of (0,+∞).



2.4. The (geodesically) convex case 57

Remark 2.4.16. The statements of the above Theorem hold up to t = 0 if u0 ∈
D(|∂φ|).
Remark 2.4.17. In the case p �= 2 and λ = 0 the previous Theorem still holds,
provided (2.4.23), (2.4.24), and (2.4.26) are properly reformulated:

T
q |∂φ|q(u(T )) ≤

(
φ(u0)− φT (u0)

)
, T |∂φ|q(u(T )) ≤

(
φ(u0)− inf

S
φ
)
, (2.4.27)

d

dt+
φ(u(t)) = −|∂φ|q(u(t)) = −|u′

+|p(t) = −|∂φ|(u(t)) |u′
+|(t). (2.4.28)





Chapter 3

Proofs of the Convergence
Theorems

We divide the proof of the main convergence theorems in four steps: first of all,
we study a single minimization problem of the scheme (2.0.4); stability estimates
are then derived for discrete solutions which yield Proposition 2.2.3 by a compact-
ness argument. Finally, convergence is obtained by combining the a priori energy
estimates with the gradient properties of the relaxed slope. We will conclude this
section with the proof of Theorem 2.4.15.

3.1 Moreau-Yosida approximation

In this section we will study a single minimization problem (2.0.4), which is strictly
related to the Moreau-Yosida approximation of the functional φ. The convergence
of the scheme will be addressed in the next subsections.

Definition 3.1.1 (Moreau-Yosida approximation). Let us suppose that φ : S →
(−∞, +∞] is a d-lower semicontinuous and coercive functional; for τ > 0 the
Moreau-Yosida approximation φτ of φ is defined as

φτ (u) := inf
v∈S

Φ(τ, u; v) = inf
v∈S

{ 1
2τ

d2(v, u) + φ(v)
}

. (3.1.1)

We also set

Jτ [u] := argmin Φ(τ, u; ·), i.e.
uτ ∈ Jτ [u] ⇔ Φ(τ, u; uτ) ≤ Φ(τ, u; v) ∀ v ∈ S ,

(3.1.2)

and, if Jτ [u] �= ∅,
d+

τ (u) := sup
uτ∈Jτ [u]

d(uτ , u), d−τ (u) := inf
uτ∈Jτ [u]

d(uτ , u). (3.1.3)
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For the sake of simplicity, in this section we will often suppose that

Jτ [u] �= ∅ ∀ u ∈ S , 0 < τ < τ∗(φ), (3.1.4)

even if many results hold without this assumption. The following properties are
well known:

Lemma 3.1.2 (Monotonicity and continuity of φτ (u)). The map (τ, u) �→ φτ (u) is
continuous in (0, τ∗(φ))×S .
If 0 < τ0 < τ1 and uτi

∈ Jτi
[u] then

φ(u) ≥ φτ0(u) ≥ φτ1(u), d(uτ0 , u) ≤ d(uτ1 , u),

φ(u) ≥ φ(uτ0) ≥ φ(uτ1), d+
τ0

(u) ≤ d−τ1
(u) ≤ d+

τ1
(u).

(3.1.5)

In particular, if φ satisfies (3.1.4), it holds

lim
τ↓0

φτ (u) = lim
τ↓0

inf
uτ∈Jτ [u]

φ(uτ ) = φ(u), if u ∈ D(φ) then lim
τ↓0

d+
τ (u) = 0, (3.1.6)

and there exists an (at most) countable set Nu ⊂ (0, τ∗(φ)) such that

d−τ (u) = d+
τ (u) ∀ τ ∈ (0, τ∗(φ)) \Nu. (3.1.7)

Proof. To prove the continuity of φτ let us consider sequences (τn, un) ⊂ (0, τ∗(φ))
×S convergent to (τ, u) and a corresponding sequence (vn) ⊂ D(φ) such that

lim
n→∞

(
Φ(τn, un; vn)− φτn

(un)
)

= 0.

We easily obtain

lim sup
n→∞

Φ(τn, un; vn)=lim sup
n→∞

φτn
(un)≤ lim sup

n→∞
Φ(τn, un; v)=Φ(τ, u; v) ∀ v∈S .

(3.1.8)
Taking the infimum w.r.t. v we get lim supn φτn

(un) ≤ φτ (u). By (2.2.4) we deduce
that (vn) is a bounded sequence in S ; therefore

lim inf
n→∞ φτn

(un) = lim inf
n→∞ Φ(τn, un; vn) ≥ lim inf

n→∞
1

2τn

(
d(vn, u)− d(un, u)

)2

+ φ(vn)

≥ lim inf
n→∞

1
2τn

d2(vn, u)− 1
τn

d(vn, u)d(un, u) + φ(vn) ≥ φτ (u),

and this inequality proves the continuity of φτ .
The first inequality of (3.1.5) follows easily from the analogous monotonicity

property of τ �→ Φ(τ, u; v) for each u, v ∈ S . The second one follows from

1
2τ0

d2(uτ0 , u) + φ(uτ0) ≤
1

2τ0
d2(uτ1 , u) + φ(uτ1)

=
( 1
2τ0

− 1
2τ1

)
d2(uτ1 , u) +

1
2τ1

d2(uτ1 , u) + φ(uτ1)

≤ ( 1
2τ0

− 1
2τ1

)
d2(uτ1 , u) +

1
2τ1

d2(uτ0 , u) + φ(uτ0)
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i.e. ( 1
2τ0

− 1
2τ1

)
d2(uτ0 , u) ≤ ( 1

2τ0
− 1

2τ1

)
d2(uτ1 , u).

The third inequality follows by combining the preceding one with

1
2τ1

d2(uτ1 , u) + φ(uτ1) ≤
1

2τ1
d2(uτ0 , u) + φ(uτ0).

The first limit in (3.1.6) is a simple consequence of the monotonicity property
(3.1.5) and of the d-lower semicontinuity of φ. In order to prove the last one,
observe that

d2(uτ , u) ≤ −2τφ(uτ ) + d2(v, u) + 2τφ(v) ∀ v ∈ D(φ), uτ ∈ Jτ [u].

We take the supremum with respect to uτ ∈ Jτ [u] and we recall (2.2.3); passing
to the limit as τ ↓ 0 we get

lim sup
τ↓0

(d+
τ (u))2 ≤ d2(v, u) ∀ v ∈ D(φ).

Since u ∈ D(φ) we conclude. �

The second lemma provides a very useful pointwise estimate on the local
slope of φ.

Lemma 3.1.3 (Slope estimate). If uτ ∈ Jτ [u], then uτ ∈ D(|∂φ|) and

|∂φ|(uτ ) ≤ d(uτ , u)
τ

. (3.1.9)

In particular D(|∂φ|) is d-dense in D(φ).

Proof. Starting from (3.1.2) we easily get

φ(uτ )− φ(v) ≤ 1
2τ

d2(v, u)− 1
2τ

d2(uτ , u) ≤ 1
2τ

d(v, uτ )
(
d(v, u) + d(uτ , u)

)
for every v ∈ D(φ). Dividing the equation by d(v, uτ ) we get

lim sup
v→uτ

(
φ(uτ )− φ(v)

)+
d(v, uτ )

≤ lim sup
v→uτ

1
2τ

(
d(v, u) + d(uτ , u)

)
=

d(u, uτ )
τ

. �

The next estimate will play a crucial role in the subsequent convergence
proofs; we observe that for any open interval (τ0, τ1) with 0 < τ0 < τ1 < τ∗(φ),
(3.1.5) yields (recall (1.1.2))

the maps τ �→ τ−1d±τ (u) have finite pointwise variation in (τ0, τ1). (3.1.10)
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Theorem 3.1.4 (Derivative of φτ (u)). Assume that (3.1.4) holds so that for τ ∈
(0, τ∗(φ)) the infimum in (3.1.1) is attained. For every u ∈ S the map τ �→ φτ (u)
is locally Lipschitz in the open interval (0, τ∗(φ)) and

d

dτ
φτ (u) = −

(
d±τ (u)

)2

2τ2
, for every τ ∈ (0, τ∗(φ)) \Nu, (3.1.11)

where Nu is the (at most countable) set introduced in (3.1.7).
In particular, if u0 ∈ D(φ), for every τ ∈ (0, τ∗(φ)) we have

d2(uτ , u)
2τ

+
∫ τ

0

(
d±r (u)

)2
2r2

dr = φ(u)− φ(uτ ) ∀uτ ∈ Jτ [u]. (3.1.12)

Proof. We simply observe that for every τ0, τ1 ∈ (0, τ∗(φ)) and uτ1 ∈ Jτ1 [u]

φτ0(u)− φτ1(u) ≤ Φ(τ0, u; uτ1)− Φ(τ1, u;uτ1)

=
1

2τ0
d2(uτ1 , u)− 1

2τ1
d2(uτ1 , u) =

τ1 − τ0

2τ1τ0
d2(uτ1 , u),

(3.1.13)

and, changing sign to each term of the inequality and interchanging τ0 with τ1

φτ0(u)− φτ1(u) ≥ τ1 − τ0

2τ1τ0
d2(uτ0 , u), (3.1.14)

so that, being the map τ �→ φτ (u) is non increasing,

0 ≤
(
d+

τ0
(u)

)2
2τ1τ0

≤ φτ0(u)− φτ1(u)
τ1 − τ0

≤
(
d−τ1

(u)
)2

2τ1τ0
if 0 < τ0 < τ1. (3.1.15)

(3.1.15) shows that τ �→ φτ (u) is locally Lipschitz in (0, τ∗(φ)). Passing to the
limit as τ1 ↓ τ, τ0 ↑ τ we obtain (3.1.11). Integrating (3.1.11) from 0 < τ0 to τ > τ0

we obtain

φτ (u) +
∫ τ

τ0

(
d±r (u)

)2
2r

dr = φτ0(u);

if φ(u0) < +∞, we can pass to the limit in the previous identity as τ0 ↓ 0: recalling
(3.1.6) we get (3.1.12). �

The next result provides a sort of duality characterization of the local slope
(1.2.6) in terms of the Moreau-Yosida approximation of φ

Lemma 3.1.5 (Duality formula for the local slope). We have

1
2
|∂φ|2(u) = lim sup

τ→0

φ(u)− φτ (u)
τ

. (3.1.16)

Moreover, if the infimum of (3.1.1) is attained at uτ according to (3.1.4), there
exists a sequence τn ↓ 0 such that

|∂φ|2(u) = lim
n→∞

d2(uτn
, u)

τ 2
n

= lim
n→∞

φ(u)− φ(uτn
)

τn
≥ lim inf

τ↓0
|∂φ|2(uτ ). (3.1.17)
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Proof. It is not restrictive to suppose |∂φ|(u) > 0. We use the elementary identity

1
2
x2 = sup

y>x
xy − 1

2
y2 ∀x ∈ (0, +∞)

obtaining for each 0 < a−1 < |∂φ|(u), ε > 0

1
2
|∂φ|2(u) = lim sup

v→u

1
2

((
φ(u)− φ(v)

)+
d(u, v)

)2

= lim sup
v→u

sup
y>a−1

((
φ(u)− φ(v)

)+

d(u, v)
y − 1

2
y2

)

= lim sup
v→u

sup
0<τ<a d(u,v)

((
φ(u)− φ(v)

)+
d(u, v)

d(u, v)
τ

− 1
2

d2(u, v)
τ2

)

≤ sup
v∈S \{u}

sup
0<τ<ε

((
φ(u)− φ(v)

)+
d(u, v)

d(u, v)
τ

− 1
2

d2(u, v)
τ2

)

= sup
0<τ<ε

sup
v∈S \{u}

((
φ(u)− φ(v)

)+
d(u, v)

d(u, v)
τ

− 1
2

d2(u, v)
τ2

)

= sup
0<τ<ε

φ(u)− φτ (u)
τ

,

where we used the fact that

sup
v∈S \{u}

((
φ(u)− φ(v)

)+ − 1
2τ

d2(u, v)
)

= sup
v∈S \{u}

(
φ(u)− φ(v)− 1

2τ
d2(u, v)

)
= φ(u)− φτ (u).

Passing to the limit as ε ↓ 0 we get

1
2
|∂φ|2(u) ≤ lim sup

τ↓0

φ(u)− φτ (u)
τ

. (3.1.18)

On the other hand, supposing that the infimum in (3.1.1) is attained (otherwise,
we argue by approximation), we have

lim sup
τ↓0

φ(u)− φτ (u)
τ

= lim sup
τ↓0

(
φ(u)− φ(uτ )

τ
− d2(u, uτ )

2τ2

)
≤ lim sup

τ↓0

(
|∂φ|(u)

d(u, uτ )
τ

− d2(u, uτ )
2τ2

)
≤ 1

2
|∂φ|2(u),

(3.1.19)
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which proves (3.1.16). Combining (3.1.18) and (3.1.19), we get

lim inf
τ↓0

∣∣∣∣|∂φ|(u)− d(u, uτ )
τ

∣∣∣∣2 ≤ 0,

which yields (3.1.17), via (3.1.9). �
Now we show that convexity Assumption 2.4.5 leads to stronger estimates.

Theorem 3.1.6 (Slope estimates for convex functionals). Let us suppose that φ
satisfies the convexity Assumption 2.4.5 for some λ ∈ R.

(i) If u ∈ D(|∂φ|), 1 + λτ > 0 and uτ ∈ Jτ [u], then

(1 + λτ )|∂φ|2(uτ ) ≤ (1 + λτ )
d2(uτ , u)

τ2
≤ 2

φ(u)− φτ (u)
τ

≤ 1
1 + λτ

|∂φ|2(u).
(3.1.20)

The last inequality holds even though Jτ [u] = ∅.
(ii) If u ∈ D(φ), uτ ∈ Jτ [u], and λ ≥ 0 then

φ(uτ )− inf
S

φ ≤ 1
(1 + λτ )2

(
φ(u)− inf

S
φ
)
. (3.1.21)

(iii) If λ ≥ 0 then

sup
τ>0

φ(u)− φτ (u)
τ

=
1
2
|∂φ|2(u) ∀u ∈ D(φ). (3.1.22)

Proof. (i) The first inequality has already been proved in (3.1.9); in order to prove
the second one, we apply (2.4.7b) with v0 = u, v1 = uτ to find a point γt such
that

1
2τ

d2(u, uτ ) + φ(uτ ) ≤ 1
2τ

d2(u, γt) + φ(γt)

≤ t

2τ

(
t− λτ (1− t)

)
d2(u, uτ ) + (1− t)φ(u) + tφ(uτ ).

Since the right hand quadratic function has a minimum for t = 1, taking the left
derivative we obtain (λ

2
+

1
τ

)
d2(u, uτ ) + φ(uτ )− φ(u) ≤ 0,

or, equivalently,

1
2
(1 + λτ )

d2(u, uτ )
τ2

≤ φ(u)− φ(uτ )
τ

− d2(u, uτ )
2τ2

=
φ(u)− φτ (u)

τ
.
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The last inequality of (3.1.20) is a simple consequence of Theorem 2.4.9: we write

φ(u)− φτ (u)
τ

=
φ(u)− φ(uτ )

τ
− d2(uτ , u)

2τ2
≤ |∂φ|(u)

d(uτ , u)
τ

− (1 + λτ)
d2(uτ , u)

2τ2

and we apply the Young inequality, observing that 1 − λτ > 0. If Jτ [u] = ∅ we
repeat the argument above with a minimizing sequence.
(ii) Starting from (3.1.20) we easily get

φ(u)− φ(uτ )
τ

≥ (1 + 1
2
λτ )|∂φ|2(uτ )

and, recalling (2.4.18) and (3.1.9), we obtain(
φ(u)− inf

S
φ
)− (

φ(uτ )− inf
S

φ
)

= φ(u)− φ(uτ ) ≥ 2λτ(1 + 1
2λτ)

(
φ(uτ )− inf

S
φ
)

(3.1.23)
which gives (3.1.21).
(iii) follows by (3.1.20) and (3.1.16).

Remark 3.1.7 (p-estimates). It is easy to check that Lemma 3.1.2, 3.1.3, 3.1.5 still
hold in the general p-case, with the estimates

|∂φ|q(uτ ) ≤ dp(uτ , u)
τp

,
1
q
|∂φ|q(u) = lim sup

τ→0

φ(u)− φτ (u)
τ

, (3.1.24)

|∂φ|q(u) = lim
n→∞

dp(uτn
, u)

τp
n

= lim
n→∞

φ(u)− φ(uτn
)

τn
≥ lim inf

τ↓0
|∂φ|q(uτ ). (3.1.25)

(3.1.11) becomes

d

dτ
φτ (u) = −

(
d±τ (u)

)p

q τp
∀ τ ∈ (0, τ∗(φ)) \Nu, (3.1.26)

and therefore (3.1.12) reads

τ
dp(uτ , u)

p τp
+

∫ τ

0

(
d±r (u)

)p

q rp
dr = φ(u)− φ(uτ ) ∀ τ ∈ (0, τ∗(φ)). (3.1.27)

Finally, for λ = 0 the estimates of Theorem 3.1.6 easily extend to

|∂φ|q(uτ ) ≤ dp(uτ , u)
τ p

≤ q
φ(u)− φτ (u)

τ
≤ |∂φ|q(u), (3.1.28)

sup
τ>0

φ(u)− φτ (u)
τ

=
1
q
|∂φ|q(u). (3.1.29)
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3.2 A priori estimates for the discrete solutions

In order to obtain a sharp energy estimate for discrete solutions giving the differen-
tial inequality (1.3.13) as |τ | → 0, we follow a variational interpolation argument
due to De Giorgi, which is based on the identity (3.1.12) in Theorem 3.1.4. As in
the previous section, we will assume (3.1.4), so that at least one solution of the
variational scheme (2.0.4) exists if |τ | < τ∗(φ).

Definition 3.2.1 (De Giorgi variational interpolation). Let {Un
τ }+∞

n=0 be a solution
of the variational scheme (2.0.4); we will denote by Ũτ : [0,+∞) → S any inter-
polation of the discrete values satisfying

Ũτ (t) = Ũτ (tn−1
τ + δ) ∈ Jδ[Un−1

τ ] if t = tn−1
τ + δ ∈ (tn−1

τ , tnτ ]. (3.2.1)

We also introduce the real valued function Gτ defined by

Gτ (t) :=
d+

δ (Un−1
τ )

δ
≥ d(Ũτ (t), Un−1

τ )
t− tn−1

τ

if t = tn−1
τ + δ ∈ (tn−1

τ , tnτ ]. (3.2.2)

Observe that Gτ is a Borel map thanks to (3.1.10), and (3.1.9) yields

|∂φ|(Ũτ (t)) ≤ Gτ (t) ∀t ∈ (0, +∞). (3.2.3)

Lemma 3.2.2 (A priori estimates). Let |τ | ∈ (0, τ∗), let {Un
τ }+∞

n=0 be a sequence
solving the variational scheme (2.0.4), and let |U ′

τ |, Gτ be respectively defined by
(2.3.4), (3.2.2). Then for each couple of integers 1 ≤ i ≤ j we have

1
2

∫ tj
τ

ti
τ

|U ′
τ |2(t) dt +

1
2

∫ tj
τ

ti
τ

G2
τ (t) dt + φ(U j

τ ) = φ(U i
τ ). (3.2.4)

Moreover, for any u∗ ∈ S , S, T > 0, there exists a constant C = C(u∗, τ∗(φ), S, T )
such that if

φ(U0
τ ) ≤ S, d2(U0

τ , u∗) ≤ S, tNτ ≤ T, |τ | ≤ τ∗(φ)/8, (3.2.5)

we have for 1 ≤ n ≤ N

d2(Un
τ , u∗) ≤ C,

n∑
j=1

d2(U j
τ , U j−1

τ )
2τj

≤ φ(U0
τ )− φ(Un

τ ) ≤ C, (3.2.6)

d2(Ũτ (t), Uτ (t)) ≤ C|τ | ∀ t ∈ [0, T ]. (3.2.7)

Proof. Starting from (3.1.12) for u := Un−1
τ , uτ := Un

τ and observing that for
r ∈ (0, τn) ur = Ũτ (tn−1

τ + r), we get

d2(Un
τ , Un−1

τ )
2τn

+
1
2

∫
In

τ

d2(Ũτ (t), Un−1
τ )

(t− tn−1
τ )2

dt ≤ φ(Un−1
τ )− φ(Un

τ ).
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Recalling the definition of |U ′
τ | and Gτ we rewrite the inequality as

1
2

∫
In

τ

|U ′
τ |2 dt +

1
2

∫
In

τ

|Gτ (t)|2 dt ≤ φ(Un−1
τ )− φ(Un

τ ).

Summing up from n = i + 1 to n = j we obtain (3.2.4). The same argument,
neglecting the (nonnegative) integral terms gives

1
2

N∑
n=1

τn

(
d(Un

τ , Un−1
τ )

τn

)2

≤ φ(U0
τ )− φ(UN

τ ). (3.2.8)

Now we observe that for every ε > 0 and τ∗ < τ∗(φ) we have

1
2
d2(Un

τ , u∗)− 1
2
d2(U0

τ , u∗) =
n∑

j=1

(1
2
d2(U j

τ , u∗)− 1
2
d2(U j−1

τ , u∗)
)

≤
n∑

j=1

d(U j
τ , U j−1

τ )d(U j
τ , u∗)

≤ ε
n∑

j=1

d2(U j
τ , U j−1

τ )
2τj

+
1
2ε

n∑
j=1

τjd
2(U j

τ , u∗)

≤εφ(U0
τ )− εφτ∗(u∗) +

ε

2τ∗
d2(Un

τ , u∗) +
1
2ε

n∑
j=1

τjd
2(U j

τ , u∗).

Choosing ε := τ∗/2 we get

d2(Un
τ , u∗) ≤ 2

(
d2(U0

τ , u∗) + τ∗φ(U0
τ )− τ∗φτ∗(u∗)

)
+

4
τ∗

n∑
j=1

τjd
2(U j

τ , u∗)

≤ 2
(
S + τ∗S − τ∗φτ∗(u∗)

)
+ 4

τ∗

n∑
j=1

τjd
2(U j

τ , u∗),

(3.2.9)
where we used the obvious bound

φ(Un
τ ) ≥ φτ∗(u∗)− 1

2τ∗
d2(Un

τ , u∗). (3.2.10)

By applying the Gronwall lemma 3.2.4 below with an := d2(Un
τ , u∗), A := 2

(
S +

τ∗S − τ∗φτ∗(u∗)
)
, and α := 4/τ∗, we get

an ≤ Beατ tn−1
τ ≤ Beατ T , ατ :=

α

1− α|τ | =
4

τ∗ − 4|τ | , B :=
A

1− α|τ | ,

provided α|τ | < 1. Applying this estimate to (3.2.9) and choosing, e.g. τ∗ :=
3τ∗(φ)/4, we obtain the first inequality of (3.2.6). The second inequality follows
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then from (3.2.8) and (3.2.10) for n := N . Finally, (3.2.7) follows by (3.1.5) and
(3.2.6) since for t ∈ Ij

τ , j ≤ n,

d2(Ũτ (t), Uτ (t)) ≤ 2d2(U j−1
τ , U j

τ ) + 2d2(Ũτ (t), U j−1
τ )

≤ 4d2(U j−1
τ , U j

τ ) ≤ 4|τ |
n∑

j=1

d2(U j−1
τ , U j

τ )
τj

.

�

Remark 3.2.3 (Easier estimates when φ is bounded from below). Observe that
when φ is bounded from below then (3.2.6) and (3.2.7) become considerably easier,
since they are a trivial consequence of (3.2.8):

1
2
d2(Un

τ , U0
∗ ) ≤ 1

2T

n∑
j=1

d2(U j
τ , U j−1

τ )
τj

≤ 1
T

(
φ(U0

τ )− inf
S

φ
)
, (3.2.11)

d2(Ũτ (t), Uτ (t)) ≤ 4|τ |(φ(U0
τ )− inf

S
φ
)
. (3.2.12)

Lemma 3.2.4 (A discrete version of Gronwall Lemma). Let A, α ∈ [0,+∞) and,
for n ≥ 1, let an, τn ∈ [0, +∞) be satisfying

an ≤ A + α
n∑

j=1

τjaj ∀n ≥ 1, m := sup
n∈N

ατn < 1. (3.2.13)

Then, setting β = α/(1−m), B := A/(1−m) and τ0 = 0, we have

an ≤ Be
β

n−1∑
i=0

τi ∀n ≥ 1. (3.2.14)

Proof. Let tj :=
∑j

i=1 τi for j ≥ 1. First of all, we observe that (3.2.13) gives

an ≤ B + β

n−1∑
j=1

τjaj ∀n ≥ 2, a1 ≤ B. (3.2.15)

We argue by induction: observe that for n = 1 (3.2.14) reduces to a1 ≤ B. Sup-
posing that (3.2.14) holds for 1 ≤ n ≤ k, and observing that eβtj−1 ≤ eβt for any
t ∈ (tj−1, tj ], we get

ak+1 ≤ B + β
k∑

j=1

τjaj ≤ B + Bβ
k∑

j=1

τje
βtj−1 ≤ B + Bβ

k∑
j=1

∫ tj

tj−1
eβt dt

= B + Bβ

∫ tk

0

eβt dt = B + Bβ
eβtk − 1

β
= Beβtk

.

�
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Remark 3.2.5. Lemma 3.2.2 still holds for p �= 2 with the obvious variants

|∂φ|q(Ũτ (t)) ≤ Gp
τ (t), (3.2.16)

1
p

∫ tj
τ

ti
τ

∣∣U ′
τ (t)

∣∣p dt +
1
q

∫ tj
τ

ti
τ

Gp
τ (t) dt + φ(U j

τ ) ≤ φ(U i
τ ), (3.2.17)

dp(Un
τ , u∗) ≤ C,

n∑
j=1

τj
dp(U j

τ , U j−1
τ )

p τp
j

≤ φ(U0
τ )− φ(Un

τ ) ≤ C, (3.2.18)

dp(Ũτ (t), Uτ (t)) ≤ C|τ | ∀ t ∈ [0, T ]. (3.2.19)

3.3 A compactness argument

The following result combines the ideas of Ascoli-Arzelà and Aubin-Lions com-
pactness Theorems: weak compactness (w.r.t. σ) and strong equicontinuity (w.r.t.
d) yield pointwise convergence up to subsequences.

Proposition 3.3.1 (A refined version of Ascoli-Arzelà theorem). Let T > 0, let
K ⊂ S be a sequentially compact set w.r.t. σ, and let un : [0, T ] → S be curves
such that

un(t) ∈ K ∀n ∈ N, t ∈ [0, T ], (3.3.1)

lim sup
n→∞

d(un(s), un(t)) ≤ ω(s, t) ∀ s, t ∈ [0, T ], (3.3.2)

for a (symmetric) function ω : [0, T ]× [0, T ] → [0, +∞), such that

lim
(s,t)→(r,r)

ω(s, t) = 0 ∀ r ∈ [0, T ] \ C , (3.3.3)

where C is an (at most) countable subset of [0, T ]. Then there exist an increasing
subsequence k �→ n(k) and a limit curve u : [0, T ] → S such that

un(k)(t)
σ
⇀ u(t) ∀ t ∈ [0, T ], u is d-continuous in [0, T ] \ C . (3.3.4)

Remark 3.3.2 (The case when ω is induced by a finite measure). An important
case where the previous theorem can be applied is provided by a (symmetric)
function ω of the form

ω(s, t) = µ([s, t]) ∀ 0 ≤ s ≤ t ≤ T, (3.3.5)

where µ is a non negative and finite measure on [0, T ]; in this case C is set of the
atoms of µ.

Proof. Being K sequentially compact, by a standard diagonal argument we can
find a subsequence k �→ n(k) and a function u : (Q ∩ [0, T ]) ∪ C → K such that

un(k)(t)
σ
⇀ u(t), d(u(s), u(t)) ≤ ω(s, t) ∀ s, t ∈ (

Q ∩ [0, T ]
) ∪ C ; (3.3.6)
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the distance inequality in (3.3.6) follows from (2.1.1). Since K is d-complete, thanks
to (3.3.6) we can extend u to [0, T ] by continuity. Therefore we can uniquely define
a curve (still denoted by) u : [0, T ] → S which is continuous at each point of
[0, T ] \ C .

In order to prove that un(k)(t)
σ
⇀ u(t) also for all t ∈ [0, T ]\C it is sufficient to

show that every converging subsequence of un(k)(t) converges to u(t): if un(k)′(t)
σ
⇀

v is such a subsequence, we have

d(u(s), v) ≤ lim inf
k→∞

d(un(k)′(s), un(k)′(t)) ≤ ω(s, t) ∀ s ∈ [0, T ] ∩Q.

If t /∈ C we can let s ↑ t to obtain that v = u(t). �
An immediate application of Proposition 3.3.1 and Remark 3.3.2 is a clas-

sical result, due to Helly, on compactness of monotone functions w.r.t. pointwise
convergence.

Lemma 3.3.3 (Helly). Suppose that (ϕn) are non increasing functions defined in
[0, T ] with values in [−∞,+∞]. Then there exist a subsequence k �→ n(k) and a
non increasing map ϕ : [0, T ] → [−∞,+∞] such that lim

k→∞
ϕn(k)(t) = ϕ(t) for any

t ∈ [0, T ].

Proof. It is not restrictive to assume, up to a left composition, that all functions ϕn

have their values in [0, 1]. Denoting by µn the derivatives in the sense of distribu-
tions of ϕn, it suffices to extract a subsequence such that µn(k) narrowly converge
in [0, T ] to a finite and non negative measure µ in [0, T ]. Then the assumptions of
Remark 3.3.2 are fulfilled because

lim sup
k→∞

|ϕn(k)(s)− ϕn(k)(t)| ≤ lim sup
k→∞

µn(k)([s, t]) ≤ µ([s, t])

whenever 0 ≤ s ≤ t ≤ T . �
Corollary 3.3.4. Let us fix p ∈ (1,+∞) and let be given a family Λ of admissible
partitions of (0,+∞) with

inf
τ∈Λ

|τ | = 0, sup
τ∈Λ

|τ | < τ∗(φ),

and a corresponding family of initial data {U0
τ }τ∈Λ satisfying

U0
τ

σ
⇀ u0, φ(U0

τ ) → φ(u0) as |τ | ↓ 0, sup
τ∈Λ

dp(U0
τ , u0) < +∞. (3.3.7)

Then there exist a sequence (τn) ⊂ Λ with limn |τn| = 0, a limit curve u which
belongs to ACp

loc([0,+∞);S ), a non-increasing function ϕ : [0,+∞) → R, and a
function A ∈ Lp

loc([0, +∞)) such that

Uτn
(t) σ

⇀ u(t), Ũτ n
(t) σ

⇀ u(t) as n →∞ ∀ t ≥ 0, (3.3.8)
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ϕ(t) := lim
n→∞ φ(Uτn

(t)) ≥ φ(u(t)) ∀ t ≥ 0, φ(u(0)) = φ(u0), (3.3.9)

|U ′
τn
| ⇀ A in Lp

loc([0,+∞)), A(t) ≥ |u′|(t) for L 1-a.e. t ∈ (0,+∞), (3.3.10)

lim inf
n→∞ Gτn

(t) ≥ |∂−φ|(u(t)) ∀ t ≥ 0. (3.3.11)

Proof. As usual we limit to consider the case p = 2, the modifications to deal
with the general case being obvious. Condition (3.3.7) ensures that for any T > 0
the constant C defined by Lemma 3.2.2 remains uniformly bounded with respect
to τ ∈ Λ. Therefore the estimate (3.2.6) and the Assumptions of section 2.1 show
that the curves Uτ : [0, T ] → S , τ ∈ Λ, take their values in a σ-sequentially
compact set. We can find a sequence (τn) ⊂ Λ with |τ n| ↓ 0 such that |U ′

τn
|

weakly converge in L2(0,+∞) to some function A and, by Lemma 3.3.3, the limit
in (3.3.9) exists.

For fixed 0 ≤ s < t let us define

s(n) := max
{
r ∈ Pτn

: r < s
}
, t(n) := min

{
r ∈ Pτn

: t < r
}
,

so that
s(n) ≤ s ≤ t ≤ t(n), lim

n→∞ s(n) = s, lim
n→∞ t(n) = t.

We have

d(Uτn
(s), Uτn

(t)) ≤
∫ t(n)

s(n)

|U ′
τn
|(r) dr (3.3.12)

and therefore

lim sup
n→∞

d(Uτ n
(s), Uτn

(t)) ≤
∫ t

s

A(r) dr. (3.3.13)

Applying Proposition 3.3.1 and (3.2.7), possibly extracting one more subsequence,
we can find u ∈ AC2

loc([0,+∞);S ) such that (3.3.8) and (3.3.9) hold true. More-
over, the limit inequality d(u(s), u(t)) ≤ ∫ t

s
A(r) dr immediately gives that |u′| ≤ A

L 1-a.e. in (0,+∞). Finally, (3.3.11) follows from Fatou’s Lemma and the estimate
(3.2.3), which yields

|∂−φ|(u(t)) ≤ lim inf
n→∞ |∂φ|(Ũτn

(t)) ≤ lim inf
n→∞ Gτn

(t).

3.4 Conclusion of the proofs of the convergence
theorems

Proof of Theorem 2.3.3. Combining (3.3.10), (3.3.11), (3.3.9) and using eventually
(3.2.4) we easily get
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1
2

∫ t

0

|u′|2(s) ds +
1
2

∫ t

0

|∂−φ|2(u(s)) ds + φ(u(t)) (3.4.1)

≤ 1
2

∫ t

0

A2(s) ds +
1
2

∫ t

0

lim inf
n→∞ G2

τn
(s) ds + lim

n→∞φ(Uτn
(t))

≤ lim inf
n→∞

1
2

∫ t

0

∣∣U ′
τn

(s)
∣∣2 ds +

1
2

∫ t

0

G2
τn

(s) ds + φ(Uτn
(t)) ≤ φ(u0).

On the other hand, since |∂−φ| is a strong upper gradient for φ we have

φ(u0) ≤ φ(u(t)) +
∫ t

0

|∂−φ|(u(s))|u′|(s) ds, (3.4.2)

and therefore

|u′|(t) = |∂−φ|(u(t)) for L 1-a.e. t ∈ (0,+∞),

φ(u0)− φ(u(t)) =
∫ t

0

|∂−φ|(u(s))|u′|(s) ds.
(3.4.3)

It follows that t �→ φ(u(t)) is locally absolutely continuous and

d

dt
φ(u(t)) = −|∂−φ|(u(t))|u′|(t) for L 1-a.e. t ∈ (0,+∞). �

Proof of Theorem 2.3.1. Observe that Corollary 3.3.4 still holds under the assump-
tions of Theorem 2.3.1. Denoting by ϕ(t) the limit in (3.3.9) and arguing as in
(3.4.1) we get

1
2

∫ t

s

|u′|2(r) dr +
1
2

∫ t

s

|∂−φ|2(u(r)) dr ≤ ϕ(s)− ϕ(t) (3.4.4)

for 0 ≤ s ≤ t, and ∫ t

0

lim inf
n→∞ G2

τn
(r) dr < +∞ ∀ t > 0. (3.4.5)

Therefore

−ϕ′(t) ≥ 1
2
|u′|2(t) +

1
2
|∂−φ|2(u(t)) for L 1-a.e. t ∈ (0, +∞). (3.4.6)

Moreover, (3.2.3) and (3.4.5) yield

lim inf
n→∞ |∂φ|(Ũτn

(t)) ≤ lim inf
n→∞ Gτn

(t) < +∞ for L 1-a.e. t ∈ (0,+∞),

so that (3.3.8) and the continuity assumption (2.3.3) give

ϕ(t) = φ(u(t)) for L 1-a.e. t ∈ (0,+∞). (3.4.7)

We can conclude that u is a curve of maximal slope for φ with respect to is (weak)
upper gradient |∂−φ|. �
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Proof of Theorem 2.4.15. We start with a simple consequence of (3.1.20) and
(3.1.21).

Lemma 3.4.1. Let us suppose that φ satisfies Assumption 2.4.5 with λ|τ | > −1,
and let us set

λτ :=
log(1 + λ|τ |)

|τ | = inf
n>0

log(1 + λτn)
τn

≤ λ. (3.4.8)

The sequences

n �→ eλτ tn
τ |∂φ|(Un

τ ), n �→ e2λ+
τ tn

τ

(
φ(Un

τ )− inf
S

φ
)

are non increasing. (3.4.9)

Proof. From (3.1.20) we get for every n > 1

eλτ tn
τ |∂φ|(Un

τ ) ≤ eλτ tn
τ

1
1 + λτn

|∂φ|(Un−1
τ ) ≤ eλτ tn

τ e−λτ τn |∂φ|(Un−1
τ )

= eλτ tn−1
τ |∂φ|(Un−1

τ ),

where we used the inequality

1
1 + λτn

≤ e−λτ τn , (3.4.10)

which follows directly from Definition (3.4.8) (whose last inequality is a conse-
quence of the concavity of the map t �→ log(1 + λt)). The second property of
(3.4.9) follows by an analogous argument and from (3.1.21). �

Setting
Ḡτ (t) := eλτ tn

τ |∂φ|(Un
τ ), if t ∈ (tn−1

τ , tnτ ],

Ḡτ is a non-increasing function: taking into account the L2
loc convergence of slopes

given by (2.3.7) and Helly’s Theorem 3.3.3, we can suppose, up to extracting a
suitable subsequence, that for a non-increasing function Ḡ we have

lim
k→∞

Ḡτ k
(t) = Ḡ(t) ∀t ≥ 0, Ḡ(t) = eλt|∂φ|(u(t)) for L 1-a.e. t ∈ (0,+∞).

On the other hand, we know that the map t �→ eλt|∂φ|(u(t)) is lower semicontinu-
ous and therefore it coincides with the right continuous representative of Ḡ. Since
|u′|(t) = |∂φ|(u(t)) for L 1-a.e. t ∈ (0,+∞), we deduce that |u′| admits a right
continuous representative and it is essentially bounded in each interval (δ, 1/δ) for
0 < δ < 1. From the inequality

d(u(t + h), u(t)) ≤
∫ t+h

t

|∂φ|(u(r)) dr ∀ t ≥ 0,

we get

lim sup
h↓0

d(u(t + h), u(t))
h

≤ |∂φ|(u(t)) ∀ t ≥ 0. (3.4.11)
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Since for any µ, φ̄ ∈ R and L 1-a.e. t > 0

d

dt
e2µt

(
φ(u(t))− φ̄) = −e2µt|∂φ|2(u(t)) + 2µe2µt

(
φ(u(t))− φ̄), (3.4.12)

choosing µ := min(λ, 0) and φ̄ ≤ inft∈[0,T ] φ(u(t)), we find that the map t �→
e2µt

(
φ(u(t))− φ̄

)
is convex in [0, T ]. It follows that the map t �→ φ(u(t)) is right

differentiable at each point t ∈ [0,+∞) and

d

dt+
φ(u(t)) = −|∂φ|2(u(t)) ∀ t ≥ 0 . (3.4.13)

On the other hand, it is easy to check that

d

dt+
φ(u(t)) ≥ −|∂φ|(u(t)) · lim inf

h↓0
d(u(t + h), u(t))

h
. (3.4.14)

Combining (3.4.14) with (3.4.11) and (3.4.13) we get

|u′
+|(t) = lim

h↓0
d(u(t + h), u(t))

h
= |∂φ|(u(t)) at each point t ∈ (0,+∞).

Inequality (2.4.23) follows by the energy inequality, since for λ ≤ 0

T
2
e2λT |∂φ|2(u(T )) ≤ 1

2

∫ T

0

e2λt|∂φ|2(u(t)) dt ≤ φ(u0)− φ(u(T ))− 1
2

∫ T

0

|u′|2(t) dt

≤ φ(u0)− φ(u(T ))− 1
2T d2(u0, u(T )) ≤ φ(u0)− φT (u0).

Finally (2.4.24) for λ ≥ 0 follows by an integration of (3.4.12), choosing µ := λ,
φ̄ := infS φ, and taking into account (2.4.21):

e2λT
(
φ(u(T ))− φ̄) + Te2λT |∂φ|2(u(T )) ≤ φ(u0)− φ̄ + 2λ

∫ T

0

e2λt
(
φ(u(t))− φ̄

)
dt

≤ (1 + 2λT )(φ(u0)− φ̄). �
We conclude this section with a discrete analogous to Theorem 2.4.14, whose

proof follows directly from (3.4.9) and Lemma 2.4.13.

Corollary 3.4.2. Assume that φ : S → (−∞,+∞] is a d-lower semicontinuous
functional satisfying Assumption 2.4.5 with λ > 0 and let Uτ be a discrete solution.
Then

1
2λd2(Un

τ , ū) ≤ φ(Un
τ )− φ(ū) ≤ (φ(U0

τ )− φ(ū))e−2λτ tn
τ . (3.4.15)



Chapter 4

Uniqueness, Generation of
Contraction Semigroups, Error
Estimates

In all this section we consider the “quadratic” approximation scheme (2.0.3b),
(2.0.4) for 2-curves of maximal slope and we identify the “weak” topology σ with
the “strong” one induced by the distance d as in Remark 2.1.1: thus we are as-
suming that

p = 2, (S , d) is a complete metric space and
φ : S → (−∞,+∞] is a proper, coercive (2.4.10), l.s.c. functional,

(4.0.1)

but we are not imposing any compactness assumptions on the sublevels of φ.
Existence, uniqueness and semigroup properties for minimizing movement u ∈
MM(Φ; u0) (and not simply the generalized ones, recall Definition 2.0.6) are well
known in the case of lower semicontinuous convex functionals in Hilbert spaces
[28]. In this framework the resolvent operator in Jτ [·] (3.1.2) is single valued and
non expansive, i.e.

d(Jτ [u], Jτ [v]) ≤ d(u, v) ∀u, v ∈ S , τ > 0; (4.0.2)

this property is a key ingredient, as in the celebrated Crandall-Ligget gener-
ation Theorem [46], to prove the uniform convergence of the exponential formula
(cf. (2.0.9))

u(t) = lim
n→∞(Jt/n)n[u0], d

(
u(t), (Jt/n)n[u0]

)
≤ 2|∂φ|(u0) t√

n
, (4.0.3)

and therefore to define a contraction semigroup on D(φ). Being generated by a
convex functional, this semigroup exhibits a nice regularizing effect [27], since
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u(t) ∈ D(|∂φ|) whenever t > 0 even if the starting value u0 simply belongs to
D(φ). Moreover the function u can be characterized as the unique solution of the
evolution variational inequality

〈 d
dtu(t), u(t)− v〉+ φ(u(t)) ≤ φ(v) ∀ v ∈ D(φ), (4.0.4)

〈·, ·〉 being the scalar product in S .
More recently, optimal a priori and a posteriori error estimates have also

been derived [18, 115, 102]: the original O(τ 1/2) = O(1/
√

n) order of convergence
established by Crandall and Ligget for u0 ∈ D(|∂φ|) and a uniform partition
(2.0.8), has been improved to

d
(
u(t), (Jt/n)n[u0]

)
≤ |∂φ|(u0) t

n
√

2
(4.0.5)

and extended to the general scheme (2.0.4), (2.0.7)

d2(Uτ (t), u(t)) ≤ |τ |
(
φ(u0)− inf

S
φ
)
, d2(Uτ (t), u(t)) ≤ |τ |2 |∂φ|2(u0)

2
, (4.0.6)

thus establishing an optimal error estimate of the same order O(|τ |) of the Euler
method in a smooth and finite dimensional setting.

Similar results for gradient flows of convex functionals in general (non Hilber-
tian) Banach spaces are still completely open: at least heuristically, this fact sug-
gests that some structural property of the distance should play a crucial role,
besides the convexity of the functional φ.

A first step in this direction has been obtained by U. Mayer [96] (see also
[85]), who considered gradient flows of geodesically convex functionals on non-
positively curved metric spaces: these are length spaces (i.e. each couple of points
v0, v1 can be connected through a minimal geodesic) where the distance maps

v �→ 1
2
d2(v, w) are 1-convex along geodesics ∀w ∈ S . (4.0.7)

This property was introduced by Aleksandrov on the basis of the analogous in-
equality satisfied in Euclidean spaces (2.4.4) and in Riemannian manifolds of non-
positive sectional curvature [84, §2.3]; it allows to prove (4.0.2), and to obtain the
generation formula (4.0.3) by following the same Crandall-Liggett arguments. Ob-
serve that Mayer’s assumptions yield in particular that the variational functional
defined by (2.0.3b)

v �→ Φ(τ, w; v) =
1
2τ

d2(v, w) + φ(v)

is (τ−1 + λ)-convex along geodesics ∀w ∈ S .
(4.0.8)

These assumptions, though quite general, do not cover the case of the metric
space of probability measures endowed with the L2-Wasserstein distance: we will
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show in Section 7.3 that, in fact, the distance of this space satisfies the opposite
inequality, thus providing a positively curved space, as formally suggested also by
[107]. Example 7.3.3 will also show that the squared L2-Wasserstein distance does
not satisfy any λ-convexity properties, even for negative choice of λ ∈ R.

Our idea is to concentrate our attention directly on the functional Φ(τ, w; ·)
and to allow more flexibility in the choice of the connecting curves, along which
it has to satisfies the convexity assumption (4.0.8): we formalize this requirement
in the following assumption:

Assumption 4.0.1 ((τ−1 + λ)-convexity of Φ(τ, u; ·)). We suppose that for every
choice of w, v0, and v1 in D(φ) there exists a curve γ = γt, t ∈ [0, 1], with
γ0 = v0, γ1 = v1 such that

v �→ Φ(τ, w; v) is
(1
τ

+ λ
)
-convex on γ for each 0 < τ <

1
λ− , (4.0.9)

i.e. the map Φ(τ, w; γt) satisfies the inequality

Φ(τ, w; γt) ≤ (1− t)Φ(τ, w; v0) + tΦ(τ, w; v1)− 1 + λτ

2τ
t(1− t)d2(v0, v1). (4.0.10)

Remark 4.0.2. Of course, Assumption 4.0.1 covers the case of a (geodesically)
λ-convex functional on a nonpositively curved metric space considered by [96],
in particular the case of a (geodesically) λ-convex functional in a Riemannian
manifold of nonpositive sectional curvature or in a Hilbert space.

Remark 4.0.3. Assumption 4.0.1 is stronger than 2.4.5, since this last one is a
particular case of (4.0.1) when the “base point” w coincides with v0.

We collect the main results in this case

Theorem 4.0.4 (Generation and main properties of the evolution semigroup). Let
us assume that (4.0.1) and the convexity Assumption 4.0.1 hold for some λ ∈ R.

i) Convergence and exponential formula: for each u0 ∈ D(φ) there exists a
unique element u = S[u0] in MM(Φ;u0) which therefore can be expressed
through the exponential formula

u(t) = S[u0](t) = lim
n→∞(Jt/n)n[u0]. (4.0.11)

ii) Regularizing effect: u is a locally Lipschitz curve of maximal slope with u(t) ∈
D(|∂φ|) ⊂ D(φ) for t > 0; in particular, if λ ≥ 0, the following a priori
bounds hold:

φ(u(t)) ≤ φt(u0) ≤ φ(v) +
1
2t

d2(v, u0) ∀ v ∈ D(φ),

|∂φ|2(u(t)) ≤ |∂φ|2(v) +
1
t2

d2(v, u0) ∀ v ∈ D(|∂φ|).
(4.0.12)
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iii) Uniqueness and evolution variational inequalities: u is the unique solution of
the evolution variational inequality

1
2

d

dt
d2(u(t), v) +

1
2
λd2(u(t), v) + φ(u(t)) ≤ φ(v) L 1-a.e. t > 0, ∀v ∈ D(φ),

(4.0.13)
among all the locally absolutely continuous curves such that limt↓0 u(t) = u0

in S .

iv) Contraction semigroup: The map t �→ S[u0](t) is a λ-contracting semigroup
i.e.

d
(
S[u0](t), S[v0](t)

) ≤ e−λ td(u0, v0) ∀u0, v0 ∈ D(φ). (4.0.14)

v) Optimal a priori estimate: if u0 ∈ D(φ) and λ = 0 then

d2
(
S[u0](t), (Jt/n)n[u0]

)
≤ t

n

(
φ(u0)− φt/n(u0)

)
≤ t2

2n2
|∂φ|2(u0). (4.0.15)

Remark 4.0.5. Let us collect some comments about this result:

(a) The regularizing effect provided by (4.0.12) is stronger than the analogous
property proved in Theorem 2.4.15 for λ-convex function, since in this case we
simply need u0 ∈ D(φ) instead of u0 ∈ D(φ). Inequality (4.0.12) also implies a
faster decay of |∂φ|(u(t)) as t ↑ +∞.

(b) Since for differentiable curves u in a Hilbert space S = H

〈 d

dt
u(t), u(t)− v〉 =

1
2

d

dt
|u(t)− v|2 =

1
2

d

dt
d2(u(t), v) ∀ v ∈ H ,

the variational inequality formulation (4.0.13) is formally equivalent to (4.0.4) (in
the case λ = 0), but it does not require neither the existence of the pointwise
derivative of u nor a vectorial structure. A similar idea was introduced by P.
Bénilan [22] for the definition of the integral solutions of evolution equations
governed by m-accretive operators in Banach spaces. The integral formulation
corresponds to condier (4.0.13) in the weaker distributional sense:

1
2
d2(u(t), v)− 1

2
d2(u(s), v) ≤

∫ t

s

(
φ(v)− φ(u(r))− λ

2
d2(u(r), v)

)
dr, (4.0.16)

for every v ∈ D(φ) and 0 < s < t; in this way, one can simply require that u is a
continuous curve with φ ◦ u ∈ L1

loc(0,+∞), thus avoiding any a priori regularity
assumption on the evolution curve. It would not be difficult to show that there
exists at most one integral solution with prescribed initial datum and that this
formulation is equivalent to (4.0.13).
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(c) The semigroup S satisfies the contracting property (4.0.14) (e.g. for λ = 0)
even if at the discrete level the resolvent operator does not satisfy in general the
analogous property (4.0.2).
(d) In the case λ > 0 (4.0.14) provides another estimates of the exponential decay
of the solution u to the unique minimum point ū of φ (cf. (2.4.12)), as already
discussed in Theorem 2.4.14, i.e.

d(u(t), ū) ≤ e−λtd(u0, ū) ∀ t ≥ 0. (4.0.17)

(e) The estimates (4.0.15) are exactly the same of the Hilbert framework: in fact
the first one is even slightly better than the previously known results, since it
exhibits an order of convergence o(

√
1/n) instead of O(

√
1/n) for u0 ∈ D(φ)

and it shows that the error is related to the speed of convergence of the Moreau-
Yosida approximation φτ to φ as τ ↓ 0. Starting from this formula, it would not
be difficult to relate the order of convergence to the regularity of u0, measured in
suitable (nonlinear) interpolation classes between D(φ) and D(|∂φ|) (see e.g. [29],
[19]).

In the limiting case λ = 0 the exponential decay does not occur, in general,
but we can still prove some weaker results on the asymptotic behaviour of u, which
are easy consequences of (4.0.12) and of (4.0.13).

Corollary 4.0.6. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold with
λ = 0, and that ū is a minimum point for φ. Then the solution u = S[u0] provided
by Theorem 4.0.4 satisfies

|∂φ|(u(t)) ≤ d(u0, ū)
t

, φ(u(t))− φ(ū) ≤ d2(u0, ū)
2t

,

the map t �→ d(u(t), ū) is not increasing.
(4.0.18)

In particular, if the sublevels of φ are compact, then u(t) d→ u∞ as t →∞ and u∞
is a minimum point for φ.

General a priori and a posteriori error estimates. (4.0.15) is a particular case of
the general error estimates which can also be proved for non uniform partitions;
quite surprisingly, they reproduce exactly the same structure of the Hilbertian
setting and can be derived by a preliminary a posteriori error analysis (we refer
to [102] for a detailed account of the various contributions to the subject of the a
priori and a posteriori error estimates in the Hilbert case).

As we have already seen in (4.0.15), for each estimate the order of convergence
depends on the regularity of the initial datum: the best one is obtained if u0 ∈
D(|∂φ|), whereas an intermediate order O(

√|τ |) can be proved if u0 ∈ D(φ);
simple linear examples show that these bounds are optimal.

We first present the most interesting result for λ = 0 and then we will show
how the various constants are affected by different values of λ.
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Theorem 4.0.7 (The case λ = 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 hold with λ = 0, let u ∈ MM(Φ;u0) be the unique solution of the
equation (4.0.13) and let Uτ be a discrete solution associated to the partition Pτ

(2.0.1). If u0 ∈ D(φ) and T = tNτ ∈ Pτ

d2(Uτ (T ), u(T )) ≤ d2(U0
τ , u0) +

N−1∑
n=1

τ2
nE n

τ , (4.0.19)

where

E n
τ :=

φ(Un−1
τ )− φ(Un

τ )
τn

− d2(Un−1
τ , Un

τ )
τ 2
n

(4.0.20)

and
N∑

n=1

τ2
nE n

τ ≤ |τ |
(
φ(U0

τ )− φT (U0
τ )

)
; (4.0.21)

if U0
τ ≡ u0 we have

d2(Uτ (T ), u(T )) ≤ |τ |
(
φ(u0)− φT (u0)

)
≤ |τ |

(
φ(u0)− inf

S
φ
)

∀T > 0. (4.0.22)

If U0
τ ∈ D(|∂φ|) we have

N∑
n=1

τ2
nE n

τ ≤ |τ |2
2
|∂φ|2(U0

τ ); (4.0.23)

if U0
τ ≡ u0 we have

d2(Uτ (T ), u(T )) ≤ |τ |2
2
|∂φ|2(u0) ∀T > 0. (4.0.24)

Remark 4.0.8. (4.0.21) is slightly worse than (4.0.15), which in the case of a uni-
form mesh and u0 ∈ D(φ) provides an o(

√|τ |) estimates, instead of O(
√|τ |): this

fact depends on a finer cancellation effect which seems to be related to the choice
of uniform step sizes.

In the case λ �= 0 the error d(Uτ (T ), u(T )) should be affected by an expo-
nential factor e−λT , corresponding to (4.0.14) or e−λτ T , where

λτ :=
log(1 + λ|τ |)

|τ | as for the discrete bounds of Lemma 3.4.1; (4.0.25)

the involved constants could also be perturbed by the presence of λ: here the
main technical difficulty is to obtain estimates which exhibit the right coefficient
of the exponential grow (or decay) and constants which reduce to the optimal ones
(4.0.22), (4.0.24) when λ = 0.

We limit us to detail the a priori bounds of the error: we adopt the convention
to denote by c = c(λ, |τ |, T ) the constants which depend only on the parameters
λ, |τ |, T , exhibit at most a polynomial (in fact linear or quadratic) growth with
respect to T , and are asymptotic to 1 as λ → 0.
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Theorem 4.0.9 (The case λ < 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 holds for λ < 0, let u ∈ MM(Φ; u0) be the unique solution of the
equation (4.0.13) and let Uτ be the discrete solution associated to the partition Pτ

in (2.0.1) with |τ | < (−λ)−1. If U0
τ = u0 ∈ D(φ) we have

d2(Uτ (T ), u(T )) ≤ c |τ |
(
φ(u0)−inf

S
φ
)
e−2λT , c :=

(
1+

√
4
3 |λ| |τ |

)2

. (4.0.26)

If U0
τ = u0 ∈ D(|∂φ|), λτ is defined as in (4.0.25), and Tτ = min

{
tkτ ∈ Pτ : tkτ ≥

T
}
, we have

d(Uτ (T ), u(T )) ≤ c
|τ |√

2
|∂φ|(u0) e−λτ T , c :=

1 + 2|λ|Tτ

1 + λ|τ | . (4.0.27)

We recall that in the case λ > 0 the function φ is bounded from below.

Theorem 4.0.10 (The case λ > 0). Suppose that (4.0.1) and the convexity Assump-
tion 4.0.1 hold for λ > 0, let u ∈ MM(Φ;u0) be the unique solution of the equation
(4.0.13), let Uτ be a discrete solution associated to the partition Pτ (2.0.1), and
let λτ be defined as in (4.0.25). If U0

τ = u0 ∈ D(φ) and Tτ ∈ Pτ is defined as in
the above Theorem, we have

d2(Uτ (T ), u(T ))) ≤ c |τ |
(
φ(u0)− inf

S
φ
)
e−2λτ T ,

c := (1 + λ|τ |)(1 +
√

2λTτ

)4
.

(4.0.28)

If U0
τ = u0 ∈ D(|∂φ|) we have

d2(Uτ (T ), u(T )) ≤ c
|τ |2
2
|∂φ|2(u0) e−2λτ T , c := 1 + 2λ Tτ . (4.0.29)

We split the proof of the previous theorems in many steps:

4.1.1: discrete variational inequalities. First of all we derive the variational evolu-
tion inequalities (4.1.3), which are the discrete counterparts of (4.0.13). They
provide a crucial property satisfied by the discrete solutions and are a simple
consequence of the convexity assumption 4.0.1; all the subsequent estimates
can be deduced from this fundamental point.

4.1.2: Cauchy-type estimates. Here we introduce a general way to pass from a
discrete variational inequality to a continuous one, though affected by a per-
turbation term; the main technical difficulty is the lackness of an underlying
linear structure, which prevents an easy interpolation of the discrete values
in the ambient space S . We circumvent this fact by considering affine inter-
polations of the values of the functions instead of trying to interpolate their
arguments (see also [101] for a similar approach). Once continuous versions
of the evolution variational inequalities are at our disposal, it will not be dif-
ficult to derive Cauchy-type estimates, by also applying a Gronwall lemma
in the case λ �= 0.
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4.2: convergence. This section is devoted to control the perturbation terms in the
previously derived estimates, in order to prove the convergence of the scheme.
We first consider the easier case u0 ∈ D(φ) and then we extend the results
to a general u0 ∈ D(φ).

4.3: regularizing effect and semigroup generation. Here we show that the unique
element u ∈ MM(Φ; u0) exhibits the regularizing effect (4.0.12) and then de-
rives the differential characterization (4.0.13) which also yield the λ-contract-
ing semigroup property (4.0.14).

4.4: optimal error estimates. Finally, we refine the error estimates which have
been derived in the first section, and we prove Theorems 4.0.7, 4.0.9, 4.0.10,
and the related estimate (4.0.15). For the ease of the reader, the main ideas
are first presented in the case λ = 0; the more technical results for λ �= 0 are
discussed in Section 4.4.2

4.1 Cauchy-type estimates for discrete solutions

4.1.1 Discrete variational inequalities

Let us first state an auxiliary lemma:

Lemma 4.1.1. Let us suppose that (4.0.1) and the convexity Assumption 4.0.1 hold
for some λ ∈ R, and let 0 < τ < 1

λ− . If u ∈ D(φ) and (vn) is a sequence in D(φ)
satisfying

lim sup
n→∞

Φ(τ, u; vn) ≤ φτ (u), (4.1.1)

then (vn) converges to v ∈ D(φ) and v = uτ = Jτ [u] is the unique element of
Jτ [u].

Proof. Being u ∈ D(φ), we can find a sequence (un) ⊂ D(φ) converging to u such
that

lim sup
n→∞

Φ(τ, un; vn) = lim sup
n→∞

Φ(τ, u; vn) ≤ φτ (u).

We argue as in the proof of Lemma 2.4.8: observe that, being φτ continuous (cf.
Lemma 3.1.2) and φτ (u) < +∞, (4.1.1) yields

Φ(τ, un; vn) = φτ (un) +
(
φτ (u)− φτ (un)

)
+

(
Φ(τ, un; vn)− φτ (u)

)
= φτ (un) + ωn with lim sup

n→∞
ωn ≤ 0.

We apply the convexity property (4.0.10) with w := un, v0 := vn, v1 := vm at
t = 1/2 to find vn,m such that

φτ (un) ≤ Φ(τ, un; vn,m) ≤ φτ (un) +
ωn + ωm

2
− 1 + λτ

8τ
d2(vn, vm).
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Since 1 + λτ > 0 this implies that

lim sup
n,m→∞

d2(vn, vm) ≤ 4τ

1 + λτ
lim sup
n,m→∞

(
ωn + ωm

)
= 0,

therefore (vn) is a Cauchy sequence and the lower semicontinuity of φ gives that
Φ(τ, u; v) = φτ (u), i.e. v ∈ Jτ [u]. The same argument also shows that v is the
unique element of Jτ [u]. �

The following result is a significant improvement of Theorem 3.1.6:

Theorem 4.1.2 (Variational inequalities for uτ ). Let us suppose that (4.0.1) and
the convexity Assumption 4.0.1 holds for some λ ∈ R.

(i) If u ∈ D(φ) and λτ > −1 then the minimum problem (2.0.5) has a unique
solution uτ = Jτ [u]. The map u ∈ D(φ) �→ Jτ [u] is continuous.

(ii) If u ∈ D(φ) and uτ = Jτ [u], for each v ∈ D(φ) we have

1
2τ

d2(uτ , v)− 1
2τ

d2(u, v) +
1
2
λd2(uτ , v) ≤ φ(v)− φτ (u). (4.1.2)

Proof. (i) In order to show the existence of a minimum point uτ ∈ Jτ [u] we simply
apply the previous Lemma 4.1.1 by choosing an arbitrary minimizing sequence,
thus satisfying (4.1.1).

The continuity of Jτ follows by the same argument; simply take a sequence
(un) ⊂ D(φ) converging to u and observe that vn := Jτ [un] is bounded in S and
satisfies

lim sup
n→∞

Φ(τ, u; vn) = lim sup
n→∞

Φ(τ, un; vn) = lim
n→∞ φτ (un) = φτ (u).

(ii) Since the map Jτ is continuous, by a standard approximation argument we
can suppose u ∈ D(φ). We apply (4.0.10) again with w := u, v0 := uτ and v1 := v,
obtaining a family vt ∈ D(φ), t ∈ (0, 1), such that

Φ(τ, u;uτ ) ≤ Φ(τ, u; vt) ≤ (1− t)Φ(τ, u;uτ)+ tΦ(τ, u; v)− 1 + λτ

2τ
t(1− t)d2(uτ , v).

Subtracting Φ(τ, u; uτ) by each term of the inequality, dividing by t, and passing
to the limit as t ↓ 0 we get

0 ≤ −Φ(τ, u; uτ) + Φ(τ, u; v)− 1 + λτ

2τ
d2(uτ , v)

which is equivalent to (4.1.2) since φτ (u) = Φ(τ, u; uτ). �
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Corollary 4.1.3 (Variational inequalities for discrete solutions). Under the same
assumptions of the previous Lemma, every discrete solution {Un

τ }+∞
n=0 with U0

τ ∈
D(φ) satisfies

1
2τn

(
d2(Un

τ , V )− d2(Un−1
τ , V )

)
+

1
2
λ d2(Un

τ , V )

≤ φ(V )− φ(Un
τ )− 1

2τn
d2(Un

τ , Un−1
τ ) ∀V ∈ D(φ), n ≥ 1.

(4.1.3)

4.1.2 Piecewise affine interpolation and comparison results

Now we formalize a general way to write a discrete difference inequality as a con-
tinuous one: first of all, let us introduce the “delayed” piecewise constant function
Uτ

Uτ (t) ≡ Un−1
τ if t ∈ (tn−1

τ , tnτ ],

and the interpolating functions

�τ (t) :=
t− tn−1

τ

τn
, 1− �τ (t) =

tnτ − t

τn
if t ∈ (tn−1

τ , tnτ ]. (4.1.4)

t
τ1 τ2 τ3 τ4 τ5 τ6

�τ

1

Figure 4.1: The interpolating functions �τ .

If ζ : S → (−∞,+∞] is a function which is finite on the discrete solution
{Un

τ }+∞
n=0, we can define its affine interpolation as

ζτ (t) :=(1− �τ (t))ζ(Uτ (t)) + �τ (t)ζ(Uτ (t))

=(1− �τ (t))ζ(Un−1
τ ) + �τ (t)ζ(Un

τ ) if t ∈ (tn−1
τ , tnτ ].

(4.1.5)

In other words, ζτ is the continuous piecewise affine function which interpolates
the values ζ(Un

τ ) at the nodes tnτ of the partition Pτ . In this way, for V ∈ S , we
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can consider the functions

d2
τ (t;V ) := (1− �τ (t))d2(Un−1

τ , V ) + �τ (t)d2(Un
τ , V ) t ∈ (tn−1

τ , tnτ ], (4.1.6)

ϕτ (t) := (1− �τ (t))φ(Un−1
τ ) + �τ (t)φ(Un

τ ) t ∈ (tn−1
τ , tnτ ]. (4.1.7)

The main idea here is to “interpolate a function” instead of evaluating it on a
(more difficult) interpolation of the arguments (see also [101] for another applica-
tion of this technique); of course, for convex functional in Euclidean space these
two approaches are slightly different but in our metric framework the first one is
particularly convenient.

Finally, to every discrete solution {Un
τ }+∞

n=0 ⊂ D(φ) defined as before we
associate the “squared discrete derivative”

Dn
τ :=

d2(Un−1
τ , Un

τ )
τ 2
n

, n = 1, · · · , (4.1.8)

and the residual function Rτ , defined for t ∈ (tn−1
τ , tnτ ] by

Rτ (t) :=2(1− �τ (t))
(
φ(Un−1

τ )− φ(Un
τ )− τn

2
Dn

τ

)
− �τ (t)τnDn

τ (4.1.9a)

=2(1− �τ (t))τnE n
τ +

(
1− 2�τ (t)

)
τnDn

τ . (4.1.9b)

Observe that (3.1.20) yields

(1 + λτn)|∂φ|2(Un
τ ) ≤ (1 + λτn)Dn

τ ≤
2
τn

(
φ(Un−1

τ )− φ(Un
τ )− τn

2
Dn

τ

)
≤ 1

1 + λτn
|∂φ|2(Un−1

τ ) ≤ 1
1 + λτn

Dn−1
τ ,

(4.1.10)

so that, if Un−1
τ ∈ D(|∂φ|) then (4.1.9a) yields

Rτ (t) ≤ τn
1− �τ (t)
1 + λτn

|∂φ|2(Un−1
τ )− �τ (t)τnDn

τ t ∈ (tn−1
τ , tnτ ]. (4.1.11)

Theorem 4.1.4. Let us suppose that (4.0.1) and the convexity Assumption 4.0.1
hold for λ ∈ R, and U0

τ ∈ D(φ). The interpolated functions dτ , ϕτ defined as in
(4.1.6), (4.1.7) starting from the discrete solution {Un

τ }+∞
n=0 satisfy the following

system of variational inequalities almost everywhere in (0, +∞):

1
2

d

dt
d2

τ (t; V ) +
λ

2
d2(Uτ (t), V ) + ϕτ (t)− φ(V ) ≤ 1

2
Rτ (t) ∀V ∈ D(φ). (4.1.12)
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Proof. If t ∈ (tn−1
τ , tnτ ], using (4.1.3) we obtain

1
2

d

dt
d2

τ (t; V ) +
1
2
λd2(Uτ (t), V ) + ϕτ (t)− φ(V )

=
1

2τn

(
d2(Un

τ , V )− d2(Un−1
τ , V )

)
+

1
2
λd2(Un

τ , V ) + ϕτ (t)− φ(V )

≤ − 1
2τn

d2(Un
τ , Un−1

τ ) + φ(V )− φ(Un
τ ) + ϕτ (t)− φ(V )

= − 1
2τn

d2(Un
τ , Un−1

τ ) + (1− �τ (t))
(
φ(Un−1

τ )− φ(Un
τ )

)
= (1− �τ (t))

(
φ(Un−1

τ )− φ(Un
τ )− 1

2τn
d2(Un

τ , Un−1
τ )

)
− �τ (t)

1
2τn

d2(Un
τ , Un−1

τ ).

Recalling the Definition (4.1.9a) of Rτ (t) we conclude. �

Comparison between discrete solutions for λ = 0. In the next Corollary we are
finally able to compare two discrete solutions.

Corollary 4.1.5 (Comparison for λ = 0). Under the same assumptions of Theorem
4.1.4, let us suppose that λ = 0 and let {Um

η }+∞
m=0, U0

η ∈ D(φ), be another discrete
solution associated to the admissible partition

Pη :=
{

0 = t0η < t1η < . . . < tmη , . . .
}
, ηm = tmη − tm−1

η . (4.1.13)

The continuous and piecewise affine function

d2
τη(t, s) := (1− �η(s))d2

τ (t;Uη(s)) + �η(s)d2
τ (t; Uη(s)) t, s ≥ 0 (4.1.14)

satisfies the differential inequality

d

dt
d2

τη(t, t) ≤ Rτ (t) + Rη(t) ∀ t ∈ (0, +∞) \ (Pτ ∪ Pη) (4.1.15)

and therefore the integral bound

d2
τη(T, T ) ≤ d2(U0

τ , U0
η) +

∫ T

0

(
Rτ (t) + Rη(t)

)
dt. (4.1.16)

Proof. Defining the function ϕη(s) as in (4.1.5) by

ϕη(s) := (1− �η(s))φ(Uη(s)) + �η(s)φ(Uη(s)), (4.1.17)

a convex combination of (4.1.12) for V := Uη(s) and V := Uη(s) yields

1
2

∂

∂t
d2

τη(t, s) + ϕτ (t)− ϕη(s) ≤ 1
2
Rτ (t) ∀ s > 0, t ∈ (0,+∞) \ Pτ .
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Analogously, writing (4.1.12) for the function d2
η defined as in (4.1.6)

d2
η(s; V ) := (1− �η(s))d2(Uη(s), V ) + �η(s)d2(Uη(s), V ),

and reversing the roles of η and τ we obtain

1
2

∂

∂s
d2

ητ (s, t) + ϕη(s)− ϕτ (t) ≤ 1
2
Rη(s) ∀ t > 0, s ∈ (0, +∞) \ Pη,

where

d2
ητ (s, t) := (1− �τ (t))d2

η(s;Un−1
τ ) + �τ (t)d2

η(s; Un
τ ) for t ∈ (tn−1

τ , tnτ ]. (4.1.18)

Summing up the two contributions we find

∂

∂t
d2

τη(t, s) +
∂

∂s
d2

ητ (s, t) ≤ Rτ (t) + Rη(s) ∀ s, t ∈ (0,+∞) \ (Pτ ∪ Pη).

Finally, by the symmetry property

d2
τη(t, s) = d2

ητ (s, t), (4.1.19)

evaluating the previous inequality for s = t we end up with (4.1.15). �

Comparison between discrete solutions for λ �= 0. If λ �= 0 we need to rewrite
(4.1.12) in a more convenient form; let us first observe that the concavity of the
square root provides the inequalities for V ∈ S

(1− �τ (t))d(Uτ (t), V ) + �τ (t)d(Uτ (t), V ) ≤ dτ (t, V ) ∀ t > 0, (4.1.20)

(1− �η(s))dτ (t,Uη(s)) + �η(s)dτ (t, Uη(s)) ≤ dτη(t, s) ∀ t, s > 0. (4.1.21)

Lemma 4.1.6. Under the same assumptions of Theorem 4.1.4, for a discrete solu-
tion {Un

τ }+∞
n=0 with U0

τ ∈ D(φ) let us define

Dτ (t) :=
(
1−�τ (t)

)
d(Uτ (t),Uτ (t)) = τn

(
1−�τ (t)

)√
Dn

τ , t ∈ (tn−1
τ , tnτ ]. (4.1.22)

Then for every element V ∈ D(φ) the interpolated functions dτ , ϕτ defined by
(4.1.6) and (4.1.7) satisfy the following system of variational inequalities almost
everywhere in (0,+∞):

d

dt

1
2
d2

τ (t; V )+
λ

2
d2

τ (t;V )−|λ|Dτ (t)dτ (t; V )+ϕτ (t)−φ(V ) ≤ 1
2
Rτ (t)+

λ−

2
D2

τ (t),

(4.1.23)
where λ− = max(−λ, 0).

Proof. If λ ≥ 0 the inequality (4.1.23) is an immediate consequence of (4.1.12)
and

−2dτ (t; V )Dτ (t) ≤ d2(Uτ (t), V )− d2
τ (t; V )
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which, in turn, follows by the triangle inequality. If λ < 0 it follows by (4.1.12)
and

d2(Uτ (t), V )− d2
τ (t; V ) ≤ 2dτ (t;V )Dτ (t) + D2

τ (t). (4.1.24)

Let us prove (4.1.24). Suppose t ∈ (tn−1
τ , tnτ ] and d2(Uτ (t), V ) ≥ d2

τ (t;V ), otherwise
(4.1.24) is obvious; the elementary identity a2 − b2 = 2b(a− b) + (a− b)2 yields

d2(Uτ (t), V )− d2
τ (t; V ) = 2dτ (t; V )

(
d(Uτ (t), V )− dτ (t; V )

)
+

(
d(Uτ (t), V )− dτ (t;V )

)2
.

On the other hand the concavity inequality (4.1.20) gives

d(Uτ (t), V )− dτ (t; V ) ≤ d(Uτ (t), V )− (1− �τ (t))d(Uτ (t), V )
− �τ (t)d(Uτ (t), V ) ≤ Dτ (t).

These two inequalities imply (4.1.24). �
Corollary 4.1.7 (Comparison for λ �= 0). Under the same assumption of the previ-
ous Lemma, let Pτ ,Pη be two admissible partitions; the “error” function dτη(t, s)
defined by (4.1.14) satisfies the differential inequality

d

dt
d2

τη(t, t) + 2λd2
τη(t, t) ≤2|λ|(Dτ (t) + Dη(t)

)
dτη(t, t)

+ (Rτ (t) + Rη(t)) + λ−(D2
τ (t) + D2

η(t)
)
,

(4.1.25)

and therefore the Gronwall-like estimate

eλT dτη(T, T ) ≤
(
d2(U0

τ , V 0
η ) + Rτ (T ) + Rη(T ) +

∫ T

0

e2λtλ−(D2
τ (t) + D2

η(t)
)
dt

)1/2

+ 2
∫ T

0

|λ|eλt
(
Dτ (t) + Dη(t)

)
dt,

(4.1.26)
where Rτ (and analogously Rη) are defined by

Rτ (T ) := sup
t∈[0,T ]

∫ t

0

e2λrRτ (r) dr ≤
∫ T

0

e2λr
(
Rτ (r)

)+

dr ∀T > 0. (4.1.27)

Proof. Starting from the inequality (4.1.23) we easily obtain (4.1.25) by arguing as
in Corollary 4.1.5 and by using (4.1.21). Inequality (4.1.26) is a direct consequence
of (4.1.25) and of the following version of the Gronwall Lemma [18]. �
Lemma 4.1.8 (A version of Gronwall Lemma). Let x : [0,+∞) → R be a locally ab-
solutely continuous function, let a, b ∈ L1

loc ([0,+∞)) be given functions satisfying,
for λ ∈ R,

d

dt
x2(t) + 2λx2(t) ≤ a(t) + 2b(t)x(t) for L 1-a.e. t > 0. (4.1.28)
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Then for every T > 0 we have

eλT |x(T )| ≤
(
x2(0) + sup

t∈[0,T ]

∫ t

0

e2λsa(s) ds
)1/2

+ 2
∫ T

0

eλt|b(t)| dt. (4.1.29)

Proof. Multiplying (4.1.28) by e2λt we obtain

d

dt

(
eλtx(t)

)2 ≤ e2λta(t) + 2eλtb(t)
(
eλtx(t)

)
for L 1-a.e. t > 0, (4.1.30)

therefore it is sufficient to prove (4.1.29) for λ = 0.
Introducing the functions

X(T ) := sup
t∈(0,T )

|x(t)|, A(T ) := sup
t∈(0,T )

∫ t

0

a(s) ds,

B(T ) :=
∫ T

0

|b(s)| ds,

(4.1.31)

and integrating the equation we obtain

x2(t) ≤ x2(0) +
∫ t

0

a(s) ds + 2B(t)X(t) ∀ t > 0. (4.1.32)

Therefore, taking the supremum w.r.t. t ∈ [0, T ] we get

X2(T ) ≤ x2(0) + A(T ) + 2B(T )X(T ), (4.1.33)

and adding B2(T ) to both sides gives

X(T ) ≤ B(T ) +
√

B2(T ) + x2(0) + A(T ) ≤ 2B(T ) +
√

x2(0) + A(T ).

Recalling (4.1.31) we obtain (4.1.29). �

4.2 Convergence of discrete solutions

4.2.1 Convergence when the initial datum u0 ∈ D(φ)

The previous Corollaries 4.1.5, 4.1.7 show the importance to obtain a priori bounds
of the integral of Rτ ,Dτ , and D2

τ . In this section we mainly focus our attention
on the convergence of the discrete solutions, by quickly deriving rough estimates
of these integrals and we postpone a finer analysis of the error to Section 4.4. It
is not restrictive to assume λ ≤ 0.
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Lemma 4.2.1. Let us suppose that the convexity Assumption 4.0.1 holds with λ ≤ 0,
let Rτ , Dτ be the residual terms associated to a discrete solution {Un

τ }+∞
n=0 defined

as in (4.1.9a), (4.1.22), and let us choose T in the interval IN
τ = (tN−1

τ , tNτ ]. Then∫ T

0

e2λt
(
[Rτ (t)]+ − λD2

τ (t)
)

dt ≤ |τ |
(
φ(U0

τ )− φ(UN
τ )

)
, (4.2.1)(∫ T

0

|λ|eλtDτ (t) dt
)2

≤ 1
2

∫ T

0

|λ|e2λtD2
τ (t) dt (4.2.2)

≤ |λ| |τ |2
3

(
φ(U0

τ )− φ(UN
τ )

)
. (4.2.3)

Proof. First of all we observe that∫
In

τ

[
Rτ (t)

]+
dt ≤ τn

(
φ(Un−1

τ )− φ(Un
τ )− d2(Un

τ , Un−1
τ )

2τn

)
, (4.2.4)

which is a direct consequence of (4.1.9a) and

φ(Un−1
τ )− φ(Un

τ )− d2(Un
τ , Un−1

τ )
2τn

≥ 0,

∫
In

τ

(1− �τ (t)) dt =
∫

In
τ

�τ (t) dt =
1
2
.

Since ∫
In

τ

(1− �τ (t))2 dt =
1
3
τn,

and ∫
In

τ

|λ|D2
τ (t) dt ≤ 1

3
|λ|τnd2(Un

τ , Un−1
τ ) ≤ 1

3
d2(Un

τ , Un−1
τ ), (4.2.5)

from (4.2.4) we get∫
In

τ

e2λt
[(

Rτ (t)
)+ + |λ|D2

τ (t)
]
dt ≤ τn

(
φ(Un−1

τ )− φ(Un
τ )

)
(4.2.6)

which yields (4.2.1). Starting from (4.2.5) and recalling (3.2.8) we obtain∫ T

0

|λ|D2
τ (t) dt ≤ 2

3
|λ| |τ |2(φ(U0

τ )− φ(UN
τ )),

so that(∫ T

0

|λ|eλtDτ (t) dt
)2

≤
∫ T

0

|λ|e2λt dt

∫ T

0

|λ|D2
τ (t) dt ≤ |λ| |τ |2

3

(
φ(U0

τ )− φ(UN
τ )

)
,

which yields (4.2.2) and (4.2.3). �
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Theorem 4.2.2. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold for
λ ∈ R and

lim
|τ |↓0

d(U0
τ , u0) = 0, sup

τ
φ(U0

τ ) = S < +∞. (4.2.7)

Then the family {Uτ}τ of the discrete solutions generated by U0
τ is convergent to

a function u as |τ | ↓ 0, uniformly in each bounded interval [0, T ]; in particular u
is the unique element of MM(Φ;u0).

Proof. We fix a time t ∈ [0, T ] and we prove that {Uτ (t)}τ is a Cauchy family as
|τ | goes to 0. We already know from the a priori estimates of Lemma 3.2.2 that
there exists a constant C dependent on S, T, λ but independent of τ such that

d2(Uτ (t),Uτ (t)) ≤ C |τ |, φ(U0
τ )− φ(Un

τ ) ≤ C 1 ≤ n ≤ N, (4.2.8)

for the integer N such that the interval IN
τ contains T . Moreover, choosing two

partitions Pτ ,Pη as in Corollary 4.1.7, by (4.1.14) we have

d2(Uτ (t), Uη(t)) ≤ 3d2
τη(t, t) + 3d2(Uτ (t), Uτ (t)) + 3d2(Uη(t), Uη(t))

≤ 3d2
τη(t, t) + 3C(|τ |+ |η|),

therefore we simply have to show that lim
|τ |,|η|↓0

dτη(t, t) = 0. By (4.1.26), (4.2.1),

and (4.2.3) we obtain

e2λtd2
τη(t, t) ≤ 2d2(U0

τ , U0
η) + 2C

(|τ |+ |η|) + 2|λ|C(|τ |2 + |η|2), (4.2.9)

and this conclude the proof of the convergence; since the constant C in the bound
(4.2.9) is independent of t, the convergence is also uniform in [0, T ].
Finally, it is easy to check that the limit does not depend on the particular family
of initial data (U0

τ ) satisfying (4.2.7): if (V 0
τ ) is another sequence approximating u0,

we can apply the same convergence result to a third family (W 0
τ ) which coincides

with the previous ones along two different subsequences of step sizes τn, τ ′
n with

|τn|, |τ ′
n| ↓ 0 as n →∞. �

Corollary 4.2.3. Under the same assumption of the previous Theorem, let u =
MM(Φ; u0) and let Uτ be the discrete solution associated to the partition Pτ .
Then if T ∈ Pτ and λ = 0 we have

d2(Uτ (T ), u(T )) ≤ d2(U0
τ , u0) +

∫ T

0

Rτ (t) dt, (4.2.10)

whereas for λ �= 0 we have

eλT d(Uτ (T ), u(T )) ≤
(

d2(U0
τ , u0) + Rτ (T ) +

∫ T

0

e2λtλ−D2
τ (t) dt

)1/2

+ 2
∫ T

0

|λ|eλtDτ (t) dt,

(4.2.11)

where Rτ is defined by (4.1.27).
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Proof. We simply pass to the limit as |η| ↓ 0 in (4.1.16) or (4.1.26), observing that
the integrals of

(
Rη

)+
,Dη,D2

η are infinitesimal by the estimates of Lemma 4.2.1;
on the other hand, by (4.2.8) we have for T ∈ Pτ

lim
|η|↓0

dτη(T, T ) = dτ (T, u(T )), and dτ (T, u(T )) = d(Uτ (T ), u(T )). �

4.2.2 Convergence when the initial datum u0 ∈ D(φ).

Now we conclude the proof of (4.0.11) in the statement of Theorem 4.0.4 when the
starting point belongs to the closure in S of the proper domain of φ: in this case,
it is more difficult to exhibit an explicit order of convergence for the approximate
solutions and we have to take care of the loss of regularity of the initial datum.

Let us start with a comparison result between two discrete solutions related
to the same partition Pτ :

Lemma 4.2.4. Let Uτ , Vτ be discrete solutions associated to the same choice of step
size τ and to the initial values U0

τ ∈ D(φ), V 0
τ ∈ D(φ) respectively. If T ∈ IN

τ =
(tN−1

τ , tNτ ], and λτ is defined in (4.0.25), then for −1 < λ|τ | ≤ 0 we have

e2λτ (T+|τ |)d2(Uτ (T ), Vτ (T )) ≤ e2λτ tN
τ d2(UN

τ , V N
τ )

≤ d2(U0
τ , V 0

τ ) + 2|τ |
(
φ(V 0

τ )− φ(V N
τ )

)
.

(4.2.12)

Proof. Choosing V := V n−1
τ in (4.1.3) and multiplying the inequality by 2τn we

obtain

d2(Un
τ , V n−1

τ )− d2(Un−1
τ , V n−1

τ ) ≤ 2τnφ(V n−1
τ )− 2τnφ(Un

τ )− d2(Un
τ , Un−1

τ )

− λτnd2(Un
τ , V n−1

τ ).

Analogously, we choose V := Un
τ in the discrete inequality (4.1.3) written for the

discrete solution {V n
τ }+∞

n=0 obtaining

(1 + λτn)d2(V n
τ , Un

τ )− d2(V n−1
τ , Un

τ ) ≤ 2τnφ(Un
τ )− 2τnφ(V n

τ )− d2(V n
τ , V n−1

τ ).

Recalling the elementary inequality (a + b)2 ≤ ε−1a2 + (1 − ε)−1b2, 0 < ε < 1,
choosing ε := −λτn we get

−λτnd2(Un
τ , V n−1

τ ) ≤ d2(Un
τ , Un−1

τ )− λτn

1 + λτn
d2(Un−1

τ , V n−1
τ );

summing up the previous inequalities we obtain

(1 + λτn)d2(V n
τ , Un

τ )− 1
1 + λτn

d2(Un−1
τ , V n−1

τ ) ≤ 2τn

(
φ(V n−1

τ )− φ(V n
τ )

)
.

Multiplying the inequality by eλτ (2tn−1
τ +τn) < 1 and recalling that φ(V n−1

τ ) ≥
φ(V n

τ ), we get by (3.4.10)

e2λτ tn
τ d2(V n

τ , Un
τ ) ≤ e2λτ tn−1

τ d2(V n−1
τ , Un−1

τ ) + 2τn

(
φ(V n−1

τ )− φ(V n
τ )

)
.
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Summing these inequalities from n = 1 to N we get (4.2.12). �

The following Corollary extends the previous Theorem 4.2.2 and concludes
the proof of the convergence part of Theorem 4.0.4:

Corollary 4.2.5. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold for
λ ∈ R and

U0
τ ∈ D(φ), lim

|τ |↓0
d(U0

τ , u0) = 0. (4.2.13)

The family {Uτ}τ of the discrete solutions generated by U0
τ is convergent to the

function u = S[u0] as |τ | ↓ 0 defined by Corollary 4.3.3, uniformly in each bounded
interval [0, T ]; in particular u is the unique element of MM(Φ; u0).

Proof. It is not restrictive to assume λ ≤ 0. Let Uτ , Uη be two discrete solutions
corresponding to the admissible partitions Pτ ,Pη, let us choose an arbitrary initial
datum v0 ∈ D(φ), and let us introduce the correspondent discrete solutions Vτ , Vη

associated to the same partitions Pτ ,Pη with V 0
τ = V 0

η = v0.
Applying the previous Lemma 4.2.4 we get

d(Uτ (t), Uη(t)) ≤ d(Uτ (t), Vτ (t)) + d(Vτ (t), Vη(t)) + d(Vη(t), Uη(t))

≤ e−λτ (t+|τ |)
[
d2(v0, U

0
τ ) + 2|τ |[φ(v0)− φ(Vτ (t))]

]1/2

+ e−λη(t+|η|)
[
d2(v0, U

0
η) + 2|τ |[φ(v0)− φ(Vη(t))]

]1/2

+ d(Vτ (t), Vη(t)).

Since v0 ∈ D(φ), passing to the limit as |τ |, |η| ↓ 0 and applying Theorem 4.2.2,
we get

lim sup
|τ |,|η|↓0

d(Uτ (t), Uη(t)) ≤ 2e−λtd(u0, v0) ∀ v0 ∈ D(φ).

Since u0 ∈ D(φ), taking the infimum with respect to v0 we conclude. �

4.3 Regularizing effect, uniqueness and the semigroup
property

The λ-contractivity property is an immediate consequence of Lemma 4.2.4:

Proposition 4.3.1. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold,
λ ∈ R. If u0, v0 ∈ D(φ) and u = MM(u0; Φ), v = MM(v0; Φ), then

d(u(t), v(t)) ≤ e−λtd(u0, v0). (4.3.1)

Proof. If v0 ∈ D(φ), we can simply pass to the limit as |τ | ↓ 0 in (4.2.12), choosing
e.g. U0

τ = u0, V
0
τ = v0.
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When v0 ∈ D(φ) \D(φ), we consider an auxiliary initial datum w0 ∈ D(φ)
and the Minimizing Movement w = MM(w0; Φ), obtaining by the triangular
inequality

d(u(t), v(t)) ≤ d(u(t), w(t)) + d(w(t), v(t)) ≤ e−λt
(
d(u0, w0) + d(w0, v0)

)
.

(4.3.1) follows now by taking the infimum of the right hand member of the previous
inequality w.r.t. w0 ∈ D(φ). �

Theorem 4.3.2. Suppose that (4.0.1) and the convexity Assumption 4.0.1 hold,
λ ∈ R. If u ∈ MM(u0; Φ) then u satisfies (4.0.13). In particular, setting

ι(T ) :=
∫ T

0

eλt dt =
eλT − 1

T
, (4.3.2)

we have

φ(u(T )) ≤ 1
ι(T )

∫ T

0

φ(u(t)) eλtdt ≤ φι(T )(u0), (4.3.3)

and, if λ ≥ 0,

|∂φ|(u(T )) ≤ 1
T

d(u0, u(T )),

|∂φ|2(u(T )) ≤ |∂φ|2(V ) +
1

T 2
d2(V, u0) ∀V ∈ D(|∂φ|).

(4.3.4)

Proof. By a simple approximation argument via the λ-contraction property of
Proposition 4.3.1 and the lower semicontinuity of φ, it is not restrictive to assume
u0 ∈ D(φ). In this case, we already know from Theorem 2.4.15 that u is locally
Lipschitz in (0, +∞). Keeping the same notation of Section 4.1.2, observe that

lim
|τ |↓0

dτ (t, V ) = d(u(t), V ), lim
|τ |↓0

ϕτ (t) = φ(u(t)) ∀ t ≥ 0, V ∈ S .

Integrating (4.1.12) from S to T and passing to the limit as |τ | ↓ 0 gives

1
2
d2(u(T ), V )− 1

2
d2(u(S), V ) +

∫ T

S

(
φ(u(t)) +

λ

2
d2(u(t), V )

)
dt ≤ (T − S)φ(V )

(4.3.5)
which easily yields (4.0.13). Moreover, multiplying (4.0.13) by eλt and integrating
from 0 to T , since t �→ φ(u(t)) is decreasing we have

ι(T )φ(u(T )) ≤
∫ T

0

φ(u(t)) eλtdt ≤ ι(T )φ(V ) +
1
2
d2(u0, V )− eλT

2
d2(u(T ), V )
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for any V ∈ D(φ). Taking the infimum w.r.t. V we get (4.3.3). Finally, if λ = 0,
multiplying (2.4.26) by t and integrating in time we get

T 2

2
|∂φ|2(u(T )) ≤

∫ T

0

t|∂φ|2(u(t)) dt ≤ −
∫ T

0

t
(
φ(u(t)

)′
dt

=
∫ T

0

φ(u(t)) dt− Tφ(u(T ))

≤ Tφ(V ) +
1
2
d2(u0, V )− Tφ(u(T ))− 1

2
d2(u(T ), V ).

Choosing V := u(T ) yields the first estimate of (4.3.4); on the other hand, if
V ∈ D(|∂φ|) the right hand side of the last formula can be bounded by

T |∂φ|(V )d(V, u(T ))− 1
2
d2(u(T ), V ) +

1
2
d2(u0, V ) ≤ T 2

2
|∂φ|2(V ) +

1
2
d2(u0, V ),

which gives the second inequality of (4.3.4). �
Corollary 4.3.3. The λ-contractive map u0 �→ S[u0](t), S[u0] being the Minimiz-
ing movement MM(u0; Φ), provides the unique solution of the evolution varia-
tional inequality (4.0.13), and it satisfies the semigroup property S[u0](t + s) =
S[S[u0](t)](s) for every choice of t, s ≥ 0.

Proof. Let us first observe that if u is a continuous solution of the system (4.0.13),
then an integration from t− h to t gives for every v ∈ D(φ)

1
2
d2(u(t), v) +

1
2
d2(u(t− h), v) +

∫ t

t−h

(λ

2
d2(u(r), v) + φ(u(r))

)
dr ≤ hφ(v).

Dividing by h and passing to the limit as h ↓ 0, the lower semicontinuity of φ and
Fatou’s Lemma yield

lim sup
h↓0

h−1
(1

2
d2(u(t), v)− 1

2
d2(u(t− h), v)

)
+

λ

2
d2(u(t), v) + φ(u(t)) ≤ φ(v) ∀ t > 0.

(4.3.6)

By the same argument we also get the analogous pointwise estimate for the right
derivative

lim sup
h↓0

h−1
(1

2
d2(u(t + h), v)− 1

2
d2(u(t), v)

)
+

λ

2
d2(u(t), v) + φ(u(t)) ≤ φ(v) ∀ t > 0.

(4.3.7)

Let now u, w ∈ ACloc(0,+∞; S ) be two curves valued in D(φ) which satisfy the
system (4.0.13) and take (by continuity as t ↓ 0) the initial values u0, w0 ∈ D(φ).
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Choosing v := w(t) in (4.3.6), v := u(t) in the analogous inequality (4.3.7)
written for the function w, and applying the next lemma we find that

d

dt
d2(u(t), w(t)) + 2λd2(u(t), w(t)) ≤ 0 for L 1-a.e. t > 0,

i.e.
d

dt
e2λtd2(u(t), w(t)) ≤ 0, d2(u(t), w(t)) ≤ e−2λtd2(u0, w0) ∀ t > 0.

In particular, if u0 = w0 the functions u, w coincides and therefore the system
(4.0.13) has at most one solution for a given initial datum u0.

Since the curve u(t) := S[u0](t), defined as the value at t of u ∈ MM(u0; Φ)
for u0 ∈ D(φ), solves (4.0.13), we obtain that u is the unique solution of (4.0.13).
The semigroup property follows easily be the uniqueness for solutions of (4.0.13).

�
The following elementary lemma is stated just for convenience for functions

in the unit interval (0, 1).

Lemma 4.3.4. Let d(s, t) : (0, 1)2 → R be a map satisfying

|d(s, t)− d(s′, t)| ≤ |v(s)− v(s′)|, |d(s, t)− d(s, t′)| ≤ |v(t)− v(t′)|
for any s, t, s′, t′ ∈ (0, 1), for some locally absolutely continuous map v : (0, 1) →
R and let δ(t) := d(t, t). Then δ is locally absolutely continuous in (0, 1) and

d

dt
δ(t) ≤ lim sup

h↓0

d(t, t)−d(t−h, t)
h

+lim sup
h↓0

d(t, t+h)−d(t, t)
h

L 1-a.e. in (0, 1)

Proof. Since |δ(s) − δ(t)| ≤ 2|v(s) − v(t)| the function δ is locally absolutely
continuous. We fix a nonnegative function ζ ∈ C∞

c (0, 1) and h > 0 such that
±h + supp ζ ⊂ (0, 1). We have then

−
∫ 1

0

δ(t)
ζ(t + h)− ζ(t)

h
dt =

∫ 1

0

ζ(t)
d(t, t)− d(t− h, t− h)

h
dt

=
∫ 1

0

ζ(t)
d(t, t)− d(t− h, t)

h
dt +

∫ 1

0

ζ(t + h)
d(t, t + h)− d(t, t)

h
dt,

where the last equality follows by adding and subtracting d(t − h, t) and then
making a change of variables in the last integral. Since

h−1 |d(t, t)− d(t− h, t)| ≤ h−1 |v(t)− v(t− h)| → |v′(t)| in L1
loc(0, 1) as h ↓ 0

and an analogous inequality holds for the other difference quotient, we can apply
(an extended version of) Fatou’s Lemma and pass to the (superior) limit in the
integrals as h ↓ 0; denoting by a and b the two upper derivatives in the statement
of the Lemma we get − ∫

δζ ′ dt ≤ ∫
(a + b)ζ dt, whence the inequality between

distributions follows. �
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4.4 Optimal error estimates

4.4.1 The case λ = 0

In this section we mainly focus our attention on the case λ = 0 and we postpone
the analysis of the other situation to Section 4.4.2.

Lemma 4.4.1. Let us suppose that the convexity Assumption 4.0.1 holds for λ = 0,
let Rτ , E n

τ be defined as in (4.1.9a) and (4.0.20), let In
τ := (tn−1

τ , tnτ ], and let us
define

Iτ (T ) :=
∫ T

tN−1
τ

Rτ (t) dt for T ∈ IN
τ = (tN−1

τ , tNτ ]. (4.4.1)

Then∫
In

τ

Rτ (t) dt = τ2
nE n

τ , (4.4.2)

Iτ (T ) ≤ τN

(
φ(UN−1

τ )− φ(UN
τ )− 1

2
τNDN

τ

)
≤ 1

2
τ 2
N |∂φ|2(UN−1

τ ), (4.4.3)

E n
τ ≤ 1

2

(
|∂φ|2(Un−1

τ )−Dn
τ

)
≤ 1

2

(
|∂φ|2(Un−1

τ )− |∂φ|2(Un
τ )

)
, (4.4.4)∫ T

0

Rτ (t) dt ≤
N−1∑
n=1

τ2
nE n

τ + Iτ (T ). (4.4.5)

Proof. (4.4.2) follows directly from (4.1.9b) since∫
In

τ

(1− �τ (t)) dt =
∫

In
τ

�τ (t) dt =
1
2
,

∫
In

τ

(1− 2�τ (t)) dt = 0. (4.4.6)

(4.2.4) and (4.1.10) yield (4.4.3) and (4.4.4); finally, (4.4.7) is a direct consequence
of (4.4.2) and (4.4.1). �
Corollary 4.4.2. Under the same assumption of the previous lemma, let us suppose
that λ = 0 and U0

τ ∈ D(φ); then we have
N−1∑
n=1

τ 2
nE n

τ + Iτ (T ) ≤ |τ |
{
φ(U0

τ )− φT (U0
τ )

}
≤ |τ |

{
φ(U0

τ )− inf
S

φ
}
, (4.4.7)

and, if U0
τ ∈ D(|∂φ|),

N−1∑
n=1

τ 2
nE n

τ + Iτ (T ) ≤ 1
2
|τ |2 |∂φ|2(U0

τ ). (4.4.8)

Moreover, when the partition Pτ is uniform (i.e. τn ≡ τ = |τ | is independent of
n, cf. Remark 2.0.3), then the following sharper estimate holds, too:∫ T

0

Rτ (t) dt ≤
N−1∑
n=1

τ2
nE n

τ +Iτ (T ) ≤ τ
{
φ(U0

τ )−φτ (U0
τ )

}
≤ τ2

2
|∂φ|2(U0

τ ). (4.4.9)
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Proof. Since E n
τ ≥ 0 by (4.1.10), we easily have

N−1∑
n=1

τ2
nE n

τ ≤ |τ |
N−1∑
n=1

((
φ(Un−1

τ )− φ(Un
τ )

)− τnDn
τ

)
≤ |τ |

N−1∑
n=1

(
φ(Un−1

τ )− φ(Un
τ )

)
− |τ |

N−1∑
n=1

τnDn
τ

= |τ |
{

φ(U0
τ )− φ(UN−1

τ )− |τ |
N−1∑
n=1

τnDn
τ

}
.

Summing up the contribution of Iτ (T ) and recalling that
N∑

n=1

τnDn
τ =

N∑
n=1

d2(Un
τ , Un−1

τ )
τn

≥ 1
T

d2(U0
τ , UN

τ ), (4.4.10)

we obtain (4.4.7).
Since n �→ |∂φ|2(Un

τ ) is decreasing, too, if U0
τ ∈ D(|∂φ|) then (4.4.4) yields

N∑
n=1

τ2
nE n

τ ≤ |τ |2
2

N−1∑
n=1

(
|∂φ|2(Un−1

τ )− |∂φ|2(Un−1
τ )

)
≤ |τ |2

2

(
|∂φ|2(U0

τ )− |∂φ|2(UN−1
τ )

)
≤ |τ |2

2
|∂φ|2(U0

τ )−Iτ (T ),

which proves (4.4.8). When τn ≡ τ we can use a different estimate for E n
τ which

comes from (4.1.10)

E n
τ ≤ τ−1

((
φ(Un−1

τ )− φτ (Un−1
τ )

)− 1
2
τnDn

τ

)
≤ τ−1

((
φ(Un−1

τ )− φτ (Un−1
τ )

)− (
φ(Un

τ )− φτ (Un
τ )

))
,

(4.4.11)

thus obtaining
N−1∑
n=1

τ 2E n
τ ≤ τ

N−1∑
n=1

((
φ(Un−1

τ )− φτ (Un−1
τ )

)− (
φ(Un

τ )− φτ (Un
τ )

))
≤ τ

(
φ(U0

τ )− φτ (U0
τ )

)− τ
(
φ(UN−1

τ )− φτ (UN−1
τ )

))
≤ τ

(
φ(U0

τ )− φτ (U0
τ )

)−I τ(T ),

which proves (4.4.9). �
Corollary 4.4.3. Suppose that the convexity Assumption 4.0.1 holds with λ ≥ 0.
Then the estimate (4.0.15) of Theorem 4.0.4 and all the estimates of Theorem
4.0.7 hold.

Proof. We simply apply (4.2.10) and the results of the previous corollary. Observe
that when T = tNτ ∈ Pτ then I τ(T ) = 0, so that we have (4.0.19) without any
correction term. �
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4.4.2 The case λ �= 0

First of all, let us observe that the first estimate (4.0.26) of Theorem 4.0.9 follows
directly from Corollary 4.2.3 and (4.2.1), (4.2.3).

In order to get the other error bounds, we need refined estimates of the
integral terms in the right-hand side of (4.2.11). Since λτ ≤ λ, by replacing λ
by λτ in the left-hand side of the differential inequality (4.1.25), we easily get
bounds analogous to (4.1.26) and (4.2.11) where the coefficient λτ occours in each
exponential term, thus obtaining for U0

τ = u0

eλτ T d(Uτ (T ), u(T )) ≤
(

Rτ (T ) + λ−
∫ T

0

e2λτ tD2
τ (t) dt

)1/2

+ 2
∫ T

0

|λ|eλτ tDτ (t) dt.

(4.4.12)

Let us observe that if T ∈ (tN−1
τ , tNτ ] for some N ∈ N,

Rτ (T ) = sup
t∈[0,T ]

∫ t

0

e2λτ tRτ (r) dr (4.4.13a)

≤ sup
1≤M≤N

(∫ tM−1
τ

0

e2λτ tRτ (r) dr +
∫

IM
τ

e2λτ t
[
Rτ (r)

]+
dr

)
(4.4.13b)

≤ sup
1≤M≤N

(M−1∑
n=1

∫
In

τ

e2λτ tRτ (r) dr +
∫

IM
τ

e2λτ t
[
Rτ (r)

]+
dr

)
, (4.4.13c)

and, recalling (4.1.11), the integral of the positive part of Rτ can be bounded by∫
IM

τ

e2λτ t
[
Rτ (r)

]+
dr ≤ τ 2

M

max
[
e2λτ tM−1

τ , e2λτ tM
τ

]
2(1 + λτM )

|∂φ|2(UM−1
τ ). (4.4.14)

The next two lemmas provide the estimates of the other integral in the right-
hand side of (4.4.13b) and of the integrals involving Dτ in (4.4.12). Combining
these results with (4.4.12) we complete the proof of Theorems 4.0.9 and 4.0.10.

Proposition 4.4.4. Suppose that λ < 0 and U0
τ ∈ D(∂φ); then for T > 0 we have

Rτ (T ) ≤ |τ |2
2(1 + λ|τ |) |∂φ|2(U0

τ ), (4.4.15)

and, recalling that Tτ := min
{
tkτ ∈ Pτ : tkτ ≥ T

}
,

|λ|
∫ T

0

e2λτ tD2
τ (t) dt ≤ |τ |2 |λ|Tτ

3(1 + λ|τ |)2 |∂φ|2(U0
τ ),

2|λ|
∫ T

0

eλτ tDτ (t) dt ≤ |τ | |λ|Tτ

1 + λ|τ | |∂φ|(U0
τ ).

(4.4.16)
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Proof. Let us suppose that T ∈ IN
τ = (tN−1

τ , tNτ ] so that Tτ = tNτ , and 1 ≤ M ≤ N .
Since ∫

In
τ

e2λτ t(1− �τ (t)) dt ≤ 1
2
τne2λτ tn−1

τ , (4.4.17)∫
In

τ

e2λt�τ (t) dt ≥ 1
2
τneλ(tn−1

τ +tn
τ ) =

1
2
τne2λtn−1

τ eλτn , (4.4.18)

recalling (4.1.11) and (3.4.10) we get∫
In

τ

e2λτ tRτ (t) dt ≤ τ2
n

2(1 + λτn)
e2λτ tn−1

τ

{
|∂φ|2(Un−1

τ )− (1+λτn)eλτ τn |∂φ|2(Un
τ )

}
≤ τ2

n

2(1 + λτn)

(
e2λτ tn−1

τ |∂φ|2(Un−1
τ )− e2λτ tn

τ |∂φ|2(Un
τ )

)
.

Since the map n �→ e2λτ tn
τ |∂φ|2(Un

τ ) is decreasing, we get

M−1∑
n=1

∫
In

τ

e2λτ tRτ (t) dt ≤ |τ |2
2(1 + λ|τ |)

(
|∂φ|2(U0

τ )− e2λτ tM−1
τ |∂φ|2(UM−1

τ )
)
.

Taking into account (4.4.14) we obtain (4.4.15). Finally, we easily have

|λ|
∫

In
τ

e2λτ tD2
τ (t) dt ≤ |λ|τn

3
e2λτ tn−1

τ d2(Un
τ , Un−1

τ )

≤ |λ|τ3
n

3(1 + λτn)2
e2λτ tn−1

τ |∂φ|2(Un−1
τ ) ≤ |λ||τ |2τn

3(1 + λ|τ |) |∂φ|2(U0
τ ),

and

2|λ|
∫

In
τ

eλτ tDτ (t) dt ≤ |λ|τneλτ tn−1
τ d(Un

τ , Un−1
τ )

≤ |λ|τ2
n

1 + λτn
eλτ tn−1

τ |∂φ|(Un−1
τ ) ≤ |λ||τ |τn

1 + λ|τ | |∂φ|(U0
τ ).

Summing up all the contribution from n = 1 to N we obtain (4.4.16). �

Proposition 4.4.5. Assume that λ > 0, infS φ = 0, U0
τ ∈ D(φ), and Tτ is defined

as in the above proposition. We have

Rτ (T ) ≤
∫ T

0

e2λτ t
(
Rτ (t)

)+

dt ≤ |τ |(1 + λ|τ |)(1 + λTτ )φ(U0
τ ), (4.4.19)∫ T

0

eλτ tDτ (t) dt ≤ |τ |
(
2Tτ (1 + λTτ )φ(U0

τ )
)1/2

. (4.4.20)
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Moreover, if U0
τ ∈ D(|∂φ|) then

Rτ (T ) ≤ 1
2
|τ |2(1 + λTτ ) |∂φ|2(U0

τ ), (4.4.21)

2
∫ T

0

eλτ tDτ (t) dt ≤ Tτ |τ ||∂φ|(U0
τ ). (4.4.22)

Proof. As before suppose that T ∈ IN
τ = (tN−1

τ , tNτ ]. Since Lemma 2.4.13 yields

Dn
τ ≥ |∂φ|2(Un

τ ) ≥ 2λφ(Un
τ ),

by (4.1.9a) and recalling (3.4.10) and (3.4.9), we get∫
In

τ

e2λτ t
(
Rτ (t)

)+

dt ≤ τne2λτ tn
τ

(
φ(Un−1

τ )− (1 + λτn)φ(Un
τ )

)
≤ τne2λτ tn

τ (1 + λτn)
( λτn

(1 + λτn)2
φ(Un−1

τ ) +
1

(1 + λτn)2
φ(Un−1

τ )− φ(Un
τ )

)
≤ |τ |(1 + λ|τ |)

(
λτne2λτ tn−1

τ φ(Un−1
τ ) + e2λτ tn−1

τ φ(Un−1
τ )− e2λτ tn

τ φ(Un
τ )

)
≤ |τ |(1 + λ|τ |)

(
λτnφ(U0

τ ) + e2λτ tn−1
τ φ(Un−1

τ )− e2λτ tn
τ φ(Un

τ )
)
.

Summing up for n = 1 to N we obtain∫ T

0

e2λτ tRτ (t) dt ≤ |τ |(1 + λ|τ |)(1 + λTτ )φ(U0
τ ).

Moreover,

2
∫ T

0

eλτ tDτ (t) dt ≤
N∑

n=1

τ2
neλτ tn

τ

√
Dn

τ ≤
√

2Tτ |τ |
( N∑

n=1

τne2λτ tn
τ

Dn
τ

2

)1/2

and

(1 + λτn)τn
Dn

τ

2
≤

(
φ(Un−1

τ )− (1 + λτn)φ(Un
τ )

)
. (4.4.23)

Arguing as before, we find

2
∫ T

0

eλτ tDτ (t) dt ≤ |τ |
(
2Tτ (1 + λTτ )φ(U0

τ )
)1/2

.

Finally, if U0
τ ∈ D(|∂φ|), we first observe that∫

In
τ

e2λτ t(1− 2�τ (t)) dt ≤ 0, (4.4.24)
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so that by (4.1.9b) we have∫
In

τ

e2λτ tRτ (t) dt ≤ τ2
ne2λτ tn

τ E n
τ . (4.4.25)

Since

2E n
τ ≤ 1

1 + λτn
|∂φ|2(Un−1

τ )− |∂φ|2(Un
τ )

≤ λτn

(1 + λτn)2
|∂φ|2(Un−1

τ ) +
1

(1 + λτn)2
|∂φ|2(Un−1

τ )− |∂φ|2(Un
τ )

we obtain∫
In

τ

e2λτ tRτ (t) dt ≤ 1
2
τ2
n

(
e2λτ tn−1

τ |∂φ|2(Un−1
τ )− e2λτ tn

τ |∂φ|2(Un
τ )

)
+

λ

2
τ3
ne2λτ tn−1

τ |∂φ|2(Un−1
τ ).

Summing up from n = 1 to M − 1 and adding the contribution of the integral in
the last interval IM

τ as in (4.4.14), by a repeated application of (4.1.10) we find

M−1∑
n=1

∫
In

τ

e2λτ tRτ (t) dt +
∫

IM
τ

e2λτ t
(
Rτ (t)

)+

dt

≤ |τ |2
2

(
|∂φ|2(U0

τ )− e2λτ tM−1
τ |∂φ|2(UM−1

τ )
)

+
λ|τ |2tM−1

τ

2
|∂φ|2(U0

τ )

+ τ2
M

e2λτ tM−1
τ

2
|∂φ|2(UM−1

τ ) + τ2
M

λτMe2λτ tM
τ

(1 + λτ τM )2
|∂φ|(UM−1

τ )

≤ |τ |2
2
|∂φ|2(U0

τ )(1 + λtMτ ),

which yields (4.4.21). Analogously,

2
∫ T

0

e2λτ tDτ (t) dt ≤ Tτ |∂φ|(U0
τ ),

which concludes the proof. �
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Chapter 5

Preliminary Results on Measure
Theory

In this chapter we introduce, mostly without proofs, some basic measure-theoretic
tools needed in the next chapters. We decided to present the most significant
result in the quite general framework of separable metric spaces in view of possible
applications to infinite dimensional Hilbert (or Banach) spaces, thus avoiding any
local compactness assumption (we refer to the treatises [109, 59, 60, 117, 55] for
comprehensive presentations of this subject).

At this preliminary level, the existence of an equivalent complete metric (Pol-
ish spaces) only enters in the compact inner regularity (5.1.9) or tightness (5.1.8) of
every Borel measure (it is a consequence of Ulam’s Theorem [60, 7.1.4], a particular
case of the converse implication in Prokhorov Theorem 5.1.3), which in particular
appears in the so called disintegration theorem 5.3.1 and its consequences; this
inner approximation condition is satisfied by a wider class of even non complete
metric spaces (the so called Radon spaces [117, page 117]) and it will be sufficient
for our aims. Since weak topologies in Hilbert-Banach spaces are not metrizable, it
will also be useful (see Lemma 5.1.12) to deal with auxiliary non complete metrics,
still satisfying (5.1.9).

Even if the presentation looks more abstract and the assumptions very weak
with respect to the more usual finite dimensional Euclidean setting of the standard
theory for evolutionary PDE’s, this approach is sufficiently powerful to provide all
the crucial results and allows for a great flexibility.

Let X be a separable metric space. We denote by B(X) the family of the
Borel subsets of X, by P(X) the family of all Borel probability measures on X.
The support supp µ ⊂ X of µ ∈ P(X) is the closed set defined by

supp µ :=
{

x ∈ X : µ(U) > 0 for each neighborhood U of x
}

. (5.0.1)
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When X = X1 × . . . × Xk is a product space, we will often use bold letters
to indicate Borel measures µ ∈ P(X). Recall that for separable metric spaces
X1, . . . , Xk the Borel σ-algebra coincides with the product one

B(X) = B(X1)×B(X2)× · · · ×B(Xk). (5.0.2)

5.1 Narrow convergence, tightness, and uniform
integrability

Conformally to the probabilistic terminology, we say that a sequence (µn) ⊂ P(X)
is narrowly convergent to µ ∈ P(X) as n →∞ if

lim
n→∞

∫
X

f(x) dµn(x) =
∫

X

f(x) dµ(x) (5.1.1)

for every function f ∈ C0
b (X), the space of continuous and bounded real functions

defined on X.
Of course, it is sufficient to check (5.1.1) on any subset C of bounded con-

tinuous functions whose linear envelope span C is uniformly dense (i.e. dense in
the uniform topology induced by the “sup” norm) in C0

b (X). Even better, let us
suppose that C0 ⊂ C0

b (X) satisfies the approximation properties∫
X

f(x) dµ(x) = sup
{∫

X

h(x) dµ(x) : h ∈ C0, h ≤ f
}

(5.1.2a)

= inf
{∫

X

h(x) dµ(x) : h ∈ C0, h ≥ f
}

, (5.1.2b)

for every f ∈ C ; then if (5.1.1) holds for every f ∈ C0, then it holds for every
continuous and bounded function f . In fact for every f ∈ C we easily have

lim inf
n→∞

∫
X

f(x) dµn(x) ≥ sup
h∈C0,h≤f

lim inf
n→∞

∫
X

h(x) dµn(x)

= sup
h∈C0,h≤f

∫
X

h(x) dµ(x) =
∫

X

f(x) dµ(x),
(5.1.3)

and the opposite inequality for the “lim sup” can be obtained in a similar way
starting from (5.1.2b). Thus every f ∈ C satisfies (5.1.1), and we get the same
property for every f ∈ C0

b (X) since span C is uniformly dense in C0
b (X).

If d is any metric for X, the subset of d-uniformly (or d-Lipschitz) continuous
and bounded real functions provides an important example [119, Th. 3.1.5] sat-
isfying (5.1.2a,b). For, we can pointwise approximate a continuous and bounded
function f from below with an increasing sequence of bounded Lipschitz functions
fk (they are particular examples of the Moreau-Yosida approximations for the
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exponent p = 1, see Section 3.1)

fk(x) := inf
y

f(y) + kd(x, y), with

⎧⎨⎩ inf f ≤ fk(x) ≤ f(x) ≤ sup f,

f(x) = lim
k→∞

fk(x) = sup
k∈N

fk(x), (5.1.4)

thus obtaining (5.1.2a) by Fatou’s lemma; changing f to −f we obtain (5.1.2b).
A slight refinement of this argument provides a countable set of d-Lipschitz

functions satisfying (5.1.2a,b) for every function f ∈ C0
b (X): we simply choose

a countable dense set D ⊂ X and we consider the countable family of functions
h : X → R of the type

h(x) =
(
q1 + q2d(x, y)

) ∧ k

for some q1, q2, k ∈ Q, q2, k ∈ (0, 1), y ∈ D.
(5.1.5a)

We denote by C1 the collection generated from this set by taking the infimum of
a finite number of functions, thus satisfying

sup
x∈X

|h(x)| < 1, Lip(h, X) < 1 ∀h ∈ C1; (5.1.5b)

finally we set
C0 =

{
λh : h ∈ C1, λ ∈ Q

}
. (5.1.5c)

As showed by the next remark, the above constructions are useful, since in
general C0

b (X) (endowed with the uniform topology) is not separable, unless X is
compact.

Remark 5.1.1 (Narrow convergence is induced by a distance). It is well known
that narrow convergence is induced by a distance on P(X): an admissible choice
is obtained by ordinating each element of C1 in a sequence (fk) and setting

δ(µ, ν) :=
∞∑

k=1

2−k
∣∣∣ ∫

X

fk dµ−
∫

X

fk dν
∣∣∣. (5.1.6)

If d is a complete bounded metric for X we could also choose any p-Wasserstein
distance on P(X) (see Chap. 7 and Remark 7.1.7). In particular, the family of all
converging sequences is sufficient to characterize the narrow topology and we do
not have to distinguish between compact and sequentially compact subsets.

Remark 5.1.2 (Narrow topology coincides with the weak∗ topology of
(
C0

b (X)
)′

).
P(X) can be identified with a convex subset of the unitary ball of the dual space(
C0

b (X)
)′: by definition, narrow convergence is induced by the weak∗ topology of(

C0
b (X)

)′
. This identification is useful to characterize the closed convex hull in

P(X) of a given set K ⊂ P(X): Hahn-Banach theorem shows that

µ ∈ Conv (K) ⇐⇒
∫

X

f dµ ≤ sup
ν∈K

∫
X

f dν ∀ f ∈ C0
b (X). (5.1.7)
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For instance we can prove the separability of P(X) by choosing K :=
{
δx : x ∈

D
}
, where D is a countable dense subset of X : by (5.1.7) we easily check that

P(X) = ConvK and therefore the subset of all the convex combinations with
rational coefficients of δ-measures concentrated in D is narrowly dense in P(X).

The following theorem provides a useful characterization of relatively com-
pact sets with respect to the narrow topology.

Theorem 5.1.3 (Prokhorov, [55, III-59]). If a set K ⊂ P(X) is tight, i.e.

∀ ε > 0 ∃Kε compact in X such that µ(X \Kε) ≤ ε ∀µ ∈ K, (5.1.8)

then K is relatively compact in P(X). Conversely, if there exists an equivalent
complete metric for X, i.e. X is a so called Polish space, then every relatively
compact subset of P(X) is tight.

Observe in particular that in a Polish space X each measure µ ∈ P(X) is
tight; moreover, compact inner approximation holds for every Borel set:

∀B ∈ B(X), ε > 0 ∃Kε � B : µ(B \Kε) ≤ ε. (5.1.9)

In fact, this approximation property holds for a more general class of spaces, the
so-called Radon spaces [117].

Definition 5.1.4 (Radon spaces). A separable metric space X is a Radon space if
every Borel probability measure µ ∈ P(X) satisfies (5.1.9).

When the elements of K ⊂ X are ordinated in a sequence (µn) of tight
measures (which is always the case if X is a Radon space), then the tightness
condition (5.1.8) can also be reformulated as

inf
K�X

lim sup
n→∞

µn(X \K) = 0, (5.1.10a)

or, equivalently since µn(X) ≡ 1,

sup
K�X

lim inf
n→∞ µn(K) = 1. (5.1.10b)

An interesting result by Le Cam [91], [60, 11.5.3], shows that

in a (metric, separable) Radon space X ,
every narrowly converging sequence (µn) ⊂ P(X) is tight.

(5.1.11)

Remark 5.1.5 (An integral condition for tightness). It is easy to check that (5.1.8)
is equivalent to the following condition: there exists a function ϕ : X → [0, +∞],
whose sublevels {x ∈ X : ϕ(x) ≤ c} are compact in X, such that

sup
µ∈K

∫
X

ϕ(x) dµ(x) < +∞. (5.1.12)
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For, if {εn}∞n=0 is a sequence with
∑+∞

n=0 εn < +∞ and Kn := Kεn
is an (increas-

ing) sequence of compact sets satisfying (5.1.8), the function

ϕ(x) := inf
{
n ≥ 0 : x ∈ Kn

}
=

+∞∑
n=0

χX\Kn
(x), (5.1.13)

satisfies (5.1.12). Conversely, if K satisfies (5.1.12), Chebichev inequality shows
that (5.1.8) is satisfied by the family of sublevels of ϕ.

We conclude this part by a well known result comparing narrow convergence
with convergence in the sense of distributions when X = Rd.

Remark 5.1.6 (Narrow and distributional convergence in X = Rd). For n ∈ N let
µn, µ be Borel probability measures in the euclidean space X = Rd such that

lim
n→∞

∫
Rd

f(x) dµn(x) =
∫

Rd

f(x) dµ(x) ∀ f ∈ C∞
c (Rd). (5.1.14)

Then the sequence (µn) is tight and it narrowly converges to µ as n →∞.
For, if ζ ∈ C∞

c (Rd) satisfies

0 ≤ ζ ≤ 1, ζ(x) = 1 if |x| ≤ 1/2, ζ(x) = 0 if |x| ≥ 1,

and ζk(x) := ζ(x/k), we have

lim inf
n→∞ µn(Bk(0)) ≥ lim

n→∞

∫
Rd

ζk(x) dµn(x) =
∫

Rd

ζk(x) dµ(x);

since Lebesgue dominated convergence theorem yields

lim
k→∞

∫
Rd

ζk(x) dµ(x) = 1,

choosing k sufficiently big we can verify the tightness condition (5.1.10b). By
Prokhorov theorem the sequence (µn) has at least one narrowly convergence sub-
sequence: a standard approximation result by convolution shows that any narrow
limit point of the sequence (µn) should coincide with µ, which is therefore the
narrow limit of the whole sequence (recall that the narrow topology is metrizable,
see Remark 5.1.1).

5.1.1 Unbounded and l.s.c. integrands

When one needs to pass to the limit in expressions like (5.1.1) w.r.t. unbounded or
lower semicontinuous functions f , the following two properties are quite useful.
The first one is a lower semicontinuity property:

lim inf
n→∞

∫
X

g(x) dµn(x) ≥
∫

X

g(x) dµ(x) (5.1.15)
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for every sequence (µn) ⊂ P(X) narrowly convergent to µ and any l.s.c. function
g : X → (−∞, +∞] bounded from below: it follows by the same approximation
argument of (5.1.3), by truncating the Moreau-Yosida approximations (5.1.4); in
this case l.s.c. functions satisfy only the approximation property (5.1.2a), where
e.g. C0 is given by (5.1.5a,b,c).
Changing g in −g one gets the corresponding “lim sup” inequality for upper semi-
continuous functions bounded from above. In particular, choosing as g the char-
acteristic functions of open and closed subset of X, we obtain

lim inf
n→∞ µn(G) ≥ µ(G) ∀G open in X, (5.1.16)

lim sup
n→∞

µn(F ) ≤ µ(F ) ∀F closed in X. (5.1.17)

The statement of the second property requires the following definitions: we say
that a Borel function g : X → [0, +∞] is uniformly integrable w.r.t. a given set
K ⊂ P(X) if

lim
k→∞

∫
{x:g(x)≥k}

g(x) dµ(x) = 0 uniformly w.r.t. µ ∈ K. (5.1.18)

If d is a given metric for X, in the particular case of g(x) := d(x, x̄)p, for some
(and thus any) x̄ ∈ X and a given p > 0, i.e. if

lim
k→∞

∫
X\Bk(x̄)

dp(x̄, x) dµ(x) = 0 uniformly w.r.t. µ ∈ K, (5.1.19)

we say that the set K ⊂ P(X) has uniformly integrable p-moments. Notice that
if

0 < p < p1 and sup
µ∈K

∫
X

d(x, x̄)p1 dµ(x) < +∞, (5.1.20)

then K has uniformly integrable p-moments. In the case when X = Rd with the
usual Euclidean distance, any family K ⊂ P(Rd) satisfying (5.1.20) is tight. The
following lemma provides a characterization of p-uniformly integrable families,
extending the validity of (5.1.1) to unbounded but with p-growth functions, i.e.
functions f : X → R such that

|f(x)| ≤ A + B dp(x̄, x) ∀x ∈ X, (5.1.21)

for some A, B ≥ 0 and x̄ ∈ X. We denote by Pp(X) the subset

Pp(X) :=
{
µ ∈ P(X) :

∫
X

d(x, x̄)p dµ(x) < +∞ for some x̄ ∈ X
}
. (5.1.22)

Lemma 5.1.7. Let (µn) be a sequence in P(X) narrowly convergent to µ ∈ P(X).
If f : X → R is continuous, g : X → (−∞, +∞] is lower semicontinuous, and
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|f |, g− are uniformly integrable w.r.t. the set {µn}n∈N, then

lim inf
n→∞

∫
X

g(x) dµn(x) ≥
∫

X

g(x) dµ(x) > −∞, (5.1.23a)

lim
n→∞

∫
X

f(x) dµn(x) =
∫

X

f(x) dµ(x). (5.1.23b)

Conversely, if f : X → [0, +∞) is continuous, µn-integrable, and

lim sup
n→∞

∫
X

f(x) dµn(x) ≤
∫

X

f(x) dµ(x) < +∞, (5.1.24)

then f is uniformly integrable w.r.t. {µn}n∈N.
In particular, a family {µn}n∈N ⊂ P(X) has uniformly integrable p-moments iff
(5.1.1) holds for every continuous function f : X → R with p-growth.

Proof. If µn narrowly converges to µ as n → ∞ and g is lower semicontinuous,
(5.1.15) yields

lim inf
n→∞

∫
X

gk dµn ≥
∫

X

gk dµ ∀k ∈ N,

where gk := g ∨ (−k), k ≥ 0. On the other hand, since g− is uniformly integrable
w.r.t. {µn}n∈N and gk ≥ g, (5.1.18) gives

sup
n∈N

(∫
X

gk dµn −
∫

X

g dµn

)
≤ sup

n∈N

∫
{x:g−(x)≥k}

g− dµn → 0

as k → ∞. Using these two facts we obtain (5.1.23a). As usual, (5.1.23b) follows
by applying (5.1.23a) to g := f and g := −f .

Conversely, let f : X → [0, +∞) be a continuous function satisfying (5.1.24)
and let

fk(x) := f(x) ∧ k, ∀x ∈ X, F k :=
{
x ∈ X : f(x) ≥ k

}
;

since fk is continuous and bounded and F k is a closed subset of X, recalling
(5.1.17) and (5.1.15) we have for any ε > 0

lim sup
n→∞

∫
{x:f(x)≥k}

f dµn = lim sup
n→∞

(∫
X

(
f − fk

)
dµn + kµn(F k)

)
≤

∫
X

(
f − fk

)
dµ + kµ(F k) =

∫
F k

f dµ < ε

for k sufficiently large. Since f is uniformly integrable for finite subsets of {µn}n∈N,
this easily leads to the uniform integrability of f . �

There exists an interesting link between narrow convergence of probability
measures and Kuratowski convergence of their supports:
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Proposition 5.1.8. If (µn) ⊂ P(X) is a sequence narrowly converging to µ ∈
P(X) then supp µ ⊂ K−lim inf

n→∞ supp µn, i.e.

∀x ∈ supp µ ∃xn ∈ supp µn : lim
n→∞ xn = x. (5.1.25)

Proof. Let x ∈ supp µ and let B1/k(x) be the open ball of center x and radius 1/k
with respect to the distance d on X. By (5.1.16) we obtain

lim inf
n→∞ µn(B1/k(x)) ≥ µ(B1/k(x)) > 0;

thus the strictly increasing sequence

j0 := 0, jk := min
{

n ∈ N : n > jk−1, supp µm ∩B1/k(x) �= ∅ ∀m ≥ n
}

is well defined. For jk ≤ n < jk+1 pick a point xn ∈ supp µn ∩B1/k(x): clearly the
sequence (xn) satisfies (5.1.25). �

Corollary 5.1.9 (Convergence of Dirac masses). A sequence (xn) ⊂ X is convergent
in X iff the sequence (δxn

) is narrowly convergent in P(X); in this case, the limit
measure µ is δx, x being the limit of the sequence (xn).

Proposition 5.1.10. Let (µn) ⊂ P(X) be a sequence narrowly converging to µ ∈
P(X) and let f, g : X → (−∞, +∞] be Borel functions such that |f |, g− are
uniformly integrable with respect to {µn}n∈N. If for any ε > 0 there exists a closed
set A ⊂ X such that

f |A is continuous, g|A is l.s.c., and lim sup
n→∞

µn(X \A) < ε, (5.1.26)

then (5.1.1) and (5.1.15) hold.

Proof. As usual we can limit us to consider the l.s.c. case; using the uniform
integrability of g− with respect to {µn}n∈N, a truncation argument, and arguing
as in the first part of the proof of Lemma 5.1.7, we reduce immediately ourselves
to the case when g is bounded from below by a constant −M ≤ 0. Let ε > 0, k ∈ N

be fixed and let A ⊂ X be a closed set such that (5.1.26) holds. We consider the
truncated functions gk(x) := g(x)∧ k for x ∈ X, and the lower semicontinuous g̃k

g̃k(x) =

{
gk(x) if x ∈ A,

k if x ∈ X \A,

which extends gk|A to X. We obtain

lim inf
n→∞

∫
X

g dµn ≥ lim inf
n→∞

∫
X

gk dµn ≥ lim inf
n→∞

(∫
X

g̃k dµn +
∫

X\A

(
gk − g̃k

)
dµn

)
≥ lim inf

n→∞

∫
X

g̃k dµn − (M + k) lim sup
n→∞

µn(X \A)

≥
∫

X

g̃k(x) dµ− ε(M + k) ≥
∫

X

gk(x) dµ− (k + M)ε.
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Passing to the limit, first as ε ↓ 0 and then as k ↑ ∞ we obtain (5.1.15). �

5.1.2 Hilbert spaces and weak topologies

Let X be a separable, infinite dimensional, Hilbert space, with norm | · | and
scalar product 〈·, ·〉; in many circumstances it would be useful to rephrase the
results of the previous section with respect to the weak topology σ(X, X ′) of X .
Unfortunately, the weak topology is not induced by a distance on X , thus the
previous statements are not immediately applicable.

We can circumvent this difficulty by the following simple trick: we introduce a
new continuous norm ‖·‖�, inducing a topology � globally weaker than σ(X, X ′),
but coinciding with σ(X, X ′) on bounded sets (with respect to the original stronger
norm | · |). In particular bounded sets of X are relatively compact w.r.t. � and
Borel sets with respect to the three topologies coincide.

For instance, if {en}+∞
n=1 is an orthonormal basis of X, an admissible choice

is

‖x‖2� :=
∞∑

n=1

1
n2
〈x, en〉2. (5.1.27)

In fact, if (xk) ⊂ X is a bounded sequence, we can extract a subsequence, still
denoted by xk, weakly converging to x in X; since 〈xk − x, en〉 → 0 as k →∞ for
each n ≥ 1, Lebesgue dominated convergence theorem yields

lim
k→∞

‖xk − x‖2� = lim
k→∞

∞∑
n=1

1
n2
〈xk − x, en〉2 = 0.

We denote by X� the new pre-Hilbertian topological vector space. We will also
introduce the space of smooth cylindrical functions Cyl(X): observe that for finite
dimensional spaces, X� is homeomorphic to X and Cyl(X) = C∞

c (X).

Definition 5.1.11 (Finite dimensional projection and smooth cylindrical functions).
We denote by Πd(X) the space of all maps π : X → Rd of the form

π(x) = (〈x, e1〉, 〈x, e2〉, . . . , 〈x, ed〉) x ∈ X, (5.1.28)

where {e1, . . . , ed} is any orthonormal family of vectors in X. The adjoint map

π∗ : y ∈ Rd →
d∑

k=1

ykek ∈ span(e1, . . . , ek) ⊂ X (5.1.29)

is a linear isometry of Rd onto span(e1, . . . , ed) so that

π ◦ π∗ is the identity in Rd and
π̂ := π∗ ◦ π is the orthogonal projection of X onto span(e1, . . . , ed).

(5.1.30)

We denote by Cyl(X) the functions ϕ = ψ ◦ π with π ∈ Πd(X) and ψ ∈ C∞
c (Rd).
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Notice that any ϕ = ψ ◦ π ∈ Cyl(X) is a Lipschitz function, everywhere
differentiable in the Fréchet sense, and that ϕ is also continuous with respect
to the weak topology of X and to X� (if the corresponding orthogonal systems
coincide). Moreover ∇ϕ = π∗ ◦ ∇ψ ◦ π.

The following properties are immediate:

Lemma 5.1.12. Let X be a separable Hilbert space and let X� be the pre-Hilbertian
vector space whose norm is defined by (5.1.27).
(a) If K is weakly compact in X then K is strongly compact in X�.
(b) If

g : X → (−∞,+∞] is weakly l.s.c. and lim
|x|→∞

g(x) = +∞, (5.1.31)

then it is lower semicontinuous in X� with compact sublevels.
(c) Let us denote by BR := {x ∈ X : |x| ≤ R} the centered closed balls w.r.t. the
strong norm; if K ⊂ P(X) satisfies the weak tightness condition

∀ ε > 0 ∃Rε > 0 such that µ(X \BRε
) ≤ ε ∀µ ∈ K, (5.1.32)

then K is tight in P(X�) and therefore relatively compact in P(X�).
(d) If the sequence (µn) ⊂ P(X) is narrowly converging to µ in P(X�) and it
is weakly tight according to (5.1.32), then for every Borel functions f, g : X →
(−∞, +∞] such that g−, |f | are uniformly integrable and f (resp. g) is weakly
continuous (resp. l.s.c.) on bounded sets of X, we have

lim inf
n→∞

∫
X

g(x) dµn(x) ≥
∫

X

g(x) dµ(x), (5.1.33a)

lim
n→∞

∫
X

f(x) dµn(x) =
∫

X

f(x) dµ(x). (5.1.33b)

(e) K ⊂ P(X) is weakly tight according to (5.1.32) iff there exists a Borel function
h : X → [0,+∞] such that h(x) → +∞ as |x| → ∞ and

sup
µ∈K

∫
X

h(x) dµ(x) < +∞. (5.1.34)

(f) If the sequence (µn) ⊂ P(X) is weakly tight according to (5.1.32), then it
narrowly converges to µ in P(X�) iff

lim
n→∞

∫
X

ϕ(x) dµn(x) =
∫

X

ϕ(x) dµ(x) ∀ϕ ∈ Cyl(X). (5.1.35)

Proof. (a) and (b) are trivial and (c) is a direct consequence of the fact that
bounded and closed convex sets are compact in X�. Since on bounded subsets
of X the topology of X� coincides with the weak one, (d) follows from Proposi-
tion 5.1.10.
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One implication in (e) follows directly from Chebichev inequality. The other one
can be proved arguing as in Remark 5.1.5.
Finally, one implication in (f) is a consequence of (5.1.33b) of (d), since (smooth)
cylindrical functions are bounded and weakly continuous. In order to prove the
converse implication, we can simply check that any two narrow limit point µ1, µ2

of the sequence (µn) in P(X�) should coincide. For, let f ∈ C0
b (X) and πd be the

map (5.1.28), so that π̂d := π∗
d ◦ πd is the orthogonal projection of X onto Xd =

span(e1, · · · , ed). We set ψd := f ◦ π∗
d ∈ C0

b (Rd), ϕd := ψd ◦ πd = f ◦ π̂d ∈ Cyl(X);
by (5.1.35) we know∫

X

ϕ(x) dµ1(x) =
∫

X

ϕ(x) dµ2(x) ∀ϕ ∈ Cyl(X); (5.1.36)

a standard approximation argument for bounded continuous functions defined in
Rd by smooth functions in C∞

c (Rd) as in Remark 5.1.6 yields (5.1.36) for ϕ := ϕd

and d ∈ N; therefore∫
X

f(π̂d(x)) dµ1(x) =
∫

X

f(π̂d(x)) dµ2(x) ∀ d ∈ N.

Passing to the limit as d → ∞, since π̂d(x) → x for every x ∈ X, Lebesgue
dominated convergence theorem yields∫

X

f(x) dµ1(x) =
∫

X

f(x) dµ2(x).

Since f is an arbitrary function in C0
b (X) we obtain µ1 = µ2. �

In the following theorem we will show that narrow convergence in P(X�)
and convergence of the p-moment

∫
X
|x|p dµh(x) (but more general integrands are

allowed) yields convergence in P(X), thus obtaining the measure-theoretic version
of the fact that weak convergence and convergence of the norms in X imply strong
convergence. We will show a different proof of this fact at the end of Section 7.1.

Theorem 5.1.13. Let j : [0, +∞) → [0, +∞) be a continuous, strictly increasing
and surjective map, and let µn, µ ∈ P(X) be satisfying

µn → µ in P(X�), lim
n→∞

∫
X

j(|x|) dµn(x) =
∫

X

j(|x|) dµ < +∞. (5.1.37)

Then µn converge to µ in P(X).

Proof. Observe that the family {µn}n∈N is weakly tight, according to (5.1.32).
We consider the vector space H of continuous functions h : X → R satisfying the
growth condition (compare with (5.1.21))

∃A, B ≥ 0 : |h(x)| ≤ A + Bj(|x|) ∀x ∈ X, (5.1.38)
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and
lim

n→∞

∫
X

h(x) dµn(x) =
∫

X

h(x) dµ(x). (5.1.39)

Observe that H is closed with respect to uniform convergence of functions and
contains the constants and the function j(| · |).
By the monotonicity argument outlined at the beginning of Section 5.1 we need
only to check that the infimum of a finite number of functions of the form

x �→ (
q1 + q2|x− y|) ∧ k, q1 ∈ R, q2, k ≥ 0, y ∈ X, (5.1.40)

belongs to H . To this aim, let us consider the convex cone A ⊂ H of strongly
continuous functions which satisfy (5.1.38), (5.1.39), and are weakly lower semi-
continuous. Notice that, truncated affine functions of the type

x �→ (−l)∨(a+〈x, y〉)∧m, for l, m ≥ 0, a ∈ R, y ∈ X belongs to A , (5.1.41)

since they are bounded, weakly continuous, and condition (5.1.39) follows by (d)
of Lemma 5.1.12.
Let us first prove that A is a lattice.

Claim 1. If f, g ∈ C0(X) satisfy (5.1.38), are weakly lower semicontinuous,
and f + g ∈ A , then both f, g ∈ A .

Indeed, by (5.1.33a) we have∫
X

(f + g) dµ = lim
n→∞

∫
X

(f + g) dµn ≥ lim sup
n→∞

∫
X

f dµn + lim inf
n→∞

∫
X

g dµn

≥
∫

X

f dµ +
∫

X

g dµ =
∫

X

(f + g) dµ,

which yields

lim sup
n→∞

∫
X

f dµn + lim inf
n→∞

∫
X

g dµn =
∫

X

f dµ +
∫

X

g dµ; (5.1.42)

since by (5.1.33a)

lim sup
n→∞

∫
X

f dµn ≥
∫

X

f dµ, lim inf
n→∞

∫
X

g dµn ≥
∫

X

g dµ,

(5.1.42) yields

lim sup
n→∞

∫
X

f dµn =
∫

X

f dµ, lim inf
n→∞

∫
X

g dµn =
∫

X

g dµ;

inverting the role of f and g we obtain f, g ∈ A .
Claim 1 immediately implies that A is a lattice, as

f, g ∈ A ⇒ f + g = (f ∧ g) + (f ∨ g) ∈ A ⇒ f ∧ g, f ∨ g ∈ A .
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Since (
q1 + q2|x− y|

)
∧ k =

(
q1 +

(
q2|x− y|) ∧ (k − q1)

)
∧ k,

it remains to show that

all functions x �→ |x− y| ∧ k, for y ∈ X, k ≥ 0, belong to A . (5.1.43)

To this aim, we need a further claim.

Claim 2. If f ∈ A and θ : R → R is a uniformly continuous, bounded,
increasing function, then θ ◦ f ∈ A .

Indeed, since θ can be uniformly approximated by a sequence of Lipschitz
continuous increasing maps, it is not restrictive to assume that θ is Lipschitz,
bounded, and its Lipschitz constant is less than 1; in this case also x �→ x−θ(x) is
Lipschitz and increasing, thus θ◦f and f−f◦θ are still weakly lower semicontinuous
they satisfies the growth condition (5.1.38) and and their sum is f ∈ A : we can
apply Claim 1.

Let us consider (5.1.43) in the case y = 0 first: we fix R > 0 and we consider
the continuous increasing function θR which vanishes in (−∞, 0) and satisfies

θR(s) :=
(
j−1(s)

)2 ∧R2, s ≥ 0, so that r2 ∧R2 = θR(j(r)) ∀ r ≥ 0.

By Claim 2, we deduce that the map fR defined by fR(x) := |x|2 ∧R2 belongs to
A .

Now, for fixed k, l, m > 0 and y ∈ X, we set

gl,m(x) := (−l) ∨
(
− 2〈x, y〉+ |y|2

)
∧m, gR,l.m,k :=

((
fR + gl,m

) ∨ 0
)1/2

∧ k,

and we know by the lattice property, the previous claim, and (5.1.41) that gR,l,m,k∈
A . Choosing now R ≥ l + k2 and m ≥ k the expression of gR,l,m,k simplifies to

gR,l,m,k(x) = g̃l,k(x) :=
((
|x|2 +

(− 2〈x, y〉+ |y|2) ∨ (−l)
)
∨ 0

)1/2

∧ k,

which belongs to A , is decreasing with respect to l, and satisfies

lim
l→∞

g̃l,k(x) = inf
l∈N

g̃l,k(x) = |x− y| ∧ k ∀x ∈ X.

It follows that

lim sup
n→∞

∫
X

(|x− y| ∧ k
)
dµn(x) ≤ lim sup

n→∞

∫
X

g̃l,k(x) dµn(x) =
∫

X

g̃l,k(x) dµ(x);

passing to the limit as l → +∞, and recalling that the corresponding “lim inf”
inequality is provided by (5.1.33a) of Lemma 5.1.12, we obtain (5.1.43). �
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5.2 Transport of measures

If X1, X2 are separable metric spaces, µ ∈ P(X1), and r : X1 → X2 is a Borel (or,
more generally, µ-measurable) map, we denote by r#µ ∈ P(X2) the push-forward
of µ through r, defined by

r#µ(B) := µ(r−1(B)) ∀B ∈ B(X2). (5.2.1)

More generally we have∫
X1

f(r(x)) dµ(x) =
∫

X2

f(y) d r#µ(y) (5.2.2)

for every bounded (or r#µ-integrable) Borel function f : X2 → R. It is easy to
check that

ν << µ =⇒ r#ν << r#µ ∀µ, ν ∈ P(X1). (5.2.3)

In the following we will extensively use the following composition rule

(r ◦ s)#µ = r#(s#µ) where s : X1 → X2, r : X2 → X3, µ ∈ P(X1). (5.2.4)

Furthermore, if r : X1 → X2 is a continuous map, then

r# : P(X1) → P(X2) is continuous w.r.t. the narrow convergence (5.2.5)

and
r
(
suppµ

) ⊂ supp r#µ = r
(
supp µ

)
. (5.2.6)

Lemma 5.2.1. Let rn : X1 → X2 be Borel maps uniformly converging to r on com-
pact subsets of X1 and let (µn) ⊂ P(X1) be a tight sequence narrowly converging
to µ. If r is continuous, then (rn)#µn narrowly converge to r#µ.

Proof. Let f be a bounded continuous function in X2. We will prove the lim inf
inequality

lim inf
n→∞

∫
X2

f d(rn)#µn ≥
∫

X2

f dr#µ,

as the lim sup simply follows replacing f by −f . To this aim, possibly adding to f
a constant, we can assume that f ≥ 0. For any compact set K ⊂ X1 the uniform
convergence of rn to r on K gives the uniform convergence of f ◦ rn to f ◦ r on
K, therefore (5.1.15) gives

lim inf
n→∞

∫
X1

f ◦ rn dµn ≥ lim inf
n→∞

∫
K

f ◦ rn dµn = lim inf
n→∞

∫
K

f ◦ r dµn

≥ (− sup f
)
sup

n
µn(X1 \K) + lim inf

n→∞

∫
X1

f ◦ r dµn

≥ (− sup f
)
sup

n
µn(X1 \K) +

∫
X1

f ◦ r dµ.

Since {µn}n∈N is tight, we can find an increasing sequence of compact set Km

such that limm supn µn(X1 \Km) = 0. Putting K = Km in the inequality above
and letting m ↑ +∞ the proof is achieved. �
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Lemma 5.2.2 (Tightness criterion). Let X, X1, X2, . . . , XN be separable metric
spaces and let ri : X → Xi be continuous maps such that the product map

r := r1 × r2 × . . .× rN : X → X1 × . . .×XN is proper. (5.2.7)

Let K ⊂ P(X) be such that Ki := ri
#(K) is tight in P(Xi) for i = 1, . . . , N .

Then also K is tight in P(X).

Proof. For every µ ∈ P(X) we denote by µi the measure µi := ri
#µ. By definition,

for each ε > 0 there exist compact sets Ki ⊂ Xi such that µi(Xi \Ki) ≤ ε/N for
any µ ∈ K; it follows that µ(X \ (ri)−1(Ki)) ≤ ε/N and

µ

(
X \

N⋂
i=1

(ri)−1(Ki)

)
≤

N∑
i=1

µ
(
X \ (ri)−1(Ki)

) ≤ ε ∀µ ∈ K. (5.2.8)

On the other hand ∩N
i=1(r

i)−1(Ki) = r−1(K1×K2× . . .×KN ), which is compact
by (5.2.7). �

For an integer N ≥ 2 and i, j = 1, . . . , N , we denote by πi, πi,j the projection
operators defined on the product space X := X1 × . . .×XN respectively defined
by

πi : (x1, . . . , xN ) �→ xi ∈ Xi, πi,j : (x1, . . . , xN ) �→ (xi, xj) ∈ Xi ×Xj . (5.2.9)

If µ ∈ P(X), the marginals of µ are the probability measures

µi := πi
#µ ∈ P(Xi), µi j := πi,j

# µ ∈ P(Xi ×Xj). (5.2.10)

If µi ∈ P(Xi), i = 1, . . . , N , the class of multiple plans with marginals µi is
defined by

Γ(µ1, . . . , µN ) :=
{
µ ∈ P(X1 × . . .×XN ) : πi

#µ = µi, i = 1, . . . , N
}

. (5.2.11)

In the case N = 2 a measure µ ∈ Γ(µ1, µ2) is also called transport plan between
µ1 and µ2. Notice also that

Γ(µ1, µ2) = {µ1 × µ2} if either µ1 or µ2 is a Dirac mass. (5.2.12)

We will mostly consider multiple plans with N = 2 or N = 3. To each couple
of measures µ1 ∈ P(X1), µ2 = r#µ1 ∈ P(X2) linked by a Borel transport map
r : X1 → X2 we can associate the transport plan

µ := (i× r)#µ1 ∈ Γ(µ1, µ2), i being the identity map on X1. (5.2.13)

If µ is representable as in (5.2.13) then we say that µ is induced by r. Each
transport plan µ concentrated on a µ-measurable graph in X1 × X2 admits the
representation (5.2.13) for some µ1-measurable map r, which therefore transports
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µ1 to µ2 (see, e.g., [9]; the same result holds for Borel graphs and maps if X1, X2

are Polish spaces [117, p. 107])
We define also the inverse µ−1 ∈ P(X2 × X1) of a transport plan µ ∈

P(X1 ×X2) by i#µ, where i(x1, x2) = (x2, x1).

Remark 5.2.3. By Lemma 5.2.2, if X1, X2, · · · , XN are Radon spaces (i.e. each
measure µi ∈ P(Xi) is tight), Γ(µ1, . . . , µN ) is compact in P(X) and not empty,
since it contains at least µ1×. . .×µN . If for some Borel functions gi : Xi → [0, +∞]∫

Xi

gi(xi) dµi(xi) < +∞ i = 1, . . . , N, (5.2.14)

then it is easy to check that g(x) :=
∑N

i=1 gi(xi) defined in the product space
X = X1 ×X2 × · · · ×XN is uniformly integrable with respect to Γ(µ1, . . . , µN ).

When X is a separable Hilbert space as in Section 5.1.2, the following result
provides a sufficient condition for the convergence of the integrals

∫
X2 〈x1, x1〉 dµh

even in the case when the measures µh do not converge narrowly with respect to
the strong topology.

Lemma 5.2.4. Let (µn) ⊂ P(X ×X) be a sequence narrowly converging to µ in
P(X ×X�), with

sup
n

∫
X2
|x1|p + |x2|q dµn(x1, x2) < +∞, p, q ∈ (1,∞), p−1 + q−1 = 1. (5.2.15)

If either π1
#µn have uniformly integrable p-moments or π2

#µn have uniformly in-
tegrable q-moments, then

lim
n→∞

∫
X×X

〈x1, x2〉 dµn =
∫

X×X

〈x1, x2〉 dµ.

Proof. We assume to fix the ideas that π2
#µn have uniformly integrable q-moments

and we show that the function (x1, x2) �→ g(x1, x2) := |x1| · |x2| is uniformly
integrable. For any k, m ∈ N we have

g(x1, x2) ≥ k, |x2| ≤ m ⇒ |x1| ≥ k/m

and therefore∫
{g≥k}

g dµn ≤ m

∫
{|x1|≥k/m}

|x1| dπ1
#µn + C

(∫
{|x2|≥m}

|x2|q dπ2
#µn

)1/q

where Cp := supn

∫
X
|x1|p dµn. Taking the supremum w.r.t. n and the lim sup as

k →∞, since π1
#µn has uniformly integrable 1-moments by (5.1.20) we have

lim sup
k→∞

sup
n

∫
{g≥k}

g dµn ≤ sup
n

C
(∫

{|x2|≥m}
|x2|q dπ2

#µn

)1/q
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Letting m →∞ we conclude.
In the finite dimensional case (or even if µn → µ in P(X×X)) we conclude

immediately, since the map (x1, x2) �→ 〈x1, x2〉 is continuous in X ×X.
In the infinite dimensional case, let BR be the centered closed ball of radius

R in X which is compact in X�. The map (x1, x2) �→ 〈x1, x2〉 is continuous in
each closed set X ×BR with respect to the X ×X� topology and (5.2.15) yields

lim sup
n,R→∞

µn

(
X2 \ (X ×BR)

)
= 0.

Therefore we conclude by invoking Proposition 5.1.10. �

5.3 Measure-valued maps and disintegration theorem

Let X, Y be separable metric spaces and let x ∈ X �→ µx ∈ P(Y ) be a measure-
valued map. We say that µx is a Borel map if x �→ µx(B) is a Borel map for any
Borel set B ⊂ Y , or equivalently if this property holds for any open set A ⊂ Y .
By the monotone class theorem we have also that

x ∈ X �→
∫

Y

f(x, y) dµx(y) is Borel (5.3.1)

for every bounded (or nonnegative) Borel function f : X × Y → R.
By (5.3.1) the formula

µ(f) =
∫

X

(∫
Y

f(x, y) dµx(y)
)

dν(x)

defines for any ν ∈ P(X) a unique measure µ ∈ P(X × Y ), that will be denoted
by

∫
X

µx dν(x). Actually any µ ∈ P(X × Y ) whose first marginal is ν can be
represented in this way. This is implied by the so-called disintegration theorem
(related to the existence of conditional probability measures in Probability), see
for instance [55, III-70].

Theorem 5.3.1 (Disintegration). Let X, X be Radon separable metric spaces, µ ∈
P(X), let π : X → X be a Borel map and let ν = π#µ ∈ P(X). Then there
exists a ν-a.e. uniquely determined Borel family of probability measures {µx}x∈X ⊂
P(X) such that

µx(X \ π−1(x)) = 0 for ν-a.e. x ∈ X (5.3.2)

and ∫
X

f(x) dµ(x) =
∫

X

(∫
π−1(x)

f(x) dµx(x)
)

dν(x) (5.3.3)

for every Borel map f : X → [0, +∞].
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In particular, when X := X1 × X2, X := X1, µ ∈ P(X1 × X2), ν = µ1 =
π1

#µ, we can canonically identify each fiber (π1)−1(x1) with X2 and find a Borel
family of probability measures {µx1}x1∈X1 ⊂ P(X2) (which is µ1-a.e. uniquely
determined) such that µ :=

∫
X1

µx1 dµ1(x1).

As an application of the disintegration theorem we can prove existence, and
in some cases uniqueness, of multiple plans with given marginals.

Lemma 5.3.2. Let X1, X2, X3 be Radon separable metric spaces and let γ1 2 ∈
P(X1 × X2), γ1 3 ∈ P(X1 × X3) such that π1

#γ1 2 = π1
#γ1 3 = µ1. Then there

exists µ ∈ P(X1 ×X2 ×X3) such that

π1,2
# µ = γ1 2, π1,3

# µ = γ1 3. (5.3.4)

Moreover, if γ1 2 =
∫

γ1 2
x1

dµ1, γ1 3 =
∫

γ1 3
x1

dµ1 and µ =
∫

µx1
dµ1 are the disin-

tegrations of γ1 2, γ1 3 and µ with respect to µ1, (5.3.4) is equivalent to

µx1
∈ Γ(γ1 2

x1
, γ1 3

x1
) ⊂ P(X2 ×X3) for µ1-a.e. x1 ∈ X1. (5.3.5)

In particular (5.2.12) implies that the measure µ is unique if either γ1 2 or γ1 3

are induced by a transport. We denote by Γ1(γ1 2, γ1 3) the subset of plans µ ∈
P(X1 ×X2 ×X3) satisfying (5.3.4).

Proof. With the notation introduced in the statement of the theorem, the measure
µ whose disintegration w.r.t. x1 is

∫
X1

γ1 2
x1
× γ1 3

x1
dµ1(x1)

has the required properties.

Now we prove the equivalence between (5.3.4) and (5.3.5). If µ satisfies
π1,2

# µ = γ1 2 and π1,3
# µ = γ1 3, then

γ1 2 = π1,2
# µ =

∫
X1

π2
#µx1

dµ1(x1)

and the uniqueness of the disintegration gives π2
#µx1

= γ1 2
x1

for µ1-a.e. x1 ∈ X1.
A similar argument gives that π3

#µx1
= γ1 3

x1
for µ1-a.e. x1 ∈ X1.

Conversely, let us suppose that µ satisfies (5.3.5) and let f : X1 ×X2 → R
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be a bounded Borel function; the computation∫
X1×X2

f(x1, x2) dπ1,2
# µ =

∫
X1×X2×X3

f(x1, x2) dµ(x1, x2, x3)

=
∫

X1

(∫
X2×X3

f(x1, x2) dµx1
(x2, x3)

)
dµ1(x1)

=
∫

X1

(∫
X2

f(x1, x2) dπ2
#µx1

(x2)
)

dµ1(x1)

=
∫

X1

(∫
X2

f(x1, x2) dγ1 2
x1

(x2)
)

dµ1(x1)

=
∫

X1×X2

f(x1, x2) dγ1 2(x1, x2)

shows that π1,2
# µ = γ1 2. A similar argument proves that π1,3

# µ = γ1 3. �

Remark 5.3.3 (Composition of plans). An analogous situation occurs when γ1 2 ∈
P(X1 ×X2) and γ2 3 ∈ P(X2 ×X3). In this case we say that

µ ∈ Γ2(γ1 2, γ2 3) if π1,2
# µ = γ1 2, π2,3

# µ = γ2 3. (5.3.6)

Of course, Γ2(γ1 2, γ2 3) is not empty iff π2
#γ1 2 = π1

#γ2 3. In this case, the measure
π1,3

# µ, with µ ∈ Γ2(γ1 2, γ2 3) constructed as in the proof of Lemma 5.3.2, belongs
by construction to Γ(µ1, µ3); it will be called composition of γ2 3 and γ1 2 and
denoted by γ2 3 ◦ γ1 2. We have then∫

X1×X3

f(x1, x3) d(γ2 3 ◦ γ1 2) =
∫

X2

(∫
X1×X3

f(x1, x3) dγ1 2
x2
× γ2 3

x2

)
dµ2(x2)

(5.3.7)
for any bounded Borel function f : X1×X3 → R. The name is justified since in the
case γ1 2, γ2 3 are induced by the transports r1 2, r2 3, then the plan γ2 3 ◦ γ1 2 is
induced by the composition map r2 3 ◦r1 2: this fact can be easily checked starting
from (5.3.7)∫

X1×X3

f(x1, x3) d(γ2 3 ◦ γ1 2) =
∫

X2

(∫
X1

f(x1, r
2 3(x2)) dγ1 2

x2
(x1)

)
dµ2(x2)

=
∫

X1×X2

f(x1, r
2 3(x2)) dγ1 2(x1, x2)

=
∫

X1

f(x1, r
2 3(r1 2(x1))) dµ1(x1).

Notice that by (5.2.12) this construction is canonical only if either (γ1 2)−1 or γ2 3

are induced by a transport.
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In the proof of the completeness of the Wasserstein distance we will also need
the following useful extensions of Lemma 5.3.2 to a countable product of Radon
spaces.

Lemma 5.3.4. Let Xi, i ∈ N, be a sequence of Radon separable metric spaces,
µi ∈ P(Xi) and αi(i+1) ∈ Γ(µi, µi+1), β1 i ∈ Γ(µ1, µi). Let X∞ := Πi∈NXi, with
the canonical product topology. Then there exist µ, ν ∈ P(X∞) such that

πi,i+1
# µ = αi (i+1), π1,i

# ν = β1 i ∀ i ∈ N. (5.3.8)

Proof. Let Xn := Πn
i=1Xi = Xn−1 × Xn and let πn : Xm → Xn, m ≥ n, be

the projection onto the first n coordinates. In order to show the existence of µ,
we set µ2 := α1 2 and we apply recursively Lemma 5.3.2 and Remark 5.3.3 with
µn ∈ P(Xn−1 × Xn), αn(n+1) ∈ P(Xn × Xn+1), n ≥ 2, to obtain a sequence
µn+1 ∈ P(Xn+1) satisfying

πn
#µn+1 = µn, πn,n+1

# µn+1 = αn(n+1).

Kolmogorov’s Theorem [55, §51] provides a measure µ ∈ P(X∞) such that πn
#µ =

µn and therefore

πn−1,n
# µ = πn−1,n

#

(
πn

#µ
)

= πn−1,n
# µn = α(n−1) n.

The existence of ν can be proved by a similar argument, by setting ν2 := β1 2

and by applying recursively Lemma 5.3.2 to νn ∈ P(X1 × Xn−1), β1(n+1) ∈
P(X1 ×Xn+1), n ≥ 2: we can find a sequence νn+1 ∈ P(Xn+1) satisfying

πn
#νn+1 = νn, π1,n+1

# νn+1 = β1(n+1).

Kolmogorov’s Theorem [55, §51] provides a measure ν ∈ P(X∞) such that πn
#ν =

νn and therefore
π1,n

# ν = π1,n
#

(
πn

#ν
)

= π1,n
# νn = β1 n �

5.4 Convergence of plans and convergence of maps

In this section we investigate the relation between the convergence of maps and
the convergence of the associated plans.

Let us first recall that if X, Y1, . . . , Yk are separable metric spaces with Y :=
Y1 × . . .× Yk, µ ∈ P(X), and ri : X → Yi, i = 1, · · · , k, then the product map

r := (r1, r2, · · · , rk) : X → Y is Borel (µ-measurable) iff
each map ri : X → Yi is Borel (resp. µ-measurable).

(5.4.1)

In particular, if r, s : X → Y are µ-measurable, then their distance dY (r(·), s(·))
is a µ-measurable real map.
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We can thus define the convergence in measure of a sequence of µ-measurable
maps rn : X → Y to a µ-measurable map r by asking that

lim
n→∞ µ

({x ∈ X : dY (rn(x), r(x)) > ε}) = 0 ∀ ε > 0. (5.4.2)

We can also introduce the Lp spaces (see e.g. [7])

Lp(µ; Y ) :=
{
r : X → Y µ-measurable :

∫
X

dp
Y (r(x), ȳ) dµ(x) < +∞

for some (and thus any) ȳ ∈ Y
}

.

(5.4.3)

with the distance

d(r, s)Lp(µ;Y ) :=
(∫

X

dp
Y (r(x), s(y)) dµ(x)

)1/p

; (5.4.4)

it is easy to check that Lp(µ; Y ) is complete iff Y is complete. When Y is a
(separable) Hilbert space and p ≥ 1, then the above distance is induced by the
norm

‖r‖Lp(µ;Y ) :=
(∫

X

|r(x)|pY dµ(x)
)1/p

; (5.4.5)

for r ∈ L1(µ; Y ) the (vector valued) integral
∫

X
r(x) dµ(x) ∈ Y of r is well defined

and satisfies ∫
X

〈y, r(x)〉 dµ(x) = 〈y,

∫
X

r(x) dµ(x)〉 ∀ y ∈ Y, (5.4.6)

φ
(∫

X

r(x) dµ(x)
)
≤

∫
X

φ(r(x)) dµ(x) (5.4.7)

for every proper, convex and l.s.c. function φ : Y → (−∞, +∞] (Jensen’s inequal-
ity).

In the following lemma we consider first the case when the reference measure
µ is fixed, and show the equivalence between narrow convergence of the plans
(i× rn)#µ and convergence in measure and in Lp(µ; Y ) of rn, when the limiting
plan is induced by a transport r.

Lemma 5.4.1 (Narrow convergence of plans and convergence in measure). Let
µ ∈ P(X) and let rn, r : X → Y be Borel maps. Then the plans (i × rn)#µ
narrowly convergence to (i × r)#µ in P(X × Y ) as n → ∞ if and only if rn

converge in measure to r.
Moreover, the measures (rn)#µ have uniformly integrable p-moments iff rn con-
verges to r in Lp(µ; Y ).

Proof. Since for every Borel map s : X → Y∫
X×Y

ϕ(x, y) d(i× s)#µ =
∫

X

ϕ(x, s(x)) dµ(x) ∀ϕ ∈ C0
b (X × Y )
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and convergence in measure is stable by composition with continuous functions,
it is immediate to check that convergence in measure of the maps implies narrow
convergence of the plans.
The converse implication can be obtained as follows: fix ε > 0, a continuous
function ψε with 0 ≤ ψε ≤ 1, ψε(0) = 0 and ψε(t) = 1 whenever |t| > ε and a
continuous function r̃ such that µ({r �= r̃}) < ε. Then, using the test function
ϕε(x, y) = ψε(dY (y, r̃(x))) we obtain

lim sup
n→∞

µ({dY (rn, r̃) > ε}) ≤ lim sup
n→∞

∫
X×Y

ϕε d(i× rn)#µ =
∫

X×Y

ϕε d(i× r)#µ

=
∫

X

ψε(dY (r(x), r̃(x))) dµ(x) ≤ ε.

Taking into account our choice of r̃ we obtain lim sup
n→∞

µ({dY (rn, r) > ε}) ≤ 2ε.

The second part of the lemma follows easily by Vitali dominated convergence
theorem and the identities

lim
n→∞

∫
X

dp
Y (rn(x), ȳ) dµ(x) = lim

n→∞

∫
Y

dp
Y (y, ȳ) d

(
(rn)#µ

)
(y)

=
∫

X

dp
Y (r(x), ȳ) dµ(x) =

∫
Y

dp
Y (y, ȳ) d

(
r#µ

)
(y),

(5.4.8)

which hold either if rn converges to r in Lp(µ; Y ) or if the family (rn)#µ, n ∈ N,
has uniformly integrable p-moments. �

In the rest of this section we assume that X is a separable Hilbert space as
in Section 5.1.2.

Definition 5.4.2 (Barycentric projection). The barycentric projection γ̄ : X → X
of a plan γ ∈ P(X ×X), which admits the disintegration γ =

∫
X

γx1 dµ(x1) with
respect to its first marginal µ = π1

#γ, is defined as

γ̄(x1) :=
∫

X

x2 dγx1(x2) for µ-a.e. x1 ∈ X (5.4.9)

provided γx1 has finite first moment for µ-a.e. x1.

Assume that we are given maps vn ∈ Lp(µn; X): here we have to be careful in
the meaning of the convergence of vectors vn, which belong to different Lp-spaces.
Two approaches seem natural:

(i) we can consider the narrow limit in P(X�) of the X-valued measures νn :=
vnµn (component by component);

(ii) we can consider the limit γ of the associated plans γn := (i × vn)#µn in
P2(X� ×X�), recovering a limit vector v by taking the barycenter of γ.

In fact, these two approaches yields equivalent notions: we formalize the point (i)
in the following definition, and then we see that it coincides with (ii).
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Definition 5.4.3. Let (ej) be an orthonormal basis of X, let (µn) ⊂ P(X) be
narrowly converging to µ in P(X�) and let vn ∈ L1(µn; X). We say that vn

weakly converge to v ∈ L1(µ; X) if

lim
n→∞

∫
X

ζ(x)〈ej , vn(x)〉 dµn(x) =
∫

X

ζ(x)〈ej , v(x)〉 dµ(x) (5.4.10)

for every ζ ∈ Cyl(X) and any j ∈ N. We say that vn converges strongly to v in
Lp, p > 1, if (5.4.10) holds and

lim sup
n→∞

‖vn‖Lp(µn;X) ≤ ‖v‖Lp(µ;X). (5.4.11)

It is easy to check that the limit v, if it exists, is unique.

Theorem 5.4.4. Let p > 1, let (µn) ⊂ P(X) be narrowly converging to µ in
P(X�) and let vn ∈ Lp(µn; X) be such that

sup
n∈N

∫
X

|vn(x)|p dµn(x) < +∞. (5.4.12)

Then the following statements hold:

(i) The family of plans γn := (i× vn)#µn has limit points in P(X� ×X�) as
n →∞ and the sequence (vn) has weak limit points as n →∞.

(ii) vn weakly converge to v ∈ Lp(µ; X) according to Definition 5.4.3 if and
only if v is the barycenter of any limit point of the sequence of plans γn in
P(X� ×X�); in this case

lim inf
n→∞

∫
X

g(vn(x)) dµn(x) ≥
∫

X

g(v(x)) dµ(x), (5.4.13)

for every convex and l.s.c. function g : X → (−∞, +∞].

(iii) If vn strongly converge to v in Lp then γn narrowly converge to (i × v)#µ
in P(X� ×X) and

lim
n→∞ ‖vn‖p

Lp(µn;X)
= lim

n→∞

∫
X2
|x2|p dγn = ‖v‖p

Lp(µ;X)
. (5.4.14)

If, in addition, µn narrowly converge to µ in P(X) then γn narrowly con-
verge to (i × v)#µ in P(X × X). Finally, if µn has uniformly integrable
p-moments, then

lim
n→∞

∫
X

f(x, vn(x)) dµn(x) =
∫

X

f(x, v(x)) dµ(x), (5.4.15)

for every continuous function f : X × X → R with p-growth according to
(5.1.21).
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Proof. (i) Observe that Lemma 5.2.2 ensures that the sequence (γn) is relatively
compact in P(X� × X�), since (see also Lemma 5.1.12) π1

#γn = µn → µ in
P(X�) and π2

#γn is relatively compact in P(X�) by (5.4.12).
(ii) For every j ∈ N and any ϕ ∈ Cyl(X) we have∫

X

ϕ(x)〈ej , vn(x)〉 dµn(x) =
∫

X×X

ϕ(x1)〈ej , x2〉 dγn(x1, x2).

Since |x2| is uniformly integrable w.r.t. (γn), Proposition 5.1.10 yields

lim
k→∞

∫
X×X

ϕ(x1)〈ej , x2〉 dγnk
(x1, x2) =

∫
X×X

ϕ(x1)〈ej , x2〉 dγ(x1, x2)

=
∫

X

ϕ(x1)〈ej , γ̄(x1)〉 dµ(x1)

for every subsequence (γnk
) converging to γ in P(X� ×X�). Therefore, (5.4.10)

holds if and only if v = γ̄ for every limit point γ.
(5.4.13) follows by Jensen’s inequality and (5.1.33a), being g weakly lower semi-
continuous.

(iii) If γ is a limit point of γn as in (ii), taking into account that v = γ̄ we
have ∫

X×X

|x2|p dγ ≤ lim inf
n→∞

∫
X×X

|x2|p dγn =
∫

X

|γ̄|p dµ.

Hence, by disintegrating γ with respect to x1 we get∫
X

(∫
X

|x2|p dγx1

)p

− |γ̄(x1)|p dµ(x1) = 0

and so Jensen’s inequality gives that γx1
= δv(x1) for µ-a.e. x1, i.e. γ = (i×v)#µ.

This proves the narrow convergence of γn to γ in P(X� × X�) and (5.4.14).
By applying Theorem 5.1.13 we obtain that the second marginals of γn are also
converging in the stronger narrow topology of P(X). Lemma 5.2.2 yields that the
sequence γn is tight in P(X� ×X) and therefore converges to γ in P(X� ×X).
The last part of the statement follows again by Lemma 5.2.2 and Lemma 5.1.7. �

5.5 Approximate differentiability and area formula in
Euclidean spaces

Let f : Rd → Rd be a function. Then, denoting by Σ = D(∇f) the Borel set where
f is differentiable, there is a sequence of sets Σn ↑ Σ such that f |Σn

is a Lipschitz
function for any n (see [65, 3.1.8]). Therefore the well-known area formula for
Lipschitz maps (see for instance [64, 65]) extends to this general class of maps and
reads as follows: ∫

Σ

h(x)|det∇f |(x) dx =
∫

Rd

∑
x∈Σ∩f−1(y)

h(x) dy (5.5.1)
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for any Borel function h : Rd → [0, +∞]. Actually, these results hold more gener-
ally for the approximately differentiable maps, whose definition and main proper-
ties are recalled below.

Definition 5.5.1 (Approximate limit and approximate differential). Let Ω ⊂ Rd be
an open set and f : Ω → Rm. We say that f has an approximate limit (respectively,
approximate differential) at x ∈ Ω if there exists a function g : Ω → Rm continuous
(resp. differentiable) at x such that the set {f �= g} has density 0 at x. In this case
the approximate limit (resp. approximate differential) will be denoted by f̃(x) (resp.
∇̃f(x)).

It is immediate to check that the definition above is well posed, i.e. it does not
depend on the choice of g. An equivalent and more traditional (see [65]) definition
of approximate limit goes as follows: we say that z ∈ Rm is the approximate limit
of f at x if all sets

{y : |f(y)− z| > ε} ε > 0

have density 0 at x. Analogously, a linear map L : Rd → Rm is said to be the
approximate differential of f at x if f has an approximate limit at x and all sets{

y :
|f(y)− f̃(x)− L(y − x)|

|y − x| > ε

}
ε > 0

have density 0 at x.
The latter definitions have the advantage of being more intrinsic and do not rely
on an auxiliary function g. We have chosen the former definitions because they
are more practical, as we will see, for our purposes. For instance, a property that
immediately follows by the definition, and that will be used very often in the
sequel, is the locality principle: if f has approximate limit f̃(x) (resp. approximate
differential ∇̃f(x)) for any x ∈ B, with B Borel, then g has approximate limit
(resp. approximate differential) equal to f̃(x) (resp. ∇̃f(x)) for L d-a.e. x ∈ B,
and precisely at all points x where the coincidence set B ∩ {f = g} has density 1.

Remark 5.5.2. Recall that if f : Ω → Rm is L d-measurable, then it has approx-
imate limit f̃(x) at L d-a.e. x ∈ Ω and f(x) = f̃(x) L d-a.e.. In particular every
Lebesgue measurable set B has density 1 at L d-a.e. point of B.

Denoting by Σf the Borel set (see for instance [7]) of points where f is ap-
proximately differentiable, it is still true by [65, 3.1.8] that there exists a sequence
of sets Σn ↑ Σf such that f̃ |Σn

is a Lipschitz function for any n. By Mc Shane
theorem we can extend f̃ |Σn

to Lipschitz functions gn defined on the whole of Rd.
In the case m = d, by applying the area formula to gn on Σn and noticing that
(by definition) ∇gn = ∇̃f L d-a.e. on Σn we obtain∫

Σf

h(x)|det∇̃f |(x) dx =
∫

Rd

∑
x∈Σf∩f̃−1(y)

h(x) dy (5.5.2)
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for any Borel function h : Rd → [0, +∞].
This formula leads to a simple rule for computing the density of the push-

forward of measures absolutely continuous w.r.t. L d.

Lemma 5.5.3 (Density of the push-forward). Let ρ ∈ L1(Rd) be a nonnegative
function and assume that there exists a Borel set Σ ⊂ Σf such that f̃ |Σ is injective
and the difference {ρ > 0}\Σ is L d-negligible. Then f#

(
ρL d

)� L d if and only
if |det∇̃f | > 0 L d-a.e. on Σ and in this case

f#

(
ρL d

)
=

ρ

|det∇̃f | ◦ f̃−1|f(Σ)L
d.

Proof. If |det∇̃f | > 0 L d-a.e. on Σ we can put h = ρχf̃−1(B)∩Σ/|det∇̃f | in (5.5.2),
with B ∈ B(Rd), to obtain∫

f̃−1(B)

ρ dx =
∫

f̃−1(B)∩Σ

ρ dx =
∫

B∩f̃(Σ)

ρ(f̃−1(y))
|det∇̃f(f̃−1(y))| dy.

Conversely, if there is a Borel set B ⊂ Σ with L d(B) > 0 and |det∇̃f | = 0 on B
the area formula gives L d(f̃(B)) = 0. On the other hand

f#(ρL d)(f̃(B)) =
∫

f−1(f̃(B))

ρ dx > 0

because at L d-a.e. x ∈ B we have f(x) = f̃(x) and ρ(x) > 0. Hence f#(ρL d) is
not absolutely continuous with respect to L d. �

By applying the area formula again we obtain the rule for computing integrals
of the densities:∫

Rd

F

(
f#(ρL d)

L d

)
dx =

∫
Rd

F

(
ρ

|det∇̃f |

)
|det∇̃f | dx (5.5.3)

for any Borel function F : R → [0,+∞] with F (0) = 0. Notice that in this formula
the set Σ does not appear anymore (due to the fact that F (0) = 0 and ρ = 0
out of Σ), so it holds provided f is approximately differentiable ρL d-a.e., it is
ρL d-essentially injective (i.e. there exists a Borel set Σ such that f̃ |Σ is injective
and ρ = 0 L d-a.e. out of Σ) and |det∇̃f | > 0 ρL d-a.e.

We will apply mostly these formulas when f is the gradient of a convex func-
tion g (corresponding to optimal transport map for the quadratic cost function),
or is an optimal transport map. In the former case actually approximate differ-
entiability is not needed thanks to the following result (see for instance [4, 64]).

Theorem 5.5.4 (Aleksandrov). Let g : Rd → R be a convex function. Then ∇g is
differentiable L d-a.e. in its domain, its gradient ∇2g(x) is a symmetric matrix
for L d-a.e. x ∈ Rd, and g has second order Taylor expansion

g(y) = g(x) + 〈∇g(x), y− x〉+ 1
2
〈∇2g(x), y− x〉+ o(|y− x|2) as y → x. (5.5.4)
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Notice that ∇g is also monotone

〈∇g(x1)−∇g(x2), x1 − x2〉 ≥ 0 x1, x2 ∈ D(∇g),

and that the above inequality is strict if g is strictly convex: in this case, it is
immediate to check that ∇g is injective on D(∇g), and that |det∇2g| > 0 on the
differentiability set of ∇g if g is uniformly convex.





Chapter 6

The Optimal Transportation
Problem

Let X, Y be separable metric spaces such that any Borel probability measure
in X, Y is tight (5.1.9), i.e. Radon spaces, according to Definition 5.1.4, and let
c : X × Y → [0, +∞] be a Borel cost function. Given µ ∈ P(X), ν ∈ P(Y ) the
optimal transport problem, in Monge’s formulation, is given by

inf
{∫

X

c(x, t(x)) dµ(x) : t#µ = ν

}
. (6.0.1)

This problem can be ill posed because sometimes there is no transport map t such
that t#µ = ν (this happens for instance when µ is a Dirac mass and ν is not a
Dirac mass). Kantorovich’s formulation

min
{∫

X×Y

c(x, y) dγ(x, y) : γ ∈ Γ(µ, ν)
}

(6.0.2)

circumvents this problem (as µ× ν ∈ Γ(µ, ν)). The existence of an optimal trans-
port plan, when c is l.s.c., is provided by (5.1.15) and by the tightness of Γ(µ, ν)
(this property is equivalent to the tightness of µ, ν, a property always guaranteed
in Radon spaces).

The problem (6.0.2) is truly a weak formulation of (6.0.1) in the following
sense: if c is bounded and continuous, and if µ has no atom, then the “min” in
(6.0.2) is equal to the “inf” in (6.0.1), see [70], [9]. This result can also be extended
to unbounded cost functions, under the assumption (6.1.8), see [111].

In some special situations one can directly show the existence of optimal
transport maps without any assumption on the cost function (besides positivity
and lower semicontinuity).
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Theorem 6.0.1 (Birkhoff theorem). Let C be the convex set of all doubly stochastic
N ×N matrices, i.e. those matrices M whose entries Mij satisfy

N∑
i=1

Mij =
1
N

∀j = 1, . . . , N,
N∑

j=1

Mij =
1
N

∀i = 1, . . . , N.

Then, the extreme points of C are permutation matrices, i.e. those matrices of the
form

Mij =
1
N

δiσ(j) for some permutation σ of {1, . . . , N}.
In particular, if µ (resp. ν) can be represented as the sum of N Dirac masses in
distinct points xi (resp. distinct points yj) with weight 1/N , then the minimum in
(6.0.2) is always provided by a transport map.

Proof. For a proof the first statement see, for instance, the simple argument at
the end of the introduction of [126].
The convex set Γ(µ, ν) can be canonically identified with C, writing µij = µ({xi}×
{yj}), and transport maps correspond to permutation matrices. Since the energy
functional is linear on Γ(µ, ν), the minimum is surely attained on a extreme point
of Γ(µ, ν) and therefore on a transport map. �

Another special occasion occurs when X = Y = R. In this case we can use
the distribution function

Fµ(t) := µ ((−∞, t)) t ∈ R

to characterize optimal transport maps and to give a simple formula for the min-
imum value in (6.0.2). We need to define also an inverse of Fµ, by the formula
(notice that a priori Fµ need not be continuous or strictly increasing)

F−1
µ (s) := sup{x ∈ R : Fµ(x) ≤ s} s ∈ [0, 1].

Theorem 6.0.2 (Optimal transportation in R). Let µ, ν ∈ Pp(R) and let c(x, y) =
h(x− y), with h ≥ 0 convex and with p growth.

(i) If µ has no atom, i.e. Fµ is continuous, then F−1
ν ◦Fµ is an optimal transport

map. It is the unique optimal transport map if h is strictly convex.

(ii) We have

min
{∫

R2
c(x, y) dγ : γ ∈ Γ(µ, ν)

}
=

∫ 1

0

c
(
F−1

µ (s), F−1
ν (s)

)
ds. (6.0.3)

Proof. For the proof of the first statement see for instance [126], [71].
(ii) In this proof we use the following two elementary properties of the distri-
bution function when µ has no atom: first, Fµ#µ = χ(0,1)L

1 (this fact can be
checked in an elementary way on intervals and we omit the argument), second
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F−1
µ ◦ Fµ(x) = x for µ-a.e. x. The second property simply follows by the observa-

tion that the (maximal) open intervals in which Fµ is constant correspond, by the
very definition of Fµ, to intervals where µ has no mass. Using statement (i) we
have then∫

R

c
(
x, F−1

ν ◦ Fµ(x)
)

dµ(x) =
∫

R

c
(
F−1

µ ◦ Fµ(x), F−1
ν ◦ Fµ(x)

)
dµ(x)

=
∫ 1

0

c
(
F−1

µ (s), F−1
ν (s)

)
ds,

in the case when µ has no atom. The general case can be achieved through a simple
approximation. �

6.1 Optimality conditions

In this section we discuss the optimality conditions in the variational problem
(6.0.2), assuming always that c : X × Y → [0, +∞] is a proper l.s.c. function.

Theorem 6.1.1 (Duality formula). The minimum of the Kantorovich problem
(6.0.2) is equal to

sup
{∫

X

ϕ(x) dµ(x) +
∫

Y

ψ(y) dν(y)
}

(6.1.1)

where the supremum runs among all pairs (ϕ, ψ) ∈ C0
b (X) × C0

b (Y ) such that
ϕ(x) + ψ(y) ≤ c(x, y).

Proof. This identity is well-known if c is bounded and continuous, see for instance
[92, 112, 126]. A possible strategy is to show first that the support of any optimal
plan is a c-monotone set, according to Definition 6.1.3 below, and than use this
fact to build a maximizing pair (we will give this construction in Theorem 6.1.4
below, under more general assumptions on c).

In the general case it suffices to approximate c from below by an increasing
sequence of bounded continuous functions ch, defined for instance by (compare
with (5.1.4))

ch(x, y) := inf
(x′,y′)∈X×Y

{c(x′, y′) ∧ h + hdX(x, x′) + hdY (y, y′)} ,

noticing that a simple compactness argument gives

min
{∫

X×Y

ch dγ : γ ∈ Γ(µ, ν)
}

↑ min
{∫

X×Y

c dγ : γ ∈ Γ(µ, ν)
}

and that any pair (ϕ, ψ) such that ϕ + ψ ≤ ch is admissible in (6.1.1). �
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We recall briefly the definitions of c-transform, c-concavity and c-cyclical
monotonicity, referring to the papers [56], [71] and to the book [112] for a more
detailed analysis.

Definition 6.1.2 (c-transform, c-concavity). (1) For u : X → R, the c-transform
uc : Y → R is defined by

uc(y) := inf
x∈X

c(x, y)− u(x)

with the convention that the sum is +∞ whenever c(x, y) = +∞ and u(x) = +∞.
Analogously, for v : Y → R, the c-transform vc : X → R is defined by

vc(x) := inf
y∈Y

c(x, y)− v(y)

with the same convention when an indetermination of the sum is present.
(2) We say that u : X → R is c-concave if u = vc for some v; equivalently, u is
c-concave if there is some family {(yi, ti)}i∈I ⊂ Y ×R such that

u(x) = inf
i∈I

c(x, yi) + ti ∀x ∈ X. (6.1.2)

An analogous definition can be given for functions v : Y → R.

It is not hard to show that ucc ≥ u and that equality holds if and only if u
is c-concave. Analogously, vcc ≥ v and equality holds if and only if v is c-concave.

Let us also introduce the concept of c-monotonicity.

Definition 6.1.3 (c-monotonicity). We say that Γ ⊂ X × Y is c-monotone if

n∑
i=1

c(xi, yσ(i)) ≥
n∑

i=1

c(xi, yi)

whenever (x1, y1), . . . , (xn, yn) ∈ Γ and σ is a permutation of {1, . . . , n}.
With these definitions we can prove the following result concerning necessary

and sufficient optimality conditions and the existence of maximizing pairs (ϕ, ψ)
in (6.1.1). The proof is taken from [14], see also [126], [71], [112] for similar earlier
results (note however that conditions (6.1.3) and (6.1.4) do not apply to the cost
functions considered in [68, 69, 89], in a infinite-dimensional framework).

Theorem 6.1.4 (Necessary and sufficient optimality conditions).
(Necessity) If γ ∈ Γ(µ, ν) is optimal and

∫
X×Y

c dγ < +∞, then γ is concentrated
on a c-monotone Borel subset of X×Y . Moreover, if c is continuous, then supp γ
is c-monotone.
(Sufficiency) Assume that c is real-valued, γ ∈ Γ(µ, ν) is concentrated on a c-
monotone Borel subset of X × Y , and

µ

({
x ∈ X :

∫
Y

c(x, y) dν(y) < +∞
})

> 0, (6.1.3)
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ν

({
y ∈ Y :

∫
X

c(x, y) dµ(x) < +∞
})

> 0. (6.1.4)

Then γ is optimal,
∫

X×Y
c dγ < +∞ and there exists a maximizing pair (ϕ, ψ) in

(6.1.1) with ϕ c-concave and ψ = ϕc.

Proof. Let (ϕn, ψn) be a maximizing sequence in (6.1.1) and let cn = c−ϕn−ψn.
Since ∫

X×Y

cn dγ =
∫

X×Y

c dγ −
∫

X

ϕn dµ−
∫

Y

ψn dν → 0

and cn ≥ 0 we can find a subsequence cn(k) and a Borel set Γ on which γ is
concentrated and c is finite, such that cn(k) → 0 on Γ. If {(xi, yi)}1≤i≤p ⊂ Γ and
σ is a permutation of {1, . . . , p} we get

p∑
i=1

c(xi, yσ(i)) ≥
p∑

i=1

ϕn(k)(xi) + ψn(k)(yσ(i))

=
p∑

i=1

ϕn(k)(xi) + ψn(k)(yi) =
p∑

i=1

c(xi, yi)− cn(k)(xi, yi)

for any k. Letting k →∞ the c-monotonicity of Γ follows.
Now we show the converse implication, assuming that (6.1.3) and (6.1.4)

hold. We denote by Γ a Borel and c-monotone set on which γ is concentrated;
without loss of generality we can assume that Γ = ∪kΓk with Γk compact and
c|Γk

continuous. We choose continuous functions cl such that cl ↑ c and split the
proof in several steps.
Step 1. There exists a c-concave Borel function ϕ : X → [−∞, +∞) such that
ϕ(x) > −∞ for µ-a.e. x ∈ X and

ϕ(x′) ≤ ϕ(x) + c(x′, y)− c(x, y) ∀x′ ∈ X, (x, y) ∈ Γ. (6.1.5)

To this aim, we use the explicit construction given in the generalized Rockafellar
theorem in [116], setting

ϕ(x) := inf{c(x, yp)− c(xp, yp) + c(xp, yp−1)− c(xp−1, yp−1)
+ · · ·+ c(x1, y0)− c(x0, y0)}

where (x0, y0) ∈ Γ1 is fixed and the infimum runs among all integers p and collec-
tions {(xi, yi)}1≤i≤p ⊂ Γ.

It can be easily checked that

ϕ = lim
p→∞ lim

m→∞ lim
l→∞

ϕp,m,l,

where

ϕp,m,l(x) := inf{cl(x, yp)− c(xp, yp) + cl(xp, yp−1)− c(xp−1, yp−1)
+ · · ·+ cl(x1, y0)− c(x0, y0)}
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and the infimum is made among all collections {(xi, yi)}1≤i≤p ⊂ Γm. As all func-
tions ϕp,m,l are upper semicontinuous we obtain that ϕ is a Borel function.

Arguing as in [116] it is straightforward to check that ϕ(x0) = 0 and that
(6.1.5) holds. Choosing x′ = x0 we obtain that ϕ > −∞ on πX(Γ) (here we use
the assumption that c is real-valued). But since γ is concentrated on Γ the Borel
set πX(Γ) has full measure with respect to µ = πX#γ, hence ϕ ∈ R µ-a.e.
Step 2. Now we show that ψ := ϕc is ν-measurable, real-valued ν-a.e. and that

ϕ + ψ = c on Γ. (6.1.6)

It suffices to study ψ on πY (Γ): indeed, as γ is concentrated on Γ, the Borel set
πY (Γ) has full measure with respect to ν = πY #γ. For y ∈ πY (Γ) we notice that
(6.1.5) gives

ψ(y) = c(x, y)− ϕ(x) ∈ R ∀x ∈ Γy := {x : (x, y) ∈ Γ}.
In order to show that ψ is ν-measurable we use the disintegration γ = γy × ν of
γ with respect to y and notice that the probability measure γy is concentrated on
Γy for ν-a.e. y, therefore

ψ(y) =
∫

X

c(x, y)− ϕ(x) dγy(x) for ν-a.e. y.

Since y �→ γy is a Borel measure-valued map we obtain that ψ is ν-measurable.
Step 3. We show that ϕ+ and ψ+ are integrable with respect to µ and ν respectively
(here we use (6.1.3) and (6.1.4)). By (6.1.3) we can choose x in such a way that∫

Y
c(x, y) dν(y) is finite and ϕ(x) ∈ R, so that by integrating on Y the inequality

ψ+ ≤ c(x, ·) + ϕ−(x) we obtain that ψ+ ∈ L1(Y, ν). The argument for ϕ+ uses
(6.1.4) and is similar.
Step 4. Conclusion. The semi-integrability of ϕ and ψ gives the null-Lagrangian
identity∫

X×Y

(ϕ + ψ) dγ̃ =
∫

X

ϕ dµ +
∫

Y

ψ dν ∈ R ∪ {−∞} ∀γ̃ ∈ Γ(µ, ν),

so that choosing γ̃ = γ we obtain from (6.1.6) that
∫

X×Y
c dγ < +∞ and ϕ ∈

L1(X, µ), ψ ∈ L1(Y, ν). Moreover, for any γ̃ ∈ Γ(µ, ν) we get∫
X×Y

c dγ̃ ≥
∫

X×Y

(ϕ + ψ) dγ̃ =
∫

X

ϕ dµ +
∫

Y

ψ dν

=
∫

X×Y

(ϕ + ψ) dγ =
∫

Γ

(ϕ + ψ) dγ =
∫

X×Y

c dγ.

This chain of inequalities gives that γ is optimal and, at the same time, that (ϕ, ψ)
is optimal in (6.1.1). �
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We say that a Borel function ϕ ∈ L1(X, µ) is a maximal Kantorovich potential
if (ϕ, ϕc) is a maximizing pair in (6.1.1). In many applications it is useful to write
the optimality conditions using a maximal Kantorovich potential, instead of the
cyclical monotonicity.

Theorem 6.1.5. Let µ ∈ P(X), ν ∈ P(Y ), assume that (6.1.3) and (6.1.4) hold,
that c is real-valued and that the sup in (6.1.1) is finite. Then there exists a max-
imizing pair (ϕ, ϕc) in (6.1.1) and if γ ∈ Γ(µ, ν) is optimal then

ϕ(x) + ϕc(y) = c(x, y) γ-a.e. in X × Y . (6.1.7)

Moreover, if there exists a Borel potential ϕ ∈ L1(X, µ) such that (6.1.7) holds,
then γ is optimal.

Proof. The existence of a maximizing pair is a direct consequence of the sufficiency
part of the previous theorem, choosing an optimal γ and (by the necessity part of
the statement) a c-monotone set on which γ is concentrated.

If γ is optimal then∫
X×Y

(c− ϕ− ϕc) dγ =
∫

X×Y

c dγ −
∫

X

ϕ dµ−
∫

Y

ϕc dν = 0.

As the integrand is nonnegative, it must vanish γ-a.e. The converse implication is
analogous. �
Remark 6.1.6. The assumptions (6.1.3), (6.1.4) are implied by∫

X×Y

c(x, y) dµ× ν(x, y) < +∞. (6.1.8)

In turn, (6.1.8) is implied by the condition

c(x, y) ≤ a(x) + b(y) with a ∈ L1(µ), b ∈ L1(ν).

6.2 Optimal transport maps and their regularity

In this section we go back to the original Monge problem (6.0.1), finding natural
conditions on c and µ ensuring the existence of optimal transport maps.

Definition 6.2.1 (Gaussian measures and Gaussian null sets). Let X be a separable
Banach space with dual X ′, and let µ ∈ P(X). We say that µ is a nondegenerate
Gaussian (probability) measure in X if for any L ∈ X ′ the image measure L#µ ∈
P(R) has a Gaussian distribution, i.e. there exist m = m(L) ∈ R and σ = σ(L) >
0 such that

µ ({x ∈ X : a < L(x) < b}) =
1√

2πσ2

∫ b

a

e−|t−m|2/2σ2
dt ∀ (a, b) ⊂ R.

We say that B ∈ B(X) is a Gaussian null set if µ(B) = 0 for any nondegenerate
Gaussian measure µ in X.



140 Chapter 6. The Optimal Transportation Problem

We refer to [25] for the general theory of Gaussian measures. Here we use
Gaussian measures only to define the σ-ideal of Gaussian null sets. Starting from
Definition 6.2.1 and recalling (5.2.4), it is easy to check that if µ is a (nonde-
generate) Gaussian measure in X and Y is another (separable) Banach space,
then

π#µ is a (nondegenerate) Gaussian measure in Y

for every continuous (surjective) linear map π : X → Y.
(6.2.1)

One can also check that in the case X = Rd nondegenerate Gaussian measures
are absolutely continuous with respect to L d, with density given by

1√
(2π)ddetA

e−
1
2 〈A−1(x−m),(x−m)〉

for some m ∈ Rd and some positive definite symmetric matrix A. Therefore Gaus-
sian null sets coincide with L d-negligible sets. See also [47] for the equivalence
between Gaussian null sets and null sets in the sense of Aronszajn, a concept that
involves only the Lebesgue measure on the real line.

Definition 6.2.2 (Regular measures). We say that µ ∈ P(X) is regular if µ(B) = 0
for any Gaussian null set B. We denote by Pr(X) the class of regular measures.

By definition of Gaussian null sets, all Gaussian measures are regular. By
the above remarks on Gaussian null sets, in the finite dimensional case X = Rd

the class Pr(X) reduces to the standard family of measures absolutely continuous
with respect to L d.

We recall the following classical infinite-dimensional version of Rademacher’s
theorem (see for instance Theorem 5.11.1 in [25]).

Theorem 6.2.3 (Differentiability of Lipschitz functions). Let X be a separable Hil-
bert space and let φ : X → R be a locally Lipschitz function. Then the set of points
where φ is not Gateaux differentiable is a Gaussian null set.

Theorem 6.2.4 (Optimal transport maps in Rd). Assume that µ, ν ∈ P(Rd),
c(x, y) = h(x − y) with h : Rd → [0,+∞) strictly convex, and the minimum in
(6.0.2) finite.
If µ, ν satisfy (6.1.3), (6.1.4), and µ ∈ Pr(Rd), then the Kantorovich problem
(6.0.2) has a unique solution µ and this solution is induced by an optimal trans-
port, i.e. there exists a Borel map r : Rd → Rd such that the representation
(5.2.13) holds. We have also

r(x) = x− (∂h)−1
(
∇̃ϕ(x)

)
for µ-a.e. x, (6.2.2)

for any c-concave and maximal Kantorovich potential ϕ (recall that ∇̃ stands for
the approximate differential).
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Proof. By the necessity part in Theorem 6.1.4 we have the existence of an opti-
mal plan, concentrated on a c-monotone subset of Rd×Rd. By the sufficiency part
we obtain the existence of a c-concave maximal Kantorovich potential ϕ. Theo-
rem 6.1.5 gives that for µ-a.e. x there exists y such that ϕ(x) + ϕc(y) = c(x, y).
We have to show that y is unique and given by (6.2.2). To this aim, for any R > 0
we define

ϕR(x) := inf
z∈BR(0)

c(x, z)− ϕc(z) x ∈ Rd.

Notice that all functions ϕR are locally Lipschitz in Rd for R large enough (as
soon as there is some z with |z| < R and ϕc(z) > −∞) and therefore differentiable
L d-a.e. Moreover, the above mentioned existence of y for µ-a.e. x implies that
the decreasing family of sets {ϕ < ϕR} has a µ-negligible intersection, i.e. µ-a.e.
x belongs to {ϕ = ϕR} for R large enough.

It follows that for µ-a.e. x the following two conditions are satisfied: x is
a point of density 1 of {ϕ = ϕR} for some R (recall Remark 5.5.2 and ϕR is
differentiable at x. By the very definition of approximate differential, ϕ is approx-
imately differentiable at x and ∇̃ϕ(x) = ∇ϕR(x). If ϕ(x)+ϕc(y) = h(x−y), since
x′ �→ h(x′−y)−ϕ(x′) attains its minimum (equal to ϕc(y)) at x, by differentiation
of both sides we get

∇̃ϕ(x) ∈ ∂h(x− y).

This immediately gives that y is unique and given by (6.2.2). �
In the following remark we point out some extensions of the previous exis-

tence result and we recall some cases when the approximate differential in (6.2.2)
is indeed a classical differential.

Remark 6.2.5. a) Classical differential. As the proof shows, the approximate dif-
ferential is actually a classical differential if ν has a bounded support. Under a
technical condition on the level sets of h at infinity (this condition includes the
model case h(z) = |z|p, p > 1) the differential is still classical even when ν has an
unbounded support, see [71].
b) More general initial measures. It has been shown in [71] that for h ∈ C1,1

loc (Rd)
and ν with bounded support the same properties hold if µ satisfies the more general
condition

µ(B) = 0 whenever B ∈ B(Rd) and H d−1(B) < +∞. (6.2.3)

The proof is based on a refinement of Rademacher theorem, valid for convex or
semi-convex functions, see for instance [4].
c) The case when h is not strictly convex. Here the difficulty arises from the fact
that (∂h)−1 is not single-valued in general, so the first variation argument of the
previous proofs does not produce anymore a unique y, for given x. This problem,
even when h(z) = ‖z‖ for some norm ‖ ·‖ in Rd, is not yet completely understood,
see the discussions in [13]. Only the case when ‖ · ‖ is the Euclidean norm (or,
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more generally, a C2 and uniformly convex norm) has been settled (see [121], [62],
[33], [122], [9], [14]). See also [13] for an existence result in the case when the norm
‖ · ‖ is crystalline (i.e. its unit sphere is contained in finitely many hyperplanes).

6.2.1 Approximate differentiability of the optimal transport map

In many applications it is useful to know that the optimal transport map is dif-
ferentiable, at least in the approximate sense. The following theorem answers to
this question and shows, adapting to a non-smooth setting an argument in [103],
that the differential of the optimal transport map is diagonalizable and has non-
negative eigenvalues. Notice that our assumption on the cost includes the model
case c(x, y) = |x− y|p, p > 1. In the proof of the theorem we will use a weak ver-
sion of the second order Taylor expansion, but still sufficient to have a maximum
principle.

Definition 6.2.6 (Approximate second order expansion). Let Ω ⊂ Rd be an open
set and ϕ : Ω → R. We say that ϕ has an approximate second order expansion at
x ∈ Ω if

lim
y→x, y∈E

ϕ(y)− a− 〈b, y − x〉 − 〈A(y − x), (y − x)〉
|y − x|2 = 0 (6.2.4)

for some a ∈ R, b ∈ Rd and some symmetric matrix A, with E having density 1
at x.

It is immediate to check that a = ϕ̃(x), b = ∇̃ϕ(x) and that A is uniquely
determined: we will denote it by ∇̃2ϕ(x). Moreover, if ϕ has a minimum at x then
b = 0 and A ≥ 0.

Theorem 6.2.7 (Approximate differentiability of the transport map). Assume that
µ ∈ Pr(Rd), ν ∈ P(Rd) and let c(x, y) = h(x− y) with h : Rd → [0, +∞) strictly
convex with superlinear growth, h ∈ C1(Rd) ∩ C2(Rd \ {0}), and ∇2h is positive
definite in Rd \ {0}. If the minimum in (6.0.2) is finite, then for µ-a.e. x ∈ Rd

the optimal transport map r is approximately differentiable at x and ∇̃r(x) is
diagonalizable with nonnegative eigenvalues.

Proof. Let ϕ be a maximal Kantorovich potential and let N = {r(x) �= x}. Clearly
it suffices to show that the claimed properties are true µ-a.e. on N (as outside of N
the approximate differential of r is the identity). We consider the countable family
of triplets of balls (B, B′, B′′) centered at a rational point of Rd, with B ⊂ B′,
B

′ ⊂ B′′ and with rational radii, the family of sets

NB,B′,B′′ := {x ∈ B : r(x) ∈ B′′ \B′} ,

and the family of functions

ϕB,B′,B′′(x) := min
y∈B′′\B′

h(x− y)− ϕc(y) x ∈ B.
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Notice that ϕB,B′,B′′ = ϕ µ-a.e. on NB,B′,B′′ , as the minimum of y �→ h(x− y)−
ϕc(y) is achieved at y = r(x) ∈ B′′ \B′ for µ-a.e. x.

Let C = C(B, B′, B′′) be the Lipschitz constant Lip(∇h, B − (B′′ \ B′)) of
∇h in the set B − (B′′ \B′); it follows that all maps

x �→ h(x− y)− ϕc(y)− C

2
|x|2, y ∈ B′′ \B′,

are concave in B, and therefore ϕB,B′,B′′ − C|x|2/2 is concave in B as well. By
Alexandrov’s differentiability theorem (see 5.5.4) we obtain that ϕB,B′,B′′ are twice
differentiable and have a classical second order Taylor expansion for L d-a.e. x ∈ B.

Clearly the set N is contained in the union of all sets NB,B′,B′′ , therefore, by
Remark 5.5.2, L d-a.e. x ∈ N is a point of density 1 for one of the sets NB,B′,B′′

and ϕB,B′,B′′ is twice differentiable at x. By Definition 6.2.6 we obtain that ϕ is
twice differentiable in the approximate sense at x and (6.2.4) holds with a = ϕ(x),
b = ∇̃ϕ(x) = ∇ϕB,B′,B′′ and A = ∇̃2ϕ(x) = ∇2ϕB,B′,B′′/2. Since

r(x) = x− (∂h)−1(∇̃ϕ(x)) = x−∇h∗(∇̃ϕ(x)),

we obtain that r is approximately differentiable µ-a.e. on N .
Since h has a superlinear growth at infinity, the gradient map ∇h : Rd → Rd

is a bijection and its inverse is ∇h∗, where h∗ is the conjugate of h. Therefore ∇h∗

is differentiable on Rd \ {∇h(0)}.
Fix now a point x where the above properties hold and set y = r(x). Since

x′ �→ h(x′ − y)− ϕ(x′) achieves its minimum, equal to −ϕc(y), at x, we get

∇2h(x− y) ≥ ∇̃2ϕ(x).

On the other hand, the identity ∇h(∇h∗(p)) = p gives

∇2h (∇h∗(p)) =
[∇2h∗(p)

]−1
.

Using the identity above with p = ∇̃ϕ(x) �= ∇h(0) we obtain[
∇2h∗(∇̃ϕ(x))

]−1

≥ ∇̃2ϕ(x).

By Lemma 6.2.8 below with A := ∇2h∗(∇̃ϕ(x)) and B := −∇̃2ϕ(x) we obtain
that ∇̃r(x) = i + AB is diagonalizable and it has nonnegative eigenvalues. �

Again, under more restrictive assumptions (e.g. the supports of the two mea-
sures are compact and dist (supp µ, supp ν) > 0) one can show that the optimal
transport map r is µ-a.e. differentiable in a classical sense. As discussed in Sec-
tion 5.5, approximate differentiability is however sufficient to establish an area
formula and the rule for the computation of the density of r#(ρL d).

The following elementary lemma is also taken from [103].
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Lemma 6.2.8. Let A, B be symmetric matrices with A positive definite. If −B ≤
A−1 then i + AB is diagonalizable and has nonnegative eigenvalues.

Proof. Let C be a positive definite symmetric matrix such that C2 = A. Since

i + AB = C(i + CBC)C−1

and since i+CBC is symmetric we obtain that i+AB is diagonalizable. In order
to show that the eigenvalues are nonnegative we estimate:

〈(i + CBC)ξ, ξ〉 = |ξ|2 + 〈Cξ, BCξ〉 ≥ |ξ|2 − 〈Cξ, A−1Cξ〉
= |ξ|2 − 〈ξ, CA−1Cξ〉 = 0 � �

In the following theorem we establish, under more restrictive assumptions on
r or h, some properties of the distributional derivative of r and the nonnegativity
of the distributional divergence of r (or, better, of a canonical extension of r to
the whole of Rd: recall that r is a priori defined only µ-a.e.).

Theorem 6.2.9 (Distributional derivative of r). Let µ, ν ∈ Pr(Rd), with supp ν
bounded, let c(x, y) = h(x − y) with h : Rd → [0, +∞) strictly convex and with
superlinear growth and assume that the minimum in (6.0.2) is finite. Let r be the
optimal transport map between µ and ν. Then

(i) If h ∈ C2(Rd) is locally uniformly convex then r has a canonical BVloc ex-
tension to Rd satisfying D · r ≥ 0.

(ii) If h ∈ C2(Rd \ {0}) and ∇h(0) = 0 we can find equi-bounded maps rk ∈
BVloc(Rd) satisfying D · rk ≥ 0 such that µ({rk �= r}) → 0 as k →∞.

Proof. (i) By the argument used in the proof of Theorem 6.2.4 we know that there
exists a c-concave potential ϕ of the form

ϕ(x) = inf
y∈supp ν

h(x− y)− ψ(y) (6.2.5a)

with ψ = −∞ on Rd \ supp ν, such that

r(x) = x− (∇h)−1(∇̃ϕ) µ-a.e. in Rd. (6.2.5b)

We take as an extension of r the right hand side in the previous identity (6.2.5b),
for ϕ given by (6.2.5a). Notice that, on any ball B, all functions

x �→ h(x− y)− ψ(y)− C|x|2 for y ∈ supp ν, ψ(y) > −∞,

are concave for C large enough (depending on B and supp ν), so that ϕ − C|x|2
is concave in B as well. This proves that ϕ is locally Lipschitz and locally BV in
Rd and therefore, since the inverse of ∇h is locally Lipschitz in Rd as well (by the
local uniform convexity assumption on h and the superlinear growth condition),
also r is locally BV .
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Let us show that r(x) ∈ supp ν and that x′ �→ ϕ(x′) − h(x′ − y) attains
its maximum at x when y = r(x) for L d-a.e. x ∈ Rd. Indeed, fix x where ϕ is
differentiable and let ȳ ∈ supp ν be a minimizer of y �→ h(x−y)−ψ(y) (without loss
of generality we can assume that ψ is upper semicontinuous: being supp ν compact
and ψ(y) < +∞ for every y ∈ X, a minimizer exists). Then ϕ(x′)−h(x′−ȳ) attains
its maximum at x since (6.2.5a) yields

ϕ(x′)− h(x′ − ȳ) ≤ h(x′ − ȳ)− ψ(ȳ)− h(x′ − ȳ) = −ψ(ȳ) = ϕ(x)− h(x− ȳ),

and a differentiation yields ȳ = r(x).
It remains to show that D ·r ≥ 0. Since maxsupp ν h(x−·) is locally bounded

we can find a strictly positive function ρ ∈ L1(Rd) such that∫
Rd

max
y∈supp ν

h(x− y)ρ(x) dx < +∞. (6.2.6)

Let µ̄ = ρL d, and notice that the minimality property above shows that the
graph of r is (essentially, excluding points x where ϕ is not differentiable) c-
monotone: indeed for any choice of differentiability points x1, . . . , xn of and for
any permutation σ of {1, . . . , n} we have

n∑
i=1

ϕ(xσ(i))− h(xσ(i) − r(xi)) ≤
n∑

i=1

ϕ(xi)− h(xi − r(xi)).

Removing from both sides
∑

i ϕ(xi) we obtain the c-monotonicity inequality.
Therefore, since by (6.2.6) the cost associated to r is finite, Theorem 6.1.4

gives that r is an optimal map between µ̄ and r#µ̄.
This optimality property of the extended map r shows that it suffices to

prove that D ·r ≥ 0 only when supp ν is made by finitely many points: the general
case can be achieved by approximation, using the fact that optimality relative to µ̄
is stable in the limit and yields Lp(µ̄) convergence of the maps (see Lemma 5.4.1)
and then, up to subsequences, L d-a.e. convergence, due to the fact that ρ > 0 L d-
a.e. Under the assumption that supp ν is finite the function r takes only finitely
many values {y1, . . . , ym} and the distributional divergence is given by

D · r = 〈r+ − r−, n〉χSH d−1,

where r± are the approximate one sided limits on the approximate jump set S of
r and n is the approximate normal to the jump set. For a given Borel choice of
n, let us consider the sets

Sij :=
{

x ∈ S : r−(x) = yi, r+(x) = yj

}
1 ≤ i, j ≤ m, i �= j, S =

⋃
i �=j

Sij.

Since each neighborhood of x ∈ Sij contains points x± such that r(x±) = r±(x)
is the unique minimizer of y �→ h(x±− y)−ψ(y) in {y1, · · · , ym}, Sij is contained
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in ∂Eij , with

Eij :=
{
x ∈ Rd : h(x− yi)− ψ(yi) < h(x− yj)− ψ(yj)

}
1 ≤ i �= j ≤ m

and the classical inner normal to Eij is parallel (with the same direction) to the
nonvanishing vector ∇h(x − yj) − ∇h(x − yi). Therefore it suffices to check the
inequality

〈yi − yj ,∇h(x− yj)−∇h(x− yi)〉 ≥ 0.

This is a direct consequence of the monotonicity of ∇h:

〈(x− yj)− (x− yi),∇h(x− yj)−∇h(x− yi)〉 ≥ 0.

(ii) Let hk ≥ h be in C2(Rd) and locally uniformly convex, with the property that
for any z ∈ Rd we have hk(z) = h(z) and (∇hk)−1(z) = (∇h)−1(z) for k large
enough (the proof of the existence of this approximation, a regularization of h near
the origin, is left to the reader) and let ϕ, ψ as in the proof of (i). We define

ϕk(x) := inf
y∈supp ν

hk(x− y)− ψ(y)

so that ϕk ≥ ϕ. Since the infimum in the problem defining ϕ is attained (by
y = r(x)) for µ-a.e. x, it follows that ϕk(x) = ϕ(x) for µ-a.e. x for k large enough
(precisely, such that hk(x − r(x)) = h(x − r(x)), so that µ({ϕk �= ϕ}) → 0 as
k →∞. Setting

rk := i− (∇hk)−1(∇̃ϕk)

we know, by the c-monotonicity argument seen in the proof of statement (i), that
rk are optimal transport maps relative to the costs hk(x − y), that rk ∈ supp ν
µ-a.e. and that D · rk ≥ 0. Since the approximate differentials coincide at points
of density 1 of the coincidence set we have µ({∇̃ϕk �= ∇̃ϕ}) → 0 as k → ∞ and
therefore µ({rk �= r}) → 0 as h →∞. �

6.2.2 The infinite dimensional case

In the infinite dimensional case we consider for simplicity only the case when
c(x, y) = |x − y|p/p, p > 1; when ν has a bounded support we are still able to
recover, by the same argument used in the finite dimensional case, a differential
characterization of the optimal transport map.

We denote by Pr
p(X) the intersection of Pp(X) (see (5.1.22)) with Pr(X).

Theorem 6.2.10 (Optimal transport maps in Hilbert spaces). Assume that X is a
separable Hilbert space, let µ ∈ Pr

p (X), ν ∈ Pp(X) and let c(x, y) = |x−y|p/p for
p ∈ (1, +∞), q−1 + p−1 = 1. Then the Kantorovich problem (6.0.2) has a unique
solution µ and this solution is induced by an optimal transport, i.e. there exists
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a Borel map r ∈ Lp(X, µ;X) such that the representation (5.2.13) holds. If ν has
a bounded support we have also

r(x) = x− |∇ϕ(x)|q−2∇ϕ(x) for µ-a.e. x, (6.2.7)

for some locally Lipschitz, c-concave and maximal Kantorovich potential ϕ (here
∇ϕ denotes the Gateaux differential of ϕ).

Proof. Let us assume first that supp ν is bounded. We first define a canonical
Kantorovich potential, taking into account the boundedness assumption on supp ν,
as follows. Let φ be any maximal Kantorovich potential and define

ϕ(x) := inf
y∈supp ν

c(x, y)− φc(y) x ∈ X. (6.2.8)

Notice that the optimality conditions on φ ensure that for µ-a.e. x the infimum
above is attained. By construction ϕ is a locally Lipschitz function and it is still
a maximal Kantorovich potential. Indeed, ϕ = φ µ-a.e. and since ϕ is the c-
transform of the function ψ equal to φc on supp ν and equal to −∞ otherwise we
have ϕc = (ψc)c ≥ ψ = φc on supp ν.

As in the proof of Theorem 6.2.4 it can be shown that for µ-a.e. x there is
only one y such that ϕ(x) + ϕc(y) = c(x, y), and that y is given by (6.2.7); the
only difference is that we have to consider Theorem 6.2.3 instead of the classical
Rademacher theorem.

In the general case when supp ν is possibly unbounded we can still prove
existence and uniqueness of an optimal transport map as follows. Let γ ∈ Γo(µ, ν),
let γn = χBn

(y)γ where Bn := Bn(0) is the centered open ball of radius n, and
let µn, νn be the marginals of γn (in particular νn = χBn

ν and µn is absolutely
continuous with respect to µ, therefore still regular). By Theorem 6.1.5 we know
that suppγ is | · |p-monotone, and therefore suppγn is | · |p-monotone as well. By
applying Theorem 6.1.5 again and the first part of the present proof, we obtain
that γn is an optimal plan, induced by a unique transport map rn. The inequality

(i× rn)#µn = γn ≤ γm = (i× rm)#µm

immediately gives (for instance by disintegration of both sides with respect to x)

rn = rm µn-a.e. whenever n < m.

Therefore the map r such that r = rn µn-a.e. for any n is well defined, and passing
to the limit as n →∞ in the identity γn = (i× r)#µn we obtain γ = (i× r)#µ.
This proves that r is an optimal transport map, and that any optimal plan is
induced by an optimal transport map.

If there were two different optimal transport maps r, r′, then we could build
an optimal transport plan

γ :=
1
2

∫
X

δr(x) + δr′(x) dµ(x)

which is not induced by any transport map. This contradiction proves the unique-
ness of r. �
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Remark 6.2.11 (Essential injectivity of the transport map). Notice also that if
ν is regular as well, under the assumption of Theorem 6.2.4 or Theorem 6.2.10,
then the optimal transport map r between µ and ν is µ-essentially injective (i.e.
its restriction to a set with full µ-measure is injective). This follows by the fact
that, denoting by s the optimal transport map between ν and µ, the uniqueness
of optimal plans gives (i × r)#µ = [(s× i)#ν]−1, which leads to s ◦ r = i µ-a.e.
and to the essential injectivity of r.

In the case when p = 2 and µ, ν ∈ Pr
2 (Rd) we can actually prove strict

monotonicity of the optimal transport map.

Proposition 6.2.12 (Strict monotonicity of r). Let µ, ν ∈ Pr
2 (Rd), and let r be

the unique optimal transport map relative to the cost c(x, y) = |x − y|2/2. Then
∇r > 0 µ-a.e. and there exists a µ-negligible set N ⊂ Rd such that

〈r(x1)− r(x2), x1 − x2〉 > 0 ∀x1, x2 ∈ Rd \N. (6.2.9)

Proof. Let ϕ be a c-concave maximal Kantorovich potential. The c-concavity of ϕ
and its construction ensure that ϕ < +∞ globally, that ϕ > −∞ µ-a.e. and that
ϕ− |x|2/2 is concave. In particular, denoting by C the interior of the convex hull
of {ϕ ∈ R}, we have that ϕ is finite on C and µ is concentrated on C. We have also
that the optimal transport map r can be represented as ∇φ with φ = |x|2/2− ϕ
convex. Recalling that, by Alexandrov’s theorem 5.5.4 convex functions are twice
differentiable L d-a.e. in the classical sense, we can apply Lemma 5.5.3 to obtain
that ∇r > 0 µ-a.e. in C, due to the fact that r#µ � L d.

Let now N be the µ-negligible set of points x ∈ C where either φ is not twice
differentiable or ∇2φ has some zero eigenvalue. The monotonicity inequality then
gives (with xt = (1− t)x + ty)

〈∇φ(y)−∇φ(x), y − x〉 ≥ lim
t↓0

1
t2
〈∇φ(xt)−∇ψ(x), xt − x〉 > 0

for any x, y ∈ C \N . �

6.2.3 The quadratic case p = 2

In the case of c(x, y) := 1
2
|x − y|2 in a Hilbert space X, the theory developed in

the previous sections presents some more interesting features and stronger links
with classical convex analysis.

Here we quote the most relevant aspects.

• A function u : X → R̄ is c-concave iff u − 1
2 | · |2 is u.s.c. and concave, i.e.

ũ(x) := 1
2
|x|2 − u(x) is l.s.c. and convex.

For, from the representation of (6.1.2) we get

u(x)− 1
2
|x|2 = inf

i∈I
ti +

1
2
|yi|2 − 〈x, yi〉.
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This means that u(x)−|x|2/2 is the infimum of a family of linear continuous
functional on X .

• If v = uc is the c-transform of u then ṽ = ũ∗, the Legendre-Fenchel-Moreau
conjugate functional defined as

ũ∗(y) := sup
x∈X

〈x, y〉 − ũ(x).

We simply have

ṽ(y) =
1
2
|y|2 − uc(y) = sup

x∈X

1
2
|y|2 − 1

2
|x− y|2 + u(x)

= sup
x∈X

〈x, y〉 − (1
2
|x|2 − u(x)

)
= sup

x∈X
〈x, y〉 − ũ(x).

• A subset Γ of X2 is c-monotone according to Definition 6.1.3 iff it is cyclically
monotone, i.e. for every cyclical choice of points (xk

1 , xk
2) ∈ Γ, k = 0, . . . , N ,

with (x0
1, x

0
2) = (xN

1 , xN
2 ), we have

N∑
k=1

〈xk
1 − xk−1

1 , xk
2〉 ≥ 0. (6.2.10)

In particular, by Rockafellar theorem, c-monotone sets are always contained
in the graph of the subdifferential

{(x, y) : y ∈ ∂ϕ(x)}
of a convex l.s.c function ϕ. Conversely, any subset of such a graph is c-
monotone.

• Suppose that µ, ν ∈ P2(X) and γ ∈ Γ(µ, ν). Then the following properties
are equivalent:

– γ is optimal;

– supp γ is cyclically monotone;

– there exists a convex, l.s.c. potential ϕ̃ ∈ L1(X, µ) such that

〈x, y〉 = ϕ̃(x) + ϕ̃∗(y) γ-a.e. in X2. (6.2.11)

Equivalently, we can also state (6.2.11) by saying that y ∈ ∂ϕ(x) for
γ-a.e. (x, y) ∈ X2. In particular, if γ = (i × r)#µ then there exists a l.s.c.
convex functional ϕ such that r(x) ∈ ∂ϕ(x) for µ-a.e. x ∈ X.

• Suppose that X = Rd and µ ∈ Pr
2 (Rd), ν ∈ P2(Rd). Then there exists a

unique optimal transport plan and this plan is induced by a transport map r.
If ν ∈ Pr

2 (Rd) as well, then r is µ-essentially injective and fulfills (6.2.9).





Chapter 7

The Wasserstein Distance and
its Behaviour along Geodesics

In this chapter we will introduce the p-th Wasserstein distance Wp(µ, ν) between
two measures µ, ν ∈ Pp(X). The first section is devoted to its preliminary prop-
erties, in connection with the optimal transportation problems studied in the pre-
vious chapter and with narrow convergence: the main topological results are valid
in general metric spaces.

In the last two sections we will focus our attention to the case when X is an
Hilbert space: we will characterize the (minimal, constant speed) geodesics with
respect to the Wasserstein distance and, for p = 2 and a given ν ∈ P2(X), we will
study the behaviour of the map µ �→ W 2

2 (µ, ν) along geodesics: in particular, we
will give a precise formula for its derivative along geodesics and and we will prove
its semi-concavity, an important geometric property which is related to a metric
version of suitable curvature inequalities.

7.1 The Wasserstein distance

Let X be a separable metric space satisfying the Radon property (5.1.9) and
p ≥ 1. The (p-th) Wasserstein distance between two probability measures µ1, µ2 ∈
Pp(X) is defined by

W p
p (µ1, µ2) := min

{∫
X2

d(x1, x2)p dµ(x1, x2) : µ ∈ Γ(µ1, µ2)
}

= min
{
d(x1, x2)

p
Lp(µ;X) : µ ∈ Γ(µ1, µ2)

}
.

(7.1.1)

Using Remark 5.3.3 we can show that the function defined above is indeed a
distance. Indeed, if µi ∈ Pp(X) for i = 1, 2, 3, γ1 2 is optimal between µ1 and
µ2 and γ2 3 is optimal between µ2 and µ3 we can find γ ∈ P(X3) such that
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π1 2
# γ = γ1 2 and π2 3

# γ = γ2 3. The plan γ1 3 := π1 3
# γ belongs to Γ(µ1, µ3) and

since

Wp(µ1, µ2) = d(x1, x2)Lp(γ;X), Wp(µ2, µ3) = d(x1, x2)Lp(γ;X)

and
d(x1, x3)Lp(γ1 3;X) = d(x1, x3)Lp(γ;X),

we immediately get Wp(µ1, µ3) ≤ Wp(µ1, µ2) + Wp(µ2, µ3) from the standard
triangle inequality of the Lp distance.

In the particular case when p = 1 and µ and ν have a bounded support we
can use the duality formula (6.1.1) and the fact that c-concavity coincides with
1-Lipschitz continuity and ϕc = −ϕ for the cost c(x, y) = d(x, y) to obtain

W1(µ, ν) = sup
{∫

ϕ d(µ− ν) : ϕ : X → R 1-Lipschitz
}

. (7.1.2)

We denote by Γo(µ1, µ2) ⊂ Γ(µ1, µ2) (which also depends on p, even if we
omit to indicate explicitly this dependence) the convex and narrowly compact set
of optimal plans where the minimum is attained, i.e.

γ ∈ Γo(µ1, µ2) ⇐⇒
∫

X2
d(x1, x2)p dγ(x1, x2) = W p

p (µ1, µ2). (7.1.3)

When Γo(µ1, µ2) contains a unique plan γ = (i × r)#µ1 induced by a transport
map r as in (5.2.13), we will also denote r by tµ2

µ1 ; therefore tµ2

µ1 is characterized
by

tµ2

µ1 : X → X,
(
tµ2

µ1

)
#

µ1 = µ2, Γo(µ1, µ2) =
{(

i× tµ2

µ1

)
#

µ1
}
, (7.1.4)

it is the unique (strict) minimizer of the optimal transportation problem in the
original Monge’s formulation (6.0.1), and satisfies∫

X

d
(
x, tµ2

µ1(x)
)p

dµ1(x) = W p
p (µ1, µ2). (7.1.5)

Given µ-measurable maps r, s : X → X, a very useful inequality giving an
estimate from above of the Wasserstein distance is

Wp(r#µ, s#µ) ≤ d(r, s)Lp(µ;X). (7.1.6)

It holds because γ =(r, s)#µ∈Γ(r#µ, s#µ) and
∫

d(x1, x2)p dγ =d(r, s)p
Lp(µ;X).

From Theorem 6.1.4 we derive that µ is optimal iff its support is d(·, ·)p-
monotone according to Definition 6.1.3, i.e.

N∑
k=1

d
(
xk

1 , xk
2

)p ≤
N∑

k=1

d
(
xk

1 , x
σ(k)
2

)p (7.1.7)
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for every choice of (xk
1 , x

k
2) ∈ supp µ, k = 1, . . . , N , and for every permutation

σ : {1, . . . , N} → {1, . . . , N} (actually Theorem 6.1.4 shows only that µ has to be
concentrated on a c-monotone set, but since in this case the cost is continuous the
c-monotonicity holds, by a density argument, for the whole support of µ).

Remark 7.1.1. It is not difficult to check that supports of optimal plans satisfy
the slightly stronger property⋃

γ∈Γo(µ1,µ2)

supp γ is d(·, ·)p −monotone. (7.1.8)

For, we take a sequence (γn) narrowly dense in Γo(µ1, µ2) and we consider the
new plan γ̄ :=

∑
n 2−nγn. The plan γ̄ is optimal, too, and its support coincides

with (7.1.8).

Remark 7.1.2 (Cyclical monotonicity in the case when X is Hilbert). When p = 2
and X is a (pre-)Hilbert space, condition (7.1.7) is equivalent to the classical
cyclical monotonicity of supp µ, i.e. for every cyclical choice of points (xk

1 , xk
2) ∈

supp µ, k = 0, . . . , N , with (x0
1, x

0
2) = (xN

1 , xN
2 ), we have

N∑
k=1

〈xk
1 − xk−1

1 , xk
2〉 ≥ 0. (7.1.9)

In particular, if r = ∇φ for some convex C1 function φ then r is a 2-optimal
transport map for every measure µ ∈ P2(X) such that

∫ |r|2 dµ < +∞.

A useful application of the necessary and sufficient optimality conditions is
given by the following stability of optimality with respect to narrow convergence.

Proposition 7.1.3 (Stability of optimality and narrow lower semicontinuity). Let
(µ1

n), (µ2
n) ⊂ Pp(X) be two sequences narrowly converging to µ1, µ2 respectively,

and let µn ∈ Γo(µ1
n, µ2

n) be a sequence of optimal plans with
∫

X2 d(x1, x2)p dµn

bounded.
Then (µn) is narrowly relatively compact in P(X2) and any narrow limit point
µ belongs to Γo(µ1, µ2), with

Wp(µ1, µ2) =
∫

X2
d(x1, x2)p dµ(x1, x2)

≤ lim inf
n→∞

∫
X2

d(x1, x2)p dµn(x1, x2) = lim inf
n→∞ Wp(µ1

n, µ2
n).

(7.1.10)

Proof. The relative compactness of the sequence (µn) is a consequence of Lemma
5.2.2 and the “lim inf” inequality in (7.1.10) is a direct consequence of (5.1.15),
which in particular yields

∫
X2 d(x1, x2)p dµ < +∞.

Using proposition 5.1.8 it is immediate to check by approximation that the support
of µ is d(·, ·)p-monotone. �
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When X is a Hilbert space, the Wasserstein distance is lower semicontinuous
w.r.t. the weaker narrow convergence in P(X�):

Lemma 7.1.4 (Weak narrow lower semicontinuity of Wp in Hilbert spaces). Let
X be a (separable) Hilbert space and let (µ1

n), (µ2
n) ⊂ Pp(X) be two weakly tight

sequences (according to (5.1.32)) narrowly converging to µ1, µ2 in P(X�). Then

Wp(µ1, µ2) ≤ lim inf
n→∞ Wp(µ1

n, µ2
n). (7.1.11)

Proof. The map (x1, x2) �→ |x1 − x2|p is weakly l.s.c. in X ×X: we simply argue
as in the previous proof and we apply Lemma 5.1.12(c). Notice that in this case
the first line of (7.1.10) is an inequality “≤”, since we do not know that the limit
plan µ is optimal any more; nevertheless, the inequality is sufficient to obtain
(7.1.11). �

Proposition 7.1.5 (Convergence, compactness and completeness). Pp(X) endowed
with the p-Wasserstein distance is a separable metric space which is complete if X
is complete. A set K ⊂ Pp(X) is relatively compact iff it is p-uniformly integrable
and tight. In particular, for a given sequence (µn) ⊂ Pp(X) we have

lim
n→∞Wp(µn, µ) = 0 ⇐⇒

{
µn narrowly converge to µ,

(µn) has uniformly integrable p-moments.
(7.1.12)

Proof. Let us first prove the completeness of Pp(X), by assuming that X is
complete. It suffices to show that any sequence {µn}n∈N ⊂ Pp(X) such that

∞∑
n=1

Wp(µn, µn+1) < +∞

is converging. We choose αn (n+1) ∈ Γo(µn, µn+1) and use Lemma 5.3.4 to find
µ ∈ P(X), with X = XN, satisfying (5.3.8). It follows that

∞∑
n=1

d(πn, πn+1)Lp(µ;X) < +∞.

Therefore, (πn) is a Cauchy sequence in Lp(µ; X), which is a complete metric
space, and admits a limit map π∞ ∈ Lp(µ; X). Setting µ∞ := π∞

# µ ∈ Pp(X), we
easily find

lim sup
n→∞

Wp(µn, µ∞) ≤ lim sup
n→∞

d(πn, π∞)Lp(µ;X)

≤ lim sup
n→∞

∞∑
j=n

d(πj+1, πj)Lp(µ;X) = 0.

We will prove now the equivalence (7.1.12) (a different argument in locally compact
spaces, based on the duality formula (7.1.2), is available for instance in [126]).
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First we suppose that Wp(µn, µ) → 0. Arguing as before, we can choose
optimal plans β1 n ∈ Γo(µ, µn,) and use Lemma 5.3.4 (with µ1 := µ) to find
µ ∈ P(X) satisfying (5.3.8). It follows that

lim
n→∞d(πn, π1)Lp(X,µ;X) = 0,

and therefore, for every continuous real function f with p-growth the Vitali dom-
inated convergence theorem gives

lim
n→∞

∫
X

f(x) dµn(x) = lim
n→∞

∫
X

f(πn(x)) dµ(x) =
∫

X

f(π1(x)) dµ(x)

=
∫

X

f(x) dµ(x).

By lemma 5.1.7 we obtain the narrow convergence and the uniform p-integrability
of the sequence (µn).

Conversely, let us suppose that the sequence (µn) has uniformly integrable
p-moments and it is narrowly converging to µ; in particular, by (5.4.7), the set
{µ, µn : n ∈ N} is tight. As before, let us choose α1 n ∈ Γo(µ, µn): it easy to check
that the sequence (α1 n) is p-uniformly integrable and tight in P(X × X) (see
Lemma 5.2.2): a subsequence k �→ nk exists such that α1 nk → α narrowly, with
α ∈ Γo(µ, µ) by Proposition 7.1.3. Applying Lemma 5.1.7 we get

lim
k→∞

W p
p (µ, µnk

) = lim
k→∞

∫
X×X

|x1 − x2|p dα1 nk(x1, x2)

=
∫

X×X

|x1 − x2|p dα(x1, x2) = 0.

Since the limit is independent of the subsequence nk we get the convergence of µn

with respect to the Wasserstein distance. Using (7.1.12) it is now immediate to
check that convex combinations of Dirac masses with centers in a countable dense
subset of X and with rational coefficients are dense in Pp(X), therefore Pp(X)
is separable. �

It is interesting to note that in the previous proof of the equivalence between
narrow and Wasserstein topology (on sets with uniformly integrable p-moments),
one implication (the topology induced by the Wasserstein distance is stronger than
the narrow one) could be directly deduced from (7.1.2) via the approximation
arguments discussed in Section 5.1, thus avoiding Lemma 5.3.4; this implication
is therefore considerably easier than the converse one, which relies on the stability
property 7.1.3 and therefore on the main characterization results of Chapter 6 for
optimal transportation problems. However the argument via Lemma 5.3.2 seems
to be necessary to get completeness, at least in infinite dimensions.

Remark 7.1.6 (Limit of the optimal plan). As a byproduct of the previous proof,
we obtain that if µn → µ in Pp(X) and µn ∈ Γo(µ, µn), then

µn → (i× i)#µ in Pp(X ×X). (7.1.13)
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Remark 7.1.7 (P(X) is a Polish space if X is Polish). By taking an equivalent
bounded metric on X, all the Wasserstein distances induce the topology of narrow
convergence between probability measures: as we already noticed in Remark 5.1.1,
the narrow topology P(X) is metrizable; moreover, if X is a Polish space, then
P(X) is a Polish space, too.

Remark 7.1.8 (Relative compactness of Pp(X)-bounded sets). When X is infinite
dimensional Hilbert space, bounded subset in Pp(X) are not relatively compact
in P(X) any more, but they are relatively compact in P(X�).

Remark 7.1.9 (Pp(X) is locally compact only if X is compact). If X is not com-
pact, the space Pp(X) is not locally compact, not even in the case when X = Rd

is finite dimensional. Indeed, assume that for some ε > 0 and x0 ∈ X the closed
ball in Pp(X)

Bε :=
{

µ ∈ Pp(X) : Wp(µ, δx0) ≤ ε
}

=
{
µ ∈ Pp(X) :

∫
X

d(x, x0)p dµ(x) ≤ εp
}

is compact and let us prove that an arbitrary sequence (xn) ∈ X admits a conver-
gent subsequence. It is not restrictive to assume lim infn→∞ d(xn, x0) > 0 (other-
wise (xn) admits a subsequence converging to x0), and therefore infn∈N d(xn, x0) =
δ > 0. We consider the real numbers

mn =
(δ ∧ ε)p

d(xn, x0)p
≤ 1, so that mnd(xn, x0)p = (δ ∧ ε)p;

the sequence of measures µn := (1 − mn)δx0 + mnδxn
belongs to Bε since

Wp(µn, δx0) = ε∧ δ and therefore admits a subsequence (µn′) converging to some
µ �= δx0 in Pp(X).
Since (mn) is bounded, too, it is not restrictive to assume that mn′ → m ∈ [0, 1]
which should be strictly positive, being µ �= δx0 . By Proposition 5.1.8 (see also
Corollary 5.1.9) it follows that µ takes the form (1−m)δx0 +mδx for some x ∈ X ,
and therefore xn′ → x.

Lemma 7.1.10 (Approximation by convolution). Let µ ∈ Pp(Rd) and let (ρε) ⊂
C∞(Rd) be a family of nonnegative mollifiers such that

ρε(x) := ε−dρ(x/ε),
∫

Rd

ρ(x) dx = 1, mp
p(ρ) :=

∫
Rd

|x|pρ(x) dx < +∞. (7.1.14)

Then if µε := µ ∗ ρε

Wp(µ, µε) ≤ εmp(ρ), (7.1.15)

and therefore µε converges to µ in Pp(Rd) as ε ↓ 0.

Proof. We introduce the family of plans γε :=
∫

ρε(· − x)L d dµ(x) defined by∫∫
Rd×Rd

ϕ(x, y) dγε(x, y) :=
∫

Rd

∫
Rd

φ(x, y)ρε(y − x) dy dµ(x)
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which obviously satisfy γε ∈ Γ(µ, µε). Therefore

W p
p (µ, µε) ≤

∫∫
(Rd)2

|x− y|p dγε(x, y) =
∫

Rd

(∫
Rd

|x− y|pρε(y − x) dy
)

dµ(x)

=
∫

Rd

(∫
Rd

|z|pρε(z) dz
)

dµ(x) =
∫

Rd

|εz|pρ(z) dz = εp

∫
Rd

|z|pρ(z) dz
�

Remark 7.1.11. Combining Proposition 5.1.13 with j(r) := rp, 1 < p < +∞, and
Lemma 5.1.7 we get the following useful characterization of the convergence in
Pp(X), which is particularly interesting when X is infinite dimensional Hilbert
space:

lim
n→∞ Wp(µn, µ) = 0 ⇐⇒

⎧⎨⎩ µn narrowly converge to µ in P(X�),

lim
n→∞

∫
X

|x|p dµn(x) =
∫

X

|x|p dµ(x).
(7.1.16)

Since we have at our disposal new powerful results (which are consequences of
the theory presented in Chapter 6) we conclude this section by showing a simpler
proof of (7.1.16), which could be extended to the case of uniformly convex Banach
spaces.

Proof. Let us consider the (Radon, separable) metric space X� with the distance
induced by the norm ‖ · ‖�; since ‖ · ‖p

� ≤ | · |p, (7.1.16) and Lemma 5.1.7 show
that ‖ · ‖p

� is uniformly integrable w.r.t. the sequence (µn). Applying (7.1.12) of
Proposition 7.1.5 in X� (this characterization does not require the completeness of
the metric space), we obtain that µn converges to µ in the p-Wasserstein distance
of Pp(X�). It follows by Remark 7.1.6 that any sequence of plans µn ∈ Γ(µn, µ),
optimal in Pp(X�), satisfies

µn → (i× i)#µ in Pp(X� ×X�) as n →∞. (7.1.17)

We suppose p ≥ 2 and we integrate with respect to µn the inequality (cp is a
strictly positive constant, jp(x1) = |x1|p−2x1)

cp|x1 − x2|p ≤ 1
p
|x2|p − 1

p
|x1|p − 〈jp(x1), x2 − x1〉 ∀x1, x2 ∈ X,

which we will prove in Lemma 10.2.1; we obtain

cpW
p
p (µ, µn) ≤

∫
X×X

cp|x1 − x2|p dµn(x1, x2) (7.1.18a)

≤
∫

X×X

(1
p
|x2|p − 1

p
|x1|p − 〈jp(x1), x2 − x1〉

)
dµn(x1, x2)

=
1
p

∫
X

|x2|p dµn(x2)− 1
p

∫
X

|x1|p dµ(x1)

−
∫

X×X

〈y1, y2〉 dµ̂n(y1, y2),
(7.1.18b)
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where
µ̂n :=

(
jp ◦ π1, π2 − π1

)
#

µn.

Since the first marginal of µ̂n is fixed in Pq(X), it is easy to check by Lemma
5.2.1 that

µ̂n →
(
(jp)#µ

)× δ0 in P(X ×X�) as n →∞,

and that (µn) satisfies the assumptions of Lemma 5.2.4; therefore, passing to
the limit as n → ∞ in (7.1.18a,b), the convergence of the moments (7.1.16) and
Lemma 5.2.4 yield Wp(µ, µn) → 0.
The case p < 2 follows by the same argument and inequality (10.2.5). �

7.2 Interpolation and geodesics

In this section we are assuming that X is a separable Hilbert space and p > 1,
and we show that constant speed geodesics in Pp(X) coincide with a suitable
class of interpolations obtained from optimal transport plans. Recall that a curve
µt ∈ Pp(X), t ∈ [0, 1], is a constant speed geodesic (see also (2.4.3)) if

Wp(µs, µt) = (t− s)Wp(µ0, µ1) ∀ 0 ≤ s ≤ t ≤ 1. (7.2.1)

If µ ∈ P(XN ), N ≥ 2, 1 ≤ i, j, k ≤ N , and t ∈ [0, 1] we set

πi→j
t := (1− t)πi + tπj : XN → X, (7.2.2)

πi→j,k
t := (1− t)πi,k + tπj,k : XN → X2, (7.2.3)

µi→j
t := (πi→j

t )#µ ∈ P(X), (7.2.4)

µi→j,k
t := (πi→j,k

t )#µ ∈ P(X2). (7.2.5)

It is well known that Γo(µ1, µ2) can contain in general more than one element.
In the following lemma we show that along a geodesic the optimal plans to the
extreme points µ0, µ1 are unique if we consider µt, t ∈ (0, 1), as the initial measure.

Lemma 7.2.1. Let (µt)t∈[0,1] be a constant speed geodesic in Pp(X) and let t ∈
(0, 1). Then Γo(µt, µ1) (resp. Γo(µ0, µt)) contains a unique plan µt 1 (resp. µ0 t)
and this plan (resp. (µ0 t)−1) is induced by a transport. Moreover, µ = µt 1 ◦µ0 t ∈
Γo(µ0, µ1) and

µ0 t = (π1,1→2
t )#µ, µt 1 = (π1→2,2

t )#µ. (7.2.6)

Proof. For t ∈ (0, 1) let γ (resp. η) be optimal transport plans between µ0 and
µt (resp. µt and µ1). In order to clarify the structure of the proof it is convenient
to view µ0, µt, µ1 as measures in P(X1), P(X2), P(X3), where Xi are distinct
copies of X. Then, we can define

λ :=
∫

X2

γx2 × ηx2 dµt(x2) ∈ Γ(µ0, µt, µ1)
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where γ =
∫

X2
γx2 dµt and η =

∫
X2

ηx2 dµt are the disintegrations of γ and η with
respect to the common variable x2. Then, since (recall the composition of plans
in Remark 5.3.3)

µ = η ◦ γ = π1,3
# λ ∈ Γ(µ0, µ1)

we get

Wp(µ0, µ1) ≤ ‖x1 − x3‖Lp(µ;X) ≤ ‖x1 − x2‖Lp(λ;X) + ‖x2 − x3‖Lp(λ;X)

= ‖x1 − x2‖Lp(γ;X) + ‖x2 − x3‖Lp(η;X) = Wp(µ0, µ1).

This proves that µ is optimal; moreover, since all inequalities are equalities and
the Lp-norm is strictly convex, we get that there exists α > 0 such that x2 −
x1 = α(x3 − x1) for λ-a.e. triple (x1, x2, x3). Using the fact that Wp(µt, µ0) =
tWp(µ0, µ1) we obtain α = t and therefore

x2 − x1 = t(x3 − x1) λ-a.e. in X1 ×X2 ×X3.

Denoting by z(x2) the barycenter of γx2 , the linearity of this relation w.r.t. x1

yields
x2 − z(x2) = t(x3 − z(x2)) η-a.e. in X2 ×X3.

Hence η is induced by the transport rt(x2) = x2/t−z(x2)(1−t)/t. Since z depends
on γ and γ and η have been chosen independently, this proves that η is unique,
so that η = µt 1, the measure defined in (7.2.6). Inverting the order of µ0 and µ1,
we obtain the other identity. �

Theorem 7.2.2 (Characterization of constant speed geodesics). If µ ∈ Γo(µ1, µ2)
then the curve t �→ µt := µ1→2

t is a constant speed geodesic connecting µ1 to µ2.
Conversely, any constant speed geodesic µt : [0, 1] → Pp(X) connecting µ1 to µ2

has this representation for a suitable µ ∈ Γo(µ1, µ2), which can be constructed
from any point µt, 0 < t < 1, as in the previous Lemma.

Proof. By (7.1.6) we get

Wp(µt, µs) ≤ (t− s)Wp(µ1, µ2) ∀s, t ∈ (0, 1), s ≤ t. (7.2.7)

If there is a strict inequality for some s < t we immediately derive a contradiction
by applying the triangle inequality with the points µ0, µs, µt and µ1. Therefore
equality holds and µt is a constant speed geodesic.

Let µt be a constant speed geodesic and for a fixed t ∈ (0, 1) let µ := µt 1◦µ0 t

be as in Lemma 7.2.1. Since µ0 t = (π1,1→2
t )#µ is the unique element of Γo(µ0, µt)

and the curve s �→ µts, s ∈ [0, 1] is a constant speed geodesic, we get

µst = (π1→2
s )#µ0 t = (π1→2

s ◦ π1,1→2
t )#µ = (π1→2

st )#µ.

Inverting µ0 with µ1 we conclude. �
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µ0

µ1/2

µ1

Figure 7.1: An example of geodesic: the mass of µ0 splits into two parts

µ0

µ1

µt

Figure 7.2: Another example of geodesic: the trajectories may intersect

In the case X = R, using the explicit representation (6.0.3) for the Wasser-
stein distance in terms of the inverses of distribution functions, we get

F−1
µ1→2

t
= (1− t)F−1

µ1 + tF−1
µ2 L 1-a.e. in (0, 1). (7.2.8)

for any geodesic µ1→2
t induced by µ ∈ Γo(µ1, µ2).

7.3 The curvature properties of P2(X)

In this section we consider the particular case p = 2 and we establish some finer
geometric properties of P2(X).

In particular we will prove in Theorem 7.3.2 the semiconcavity inequality
of the Wasserstein distance from a fixed measure µ3 along the constant speed
geodesics µ1→2

t connecting µ1 to µ2:

W 2
2 (µ1→2

t , µ3) ≥ (1− t)W 2
2 (µ1, µ3) + tW 2

2 (µ2, µ3)− t(1− t)W 2
2 (µ1, µ2). (7.3.1)

According to Aleksandrov’s metric notion of curvature (see [5] and Section
12.3 in the Appendix), this inequality can be interpreted by saying that the Wasser-
stein space is a positively curved metric space (in short, a PC-space). This was
already pointed out by a formal computation in [107], showing also that generically
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the inequality is strict (see Example 7.3.3). See also Section 12.3 in the Appendix,
where we recall some basic facts of the theory of positively curved metric spaces.

For µ ∈ Γ(µ1, µ2, µ3) ⊂ P2(X3) and i, j, k ∈ {1, 2, 3}, t ∈ [0, 1] we set

W 2
µ(µi→j

t , µk) :=
∫

X3
|(1− t)xi + txj − xk|2 dµ(x1, x2, x3). (7.3.2)

By (7.1.6) we get
W 2

2 (µi→j
t , µk) ≤ W 2

µ(µi→j
t , µk). (7.3.3)

Moreover, the Hilbertian identity

|(1− t)a + tb− c|2 = (1− t)|a− c|2 + t|b− c|2 − t(1− t)|b− a|2

gives

W 2
µ(µ1→2

t , µ3) = (1− t)W 2
µ(µ1, µ3) + tW 2

µ(µ2, µ3)− t(1− t)W 2
µ(µ1, µ2), (7.3.4)

and the related differential identities

d

dt
W 2

µ(µ1→2
t , µ3) = W 2

µ(µ2, µ3)−W 2
µ(µ1, µ3) + (2t− 1)W 2

µ(µ1, µ2) (7.3.5)

=
1

1− t

(
W 2

µ(µ2, µ3)−W 2
µ(µ1→2

t , µ2)−W 2
µ(µ1→2

t , µ3)
)

(7.3.6)

=
1
t

(
W 2

µ(µ1→2
t , µ1) + W 2

µ(µ1→2
t , µ3)−W 2

µ(µ1, µ3)
)
. (7.3.7)

Proposition 7.3.1. Let µ1 2 ∈ Γ(µ1, µ2), t ∈ (0, 1) and µt 3 ∈ Γo(µ1→2
t , µ3). Then

there exists a plan

µt ∈ Γ(µ1 2, µ3) such that (π1→2,3
t )#µ = µt 3, (7.3.8)

and this plan is unique if µ1 2 ∈ Γo(µ1, µ2). For each plan µt satisfying (7.3.8) we
have

W 2
2 (µ1→2

t , µ3) = (1− t)W 2
µt

(µ1, µ3)+ tW 2
µt

(µ2, µ3)− t(1− t)W 2
µt

(µ1, µ2). (7.3.9)

Proof. Let Σt : X2 → X2 and Λt : X3 → X3 be the homeomorphisms defined by

Σt(x1, x2) := ((1− t)x1 + tx2, x2), Λt(x1, x2, x3) = ((1− t)x1 + tx2, x2, x3)

and notice that µ has the required properties if and only if ν := Λt#µ satisfies

π1,2
# ν = Σt#µ1 2, π1,3

# ν = µt 3. (7.3.10)

Then, Lemma 5.3.2 says that there exists a plan ν fulfilling (7.3.10) and, since Λt

is invertible, this proves the existence of µ. When µ1 2 is optimal, since Σt#µ1 2 ∈
Γo(µ1→2

t , µ2), we infer from Lemma 7.2.1 that Σt#µ1 2 is unique and induced by
a transport map and therefore ν and µ are uniquely determined. �
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µ1

µ2

µ3

µ1→2
t

µ1→2
tµt 3

µ1 2

µ2 3 = π2,3
# µt

µ1 3 = π1,3
# µt

Figure 7.3: µ1 2 and µt 3 are given optimal plans; µ2 3 and µ1 3 are not optimal, in

general

Theorem 7.3.2 (P2(X) is a PC-space). For each choice of µ1, µ2, µ3 ∈ P2(X)
and µ1 2 ∈ Γ(µ1, µ2) we have

W 2
2 (µ1→2

t , µ3) ≥ (1− t)W 2
2 (µ1, µ3)+ tW 2

2 (µ2, µ3)− t(1− t)W 2
µ1 2(µ1, µ2) (7.3.11)

and the map t �→ W 2
2 (µ1→2

t , µ3)−t2W 2
µ1 2(µ1, µ2) is concave in [0, 1]. In particular,

choosing µ1 2 ∈ Γo(µ1, µ2) (see Figure 7.3) we have

W 2
2 (µ1→2

t , µ3) ≥ (1− t)W 2
2 (µ1, µ3) + tW 2

2 (µ2, µ3)− t(1− t)W 2
2 (µ1, µ2) (7.3.12)

and therefore P2(X) is a PC-space.

Proof. (7.3.11) is a direct consequence of (7.3.9) and (7.3.3). In order to prove the
concavity property we choose λ, t1, t2 ∈ [0, 1], t := (1 − λ)t1 + λt2, and we have
only to develop the obvious calculations:

W 2
2 (µ1→2

t , µ3)− t2W 2
µ1 2(µ1, µ2) = W 2

2 (µt1→t2
λ , µ3)− t2W 2

µ1 2(µ1, µ2)

≥(1−λ)W 2
2 (µt1 , µ3) + λW 2

2 (µt2 , µ3)−
(
λ(1− λ)(t2 − t1)2 + t2

)
W 2

µ1 2(µ1, µ2)

=(1−λ)
[
W 2

2 (µ1→2
t1

, µ3)− t21W
2
µ1 2(µ1, µ2)

]
+ λ

[
W 2

2 (µ1→2
t2

, µ3)− t22W
2
µ1 2(µ1, µ2)

]
.

In the case µ1 2 ∈ Γo(µ1, µ2) is sufficient to note that W 2
µ1 2(µ1, µ2) = W 2

2 (µ1, µ2).
�

Example 7.3.3 (Strict positivity of the sectional curvature). The following example
shows that in general the inequality (7.3.1) is strict. Let

µ1 :=
1
2
(
δ(1,1) + δ(5,3)

)
, µ2 :=

1
2
(
δ(−1,1) + δ(−5,3)

)
, µ3 :=

1
2
(
δ(0,0) + δ(0,−4)

)
.
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µ3

µ1→2
t

Figure 7.4: µ3 is the sum of deltas on black dots, µ1→2
t is moving along the dotted lines

Then, it is immediate to check that W 2
2 (µ1, µ2) = 40, W 2

2 (µ1, µ3) = 30, and
W 2

2 (µ2, µ3) = 30. On the other hand, the unique constant speed geodesic joining
µ1 to µ2 is given by

µt :=
1
2
(
δ(1−6t,1+2t) + δ(5−6t,3−2t)

)
and a simple computation gives

24 = W 2
2 (µ1/2, µ

3) >
30
2

+
30
2
− 40

4
.

Formula (7.3.11) is useful to evaluate the directional derivative of the Wasser-
stein distance. If µ1 2 ∈ Γ(µ1, µ2), general properties of concave maps ensures that
for each point t ∈ [0, 1) there exists the right derivative

d

dt+
W 2

2 (µ1→2
t , µ3) := lim

t′↓t

W 2
2 (µ1→2

t′ , µ3)−W 2
2 (µ1→2

t , µ3)
t′ − t

and, for t ∈ (0, 1], the left derivative

d

dt−W 2
2 (µ1→2

t , µ3) := lim
t′↑t

W 2
2 (µ1→2

t , µ3)−W 2
2 (µ1→2

t′ , µ3)
t− t′

satisfying

d

dt+
W 2

2 (µ1→2
t , µ3) ≤ d

dt−W 2
2 (µ1→2

t , µ3) ∀ t ∈ (0, 1)

and, for a (at most) countable subset N ⊂ (0, 1)

d

dt+
W 2

2 (µ1→2
t , µ3) =

d

dt−W 2
2 (µ1→2

t , µ3) ∀ t ∈ (0, 1) \N . (7.3.13)
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Corollary 7.3.4. Let µ1, µ2, µ3 ∈ P2(X), µ1 2 ∈ Γ(µ1, µ2), t ∈ [0, 1], and

µt ∈ Γ(µ1 2, µ3) such that (π1→2,3
t )#µ ∈ Γo(µ1→2

t , µ3) as in Proposition 7.3.1.

Then

d

dt+
W 2

2 (µ1→2
t , µ3) ≤ W 2

µt
(µ2, µ3)−W 2

µt
(µ1, µ3) + (2t− 1)W 2

µt
(µ1, µ2)

=
1

1− t

(
W 2

µt
(µ2, µ3)−W 2

µt
(µ1→2

t , µ2)−W 2
2 (µ1→2

t , µ3)
)

=
1
t

(
W 2

µt
(µ1→2

t , µ1) + W 2
2 (µ1→2

t , µ3)−W 2
µt

(µ1, µ3)
)

≤ d

dt−
W 2

2 (µ1→2
t , µ3).

(7.3.14)
In particular, equality holds in the previous formula whenever t belongs to the set
of differentiability of the distance, i.e. t ∈ (0, 1) \N .

Proof. We simply observe that

W 2
2 (µ1→2

t′ , µ3) ≤ W 2
µt

(µ1→2
t′ , µ3) if t′ �= t, W 2

2 (µ1→2
t , µ3) = W 2

µt
(µ1→2

t , µ3),

and we apply (7.3.9) and (7.3.5), (7.3.6), (7.3.7) to evaluate the right and left
derivatives. �

We conclude this section by a precise characterization of the right derivative
(7.3.14) at time t = 0; we need to introduce some more definitions.

Definition 7.3.5 (A new class of multiple plans). Let µ1 2 ∈ P2(X2) and µ3 ∈
P2(X). We say that µ ∈ Γ(µ1 2, µ3) belongs to Γo(µ1 2, µ3) if π1,3

# µ ∈ Γo(µ1, µ3).

Proposition 7.3.6. Let µ1 2∈Γ(µ1, µ2), µ3∈P2(X). Then for every µ∈Γo(µ1 2, µ3)
such that∫

X3
|x2 − x3|2 dµ = min

{∫
X3
|x2 − x3|2 dν : ν ∈ Γo(µ1 2, µ3)

}
(7.3.15)

we have

d

dt+
W 2

2 (µ1→2
t , µ3)|t=0

=
(
W 2

µ(µ2, µ3)−W 2
µ(µ1, µ2)−W 2

2 (µ1, µ3)
)

= −2
∫

X3
〈x2 − x1, x3 − x1〉 dµ. (7.3.16)

Proof. We already know by (7.3.14) that

d

dt+
W 2

2 (µ1→2
t , µ3)|t=0

≤
(
W 2

µ(µ2, µ3)−W 2
µ(µ1, µ2)−W 2

2 (µ1, µ3)
)
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so that we simply have to prove the opposite inequality. Let N be the negligible
set defined by (7.3.13); thanks to (7.3.14) and to the semiconcavity of the squared
distance map, we have

d

dt+
W 2

2 (µ1→2
t , µ3) = lim

t↓0,t �∈N

d

dt+
W 2

2 (µ1→2
t , µ3)

= lim
t↓0,t�∈N

1
1− t

(
W 2

µt
(µ2, µ3)−W 2

µ1 2(µ1→2
t , µ2)−W 2

2 (µ1→2
t , µ3)

)
≥

(
W 2

µ0
(µ2, µ3)−W 2

µ1 2(µ1, µ2)−W 2
2 (µ1, µ3)

)
,

where µ0 is any narrow accumulation point of µt as t ↓ 0. By Proposition 7.1.3
π1 2

# µ0 = µ1 2, π1 3
# µ0 ∈ Γo(µ1, µ3). Invoking (7.3.14) again, we conclude. �

Since the integrals of |x1−x2|2 and of |x1−x3|2 do not depend on the choice
of ν ∈ Γo(µ1 2, µ3), we can reformulate (7.3.16) as

d

dt+
W 2

2 (µ1→2
t , µ3)|t=0

= min
ν∈Γo(µ1 2,µ3)

−2
∫

X3
〈x2 − x1, x3 − x1〉 dν. (7.3.17)





Chapter 8

Absolutely Continuous Curves
in Pp(X) and the Continuity
Equation

In this chapter we endow Pp(X), when X is a separable Hilbert space, with a
kind of differential structure, consistent with the metric structure introduced in
the previous chapter. Our starting point is the analysis of absolutely continuous
curves µt : (a, b) → Pp(X) and of their metric derivative |µ′|(t): recall that these
concepts depend only on the metric structure of Pp(X), by Definition 1.1.1 and
(1.1.3). We show in Theorem 8.3.1 that for p > 1 this class of curves coincides with
(distributional, in the duality with smooth cylindrical test functions) solutions of
the continuity equation

∂

∂t
µt +∇ · (vtµt) = 0 in X × (a, b).

More precisely, given an absolutely continuous curve µt, one can find a Borel time-
dependent velocity field vt : X → X such that ‖vt‖Lp(µt) ≤ |µ′|(t) for L 1-a.e.
t ∈ (a, b) and the continuity equation holds. Conversely, if µt solve the continuity
equation for some Borel velocity field vt with

∫ b

a
‖vt‖Lp(µt) dt < +∞, then µt is

an absolutely continuous curve and ‖vt‖Lp(µt) ≥ |µ′|(t) for L 1-a.e. t ∈ (a, b).
As a consequence of Theorem 8.3.1 we see that among all velocity fields

vt which produce the same flow µt, there is a unique optimal one with smallest
Lp(µt; X)-norm, equal to the metric derivative of µt; we view this optimal field as
the “tangent” vector field to the curve µt. To make this statement more precise,
one can show that the minimality of the Lp norm of vt is characterized by the
property

vt ∈ {jq(∇ϕ) : ϕ ∈ Cyl(X))}Lp(µt;X)
for L 1-a.e. t ∈ (a, b), (8.0.1)



168 Chapter 8. A.C. Curves in Pp(X) and the Continuity Equation

where q is the conjugate exponent of p and jq : Lq(µ; X) → Lp(µ; X) is the duality
map, i.e. jq(v) = |v|q−2v (here gradients are thought as covectors, and therefore
as elements of Lq).

The characterization (8.0.1) of tangent vectors strongly suggests, in the case
p = 2, to consider the following tangent to P2(X)

TanµP2(X) := {∇ϕ : ϕ ∈ Cyl(X)}L2(µ;X) ∀µ ∈ P2(X), (8.0.2)

endowed with the natural L2 metric. Moreover, as a consequence of the charac-
terization of absolutely continuous curves in P2(X), we recover the Benamou–
Brenier (see [21], where the formula was introduced for numerical purposes)
formula for the Wasserstein distance:

W 2
2 (µ0, µ1) = min

{∫ 1

0

‖vt‖2L2(µt;X) dt :
d

dt
µt +∇ · (vtµt) = 0

}
. (8.0.3)

Indeed, for any admissible curve we use the inequality between L2 norm of vt and
metric derivative to obtain:∫ 1

0

‖vt‖2L2(µt;X) dt ≥
∫ 1

0

|µ′|2(t) dt ≥ W 2
2 (µ0, µ1).

Conversely, since we know that P2(X) is a length space, we can use a geodesic
µt and its tangent vector field vt to obtain equality in (8.0.3). Similar arguments
work in the case p > 1 as well, with the only drawback that a priori the Lp closure
of jq(∇ϕ) is not a vector space in general, so we are able only to define a tangent
cone. We also show that optimal transport maps belong to TanµPp(X) under
quite general conditions.

In this way we recover in a more general framework the Riemannian inter-
pretation of the Wasserstein distance developed by Otto in [107] (see also [106],
[83]) and used to study the long time behaviour of the porous medium equation.
In the original paper [107], (8.0.3) is derived in the case X = Rd using formally
the concept of Riemannian submersion and the family of maps φ �→ φ#µ (indexed
by µ � L d) from Arnold’s space of diffeomorphisms into the Wasserstein space.
In Otto’s formalism tangent vectors are rather thought as s = d

dtµt and these
vectors are identified, via the continuity equation, with −D · (vsµt). Moreover vs

is chosen to be the gradient of a function ψs, so that D · (∇ψsµt) = −s. Then the
metric tensor is induced by the identification s �→ ∇φs as follows:

〈s, s′〉µt
:=

∫
Rd

〈∇ψs,∇ψs′〉 dµt.

As noticed in [107], both the identification between tangent vectors and gradients
and the scalar product depend on µt, and these facts lead to a non trivial geometry
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of the Wasserstein space. We prefer instead to consider directly vt as the tangent
vectors, allowing them to be not necessarily gradients: this leads to (8.0.2).

Another consequence of the characterization of absolutely continuous curves
is a result, given in Proposition 8.4.6, concerning the infinitesimal behaviour of
the Wasserstein distance along absolutely continuous curves µt: given the tangent
vector field vt to the curve, we show that

lim
h→0

Wp(µt+h, (i + hvt)#µt)
|h| = 0 for L 1-a.e. t ∈ (a, b).

Moreover the optimal transport plans between µt and µt+h, rescaled in a suitable
way, converge to the transport plan (i× vt)#µt associated to vt (see (8.4.6)). This
proposition shows that the infinitesimal behaviour of the Wasserstein distance is
governed by transport maps even in the situations when globally optimal transport
maps fail to exist (recall that the existence of optimal transport maps requires
regularity assumptions on the initial measure µ). As a consequence, we will obtain
in Theorem 8.4.7 a formula for the derivative of the map t �→ W p

p (µt, ν).

8.1 The continuity equation in Rd

In this section we collect some results on the continuity equation

∂tµt +∇ · (vtµt) = 0 in Rd × (0, T ), (8.1.1)

which we will need in the sequel. Here µt is a Borel family of probability measures
on Rd defined for t in the open interval I := (0, T ), v : (x, t) �→ vt(x) ∈ Rd is a
Borel velocity field such that∫ T

0

∫
Rd

|vt(x)| dµt(x) dt < +∞, (8.1.2)

and we suppose that (8.1.1) holds in the sense of distributions, i.e.∫ T

0

∫
Rd

(
∂tϕ(x, t) + 〈vt(x),∇xϕ(x, t)〉

)
dµt(x) dt = 0,

∀ϕ ∈ C∞
c (Rd × (0, T )).

(8.1.3)

Remark 8.1.1 (More general test functions). By a simple regularization argument
via convolution, it is easy to show that (8.1.3) holds if ϕ ∈ C1

c

(
Rd × (0, T )

)
as well.

Moreover, under condition (8.1.2), we can also consider bounded test functions ϕ,
with bounded gradient, whose support has a compact projection in (0, T ) (that is,
the support in x need not be compact): it suffices to approximate ϕ by ϕχR where
χR ∈ C∞

c (Rd), 0 ≤ χR ≤ 1, |∇χR| ≤ 2 and χR = 1 on BR(0). This more general
choice of the test functions is consistent with the infinite-dimensional case, where
cylindrical test functions will be considered, see Definition 5.1.11 and (8.3.8).
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First of all we recall some (technical) preliminaries.

Lemma 8.1.2 (Continuous representative). Let µt be a Borel family of probability
measures satisfying (8.1.3) for a Borel vector field vt satisfying (8.1.2). Then there
exists a narrowly continuous curve t ∈ [0, T ] �→ µ̃t ∈ P(Rd) such that µt = µ̃t for
L 1-a.e. t ∈ (0, T ). Moreover, if ϕ ∈ C1

c (Rd × [0, T ]) and t1 ≤ t2 ∈ [0, T ] we have∫
Rd

ϕ(x, t2) dµ̃t2(x)−
∫

Rd

ϕ(x, t1) dµ̃t1(x)

=
∫ t2

t1

∫
Rd

(
∂tϕ + 〈∇ϕ, vt〉

)
dµt(x) dt.

(8.1.4)

Proof. Let us take ϕ(x, t) = η(t)ζ(x), η ∈ C∞
c (0, T ) and ζ ∈ C∞

c (Rd); we have

−
∫ T

0

η′(t)
(∫

Rd

ζ(x) dµt(x)
)

dt =
∫ T

0

η(t)
(∫

Rd

〈∇ζ(x), vt(x)〉 dµt(x)
)

dt,

so that the map

t �→ µt(ζ) =
∫

Rd

ζ(x) dµt(x)

belongs to W 1,1(0, T ) with distributional derivative

µ̇t(ζ) =
∫

Rd

〈∇ζ(x), vt(x)〉 dµt(x) for L 1-a.e. t ∈ (0, T ) (8.1.5)

with

|µ̇t(ζ)| ≤ V (t) sup
Rd

|∇ζ|, V (t) :=
∫

Rd

|vt(x)| dµt(x), V ∈ L1(0, T ). (8.1.6)

If Lζ is the set of its Lebesgue points, we know that L 1((0, T ) \ Lζ) = 0. Let us
now take a countable set Z which is dense in C1

c (Rd) with respect the usual C1

norm ‖ζ‖C1 = sup
Rd(|ζ|, |∇ζ|) and let us set LZ := ∩ζ∈ZLζ . The restriction of

the curve µ to LZ provides a uniformly continuous family of bounded functionals
on C1

c (Rd), since (8.1.6) shows

|µt(ζ)− µs(ζ)| ≤ ‖ζ‖C1

∫ t

s

V (λ) dλ ∀ s, t ∈ LZ .

Therefore, it can be extended in a unique way to a continuous curve {µ̃t}t∈[0,T ]

in [C1
c (Rd)]′. If we show that {µt}t∈LZ

is also tight, the extension provides a
continuous curve in P(Rd).

For, let us consider nonnegative, smooth functions ζk : Rd → [0, 1], k ∈ N,
such that

ζk(x) = 1 if |x| ≤ k, ζk(x) = 0 if |x| ≥ k + 1, |∇ζk(x)| ≤ 2.
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It is not restrictive to suppose that ζk ∈ Z. Applying the previous formula (8.1.5),
for t, s ∈ LZ we have

|µt(ζk)− µs(ζk)| ≤ ak := 2
∫ T

0

∫
k<|x|<k+1

|vλ(x)| dµλ(x) dλ,

with
∑+∞

k=1 ak < +∞. For a fixed s ∈ LZ and ε > 0, being µs tight, we can find
k ∈ N such that µs(ζk) > 1− ε/2 and ak < ε/2. It follows that

µt(Bk+1(0)) ≥ µt(ζk) ≥ 1− ε ∀ t ∈ LZ .

Now we show (8.1.4). Let us choose ϕ ∈ C1
c (Rd × [0, T ]) and set ϕε(x, t) =

ηε(t)ϕ(x, t), where ηε ∈ C∞
c (t1, t2) such that

0 ≤ ηε(t) ≤ 1, lim
ε↓0

ηε(t) = χ(t1,t2)(t) ∀ t ∈ [0, T ], lim
ε↓0

η′
ε = δt1 − δt2

in the duality with continuous functions in [0, T ]. We get

0 =
∫ T

0

∫
Rd

(
∂t(ηεϕ) + 〈∇x(ηεϕ), vt〉

)
dµt(x) dt

=
∫ T

0

ηε(t)
∫

Rd

(
∂tϕ(x, t) + 〈vt(x),∇xϕ(x, t)〉

)
dµt(x) dt

+
∫ T

0

η′
ε(t)

∫
Rd

ϕ(x, t) dµ̃t(x) dt.

Passing to the limit as ε vanishes and invoking the continuity of µ̃t, we get (8.1.4).
�

Lemma 8.1.3 (Time rescaling). Let t : s ∈ [0, T ′] → t(s) ∈ [0, T ] be a strictly
increasing absolutely continuous map with absolutely continuous inverse s := t−1.
Then (µt, vt) is a distributional solution of (8.1.1) if and only if

µ̂ := µ ◦ t, v̂ := t′v ◦ t, is a distributional solution of (8.1.1) on (0, T ′).

Proof. By an elementary smoothing argument we can assume that s is continuously
differentiable and s′ > 0. We choose ϕ̂ ∈ C1

c (Rd × (0, T ′)) and let us set ϕ(x, t) :=
ϕ̂(x, s(t)); since ϕ ∈ C1

c (Rd × (0, T )) we have

0 =
∫ T

0

∫
Rd

(
s′(t)∂sϕ̂(x, s(t)) + 〈∇ϕ̂(x, s(t)), v̂t(x)〉) dµt(x) dt

=
∫ T

0

s′(t)
∫

Rd

(
∂sϕ̂(x, s(t)) + 〈∇xϕ̂(x, s(t)),

vt(x)
s′(t)

〉
)

dµt(x) dt

=
∫ T ′

0

∫
Rd

(
∂sϕ̂(x, s) + 〈∇xϕ̂(x, s), t′(s)vt(s)(x)〉

)
dµ̂s(x) ds.

�
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When the velocity field vt is more regular, the classical method of character-
istics provides an explicit solution of (8.1.1).

First we recall an elementary result of the theory of ordinary differential
equations.

Lemma 8.1.4 (The characteristic system of ODE). Let vt be a Borel vector field
such that for every compact set B ⊂ Rd∫ T

0

(
sup
B
|vt|+ Lip(vt, B)

)
dt < +∞. (8.1.7)

Then, for every x ∈ Rd and s ∈ [0, T ] the ODE

Xs(x, s) = x,
d

dt
Xt(x, s) = vt(Xt(x, s)), (8.1.8)

admits a unique maximal solution defined in an interval I(x, s) relatively open in
[0, T ] and containing s as (relatively) internal point.
Furthermore, if t �→ |Xt(x, s)| is bounded in the interior of I(x, s) then I(x, s) =
[0, T ]; finally, if v satisfies the global bounds analogous to (8.1.7)

S :=
∫ T

0

(
sup
Rd

|vt|+ Lip(vt, R
d)
)

dt < +∞, (8.1.9)

then the flow map X satisfies∫ T

0

sup
x∈Rd

|∂tXt(x, s)| dt ≤ S, sup
t,s∈[0,T ]

Lip(Xt(·, s), Rd) ≤ eS . (8.1.10)

For simplicity, we set Xt(x) := Xt(x, 0) in the particular case s = 0 and
we denote by τ (x) := sup I(x, 0) the length of the maximal time domain of the
characteristics leaving from x at t = 0.

Remark 8.1.5 (The characteristics method for backward first order linear PDE’s).
Characteristics provide a useful representation formula for classical solutions of the
backward equation (formally adjoint to (8.1.1))

∂tϕ + 〈vt,∇ϕ〉 = ψ in Rd × (0, T ), ϕ(x, T ) = ϕT (x) x ∈ Rd, (8.1.11)

when, e.g., ψ ∈ C1
b (Rd × (0, T )), ϕT ∈ C1

b (Rd) and v satisfies the global bounds
(8.1.9), so that maximal solutions are always defined in [0, T ]. A direct calculation
shows that

ϕ(x, t) := ϕT (XT (x, t))−
∫ T

t

ψ(Xs(x, t), s) ds (8.1.12)

solve (8.1.11). For Xs(Xt(x, 0), t) = Xs(x, 0) yields

ϕ(Xt(x, 0), t) = ϕT (XT (x, 0))−
∫ T

t

ψ(Xs(x, 0), s) ds,
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and differentiating both sides with respect to t we obtain[
∂ϕ

∂t
+ 〈vt,∇ϕ〉

]
(Xt(x, 0), t) = ψ(Xt(x, 0), t).

Since x (and then Xt(x, 0)) is arbitrary we conclude that (8.1.18) is fulfilled.

Now we use characteristics to prove the existence, the uniqueness, and a
representation formula of the solution of the continuity equation, under suitable
assumption on v.

Lemma 8.1.6. Let vt be a Borel velocity field satisfying (8.1.7), (8.1.2), let µ0 ∈
P(Rd), and let Xt be the maximal solution of the ODE (8.1.8) (corresponding to
s = 0). Suppose that for some t̄ ∈ (0, T ]

τ (x) > t̄ for µ0-a.e. x ∈ Rd. (8.1.13)

Then t �→ µt := (Xt)#µ0 is a continuous solution of (8.1.1) in [0, t̄].

Proof. The continuity of µt follows easily since lims→t Xs(x) = Xt(x) for µ0-a.e.
x ∈ Rd: thus for every continuous and bounded function ζ : Rd → R the dominated
convergence theorem yields

lim
s→t

∫
Rd

ζ dµs = lim
s→t

∫
Rd

ζ(Xs(x)) dµ0(x) =
∫

Rd

ζ(Xt(x)) dµ0(x) =
∫

Rd

ζ dµt.

For any ϕ ∈ C∞
c (Rd × (0, t̄)) and for µ0-a.e. x ∈ Rd the maps t �→ φt(x) :=

ϕ(Xt(x), t) are absolutely continuous in (0, t̄), with

φ̇t(x) = ∂tϕ(Xt(x), t) + 〈∇ϕ(Xt(x), t), vt(Xt(x))〉 = Λ(·, t) ◦Xt,

where Λ(x, t) := ∂tϕ(x, t) + 〈∇ϕ(x, t), vt(x)〉. We thus have∫ T

0

∫
Rd

|φ̇t(x)| dµ0(x) dt =
∫ T

0

∫
Rd

|Λ(Xt(x), t)| dµ0(x) dt

=
∫ T

0

∫
Rd

|Λ(x, t)| dµt(x) dt

≤ Lip(ϕ)
(
T +

∫ T

0

∫
Rd

|vt(x)| dµt(x) dt
)

< +∞

and therefore

0 =
∫

Rd

ϕ(x, t̄) dµt̄(x)−
∫

Rd

ϕ(x, 0) dµ0(x) =
∫

Rd

(
ϕ(Xt̄(x), t̄)− ϕ(x, 0)

)
dµ0(x)

=
∫

Rd

(∫ t̄

0

φ̇t(x) dt
)

dµ0(x) =
∫ t̄

0

∫
Rd

(
∂tϕ + 〈∇ϕ, vt〉

)
dµt dt,

by a simple application of Fubini’s theorem. �
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We want to prove that, under reasonable assumptions, in fact any solution
of (8.1.1) can be represented as in Lemma 8.1.6. The first step is a uniqueness
theorem for the continuity equation under minimal regularity assumptions on the
velocity field. Notice that the only global information on vt is (8.1.14). The proof,
based on a classical duality argument (see for instance [57, 9]), could be much
simplified by the assumption that the velocity field is globally bounded, but we
prefer to keep here a version of the lemma stronger than the one actually needed
in the proof of Theorem 8.3.1.

Proposition 8.1.7 (Uniqueness and comparison for the continuity equation). Let
σt be a narrowly continuous family of signed measures solving ∂tσt +∇·(vtσt) = 0
in Rd × (0, T ), with σ0 ≤ 0,∫ T

0

∫
Rd

|vt| d|σt|dt < +∞, (8.1.14)

and ∫ T

0

(
|σt|(B) + sup

B
|vt|+ Lip(vt, B)

)
dt < +∞

for any bounded closed set B ⊂ Rd. Then σt ≤ 0 for any t ∈ [0, T ].

Proof. Fix ψ ∈ C∞
c (Rd × (0, T )) with 0 ≤ ψ ≤ 1, R > 0, and a smooth cut-off

function

χR(·) = χ(·/R) ∈ C∞
c (Rd) such that 0 ≤ χR ≤ 1, |∇χR| ≤ 2/R,

χR ≡ 1 on BR(0), and χR ≡ 0 on Rd \B2R(0).
(8.1.15)

We define wt so that wt = vt on B2R(0)× (0, T ), wt = 0 if t /∈ [0, T ] and

sup
Rd

|wt|+ Lip(wt, R
d) ≤ sup

B2R(0)

|vt|+ Lip(vt, B2R(0)) ∀ t ∈ [0, T ]. (8.1.16)

Let wε
t be obtained from wt by a double mollification with respect to the space

and time variables: notice that wε
t satisfy

sup
ε∈(0,1)

∫ T

0

(
sup
Rd

|wε
t |+ Lip(wε

t , R
d)
)

dt < +∞. (8.1.17)

We now build, by the method of characteristics described in Remark 8.1.5, a
smooth solution ϕε : Rd × [0, T ] → R of the PDE

∂ϕε

∂t
+ 〈wε

t ,∇ϕε〉 = ψ in Rd × (0, T ), ϕε(x, T ) = 0 x ∈ Rd. (8.1.18)

Combining the representation formula (8.1.12), the uniform bound (8.1.17), and
the estimate (8.1.10), it is easy to check that 0 ≥ ϕε ≥ −T and |∇ϕε| is uniformly
bounded with respect to ε, t and x.
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We insert now the test function ϕεχR in the continuity equation and take
into account that σ0 ≤ 0 and ϕε ≤ 0 to obtain

0 ≥ −
∫

Rd

ϕεχR dσ0 =
∫ T

0

∫
Rd

χR
∂ϕε

∂t
+ 〈vt, χR∇ϕε + ϕε∇χR〉 dσtdt

=
∫ T

0

∫
Rd

χR(ψ + 〈vt − wε
t ,∇ϕε〉) dσtdt +

∫ T

0

∫
Rd

ϕε〈∇χR, vt〉 dσtdt

≥
∫ T

0

∫
Rd

χR(ψ + 〈vt − wε
t ,∇ϕε〉) dσtdt −

∫ T

0

∫
Rd

|∇χR||vt| d|σt| dt.

Letting ε ↓ 0 and using the uniform bound on |∇ϕε| and the fact that wt = vt on
supp χR × [0, T ], we get∫ T

0

∫
Rd

χRψ dσt dt ≤
∫ T

0

∫
Rd

|∇χR||vt| d|σt| dt ≤ 2
R

∫ T

0

∫
R≤|x|≤2R

|vt| d|σt| dt.

Eventually letting R →∞ we obtain that
∫ T

0

∫
Rd ψ dσtdt ≤ 0. Since ψ is arbitrary

the proof is achieved. �

Proposition 8.1.8 (Representation formula for the continuity equation). Let µt,
t ∈ [0, T ], be a narrowly continuous family of Borel probability measures solving
the continuity equation (8.1.1) w.r.t. a Borel vector field vt satisfying (8.1.7) and
(8.1.2). Then for µ0-a.e. x ∈ Rd the characteristic system (8.1.8) admits a globally
defined solution Xt(x) in [0, T ] and

µt = (Xt)#µ0 ∀ t ∈ [0, T ]. (8.1.19)

Moreover, if ∫ T

0

∫
Rd

|vt(x)|p dµt(x) dt < +∞ for some p > 1, (8.1.20)

then the velocity field vt is the time derivative of Xt in the Lp-sense

lim
h↓0

∫ T−h

0

∫
Rd

∣∣∣∣Xt+h(x)−Xt(x)
h

− vt(Xt(x))
∣∣∣∣p dµ0(x) dt = 0, (8.1.21)

lim
h→0

Xt+h(x, t)− x

h
= vt(x) in Lp(µt; Rd) for L 1-a.e. t ∈ (0, T ). (8.1.22)

Proof. Let Es = {τ > s} and let us use the fact that, proved in Lemma 8.1.6,
that t �→ Xt#(χEs

µ0) is the solution of (8.1.1) in [0, s]. By Proposition 8.1.7 we
get also

Xt#(χEs
µ0) ≤ µt whenever 0 ≤ t ≤ s.
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Using the previous inequality with s = t we can estimate:∫
Rd

sup
(0,τ(x))

|Xt(x)− x| dµ0(x) ≤
∫

Rd

∫ τ(x)

0

|Ẋt(x)| dµ0(x)

=
∫

Rd

∫ τ(x)

0

|vt(Xt(x))| dµ0(x)

=
∫ T

0

∫
Et

|vt(Xt(x))| dµ0(x) dt

≤
∫ T

0

∫
Rd

|vt| dµt dt.

It follows that Xt(x) is bounded on (0, τ (x)) for µ0-a.e. x ∈ Rd and therefore Xt

is globally defined in [0, T ] for µ0-a.e. in Rd. Applying Lemma 8.1.6 and Proposi-
tion 8.1.7 we obtain (8.1.19).

Now we observe that the differential quotient Dh(x, t) := h−1(Xt+h(x) −
Xt(x)) can be bounded in Lp(µ0 ×L 1) by∫ T−h

0

∫
Rd

∣∣∣∣Xt+h(x)−Xt(x)
h

∣∣∣∣p dµ0(x) dt

=
∫ T−h

0

∫
Rd

∣∣∣∣∣1h
∫ h

0

vt+s(Xt+s(x)) ds

∣∣∣∣∣
p

dµ0(x) dt

≤
∫ T−h

0

∫
Rd

1
h

∫ h

0

|vt+s(Xt+s(x))|p ds dµ0(x) dt

≤
∫ T

0

∫
Rd

|vt(Xt(x))|p dµ0(x) dt < +∞.

Since we already know that Dh is pointwise converging to vt ◦Xt µ0 ×L 1-a.e. in
Rd × (0, T ), we obtain the strong convergence in Lp(µ0 ×L 1), i.e. (8.1.21).

Finally, we can consider t �→ Xt(·) and t �→ vt(Xt(·) as maps from (0, T ) to
Lp(µ0; Rd); (8.1.21) is then equivalent to

lim
h↓0

∫ T−h

0

∥∥∥∥Xt+h −Xt

h
− vt(Xt)

∥∥∥∥p

Lp(µ0;Rd)

dt = 0,

and it shows that t �→ Xt(·) belongs to ACp(0, T ;Lp(µ0; Rd)). General results for
absolutely continuous maps in reflexive Banach spaces (see 1.1.3) yield that Xt is
differentiable L 1-a.e. in (0, T ), so that

lim
h→0

∫
Rd

∣∣∣∣Xt+h(x)−Xt(x)
h

− vt(Xt(x))
∣∣∣∣p dµ0(x) = 0 for L 1-a.e. t ∈ (0, T ).

Since Xt+h(x) = Xh(Xt(x), t), we obtain (8.1.22). �
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Now we state an approximation result for general solution of (8.1.1) with
more regular ones, satisfying the conditions of the previous Proposition 8.1.8.

Lemma 8.1.9 (Approximation by regular curves). Let p ≥ 1 and let µt be a time-
continuous solution of (8.1.1) w.r.t. a velocity field satisfying the p-integrability
condition ∫ T

0

∫
Rd

|vt(x)|p dµt(x) dt < +∞. (8.1.23)

Let (ρε) ⊂ C∞(Rd) be a family of strictly positive mollifiers in the x variable,
(e.g. ρε(x) = (2πε)−d/2 exp(−|x|2/2ε)), and set

µε
t := µt ∗ ρε, Eε

t := (vtµt) ∗ ρε, vε
t :=

Eε
t

µε
t

. (8.1.24)

Then µε
t is a continuous solution of (8.1.1) w.r.t. vε

t , which satisfy the local regu-
larity assumptions (8.1.7) and the uniform integrability bounds∫

Rd

|vε
t (x)|p dµε

t (x) ≤
∫

Rd

|vt(x)|p dµt(x) ∀ t ∈ (0, T ). (8.1.25)

Moreover, Eε
t → vtµt narrowly and

lim
ε↓0

‖vε
t ‖Lp(µε

t ;Rd) = ‖vt‖Lp(µt;Rd) ∀t ∈ (0, T ). (8.1.26)

Proof. With a slight abuse of notation, we are denoting the measure µε
t and its

density w.r.t. L d by the same symbol. Notice first that |Eε|(t, ·) and its spatial
gradient are uniformly bounded in space by the product of ‖vt‖L1(µt) with a con-
stant depending on ε, and the first quantity is integrable in time. Analogously,
|µε

t |(t, ·) and its spatial gradient are uniformly bounded in space by a constant de-
pending on ε. Therefore, as vε

t = Eε
t /µε

t , the local regularity assumptions (8.1.7)
is fulfilled if

inf
|x|≤R, t∈[0,T ]

µε
t (x) > 0 for any ε > 0, R > 0.

This property is immediate, since µε
t are continuous w.r.t. t and equi-continuous

w.r.t. x, and therefore continuous in both variables.
Lemma 8.1.10 shows that (8.1.25) holds. Notice also that µε

t solve the conti-
nuity equation

∂tµ
ε
t +∇ · (vε

t µ
ε
t ) = 0 in Rd × (0, T ), (8.1.27)

because, by construction, ∇ · (vε
t µε

t ) = ∇ · ((vtµt) ∗ ρε) = (∇ · (vtµt)) ∗ ρε. Finally,
general lower semicontinuity results on integral functionals defined on measures of
the form

(E, µ) �→
∫

Rd

∣∣∣∣Eµ
∣∣∣∣p dµ

(see for instance Theorem 2.34 and Example 2.36 in [11]) provide (8.1.26). �
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Lemma 8.1.10. Let p ≥ 1, µ ∈ P(Rd) and let E be a Rm-valued measure in Rd

with finite total variation and absolutely continuous with respect to µ. Then∫
Rd

∣∣∣∣E ∗ ρ

µ ∗ ρ

∣∣∣∣p µ ∗ ρ dx ≤
∫

Rd

∣∣∣∣Eµ
∣∣∣∣pdµ

for any convolution kernel ρ.

Proof. We use Jensen inequality in the following form: if Φ : Rm+1 → [0,+∞] is
convex, l.s.c. and positively 1-homogeneous, then

Φ
(∫

Rd

ψ(x) dθ(x)
)
≤

∫
Rd

Φ(ψ(x)) dθ(x)

for any Borel map ψ : Rd → Rm+1 and any positive and finite measure θ in Rd

(by rescaling θ to be a probability measure and looking at the image measure ψ#θ
the formula reduces to the standard Jensen inequality). Fix x ∈ Rd and apply the
inequality above with ψ := (E/µ, 1), θ := ρ(x− ·)µ and

Φ(z, t) :=

⎧⎪⎪⎨⎪⎪⎩
|z|p
tp−1

if t > 0

0 if (z, t) = (0, 0)
+∞ if either t < 0 or t = 0, z �= 0,

to obtain∣∣∣∣E ∗ ρ(x)
µ ∗ ρ(x)

∣∣∣∣p µ ∗ ρ(x) = Φ
(∫

Rd

E

µ
(y)ρ(x− y) dµ(y),

∫
ρ(x− y)dµ(y)

)
≤

∫
Rd

Φ(
E

µ
(y), 1)ρ(x− y) dµ(y)

=
∫

Rd

∣∣∣∣Eµ
∣∣∣∣p(y)ρ(x− y) dµ(y).

An integration with respect to x leads to the desired inequality. �

8.2 A probabilistic representation of solutions of the
continuity equation

In this section we extend Proposition 8.1.8 to the case when the vector field fails to
satisfy (8.1.7) and is in particular not Lipschitz w.r.t. x. Of course in this situation
we have to take into account that characteristics are not unique, and we do that
by considering suitable probability measures in the space ΓT of continuous maps
from [0, T ] into Rd, endowed with the sup norm. The results presented here are not
used in the rest of the book, but we believe that they can have an independent
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interest. Indeed, this kind of notion plays an important role in the uniqueness
and stability of Lagrangian flows in [10] and provides an alternative way to the
approach of [57].

Our basic representation formula for solutions µη
t of the continuity equation

(8.1.1) is given by∫
Rd

ϕ dµη
t :=

∫
Rd×ΓT

ϕ(γ(t)) dη(x, γ) ∀ϕ ∈ C0
b (Rd), t ∈ [0, T ] (8.2.1)

where η is a probability measure in Rd × ΓT . In the case when η is the push
forward under x �→ (x, X·(x)) of µ0 (here we are considering X as a function
mapping x ∈ Rd into the solution curve t �→ Xt(x) in ΓT ) we see that the measures
µη

t implicitly defined by (8.2.1) simply reduce to the standard ones considered in
Proposition 8.1.8, i.e. µη

t = Xt(·)#µ0.
By introducing the evaluation maps

et : (x, γ) ∈ Rd × ΓT �→ γ(t) ∈ Rd, for t ∈ [0, T ], (8.2.2)

(8.2.1) can also be written as
µη

t = (et)#η. (8.2.3)

Theorem 8.2.1 (Probabilistic representation). Let µt : [0, T ] → P(Rd) be a nar-
rowly continuous solution of the continuity equation (8.1.1) for a suitable Borel
vector field v(t, x) = vt(x) satisfying (8.1.20) for some p > 1. Then there exists a
probability measure η in Rd × ΓT such that

(i) η is concentrated on the set of pairs (x, γ) such that γ ∈ ACp(0, T ; Rd) is a
solution of the ODE γ̇(t) = vt(γ(t)) for L 1-a.e. t ∈ (0, T ), with γ(0) = x;

(ii) µt = µη
t for any t ∈ [0, T ], with µη

t defined as in (8.2.1).

Conversely, any η satisfying (i) and∫ T

0

∫
Rd×ΓT

|vt(γ(t))| dη(x, γ) dt < +∞, (8.2.4)

induces via (8.2.1) a solution of the continuity equation, with µ0 = γ(0)#η.

Proof. We first prove the converse implication, since its proof is much simpler.
Indeed, notice that due to assumption (i) the set F of all (t, x, γ) such that ei-
ther γ̇(t) does not exist or it is different from vt(γ(t)) is L 1 × η-negligible. As a
consequence, we have

γ̇(t) = vt(γ(t)) η-a.e., for L 1-a.e. t ∈ (0, T ).

It is immediate to check using (8.2.1) that t �→ µη
t is narrowly continuous. Now

we check that t �→ ∫
ζ dµη

t is absolutely continuous for ζ ∈ C1(Rd) bounded and
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with a bounded gradient. Indeed, for s < t in I we have∣∣∣∣∫
Rd

ζ dµη
s −

∫
Rd

ζ dµη
t

∣∣∣∣ ≤
∫ t

s

∫
Rd×ΓT

|〈∇ζ(γ(τ )), γ̇(τ)〉| dη dτ

≤ ‖∇ζ‖∞
∫ t

s

∫
Rd×ΓT

|vτ (γ(τ))| dη dτ.

By (8.2.4) this inequality immediately gives the absolute continuity of the map.
We have also

d

dt

∫
Rd

ζ dµη
t =

d

dt

∫
Rd×ΓT

ζ(γ(t)) dη

=
∫

Rd×ΓT

〈∇ζ(γ), γ̇(t))〉dη =
∫

Rd

〈∇ζ, vt〉 dµη
t

for L 1-a.e. t ∈ (0, T ). Since this pointwise derivative is also a distributional one,
this proves that (8.1.4) holds for test function ϕ of the form ζ(x)ψ(t) and therefore
for all test functions.

Conversely, let µt, vt be given as in the statement of the theorem and let
us apply the regularization Lemma 8.1.9, finding approximations µε

t , vε
t satisfying

the continuity equation, the uniform integrability condition (8.1.2) and the local
regularity assumptions (8.1.7). Therefore, we can apply Proposition 8.1.8, obtain-
ing the representation formula µε

t = (Xε
t )#µε

0, where Xε
t is the maximal solution

of the ODE Ẋε
t = vε

t (X
ε
t ) with the initial condition Xε

0 = x (see Lemma 8.1.4).
Thinking Xε as a map from Rd to ΓT , we thus define

ηε := (i×Xε
· )#µε

0 ∈ P(Rd × ΓT ).

Now we claim that the family ηε is tight as ε ↓ 0 and that any limit point η fulfills
(i) and (ii). The tightness of the family can be obtained from Lemma 5.2.2, by
choosing the maps r1, r2 defined in Rd × ΓT

r1 : (x, γ) �→ x ∈ Rd, r2 : (x, γ) �→ γ − x ∈ ΓT , (8.2.5)

and noticing that r : r1 × r2 : Rd × ΓT → Rd × ΓT is proper, the family r1
#ηε is

given by the first marginals µε
0 which are tight (indeed, they narrowly converge to

µ0), while βε := r2
#ηε satisfy∫

ΓT

∫ T

0

|γ̇|p dt dβε =
∫

Rd

∫ T

0

|Ẋε
t (x)|p dt dµε

0(x)

=
∫

Rd

∫ T

0

|vε
t (X

ε
t )|p dt dµε

0(x) =
∫ T

0

∫
Rd

|vε
t (x)|p dµε

t (x) dt

≤
∫ T

0

∫
Rd

|vt(x)|p dµt(x) dt.
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Since for p > 1 the functional γ �→ ∫ T

0
|γ̇|p dt (set to +∞ if γ /∈ ACp((0, T ); Rd) or

γ(0) �= 0) has compact sublevel sets in ΓT , also βε is tight, due to Remark 5.1.5.
Let now η be a narrow limit point of ηε, along some infinitesimal sequence

εi. Since∫
Rd

ϕ dµηεi

t =
∫

Rd×ΓT

ϕ(γ(t)) dηεi =
∫

Rd

ϕ(Xεi
t ) dµεi

0 =
∫

Rd

ϕ dµεi
t

for any ϕ ∈ C0
b (Rd), we can pass to the limit as i →∞ to obtain that µη

t = µt, so
that condition (ii) holds.

Finally we check condition (i). Let w(t, x) = wt(x) be a bounded uniformly
continuous function, and let us prove the estimate∫

Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

wτ (γ(τ )) dτ

∣∣∣∣p dη(x, γ) ≤ (2T )p−1

∫ T

0

∫
Rd

|vτ−wτ |p dµτ dτ.

(8.2.6)
Indeed, we have∫

Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

wτ (γ(τ )) dτ

∣∣∣∣p dηε(x, γ)

=
∫

Rd

∣∣∣∣Xε
t (x)− x−

∫ t

0

wτ (Xε
τ (x)) dτ

∣∣∣∣p dµ0(x)

=
∫

Rd

∣∣∣∣∫ t

0

(vε
τ − wτ )(Xε

τ (x)) dτ

∣∣∣∣p dµ0(x) ≤ tp−1

∫ t

0

∫
Rd

|vε
τ − wτ |p dµε

t dτ

≤ (2t)p−1

∫ t

0

∫
Rd

|vε
τ − wε

τ |p dµε
t dτ + (2t)p−1

∫ t

0

∫
Rd

|wε
τ − wτ |p dµε

t dτ

≤ (2T )p−1

∫ T

0

∫
Rd

|vτ − wτ |p dµτ dτ + (2T )p−1

∫ T

0

sup
x∈Rd

|wε
τ (x)− wτ (x)|p dτ,

where in the last two inequalities we have added and subtracted wε
τ := wτ ∗ ρε

and then used Lemma 8.1.10. Setting ε = εi and passing to the limit as i →
∞ we recover (8.2.6), since the function under the integral is a continuous and
nonnegative test function in Rd × ΓT .

Now let µ :=
∫ T

0
µt dL 1(t) the Borel measure on Rd × (0, T ) whose disin-

tegration with respect to L 1 is {µt}t∈(0,T ) and let wn ∈ C0
c (Rd × (0, T ); Rd) be

continuous functions with compact support converging to v in Lp(µ; Rd). Using
the fact that µt = µη

t we have∫
Rd×ΓT

∫ T

0

|wn
τ (γ(τ ))− vτ (γ(τ ))|p dτ dη =

∫ T

0

∫
Rd

|wn
τ − vτ |p dµτ dτ → 0,

as n → ∞ so that, using the triangular inequality in Lp(η), we can pass to the
limit as n →∞ in (8.2.6) with w = wn to obtain∫

Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

vτ (γ(τ )) dτ

∣∣∣∣p dη(x, γ) = 0 ∀ t ∈ [0, T ], (8.2.7)
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and therefore

γ(t)− x−
∫ t

0

vτ (γ(τ )) dτ = 0 for η-a.e. (x, γ)

for any t ∈ [0, T ]. Choosing all t’s in (0, T )∩Q we obtain an exceptional η-negligible
set that does not depend on t and use the continuity of γ to show that the identity
is fulfilled for any t ∈ [0, T ]. �

Notice that due to condition (i) the measure η in the previous theorem can
also be identified with a measure σ in ΓT whose projection on Rd via the map
e0 : γ �→ γ(0) is µ0 and whose corresponding disintegration σ =

∫
Rd σx dµ0(x) is

made by probability measures σx concentrated on solutions of the ODE starting
from x at t = 0. In this case (8.2.1) takes the simpler equivalent form∫

Rd

ϕ dµσ
t :=

∫
ΓT

ϕ(γ(t)) dσ(γ) ∀ϕ ∈ C0
b (Rd), t ∈ [0, T ]. (8.2.8)

Finally we notice that the results of this section could be easily be extended
to the case when Rd is replaced by a separable Hilbert space, using a finite dimen-
sional projection argument (see in particular the last part of the proof of Theorem
8.3.1).

8.3 Absolutely continuous curves in Pp(X)

In this section we show that the continuity equation characterizes the class of
absolutely continuous curves in Pp(X), with p > 1 and X separable Hilbert space
(see [9] for a discussion of the degenerate case p = 1 when X = Rd).

Let us first recall that the map jp : Lp(µ;X) → Lq(µ; X) defined by (here
q = p′ is the conjugate exponent of p)

v �→ jp(v) :=

{
|v|p−2v if v �= 0,
0 if v = 0,

(8.3.1)

provides the differential of the convex functional

v ∈ Lp(µ;X) �→ 1
p

∫
X

|v(x)|p dµ(x), (8.3.2)

for every measure µ ∈ P(X); in particular it satisfies

‖jp(v)‖q
Lq(µ,X)

= ‖v‖p
Lp(µ,X)

=
∫

X

〈jp(v), v〉 dµ(x), (8.3.3)

w = jp(v) ⇐⇒ v = jq(w), (8.3.4)
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1
p
‖v‖p

Lp(µ;X) −
1
p
‖w‖p

Lp(µ;X) ≥ 〈jp(w), v − w〉 ∀ v, w ∈ Lp(µ; X). (8.3.5)

Recall that the space of smooth cylindrical functions Cyl(X) has been introduced
in Definition 5.1.11; the space Cyl(X × I), I = (a, b) being an open interval, is
defined analogously considering functions ψ ∈ C∞

c (Rd×I) and functions ϕ(x, t) =
ψ(π(x), t).

Theorem 8.3.1 (Absolutely continuous curves and the continuity equation). Let I
be an open interval in R, let µt : I → Pp(X) be an absolutely continuous curve
and let |µ′| ∈ L1(I) be its metric derivative, given by Theorem 1.1.2. Then there
exists a Borel vector field v : (x, t) �→ vt(x) such that

vt ∈ Lp(µt;X), ‖vt‖Lp(µt;X) ≤ |µ′|(t) for L 1-a.e. t ∈ I, (8.3.6)

and the continuity equation

∂t µt +∇ · (vtµt) = 0 in X × I (8.3.7)

holds in the sense of distributions, i.e.∫
I

∫
X

(
∂tϕ(x, t) + 〈vt(x),∇xϕ(x, t)〉

)
dµt(x) dt = 0 ∀ϕ ∈ Cyl(X × I). (8.3.8)

Moreover, for L 1-a.e. t ∈ I jp(vt) belongs to the closure in Lq(µt, X) of the
subspace generated by the gradients ∇ϕ with ϕ ∈ Cyl(X).
Conversely, if a narrowly continuous curve µt : I → Pp(X) satisfies the continuity
equation for some Borel velocity field vt with ‖vt‖Lp(µt;X) ∈ L1(I) then µt : I →
Pp(X) is absolutely continuous and |µ′|(t) ≤ ‖vt‖Lp(µt;X) for L 1-a.e. t ∈ I.

Proof. Taking into account Lemma 1.1.4 and Lemma 8.1.3, we will assume with
no loss of generality that |µ′| ∈ L∞(I) in the proof of the first statement. To fix
the ideas, we also assume that I = (0, 1).

First of all we show that for every ϕ ∈ Cyl(X) the function t �→ µt(ϕ) is
absolutely continuous, and its derivative can be estimated with the metric deriva-
tive of µt. Indeed, for s, t ∈ I we have, for µst ∈ Γo(µs, µt) and using the Hölder
inequality,

|µt(ϕ)− µs(ϕ)| =
∣∣∣∣∫

X×X

(
ϕ(y)− ϕ(x)

)
dµst

∣∣∣∣ ≤ Lip(ϕ)Wp(µs, µt),

whence the absolute continuity follows. In order to estimate more precisely the
derivative of µt(ϕ) we introduce the upper semicontinuous and bounded map

H(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
|∇ϕ(x)| if x = y,

|ϕ(x)− ϕ(y)|
|x− y| if x �= y,
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and notice that, setting µh = µ(s+h)s, we have

|µs+h(ϕ)− µs(ϕ)|
|h| ≤ 1

|h|
∫

X×X

|x− y|H(x, y) dµh

≤ Wp(µs+h, µs)
|h|

(∫
X×X

Hq(x, y) dµh

)1/q

,

where q is the conjugate exponent of p. If t is a point where s �→ µs is metri-
cally differentiable, using the fact that µh → (x, x)#µt narrowly (because their
marginals are narrowly converging, any limit point belongs to Γo(µt, µt) and is
concentrated on the diagonal of X ×X) we obtain

lim sup
h→0

|µt+h(ϕ)− µt(ϕ)|
|h| ≤ |µ′|(t)

(∫
X

|H|q(x, x) dµt

)1/q

= |µ′|(t)‖∇ϕ‖Lq(µt;X).

(8.3.9)
Set Q = X × I and let µ =

∫
µt dt ∈ P(Q) be the measure whose disintegration

is {µt}t∈I . For any ϕ ∈ Cyl(Q) we have∫
Q

∂sϕ(x, s) dµ(x, s) = lim
h↓0

∫
Q

ϕ(x, s)− ϕ(x, s− h)
h

dµ(x, s)

= lim
h↓0

∫
I

1
h

( ∫
X

ϕ(x, s) dµs(x)−
∫

X

ϕ(x, s) dµs+h(x)
)

ds.

Taking into account (8.3.9), Fatou’s Lemma yields∣∣∣∣∫
Q

∂sϕ(x, s) dµ(x, s)
∣∣∣∣ ≤ ∫

J

|µ′|(s)
(∫

X

|∇ϕ(x, s)|q dµs(x)
)1/q

ds

≤
( ∫

J

|µ′|p(s) ds
)1/p(∫

Q

|∇ϕ(x, s)|q dµ(x, s)
)1/q

,

(8.3.10)
where J ⊂ I is any interval such that suppϕ ⊂ J ×X . If V denotes the closure
in Lq(µ;X) of the subspace V :=

{
∇ϕ, ϕ ∈ Cyl(Q)

}
, the previous formula says

that the linear functional L : V → R defined by

L(∇ϕ) := −
∫

Q

∂sϕ(x, s) dµ(x, s)

can be uniquely extended to a bounded functional on V . Therefore the minimum
problem

min
{

1
q

∫
Q

|w(x, s)|q dµ(x, s)− L(w) : w ∈ V

}
(8.3.11)

admits a unique solution w ∈ V such that v := jq(w) satisfies∫
Q

〈v(x, s),∇ϕ(x, s)〉dµ(x, s) = 〈L,∇ϕ〉 ∀ϕ ∈ Cyl(Q). (8.3.12)
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Setting vt(x) = v(x, t) and using the definition of L we obtain (8.3.8). Moreover,
choosing a sequence (∇ϕn) ⊂ V converging to w in Lq(µ; X), it is easy to show
that for L 1-a.e. t ∈ I there exists a subsequence n(i) (possibly depending on t)
such that ∇ϕn(i)(·, t) ∈ Cyl(X) converge in Lq(µt; X) to w(·, t) = jp(v(·, t)).

Finally, choosing an interval J ⊂ I and η ∈ C∞
c (J) with 0 ≤ η ≤ 1, (8.3.12)

and (8.3.10) yield∫
Q

η(s)|v(x, s)|p dµ(x, s) =
∫

Q

η〈v, w〉 dµ = lim
n→∞

∫
Q

η〈v,∇ϕn〉 dµ

= lim
n→∞ 〈L,∇(ηϕn)〉 ≤

(∫
J

|µ′|p(s) ds
)1/p

lim
n→∞

(∫
X×J

|∇ϕn|q dµ
)1/q

=
(∫

J

|µ′|p(s) ds
)1/p(∫

X×J

|w|q dµ
)1/q

=
(∫

J

|µ′|p(s) ds
)1/p(∫

X×J

|v|p dµ
)1/q

.

Taking a sequence of smooth approximations of the characteristic function of J
we obtain ∫

J

∫
X

|vs(x)|p dµs(x) ds ≤
∫

J

|µ′|p(s) ds, (8.3.13)

and therefore
‖vt‖Lp(µt,X) ≤ |µ′|(t) for L 1-a.e. t ∈ I.

Now we show the converse implication, assuming first that X = Rd. We apply the
regularization Lemma 8.1.9, finding approximations µε

t , vε
t satisfying the continu-

ity equation, the uniform integrability condition (8.1.2) and the local regularity
assumptions (8.1.7). Therefore, we can apply Proposition 8.1.8, obtaining the rep-
resentation formula µε

t = (T ε
t )#µε

0, where T ε
t is the maximal solution of the ODE

Ṫ ε
t = vε

t (T ε
t ) with the initial condition T ε

0 = x (see Lemma 8.1.4).
Now, taking into account Lemma 8.1.10, we estimate∫

Rd

|T ε
t2

(x)− T ε
t1

(x)|p dµε
0 ≤ (t2 − t1)p−1

∫
Rd

∫ t2

t1

|Ṫ ε
t (x)|p dt dµε

0(8.3.14)

= (t2 − t1)p−1

∫ t2

t1

∫
Rd

|vε
t (x)|p dµε

t dt

≤ (t2 − t1)p−1

∫ t2

t1

∫
Rd

|vt|p dµtdt,

therefore the transport plan γε := (T ε
t1
× T ε

t2
)#µε

0 satisfies

W p
p (µε

t1
, µε

t2
) ≤

∫
R2d

|x− y|p dγε ≤ (t2 − t1)p−1

∫ t2

t1

∫
Rd

|vt|p dµt dt.

Since for every t ∈ I µε
t converges narrowly to µt as ε → 0, Lemma 7.1.3 shows

that for any limit point γ of γε we have

W p
p (µt1 , µt2) ≤

∫
R2d

|x− y|p dγ ≤ (t2 − t1)p−1

∫ t2

t1

∫
Rd

|vt|p dµtdt.
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Since t1 and t2 are arbitrary this implies that µt is absolutely continuous and that
its metric derivative is less than ‖vt‖Lp(µt;X) for L 1-a.e. t ∈ I.

We conclude the proof considering the general infinite-dimensional case and
following a typical reduction argument, by projecting measures on finite dimen-
sional subspaces. Let πd : X → Rd be the canonical maps, given by (5.1.28) for an
orthonormal basis (en) of X , let µd

t := πd
#µt ∈ P(Rd), and let {µty}y∈Rd be the

disintegration of µt with respect to µd
t as in Theorem 5.3.1. Notice that considering

test functions ϕ = ψ ◦ πd in (8.1.3), with ∇ϕ = (πd)∗ ◦ ∇ψ ◦ πd, gives

d

dt

∫
X

ϕ dµt(x) =
∫

X

〈πd(vt),∇ψ ◦ πd〉 dµt(x)

=
∫

Rd

(∫
(πd)−1(y)

〈πd(vt),∇ψ ◦ πd〉 dµty(x)
)

dµd
t (y)

=
∫

Rd

〈
∫

(πd)−1(y)

πd
(
vt(x)

)
dµty(x),∇ψ(y)〉 dµd

t (y) =
∫

Rd

〈vd
t (y),∇ψ(y)〉 dµd

t (y),

with vd
t (y) :=

∫
(πd)−1(y)

πd
(
vd

t (x)
)
dµty(x), and therefore

∂t µd
t +∇ · (vd

t µd
t ) = 0 in Rd × I.

Notice also that, by similar calculations,∣∣∣∣∫
Rd

〈vd
t (y), χ(y)〉 dµd

t (y)
∣∣∣∣ =

∣∣∣∣∫
X

〈πd(vt(x)), χ(πd(x))〉 dµt

∣∣∣∣
≤ ‖vt‖Lp(µt;X)‖χ‖Lq(µd

t ;Rd)

for any χ ∈ L∞(µd
t ; Rd), hence ‖vd

t ‖Lp(µd
t ;Rd) ≤ ‖vt‖Lp(µt;X). Therefore t �→ µd

t is
an absolutely continuous curve in Pp(Rd) and

Wp(µd
t1

, µd
t2

) ≤
∫ t2

t1

‖vd
t ‖Lp(µd

t ;Rd) dt ≤
∫ t2

t1

‖vt‖Lp(µt;X) dt ∀t1, t2 ∈ I, t1 ≤ t2.

Let now
µ̂d

t = (πd)∗#µd
t = π̂d

#µt,

be the image of the measures µd
t under the isometries (πd)∗ : y �→ ∑d

1 yiei. Passing
to the limit as d →∞ and using the narrow convergence of µ̂d

t to µt and (7.1.11)
we obtain

Wp(µt1 , µt2) ≤
∫ t2

t1

‖vt‖Lp(µt,X) dt ∀t1, t2 ∈ I, t1 ≤ t2.

This proves that µt is absolutely continuous and that its metric derivative can be
estimated with ‖vt‖Lp(µt;X). �
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In the case when the measures are constant in time, by combining the previ-
ous finite dimensional projection argument and the smoothing technique of Lemma
8.1.9, one obtains an important approximation property. Let us first collect some
preliminary useful properties of orthogonal projections of measures and vector
fields, some of which we already proved in the last part of the above proof.

Lemma 8.3.2 (Finite dimensional projection of vector fields). Let µ ∈ Pp(X),
v ∈ Lp(µ; X), and let {en}∞n=1 be a complete orthonormal system of X, with the
associated canonical maps πd, (πd)∗, π̂d given by (5.1.28), (5.1.29), and (5.1.30).
We consider the finite dimensional subspaces Xd := span(e1, . . . , ed), the measures
µ̂d := π̂d

#µ, the disintegration {µx}x∈Xd of µ w.r.t. µ̂d given by Theorem 5.3.1,
and the vector field

v̂d(x) :=
∫

(π̂d)−1(x)

π̂d(v(y)) dµx(y) for µ̂d-a.e. x ∈ Xd. (8.3.15)

The following properties hold:

(i) supp µ̂d ⊂ Xd, µ̂d → µ in Pp(X) as d →∞. If µ is regular then also µ̂d|Xd

is regular;

(ii) v̂d ∈ Lp(µ̂d; Xd) with

‖v̂d‖Lp(µ̂d;Xd) ≤ ‖v‖Lp(µ;X); (8.3.16)

(iii) v̂d is characterized by the following identity∫
X

〈ζ(x), v̂d(x)〉 dµ̂d(x) =
∫

X

〈π̂dζ(π̂d(x)), v(x)〉dµ(x), (8.3.17)

for every bounded Borel vector field ζ : X → X;

(iv) If ∇ · (vµ) = 0 (in the duality with smooth cylindrical maps), then also
∇ · (v̂dµ̂d) = 0;

(v) for every continuous function f : X × X → R with p-growth according to
(5.1.21) we have

lim
d→∞

∫
X×X

f(x, v̂d(x)) dµ̂d(x) =
∫

X×X

f(x, v(x)) dµ(x). (8.3.18)

In particular, v̂dµ̂d → vµ in the duality with C0
b (X; X) and

lim
d→∞

‖v̂d‖Lp(µd;X) = ‖v‖Lp(µ;X). (8.3.19)

Proof. (i) is immediate and we have seen in the previous proof that (ii) is a direct
consequence of (iii); in order to check this point we simply use the Definition
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(8.3.15) of v̂d obtaining∫
X

〈ζ(x), v̂d(x)〉 dµ̂d(x) =
∫

X

〈ζ(x),
∫

(π̂d)−1(x)

π̂dv(y) dµx(y)〉 dµ̂d(x)

=
∫

X

∫
(π̂d)−1(x)

〈ζ(π̂d(y)), π̂dv(y)〉 dµx(y) dµ̂d(x)

=
∫

X

〈ζ(π̂d(x)), π̂dv(x)〉 dµ(x) =
∫

X

〈π̂dζ(x), v(x)〉 dµ(x).

(iv) follows by (iii) simply choosing ζ := ∇(χ̂d
Rϕ), for ϕ ∈ Cyl(X) and χ̂d

R :=
χR ◦ πd as in (8.1.15), and observing that

π̂d
(∇(χ̂d

R(π̂d)ϕ(π̂d))
)

= ∇(
(χ̂d

Rϕ) ◦ π̂d
)
, (χ̂d

Rϕ) ◦ π̂d ∈ Cyl(X).

Therefore we get∫
X

〈∇ϕ, v̂d〉 dµ̂d = lim
R↑+∞

∫
X

〈∇(χ̂d
Rϕ), v̂d〉 dµ̂d = lim

R↑+∞

∫
X

〈∇(
(χ̂d

rϕ) ◦ π̂d
)
, v〉 dµ=0.

Finally, (8.3.17) easily yields

lim
d→∞

∫
X

〈ζ, v̂d〉 dµ̂d =
∫

X

〈ζ, v〉 dµ ∀ ζ ∈ C0
b (X; X); (8.3.20)

taking into account of (8.3.16), of Definition 5.4.3, and of Theorem 5.4.4, we
conclude. �
Proposition 8.3.3 (Approximation by regular measures). For any µ ∈ Pp(X),
any v ∈ Lp(µ; X) such that ∇ · (vµ) = 0 (in the duality with smooth cylindrical
functions), and any complete orthonormal system {en}n≥1, there exist measures
µh ∈ Pp(X) and vectors vh ∈ Lp(µh; X), h ∈ N, such that

i. supp µh ⊂ Xh := span(e1, . . . , eh) (in the finite dimensional case we simply
set Xh = X),

ii. µh|Xh
∈ Pr

p (Xh),

iii. vh(x) ∈ Xh(x) ∀x ∈ X, ∇ · (vhµh) = 0,

iv. µh → µ in Pp(X) as h →∞,

v. for every continuous function f : X × X → R with p-growth according to
(5.1.21) we have

lim
h→∞

∫
X×X

f(x, vh(x)) dµh(x) =
∫

X×X

f(x, v(x)) dx. (8.3.21)

In particular, vhµh → vµ in the duality with C0
b (X; X) and

lim
h→∞

‖vh‖Lp(µh;X) = ‖v‖Lp(µ;X).
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Proof. To each finite dimensional measure and vector field provided by Lemma
8.3.2 we apply the smoothing argument of Lemma 8.1.9; the proof is achieved by
a simple diagonal argument. �

8.4 The tangent bundle to Pp(X)

Notice that the continuity equation (8.3.7) involves only the action of vt on ∇ϕ
with ϕ ∈ Cyl(X). Moreover, Theorem 8.3.1 shows that the minimal norm among
all possible velocity fields vt is the metric derivative and that jp(vt) belongs to the
Lq closure of gradients of functions in Cyl(X). These facts suggest a “canonical”
choice of vt and the following definition of tangent bundle to Pp(X).

Definition 8.4.1 (Tangent bundle). Let µ ∈ Pp(X). We define

TanµPp(X) := {jq(∇ϕ) : ϕ ∈ Cyl(X)}Lp(µ;X)
,

where jq : Lq(µ;X) → Lp(µ;X) is the duality map defined in (8.3.1) .

Notice also that TanµPp(X) can be equivalently defined as the image under
jq of the Lq closure of gradients of smooth cylindrical functions in X. The choice of
TanµPp(X) is motivated by the following variational selection principle (nonlinear
in the case p �= 2):

Lemma 8.4.2 (Variational selection of the tangent vectors). A vector v ∈ Lp(µ; X)
belongs to the tangent cone TanµPp(X) iff

‖v + w‖Lp(µ;X) ≥ ‖v‖Lp(µ;X) ∀w ∈ Lp(µ;X) such that ∇ · (wµ) = 0. (8.4.1)

In particular, for every v ∈ Lp(µ; X) there exists a unique Π(v) ∈ TanµPp(X) in
the equivalence class of v modulo divergence-free vector fields, Π(v) is the element
of minimal Lp-norm in this class, and∫

X

〈jp(v), w− Π(w)〉dµ(x) = 0 ∀ v ∈ TanµPp(X), w ∈ Lp(µ;X). (8.4.2)

Proof. By the convexity of the Lp norm, (8.4.1) holds iff∫
X

〈jp(v), w〉 dµ = 0 for any w ∈ Lp(µ;X) s.t. ∇ · (wµ) = 0 (8.4.3)

(here the divergence is understood making the duality with smooth cylindrical test
functions) and this is true iff jp(v) belongs to the Lq closure of {∇φ : φ ∈ Cyl(X)}.
Therefore v = jq(jp(v)) belongs to TanµPp(X). (8.4.2) follows from (8.4.3) since
w −Π(w) is divergence free. �
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Observe that the projection Π is linear and TanµPp(X) is a vector space
only in the Hilbertian case p = q = 2.

The remarks above lead also to the following characterization of divergence-
free vector fields:

Proposition 8.4.3. Let w ∈ Lp(µ;X). Then ∇ · (wµ) = 0 iff ‖v − w‖Lp(µ;X) ≥
‖v‖Lp(µ;X) for any v ∈ TanµPp(X). Moreover equality holds for some v iff w = 0.

Proof. We already proved that ∇ · (wµ) = 0 implies ‖v −w‖Lp(µ;X) ≥ ‖v‖Lp(µ;X)

for any v ∈ TanµPp(X). Let us prove now the opposite implication. Indeed, being
TanµPp(X) a cone, a differentiation yields∫

X

〈jp(v), w〉 dµ = 0 ∀v ∈ TanµPp(X),

and choosing v = jq(∇ϕ), with ϕ ∈ Cyl(X), we obtain
∫

X
〈∇ϕ, w〉 dµ = 0 for any

ϕ ∈ Cyl(X).
We give now an elementary proof of the fact that if equality holds for some

v, then w = 0. If equality holds for some v the convexity of the Lp norm gives
‖v + tw‖Lp(µ;X) = ‖v‖Lp(µ;X) for any t ∈ [0, 1], and differentiation with respect to
t gives ∫

X

|v + tw|p−2〈v + tw, w〉 dµ = 0 ∀t ∈ (0, 1).

Differentiating once more (and using the monotone convergence theorem and the
convexity of the map t �→ |a + tb|p) we eventually obtain∫

X

|v + tw|p−2

[
|w|2 + (p− 2)

(〈v + tw, w〉)2
|v + tw|2

]
dµ = 0 ∀t ∈ (0, 1).

Since the integrand is nonnegative it immediately follows that w = 0. �
In the particular case p = 2 the map j2 is the identity and (8.4.3) gives

Tan⊥
µ P2(X) =

{
v ∈ L2(µ, X) : ∇ · (vµ) = 0

}
. (8.4.4)

Remark 8.4.4 (Cotangent space, duality, and quotients). Since tangent vectors
acts naturally only on gradient vector fields, one could also define the cotangent
space as

CoTanµPp(X) := {∇ϕ : ϕ ∈ Cyl(X)}Lq(µ;X)
, (8.4.5)

and therefore the tangent space by duality. If ∼ denotes the equivalence relation
which identifies two vector fields in Lp(µ;X) if their difference is divergence free,
the tangent space could be identified with the quotient space Lp(µ;X)/ ∼. Def-
inition 8.4.1 and the related lemma 8.4.2 simply operates a canonical (though
nonlinear) selection of an element Π(v) in the class of v by using the duality map
between the Cotangent and the Tangent space. This distinction becomes super-
fluous in the Hilbertian case p = q = 2, since in that case the tangent and the
cotangent spaces turn out to be the same, by the usual identification via the Riesz
isomorphism.
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The following two propositions show that the notion of tangent space is con-
sistent with the metric structure, with the continuity equation, and with optimal
transport maps (if any).

Proposition 8.4.5 (Tangent vector to a.c. curves). Let µt : I → Pp(X) be an
absolutely continuous curve and let vt ∈ Lp(µt;X) be such that (8.3.7) holds.
Then vt satisfies (8.3.6) as well if and only if vt = Π(vt) ∈ Tanµt

Pp(X) for
L 1-a.e. t ∈ I. The vector vt is uniquely determined L 1-a.e. in I by (8.3.6) and
(8.3.7).

Proof. The uniqueness of vt is a straightforward consequence of the linearity with
respect to the velocity field of the continuity equation and of the strict convexity
of the Lp norm.

In the proof of Theorem 8.3.1 we built vector fields vt ∈ Tanµt
Pp(X) sat-

isfying (8.3.6) and (8.3.7). By uniqueness, it follows that conditions (8.3.6) and
(8.3.7) imply vt ∈ Tanµt

Pp(X) for L 1-a.e. t. �

In the following proposition we recover the tangent vector field to a curve
through the infinitesimal behaviour of optimal transport maps, or plans, along the
curve. Notice that in the limit we recover a plan (i×vt)#µt associated to a classical
transport even in the situation when µt are not necessarily absolutely continuous.
It is for this reason that we don’t need, at least for differential calculus along
absolutely continuous curves, the more general notions of tangent space, made by
plans instead of maps, discussed in the Appendix.

µt

µt+h

µh

o(h)

(Id + tv)#µt

Proposition 8.4.6 (Optimal plans along a.c. curves). Let µt : I → Pp(X) be an
absolutely continuous curve and let vt ∈ Tanµt

Pp(X) be characterized by Propo-
sition 8.4.5. Then, for L 1-a.e. t ∈ I the following property holds: for any choice
of µh ∈ Γo(µt, µt+h) we have

lim
h→0

(
π1,

1
h

(π2 − π1)
)
#

µh = (i× vt)#µt in Pp(X ×X) (8.4.6)

and

lim
h→0

Wp(µt+h, (i + hvt)#µt)
|h| = 0. (8.4.7)
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In particular, for L 1-a.e. t ∈ I such that µt ∈ Pr
p(X) we have

lim
h→0

1
h

(tµt+h
µt

− i) = vt in Lp(µt; X), (8.4.8)

where t
µt+h
µt is the unique optimal transport map between µt and µt+h.

Proof. Let Dd ⊂ C∞
c (Rd) be a countable set with the following property: for any

integer R > 0 and any ψ ∈ C∞
c (Rd) with supp ψ ⊂ BR there exist (ϕn) ⊂ Dd with

supp ϕn ⊂ BR and ϕn → ϕ in C1(Rd). Let also Πd ⊂ Πd(X) be a a countable
set with the following property: for any π ∈ Πd(X) there exist πn ∈ Πd such that
πn → π uniformly on bounded sets of X (the existence of Πd follows easily by the
separability of X).

We fix t ∈ I such that Wp(µt+h, µt)/|h| → |µ′|(t) = ‖vt‖Lp(µt) and

lim
h→0

µt+h(ϕ)− µt(ϕ)
h

=
∫

Rd

〈∇ϕ, vt〉 dµt ∀ϕ = ψ ◦ π, ψ ∈ Dd, π ∈ Πd.

(8.4.9)
Since Dd and Πd are countable, the metric differentiation theorem implies that
both conditions are fulfilled for L 1-a.e. t ∈ I. Let µh ∈ Γo(µt, µt+h), set

νh :=
(

π1,
1
h

(π2 − π1)
)

#

µh,

and fix ϕ as in (8.4.9) and a limit point ν0 =
∫

ν0x dµt(x) of νh as h → 0 (w.r.t.
the narrow convergence). We use the identity

µt+h(ϕ)− µt(ϕ)
h

=
1
h

∫
X×X

ϕ(y)− ϕ(x) dµh

=
1
h

∫
X×X

ϕ(x + h(y − x))− ϕ(x) dνh =
∫

X×X

〈∇ϕ(x), y − x〉+ ωx,y(h) dνh

with ωx,y(h) bounded and infinitesimal as h → 0, to obtain∫
X

〈∇ϕ, vt〉 dµt =
∫

X

∫
X

〈y,∇ϕ(x)〉 dν0x(y) dµt(x).

Denoting by ṽt(x) =
∫

X
y dν0x(y) the first moment of ν0x, by a density argument

it follows that
∇ · ((ṽt − vt)µt) = 0. (8.4.10)

We now claim that ∫
X

∫
X

|y|p dν0x(y)dµt(x) ≤ [|µ′|(t)]p. (8.4.11)
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Indeed ∫
X

∫
X

|y|p dν0x(y)dµt(x) ≤ lim inf
h→0

∫
X×X

|y|p dνh

= lim inf
h→0

1
hp

∫
X×X

|y − x|pdµh

= lim inf
h→0

W p
p (µt+h, µt)

hp
= |µ′|p(t).

From (8.4.11) we obtain that

‖ṽt‖p
Lp(µt;X) ≤

∫
X

∫
X

|y|p dν0xdµt(x) ≤ [|µ′|(t)]p = ‖vt‖p
Lp(µt;X).

Therefore Proposition 8.4.3 entails that ṽt = vt. Moreover, the first inequality
above is strict if ν0x is not a Dirac mass in a set of µt-positive measure. Therefore
ν0x is a Dirac mass for µt-a.e. x and ν0 = (i × vt)#µt. This proves the narrow
convergence of the measures in (8.4.6). Together with convergence of moments,
this gives convergence in the Wasserstein metric.

Now we show (8.4.7). Let µh =
∫

X
µhx dµt(x) and let us estimate the distance

between µt+h and (i + hvt)#µt with π2,3
#

(∫
δx+hvt

× νhx dµt(x)
)
. We have then

W p
p (µt+h, (i + hvt)#µt)

hp
≤

∫
X×X

1
hp
|x + hvt(x)− y|p dµh

=
∫

X×X

|vt(x)− y|p dνh = o(1)

because of (8.4.6).
In the case when µt ∈ Pr

p(X), the identity(
π1,

1
h

(π2 − π1)
)

#

µh =
(

i× 1
h

(tµt+h
µt

− i)
)

#

µt

and the weak convergence at the level of plans give that 1
h(tµt+h

µt − i)µt narrowly
converge to vtµt. On the other hand our choice of t ensures that the Lp norms
converge to the Lp norm of the limit, therefore the convergence of the densities of
these measures w.r.t. µt is strong in Lp. �

As an application of (8.4.7) we are now able to show the L 1-a.e. differen-
tiability of t �→ Wp(µt, σ) along absolutely continuous curves µt. Recall that for
constant speed geodesics more precise results hold, see Chapter 7.

Theorem 8.4.7 (Generic differentiability of Wp(µt, σ)). Let µt : I → Pp(X) be
an absolutely continuous curve, let σ ∈ Pp(X) and let vt ∈ Tanµt

Pp(X) be its
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tangent vector field, characterized by Proposition 8.4.5. Then

d

dt
W p

p (µt, σ) =
∫

X2
p|x1 − x2|p−2〈x1 − x2, vt(x1)〉 dγ ∀γ ∈ Γo(µt, σ) (8.4.12)

for L 1-a.e. t ∈ I.

Proof. We show that the stated property is true at any t where (8.4.7) holds
and the derivative of t �→ Wp(µt, σ) exists (recall that this map is absolutely
continuous). Due to (8.4.7), we know that the limit

L := lim
h→0

W p
p ((i + hvt)#µt, σ)−W p

p (µt, σ)
h

exists and coincides with d
dt

W p
p (µt, σ), and we have to show that it is equal to

the left hand side in (8.4.12). Choosing any γ ∈ Γo(µt, σ) we can use the plan
η := (π1 + hvt ◦ π1, π2)#γ ∈ Γ((i + hvt)#µt, σ) to estimate from above W p

p ((i +
hvt)#µt, σ) as follows:

W p
p ((i + hvt)#µt, σ) ≤

∫
X2
|x1 − x2|p dη =

∫
X2
|x1 + hvt(x1)− x2|p dγ

= W p
p (µt, σ) + h

∫
X2

p〈 x1 − x2

|x1 − x2|2−p
, vt(x1)〉 dγ + o(h).

Dividing both sides by h and taking limits as h ↓ 0 or h ↑ 0 we obtain

L ≤
∫

X2
p|x1 − x2|p−2〈x1 − x2, vt(x1)〉 dγ ≤ L. �

The argument in the previous proof leads to the so-called superdifferentia-
bility property of the Wasserstein distance, a theme that we will explore more in
detail in Chapter 10 (see in particular Theorem 10.2.2).

Remark 8.4.8 (Derivative formula with an arbitrary velocity vector field). In fact,
Proposition 8.5.4 will show that formula (8.4.12) holds for every Borel velocity
vector field vt satisfying the continuity equation in the distribution sense (8.3.8)
and the Lp-estimate ‖vt‖Lp(µt;X) ∈ L1(I).

8.5 Tangent space and optimal maps

In this section we compare the tangent space arising from the closure of gradients
of smooth cylindrical function with the tangent space built using optimal maps;
the latter one is also compared in the Appendix with the geometric tangent space
made with plans (see Theorem 12.4.4).

Proposition 8.4.6 suggests another possible definition of tangent cone to a
measure in Pp(X) (see also Section 12.4 in the Appendix): for any µ ∈ Pp(X)
we define

Tanr
µPp(X) :=

{
λ(r − i) : (i× r)#µ ∈ Γo(µ, r#µ), λ > 0

}Lp(µ;X)
. (8.5.1)
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The main result of this section shows that the two notions in fact coincide.

Theorem 8.5.1. For any p ∈ (1, +∞) and any µ ∈ Pp(X) we have

TanµPp(X) = Tanr
µPp(X).

We split the (not elementary) proof of this result in various steps, which are
of independent interest.

The first step provides an inclusion between the tangent cones when the base
measure µ is regular.

Proposition 8.5.2 (Optimal displacement maps are tangent). If p ∈ (1,+∞) and
µ ∈ Pr

p(X), then Tanr
µPp(X) ⊂ TanµPp(X), i.e. for every measure σ ∈ Pp(X),

if tσ
µ is the unique optimal transport map between µ and σ given by Theorem 6.2.4

and Theorem 6.2.10, we have tσ
µ − i ∈ TanµPp(X).

Proof. Assume first that supp σ is contained in BR(0) for some R > 0. Theo-
rem 6.2.4 ensures the representation tσ

µ − i = jq(∇ϕ), where ϕ is a locally Lips-
chitz and | · |p-concave map whose gradient ∇φ = jp(tσ

µ − i) has (p − 1)-growth
(according to (5.1.21)), since tσ

µ takes its values in a bounded set.
We consider the Euclidean case X = Rd first and the mollified functions

ϕε. A truncation argument enabling an approximation by gradients with compact
support gives that jq(∇ϕε) belong to TanµPp(X) (notice also that ∇ϕε have still
(p− 1)-growth, uniformly with respect to ε). Due to the absolute continuity of µ
it is immediate to check using the dominated convergence theorem that jq(∇ϕε)
converge to jq(∇ϕ) in Lp(µ; Rd), therefore jq(∇ϕ) ∈ TanµPp(X) as well.

In the case when X is an infinite dimensional, separable Hilbert case we argue
as follows. Let πd, (πd)∗, π̂d be the canonical maps given by (5.1.28), (5.1.29), and
(5.1.30) for an orthonormal basis {en}n≥1 of X . We set

µd := πd
#µ, νd := πd

#ν ∈ P(Rd), µ̂d := π̂d
#µ, ν̂d := π̂d

#ν ∈ P(X),

observing that, by (6.2.1) and (5.2.3), µd is absolutely continuous with respect to
the d-dimensional Lebesgue measure. Therefore there exists an optimal transporta-
tion map rd ∈ Lp(µd; Rd) defined on Rd such that rd

#µd = νd and rd−i = jq(∇ψd)
in Rd for some locally Lipschitz and |·|p-concave map ψd : Rd → R. By the previous
approximation argument, setting ϕd := ψd ◦ πd and

r̂d :=(πd)∗ ◦ (rd ◦ πd) = (πd)∗ ◦ (jq(∇ψd ◦ πd) + πd
)

=jq

(
(πd)∗ ◦ ∇ψd ◦ πd

)
+ (πd)∗ ◦ πd = jq

(∇ϕd
)

+ π̂d

(here we used the commutation property jq ◦ (πd)∗ = (πd)∗ ◦ jq), we get r̂d− π̂d ∈
TanµPp(X); moreover, being (πd)∗ an isometry, it is immediate to check that r̂d

is an optimal map pushing µ̂d on ν̂d.
Letting d → +∞, since

lim
d↑+∞

‖π̂d − i‖Lp(µ;X) = 0,
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we conclude by applying the following Lemma.
Finally, when σ has not a bounded support, we can approximate σ in Pp(X)

by measures σn with bounded support and we can apply again the following
lemma. The details are left to the reader. �

Lemma 8.5.3. Let µ, ν ∈ Pp(X) such that Γo(µ, ν) = {(i×r)#µ} contains only an
optimal transportation map r ∈ Lp(µ; X), let tn ∈ Lp(µ; X) be a family of maps
converging to the identity in Lp(µ; X) with µn := (tn)#µ, and let νn ∈ Pp(X) be
converging to ν as n → ∞. Suppose that rn ∈ Lp(µn; X) is an optimal transport
map from µn to νn. Then

lim
n→∞ ‖rn ◦ tn − r‖Lp(µ,X) = 0. (8.5.2)

Proof. Let ϕ : X × X → R any continuous function with p-growth. Since
W p

p (µn, µ) → 0, W p
p (νn, ν) → 0 as n → ∞, by applying Proposition 7.1.3 and

Lemma 5.1.7 we get

lim
n→∞

∫
X

ϕ(tn(x), rn(tn(x))) dµ(x) = lim
n→∞

∫
X

ϕ(y, rn(y)) dµn(y)

=
∫

X

ϕ(y, r(y)) dµ(y).
(8.5.3)

Choosing ϕ(x1, x2) := |x2|p we get that rn ◦ tn is bounded in Lp(µ; X) and its
norm converges to the norm of r; therefore we can assume that rn ◦ tn is weakly
convergent to some map s ∈ Lp(µ; X) and we should prove that s = r. Thus
we choose ϕ(x1, x2) := ζ(x1)〈x2, z〉 with ζ continuous and bounded and z ∈ X:
(8.5.3) yields

lim
n→∞

∫
X

ζ(tn(x))〈z, rn(tn(x))〉 dµ(x) =
∫

X

ζ(x)〈z, r(x)〉 dµ(x),

whereas weak convergence provides

lim
n→∞

∫
X

ζ(tn(x))〈z, rn(tn(x))〉dµ(x) = lim
n→∞

∫
X

ζ(x)〈z, rn(tn(x))〉 dµ(x)

=
∫

X

ζ(x)〈z, s(x)〉 dµ(x).

It follows that 〈z, s(x)〉 = 〈z, r(x)〉 for µ-a.e. x ∈ X, ∀ z ∈ X, and therefore being
X separable s = r µ-a.e. in X. �

Proposition 8.5.4. Let µ, ν ∈ Pp(X) and let γ ∈ Γo(µ, ν). For every divergence-
free vector field w ∈ Lp(µ; X) we have∫

X×X

〈jp(x2 − x1), w(x1)〉 dγ(x1, x2) = 0. (8.5.4)
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In particular, if r is an optimal transport map between µ and ν = r#µ we have∫
X

〈jp(r(x)− x), w(x)〉dµ(x) = 0 ∀w ∈ Lp(µ; X) s.t. ∇ · (wµ
)

= 0. (8.5.5)

Recalling (8.4.3) we get that r − i ∈ TanµPp(X).

Proof. We can assume (possibly replacing γ by (π1,1→2
t )#γ with t close to 1) that

γ is the unique optimal transport plan between µ and ν (see Lemma 7.2.1).
By the approximation result stated in Proposition 8.3.3 we can find finite

dimensional subspaces Xh, measures µh ∈ Pp(X) with support in Xh and regular
restriction to Xh converging to µ in Pp(X), and vectors wh ∈ Lp(µh; Xh) such
that ∇ · (whµh) = 0, (i × wh)#µh → (i × w)#µ in Pp(X2). Denoting by th

the unique optimal transport map between µh and νh := π̂h
#ν (as usual, π̂h is

the orthogonal projection of X onto Xh and we identify µh and νh with their
restriction to Xh), we know by Proposition 8.5.2 that th− i ∈ Tanr

µh
Pp(Xh), and

therefore ∫
X

〈jp(th − i), wh〉 dµh = 0 ∀h ∈ N.

Moreover, the uniqueness of γ yields that the transport plans (i× th)#µh narrowly
converge in P(X ×X) to γ. Since the marginals of the plans converge in Pp(X)
we have also that the plans are uniformly p-integrable, therefore

lim
h→∞

∫
X

〈jp(th − i), w̃〉 dµh = lim
h→∞

∫
X×X

〈jp(x2 − x1), w̃(x1)〉 d(i× th)#µh

=
∫

X×X

〈jp(x2 − x1), w̃(x1)〉 dγ

for any continuous function w̃ with linear growth. By Proposition 8.3.3 again (with
f(x1, x2) = |x2 − w̃(x1)|p) we know that

lim
w̃∈C0

b (X), w̃→w in Lp(µ;X)
lim sup

h→∞

∫
X

|wh − w̃|p dµh = 0. (8.5.6)

Since

0 =
∫

X

〈jp(th − i), w̃〉 dµ +
∫

X

〈jp(th − i), wh − w̃〉 dµh for any w̃ ∈ C0
b (X),

passing to the limit as h →∞ and using Hölder inequality we obtain∣∣∣∣∫
X

〈jp(x2 − x1), w̃(x1)〉 dγ

∣∣∣∣ ≤ sup
h
‖th − i‖1/q

Lp(µh;X) lim sup
h→∞

‖wh − w̃‖Lp(µh;X).

Taking into account (8.5.6) we conclude that
∫

X
〈jp(x2 − x1), w(x1)〉 dγ = 0. �

The above proposition shows that for general measures µ ∈ Pp(X)

Tanr
µPp(X) ⊂ TanµPp(X). (8.5.7)
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Now we want to prove the opposite inclusion: let us first mention that the case
p = 2 is particularly simple.

Corollary 8.5.5. For any µ ∈ P2(X) we have TanµP2(X) = Tanr
µP2(X).

Proof. We should only check the inclusion ⊂: if ϕ ∈ Cyl(X) it is always possible to
choose λ > 0 such that x �→ 1

2 |x|2 + λ−1φ(x) is convex. Therefore r := i + λ−1∇ϕ
is cyclically monotone, thus an optimal map between µ and r#µ; by (8.5.1) we
obtain that ∇φ = λ(r − i) belongs to Tanr

µP2(X). �
In the general case p ∈ (1, +∞) the desired inclusion follows by the following

characterization:

Proposition 8.5.6. Let µ ∈ Pp(X), v ∈ Lp(µ; X), and µε := (i + εv)#µ for ε > 0.
If v ∈ TanµPp(X) then

lim
ε↓0

Wp(µ, µε)
ε

= ‖v‖Lp(µ;X), (8.5.8)

and denoting by γε ∈ Γo(µ, µε) a family of optimal plans, we have

lim
ε↓0

∫
X×X

∣∣∣∣x2 − x1 − εv(x1)
ε

∣∣∣∣p dγε(x1, x2) = 0. (8.5.9)

Proof. Let us consider the rescaled plans

µε :=
(
π1, ε−1(π2 − π1)

)
#

γε for γε ∈ Γo(µ, µε), (8.5.10)

observing that

π1
#µε = µ,

∫
X2
|x2|p dµε(x1, x2) =

W p
p (µ, µε)

εp
≤ ‖v‖p

Lp(µ;X), (8.5.11)

∫
X×X

∣∣∣∣x2 − x1 − εv(x1)
ε

∣∣∣∣p dγε(x1, x2) =
∫

X×X

|x2 − v(x1)|p dµε(x1, x2).

For every vanishing sequence εk → 0 we can find a subsequence (still denoted by
εk) and a limit plan µ such that µεk

is narrowly converging to µ in P(X ×X�).
In particular, for every smooth cylindrical function ζ ∈ Cyl(X) we have

ε−1

∫
X

(
ζ(x + εv(x))− ζ(x)

)
dµ(x) = ε−1

(∫
X

ζ(x2) dµε(x2)−
∫

X

ζ(x1) dµ(x1)
)

=
∫

X×X

ζ(x2)− ζ(x1)
ε

dγε(x1, x2) =
∫

X×X

ζ(x1 + εx2)− ζ(x1)
ε

dµε(x1, x2)

=
∫ 1

0

∫
X×X

〈∇ζ(x1 + εtx2), x2〉 dµε(x1, x2) dt (8.5.12)

and
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ε−1

∫
X

(
ζ(x + εv(x))− ζ(x)

)
dµ(x) =

∫ 1

0

∫
X

〈∇ζ(x + tεv(x)), v(x)〉dµ(x) dt.

(8.5.13)
Choosing ε = εk in (8.5.12) and in (8.5.13) and passing to the limit as k →∞, a
repeated application of Lebesgue dominated convergence theorem yields∫

X

〈∇ζ(x), v(x)〉dµ(x) (8.5.14)

= lim
k→∞

∫ 1

0

∫
X

〈∇ζ(x + tεkv(x)), v(x)〉dµ(x) dt

= lim
k→∞

∫ 1

0

∫
X×X

〈∇ζ(x1 + tεkx2), x2〉 dµεk
(x1, x2) dt

=
∫

X×X

〈∇ζ(x1), x2〉 dµ(x1, x2). (8.5.15)

It follows that the limit plan µ satisfies∫
X×X

〈∇ζ(x1), x2 − v(x1)〉 dµ(x1, x2) = 0 ∀ ζ ∈ Cyl(X), (8.5.16)

and the same relation holds if ∇ζ is replaced by any element ξ of the “cotangent
space” CoTanµPp(X) (i.e. the closure in Lq(µ;X) of the gradient vector fields)
introduced by (8.4.5).

If v ∈ TanµPp(X) and p ≥ 2, by the p-inequality (10.2.4), we can find a
suitable vanishing subsequence εk → 0 and a limit plan µ such that

0 ≤ cp lim sup
ε→0

∫
X×X

|x2 − v(x1)|p dµε(x1, x2)

≤ lim sup
ε→0

∫
X×X

|x2|p − |v(x1)|p − p〈jp(v(x1)), x2 − v(x1)〉 dµε(x1, x2)

= lim
k→∞

W p
p (µ, µεk

)
εp
k

− ‖v‖p
Lp(µ;X) −

∫
X×X

p〈jp(v(x1)), x2 − v(x1)〉 dµεk
(x1, x2)

≤ −
∫

X×X

p〈jp(v(x1)), x2 − v(x1)〉 dµ(x1, x2) = 0

by (8.5.11) and (8.5.16), since v ∈ TanµPp(X) is equivalent to jp(v) ∈
CoTanµPp(X). The case p < 2 is completely analogous. �

When µ is regular, the opposite inclusion

TanµPp(X) ⊂ Tanr
µPp(X),

which completes the proof of Theorem 8.5.1, follows easily from the previous propo-
sition: keeping the same notation, we know that γε is induced by an optimal
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transport map rε so that ε−1(rε − i) ∈ Tanr
µPp(X) and (8.5.9) yields

lim
ε→0

∫
X

∣∣∣∣rε(x)− x

ε
− v(x)

∣∣∣∣p dµ(x) = 0. (8.5.17)

Therefore v belongs to Tanr
µPp(X).

In the general case, by disintegrating γε with respect to the first variable x1,
a measurable selection theorem [39] allows us to select rε(x1) such that rε(x1) ∈
supp (γε)x1 and∣∣∣∣rε(x1)− x1

ε
− v(x1)

∣∣∣∣p ≤ 2
∫

X

∣∣∣∣rε(y)− y

ε
− v(y)

∣∣∣∣p d(γε)x1(y).

Then, since the graph of rε is contained in the support of γε, we obtain that rε

is | · |p-monotone (so that ε−1(rε − i) ∈ Tanr
µPp(X)) and (8.5.17) still holds.



Chapter 9

Convex Functionals in Pp(X)

The importance of geodesically convex functionals in Wasserstein spaces was firstly
pointed out by McCann [97], who introduced the three basic examples we will
discuss in detail in 9.3.1, 9.3.4, 9.3.6. His original motivation was to prove the
uniqueness of the minimizer of an energy functional which results from the sum
of the above three contributions.

Applications of this idea have been given to (im)prove many deep functional
(Brunn-Minkowski, Gaussian, (logarithmic) Sobolev, Isoperimetric, etc.) inequal-
ities: we refer to Villani’s book [126, Chap. 6] (see also the survey [72]) for a
detailed account on this topic. Connections with evolution equations have also
been exploited [103, 107, 108, 1, 38], mainly to study the asymptotic decay of the
solution to the equilibrium.

From our point of view, convexity is a crucial tool to study the well posedness
and the basic regularity properties of gradient flows, as we showed in Chapters 2
and 4. Thus in this chapter we discuss the basic notions and properties related to
this concept: the first part of Section 9.1 is devoted to fixing the notion of con-
vexity along geodesics in Pp(X), avoiding any unnecessary restriction to regular
measures; a useful tool for the subsequent developments is the stability of convex-
ity with respect to Γ-convergence, a well known property in the more usual linear
theory.

Unfortunately, Example 9.1.5 shows that the squared 2-Wasserstein distance
is not convex along geodesics in P2(X): this fact and the theory of Chapter 4
motivate the investigation (of convexity properties) along different interpolating
curves, along which the squared 2-Wasserstein distance exhibits a nicer behavior;
the second part of Section 9.1 discusses this question and introduces the notion
of generalized geodesics. Lemma 9.2.7, though simple, provides a crucial link with
the metric theory of Chapter 4.

Section 9.3 discusses in great generality the main examples of geodesically
convex functionals, showing that they all satisfy also the stronger convexity along
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generalized geodesics. The last example is related to the semiconcavity properties
of the squared 2-Wasserstein distance, discussed in Theorem 7.3.2.

In the last section we give a closer look to the convexity properties of general
Relative Entropy functionals, showing that they are strictly related to the log-
concavity of the reference measures. Here we use the full generality of the theory,
proving all the significant results even in infinite dimensional Hilbert spaces.

9.1 λ-geodesically convex functionals in Pp(X)

In McCann’s approach, functionals are naturally defined on Pr
2 (Rd) so that for

each couple of measures µ1, µ2 ∈ Pr
2 (Rd) a unique optimal transport map t =

tµ2

µ1 (see (7.1.4)) always exists: in his terminology, a functional φ : Pr
2 (Rd) →

(−∞, +∞] is displacement convex if

setting µ1→2
t :=

(
i + t(t− i)

)
#

µ1, t = tµ2

µ1 ,

the map t ∈ [0, 1] �→ φ
(
µ1→2

t

)
is convex, ∀µ1, µ2 ∈ Pr

2 (Rd).
(9.1.1)

In Section 7.2 we have seen that the curve µ1→2
t is the constant speed geodesic

connecting µ1 to µ2; therefore the following definition seems natural, when we
consider functionals whose domain contains general probability measures.

Definition 9.1.1 (λ-convexity along geodesics). Let X be a separable Hilbert space
and let φ : Pp(X) → (−∞,+∞]. Given λ ∈ R, we say that φ is λ-geodesically
convex in Pp(X) if for every couple µ1, µ2 ∈ Pp(X) there exists an optimal
transfer plan µ ∈ Γo(µ1, µ2) such that

φ(µ1→2
t ) ≤ (1− t)φ(µ1) + tφ(µ2)− λ

2
t(1− t)W 2

p (µ1, µ2) ∀ t ∈ [0, 1], (9.1.2)

where µ1→2
t = (π1→2

t )#µ =
(
(1 − t)π1 + tπ2

)
#

µ is defined as in (7.2.2), π1, π2

being the projections onto the first and the second coordinate in X2, respectively.

Notice that this notion of convexity depends on the summability exponent p.

Remark 9.1.2 (The map t �→ φ(µ1→2
t ) is λ-convex). Actually this definition of

λ-convexity expressed through (9.1.2) implies that

the map t ∈ [0, 1] �→ φ(µ1→2
t ) is λW 2

p (µ1, µ2)-convex, (9.1.3)

thus recovering an (apparently) stronger and more traditional form.
This equivalence follows easily by the fact, proved in Section 7.2, that for t1 < t2
in [0, 1] with {t1, t2} �= {0, 1} the plan

(
π1→2

t1 × π1→2
t2

)
#

µ is the unique element of
Γo(µ1→2

t1 , µ1→2
t2 ).
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Notice that in Definition 9.1.1 we do not require (9.1.2) along all the optimal
plans of Γo(µ1, µ2). One of the advantage of this technical point is provided by the
following proposition, which will be useful to check convexity in many examples.

Proposition 9.1.3 (Convexity criterion). Let φ : Pp(X) → (−∞, +∞] be a l.s.c.
map such that for any µ ∈ D(φ) there exists (µh) ⊂ Pr

p(X) converging to µ in
Pp(X) with φ(µh) → φ(µ).
Then φ is λ-geodesically convex iff for each µ ∈ D(φ) ∩ Pr

p(X) and for each µ-
essentially injective map r ∈ Lp(µ; X) whose graph is | · |p-cyclically monotone the
map t �→ φ (((1− t)i + tr)#µ) is λ-convex in [0, 1].

Proof. If µ1 ∈ Pr
p(X) and r ∈ Lp(µ1; X) is | · |p-cyclically monotone, then(

(1 − t)i + tr
)
#

µ1 is the unique geodesic joining µ1 to µ2 := r#µ1. This shows
the necessity of the condition.

In order to show its sufficiency, we notice that if µ1, µ2 ∈ Pr
p (X) then

a unique optimal map tµ2

µ1 exists, it belongs to Lp(µ1; X) and it is µ1-essentially
injective (by Remark 6.2.11). Therefore the convexity inequality (9.1.2) holds when
the initial and final measure are regular. The general case can be recovered through
a standard approximation and compactness argument, as in the proof of the next
lemma. �

The following natural Γ-convergence result is well known for convex func-
tionals in linear spaces, see for instance Chapter 11 in [50].

Lemma 9.1.4 (Convexity and Γ-convergence). Let φh : Pp(X) → (−∞, +∞] be
λ-geodesically convex functionals which Γ

(
Pp(X)

)
-converge to φ as n →∞, i.e.

µh → µ in Pp(X) ⇒ lim inf
h→∞

φh(µh) ≥ φ(µ), (9.1.4)

∀µ ∈ Pp(X) ∃µh → µ in Pp(X) : lim
h→∞

φh(µh) = φ(µ). (9.1.5)

Then φ is λ-geodesically convex.
The same result holds for the Γ

(
P(X)

)
-convergence if λ ≥ 0, i.e. if we replace

convergence in Pp(X) with narrow convergence in P(X) (thus without assuming
the convergence of the p-moments of µh) in (9.1.4), (9.1.5).

Proof. Let us fix µ1, µ2 ∈ D(φ); by (9.1.5) we can find sequences µ1
h, µ2

h converging
to µ1, µ2 in Pp(X) such that

lim
n→∞ φh(µ1

h) = φ(µ1), lim
n→∞ φh(µ2

h) = φ(µ2).

Let µh ∈ Γo(µ1
h, µ2

h) be an optimal plan such that (5.1.19) holds for φh; by
Lemma 5.2.2 the sequence (µh) is tight (resp. uniformly p-integrable), because
the sequences of their marginals are tight (resp. uniformly p-integrable). There-
fore, by Proposition 7.1.5 we can extract a suitable subsequence (still denoted by
µh) converging to µ in Pp(X×X): we want to show that φ is λ-convex along the
interpolation µ1→2

t induced by µ.
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Since (µh)1→2
t → µ1→2

t in Pp(X) as h →∞, (9.1.4) yields easily

φ(µ1→2
t ) ≤ lim inf

h→∞
φh

(
(µh)1→2

t

)
≤ lim inf

h→∞

(
(1− t)φ(µ1

h) + tφ(µ2
h)− λ

2
t(1− t)W 2

p (µ1
h, µ2

h)
)

= (1− t)φ(µ1) + tφ(µ2)− λ

2
t(1− t)W 2

p (µ1, µ2). (9.1.6)

In the case of narrow convergence, we can follow the same argument; (9.1.6) be-
comes an inequality, thanks to (7.1.11), if λ ≥ 0. �

λ-convexity of functionals along geodesics is the simplest condition which
allows us to apply the theory developed in Section 2.4. The semigroup generation
results of Chapter 4 involve the stronger 1-convexity property of the distance
function W 2

2 (µ1, ·) from an arbitrary base point µ1.
In the 1-dimensional case we already know by Theorem 6.0.2 and (7.2.8) that

P2(R1) is isometrically isomorphic to a closed convex subset of an Hilbert space:
precisely the space of nondecreasing functions in (0, 1) (the inverses of distribution
functions), viewed as a subset of L2(0, 1). Thus the 2-Wasserstein distance in R

satisfies the generalized parallelogram rule

W 2
2 (µ1, µ2→3

t ) = (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)W 2
2 (µ2, µ3)

∀ t ∈ [0, 1], µ1, µ2, µ3 ∈ P2(R1).
(9.1.7)

If the space X has dimension ≥ 2 the following example shows that there is no
constant λ such that W 2

2 (·, µ1) is λ-convex along geodesics. We will see in the next
subsection how to circumvent this difficulty.

Example 9.1.5 (The distance function is not λ-convex along geodesics). Let

µ2 :=
1
2
(
δ(0,0) + δ(2,1)

)
, µ3 :=

1
2
(
δ(0,0) + δ(−2,1)

)
.

Using for instance Theorem 6.0.1 it is easy to check that the unique optimal map
r pushing µ2 to µ3 maps (0, 0) in (−2, 1) and (2, 1) in (0, 0), therefore there is a
unique constant speed geodesic joining the two measures, given by

µ2→3
t :=

1
2
(
δ(−2t,t) + δ(2−2t,1−t)

)
t ∈ [0, 1].

Choosing µ1 := 1
2

(
δ(0,0) + δ(0,−2)

)
, there are two maps rt, st pushing µ1 to µ2→3

t ,
given by

rt(0, 0) = (−2t, t), rt(0,−2) = (2− 2t, 1− t),
st(0, 0) = (2− 2t, 1− t), st(0,−2) = (−2t, t).

Therefore

W 2
2 (µ2→3

t , µ1) = min
{

5t2 − 7t +
13
2

, 5t2 − 3t +
9
2

}
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has a concave cusp at t = 1/2 and therefore is not λ-convex along the geodesic
µ2→3

t for any λ ∈ R.

9.2 Convexity along generalized geodesics

In dimension greater than 1, Example 9.1.5 shows that the squared Wasserstein
distance functional µ �→ W 2

2 (µ1, µ) is not 1-convex along geodesics (in fact, The-
orem 7.3.2 shows that it satisfies the opposite inequality).

On the other hand, the theory developed in Chapter 4 indicates that 1-
convexity of the squared distance is a quite essential property and that we can
exploit the flexibilty in the choice of the connecting curve, along which 1-convexity
should be checked. Therefore, here we are looking for such kind of curves (in the
case of the “Hilbertian-like” 2-Wasserstein distance) and for the related concept
of convexity for functionals.

Let us first suppose that the reference measure µ1 is regular, i.e. µ1 ∈ Pr
2 (X)

and let µ2, µ3 be given in P2(X); we can find two optimal transport maps t2 =
tµ2

µ1 , t3 = tµ3

µ1 as in (7.1.4) such that

W 2
2 (µ1, µi) =

∫
X

|ti(x)− x|2 dµ1(x), i = 2, 3. (9.2.1)

Equation (9.2.1) reduces the evaluation of the Wasserstein distance to an integral
with respect to the fixed measure µ1: it is therefore quite natural to interpolate
between µ2 and µ3 by using t2 and t3, i.e. setting

µ2→3
t = (t2→3

t )#µ1 where t2→3
t := (1− t)t2 + t t3, t ∈ [0, 1]. (9.2.2)

Since t2→3
t is obviously cyclically monotone, we have

W 2
2 (µ1, µ2→3

t ) =
∫

X

|t2→3
t (x)−x|2 dµ1(x) =

∫
X

|(1− t)t2(x)+ tt3(x)−x|2 dµ1(x),

and therefore an easy calculation shows

W 2
2 (µ1, µ2→3

t ) = (1− t)
∫

X

|t2(x)− x|2 dµ1(x) + t

∫
X

|t3(x)− x|2 dµ1(x)

− t(1− t)
∫

X

|t2(x)− t3(x)|2 dµ1(x) (9.2.3)

≤ (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)W 2
2 (µ2, µ3),

since ∫
X

|t2(x)− t3(x)|2 dµ1(x) ≥ W 2
2 (µ2, µ3).

This calculation shows that 1
2W 2

2 (µ1, ·) is 1-convex along the new interpolating
curve µ2→3

t given by (9.2.2).
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When µ1 is not regular, we have to substitute the optimal maps tµ2

µ , tµ3

µ1 with
optimal plans µ1 2 ∈ Γo(µ1, µ2), µ1 3 ∈ Γo(µ1, µ3): in order to interpolate between
them, we shall also introduce a 3-plan

µ ∈ P2(X3) such that π1 2
# µ = µ1 2, π1 3

# µ = µ1 3 and we set

µ2→3
t := (π2→3

t )#µ, where π2→3
t := (1− t)π2 + tπ3.

(9.2.4)

Recalling that in (7.3.2) we set

W 2
µ(µ2, µ3) :=

∫
X3
|x3 − x2|2 dµ(x1, x2, x3) ≥ W 2

2 (µ2, µ3), (9.2.5)

we have

Lemma 9.2.1. Let µ1, µ2, µ3 ∈ P2(X) and let

µ ∈ Γ(µ1, µ2, µ3) such that µ1,i = π1 i
# µ ∈ Γo(µ1, µi), i = 2, 3. (9.2.6)

Then, defining µ2→3
t as in (9.2.4), we get

W 2
2 (µ1,µ2→3

t ) =
∫

X3
|(1− t)x2 + tx3 − x1|2 dµ(x1, x2, x3) (9.2.7a)

= (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)W 2
µ(µ2, µ3) (9.2.7b)

≤ (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)W 2
2 (µ2, µ3). (9.2.7c)

The inequality (9.2.7c) implies that 1
2W 2

2 (µ1, ·) is 1-convex along the curve µ2→3
t .

Proof. We argue as for (9.2.3), by introducing the transfer plan

µ1,2→3
t :=

(
(1− t)π1,2 + tπ1,3

)
#

µ ∈ Γ(µ1, µ2→3
t );

by the definition of the Wasserstein distance and the Hilbertian identity (12.3.3)
it is immediate to see that

W 2
2 (µ1, µ2→3

t ) ≤
∫

X×X

|y1 − y2|2 dµ1,2→3
t (y1, y2) (9.2.8)

=
∫

X3
|(1− t)x2 + tx3 − x1|2 dµ(x1, x2, x3)

=
∫

X3

(
(1− t)|x2 − x1|2 + t|x3 − x1|2 − t(1− t)|x2 − x3|2

)
dµ(x1, x2, x3).

(9.2.9)

(9.2.9) yields (9.2.7b) since by (9.2.6) we have∫
X3
|x2 − x1|2 dµ(x1, x2, x3) =

∫
X2
|x2 − x1|2 dµ1 2(x1, x2) = W 2

2 (µ1, µ2),∫
X3
|x3 − x1|2 dµ(x1, x2, x3) =

∫
X2
|x3 − x1|2 dµ1 3(x1, x3) = W 2

2 (µ1, µ3);
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(9.2.7c) follows directly from the inequality (9.2.5).
Moreover, it is possible to see that (9.2.8) is in fact an equality, i.e. µ1,2→3

t ∈
Γo(µ1, µ2→3

t ), by checking that the support of µ1,2→3
t is cyclically monotone; by

the density property (5.2.6), we can simply check that π1,2→3
t

(
supp µ

)
is cycli-

cally monotone. We choose points (ai, bi) ∈ π1,2→3
t

(
supp µ

)
, i = 1, . . . , N and set

(a0, b0) := (aN , bN ); we thus find points b′i, b′′i such that

(ai, b
′
i) ∈ supp µ1,2, (ai, b

′′
i ) ∈ supp µ1,3, bi = (1− t)b′i + tb′′i .

Therefore the cyclical monotonicity of supp µ1,i gives

N∑
i=1

〈ai − ai−1, bi〉 =
N∑

i=1

〈ai − ai−1, (1− t)b′i + tb′′i 〉

= (1− t)
N∑

i=1

〈ai − ai−1, b
′
i〉+ t

N∑
i=1

〈ai − ai−1, b
′′
i 〉 ≥ 0. �

Taking account of Lemma 9.2.1, we introduce the following definitions.

Definition 9.2.2 (Generalized geodesics). A “generalized geodesic” joining µ2 to
µ3 (with base µ1) is a curve of the type

µ2→3
t = (π2→3

t )#µ t ∈ [0, 1],

where

µ ∈ Γ(µ1, µ2, µ3) and π1,2
# µ ∈ Γo(µ1, µ2), π1,3

# µ ∈ Γo(µ1, µ3). (9.2.10)

Remark 9.2.3. Remember that if µ1 ∈ Pr
2 (X) then by Lemma 5.3.2 and Theorem

6.2.10 there exists a unique generalized geodesic connecting µ2 to µ3 with base
µ1, since there exists a unique plan µ ∈ Γ(µ1, µ2, µ3) satisfying the optimality
condition π1,i

# µ ∈ Γo(µ1, µi), i = 2, 3. In fact, denoting by ti the optimal maps

tµi

µ1 pushing µ1 to µi, i = 2, 3, µ is given by

µ := (i× t2 × t3)#µ1. (9.2.11)

We thus recover the expression µ2→3
t =

(
(1− t)t2 + t t3

)
#

µ1 given by (9.2.2).

Definition 9.2.4 (Convexity along generalized geodesics). Given λ ∈ R, we say
that φ is λ-convex along generalized geodesics if for any µ1, µ2, µ3 ∈ D(φ) there
exists a generalized geodesic µ2→3

t induced by a plan µ ∈ Γ(µ1, µ2, µ3) satisfying
(9.2.10) such that

φ(µ2→3
t ) ≤ (1− t)φ(µ2) + tφ(µ3)− λ

2
t(1− t)W 2

µ(µ2, µ3) ∀t ∈ [0, 1], (9.2.12)

where W 2
µ(·, ·) is defined in (9.2.5).
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µ1

µ2

µ3

µ ∈ Γ(µ1, µ2, µ3)

µ1 2

µ1 3

µ2→3
t

geodesic induced by Γo(µ2, µ3)

generalized geodesic induced by µ

Figure 9.1: Generalized geodesics

Remark 9.2.5 (The case of optimal transport maps). If φ is convex along any
interpolating curve µ2→3

t induced by µ ∈ Γ(µ2, µ3), then φ is trivially convex
along generalized geodesics.

Remark 9.2.6. When λ �= 0 Definition 9.2.4 slightly differs from the analogous
metric Definition 2.4.1 in the modulus of convexity, since

W 2
µ(µ2, µ3) ≥ W 2

2 (µ2, µ3). (9.2.13)

In particular, when λ > 0 this condition is stronger than 2.4.1, whereas for λ < 0
(9.2.12) is weaker. The next lemma motivates this choice.

Lemma 9.2.7 ((τ−1 + λ)-convexity of Φ(τ, µ1; ·)). Suppose that φ : P2(X) →
(−∞, +∞] is a proper functional which is λ-convex along generalized geodesics for
some λ ∈ R. Then for each µ1 ∈ D(φ) and 0 < τ < 1

λ− the functional

Φ(τ, µ1;µ) :=
1
2τ

W 2
2 (µ1, µ) + φ(µ) satisfies the convexity Assumption 4.0.1.

Proof. We consider a plan µ satisfying (9.2.10) and we combine (9.2.7b) and
(9.2.12) and use (9.2.13) to obtain

Φ(τ, µ1;µ2→3
t ) ≤ (1− t)Φ(τ, µ1;µ2) + tΦ(τ, µ1; µ3)− 1

2
( 1
τ

+ λ
)
W 2

µ(µ2, µ3)

≤ (1− t)Φ(τ, µ1;µ2) + tΦ(τ, µ1; µ3)− 1
2
( 1
τ

+ λ
)
W 2

2 (µ2, µ3)

whenever τ−1 > −λ. �
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Remark 9.2.8 (Comparison between the two notions of convexity). If φ is λ-con-
vex on generalized geodesics then it is also λ-geodesically convex according to
Definition 9.1.1: it is sufficient to notice if we choose µ1 = µ3, then any µ ∈
Γ(µ1, µ2, µ3) such that π1,3

# µ ∈ Γo(µ1, µ3) is of the form of the form

µ =
∫

X2
δx1(x3) dµ1 2(x1, x2) where µ1 2 ∈ Γ(µ1, µ2).

Therefore, if we impose also that µ1 2 = π1,2
# µ ∈ Γo(µ1, µ2), then µ2→3

t is the
canonical geodesic interpolation

(
tπ1 + (1− t)π2

)
#

µ1 2.
We already know by Example 9.1.5 that 1

2W2(·, µ1) is not λ-convex along geo-
desics, and therefore is not λ-convex along generalized geodesics. On the other
hand, if we choose generalized geodesics with base point µ1 as in (9.2.10), then
1
2W 2

2 (·, µ1) is indeed 1−convex along these curves by Lemma 9.2.1. As Lemma
9.2.7 shows, this property is the key point to apply the theory of Chapter 4.

For λ-convex functionals on generalized geodesics we present now two proper-
ties which are analogous to the ones stated in Lemma 9.1.4 and Proposition 9.1.3.
We omit the proofs, which are similar to the previous ones.

Lemma 9.2.9 (Convexity along generalized geodesics and Γ-convergence). Let
φh : P2(X) → (−∞,+∞] be λ-convex on generalized geodesics. If φh Γ

(
P2(X)

)
-

converge to φ as h → ∞ as in (9.1.4), (9.1.5), then φ is λ-convex on gener-
alized geodesics. If λ ≥ 0 the same result holds for Γ

(
P(X)

)
-convergence, i.e.

Γ-convergence with respect to the narrow topology of P(X).

Proposition 9.2.10 (A criterion for convexity along generalized geodesics). Let
φ : P2(X) → (−∞,+∞] be a l.s.c. map such that for any µ ∈ D(φ) there exist
(µh) ⊂ Pr

2 (X) converging to µ with φ(µh) → φ(µ).
Then φ is λ-convex on generalized geodesics iff for every µ ∈ Pr

2 (X) and
for every couple of µ-essentially injective maps r0, r1 ∈ L2(µ; X) whose graph is
cyclically monotone we have

φ
((

(1− t)r0 + tr1
)
#

µ
)
≤ (1− t)φ

(
r0

#µ
)

+ tφ
(
r1

#µ
)

− λ

2
t(1− t)

∫
X

|r0(x)− r1(x)|2 dµ(x) ∀ t ∈ [0, 1].
(9.2.14)

9.3 Examples of convex functionals in Pp(X)

In this section we introduce the main classes of geodesically convex functionals.

Example 9.3.1 (Potential energy). Let V : X → (−∞, +∞] be a proper, lower
semicontinuous function whose negative part has a p-growth, i.e.

V (x) ≥ −A−B|x|p ∀x ∈ X for some A, B ∈ R. (9.3.1)
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In Pp(X) we define

V(µ) :=
∫

X

V (x) dµ(x). (9.3.2)

Evaluating V on Dirac’s masses we check that V is proper; since V − is uniformly
integrable w.r.t. any sequence (µn) converging in Pp(X) (see Proposition 7.1.5),
Lemma 5.1.7 shows that V is lower semicontinuous in Pp(X). If V is bounded
from below we have even, thanks to (5.1.15), lower semicontinuity w.r.t. narrow
convergence.

Recall that for functionals defined on a Hilbert space, λ-convexity means

V ((1− t)x1 + tx2) ≤ (1− t)V (x1) + tV (x2)− λ

2
t(1− t)|x1 − x2|2 ∀x1, x2 ∈ X.

(9.3.3)

Proposition 9.3.2 (Convexity of V). If V is λ-convex then for every µ1, µ2 ∈ D(V)
and µ ∈ Γ(µ1, µ2) we have

V(µ1→2
t ) ≤ (1− t)V(µ1) + tV(µ2)− λ

2
t(1− t)

∫
X2
|x1 − x2|2 dµ(x1, x2). (9.3.4)

In particular:

(i) If p = 2 then the functional V is λ-convex on generalized geodesics, according
to Definition 9.2.4 (in fact it is λ-convex along any interpolating curve, cf.
Remark 9.2.5).

(ii) If (p ≤ 2, λ ≥ 0) or (p ≥ 2, λ ≤ 0) then V is λ-geodesically convex in
Pp(X).

Proof. Since V is bounded from below by a continuous affine functional (if λ ≥ 0)
or by a quadratic function (if λ < 0) its negative part satisfies (9.3.1) for the
corresponding values of p considered in this lemma; therefore Definition (9.3.2)
makes sense.

Integrating (9.3.3) along any admissible transport plan µ ∈ Γ(µ1, µ2) with
µ1, µ2 ∈ D(V) we obtain (9.3.4), since

V(µ1→2
t ) =

∫
X2

V ((1− t)x1 + tx2) dµ(x1, x2)

≤
∫

X2

(
(1− t)V (x1) + tV (x2)− λ

2
t(1− t)|x1 − x2|2

)
dµ(x1, x2)

= (1− t)V(µ1) + tV(µ2)− λ

2
t(1− t)

∫
X2
|x1 − x2|2 dµ(x1, x2).

When p = 2 we obtain (9.2.12). When p �= 2 we choose µ ∈ Γo(µ1, µ2): for p > 2
we use the inequality∫

X2
|x1 − x2|2 dµ(x1, x2) ≤

(∫
X2
|x1 − x2|p dµ(x1, x2)

)2/p

= W 2
p (µ1, µ2),
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whereas, for p < 2, we use the reverse one∫
X2
|x1 − x2|2 dµ(x1, x2) ≥

(∫
X2
|x1 − x2|p dµ(x1, x2)

)2/p

= W 2
p (µ1, µ2).

�
Remark 9.3.3. Since V(δx) = V (x), it is easy to check that the conditions on V
are also necessary for the validity of the previous proposition.

Example 9.3.4 (Interaction energy). Let us fix an integer k > 1 and let us con-
sider a lower semicontinuous function W : Xk → (−∞, +∞], whose negative part
satisfies the usual p-growth condition. Denoting by µ×k the measure µ×µ×· · ·×µ
on Xk, we set

Wk(µ) :=
∫

Xk

W (x1, x2, . . . , xk) dµ×k(x1, x2, . . . , xk). (9.3.5)

If
∃x ∈ X : W (x, x, . . . , x) < +∞, (9.3.6)

then Wk is proper; its lower semicontinuity follows from the fact that

µn → µ in Pp(X) =⇒ µ×k
n → µ×k in Pp(Xk). (9.3.7)

Here the typical example is k = 2 and W (x1, x2) := W̃ (x1 − x2) for some W̃ :
X → (−∞, +∞] with W̃ (0) < +∞.

Proposition 9.3.5 (Convexity of W). If W is convex then the functional Wk is
convex along any interpolating curve µ1→2

t , µ ∈ Γ(µ1, µ2), in Pp(X) (cf. Remark
9.2.5).

Proof. Observe that Wk is the restriction to the subset

P×
p (Xk) :=

{
µ×k : µ ∈ Pp(X)

}
of the potential energy functional W on Pp(Xk) given by

W(µ) :=
∫

Xk

W (x1, . . . , xk) dµ(x1, . . . , xk).

We consider the linear permutation of coordinates P : (X2)k → (Xk)2 defined by

P
(
(x1, y1), (x2, y2), . . . , (xk, yk)

)
:=

(
(x1, . . . xk), (y1, . . . yk)

)
.

If µ ∈ Γ(µ1, µ2) then it is easy to check that P#µ×k ∈ Γ(µ×k
1 , µ×k

2 ) ⊂ P((Xk)2)
and

(π1→2
t )#P#(µ×k) = P#

(
(π1→2

t )#µ
)×k

.

Therefore all the convexity properties for Wk follow from the corresponding ones
of W . �
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In the next example we limit us to consider the finite dimensional case X :=
Rd, since the Lebesgue measure L d will play a distinguished role.

Example 9.3.6 (Internal energy). Let F : [0, +∞) → (−∞,+∞] be a proper, lower
semicontinuous convex function such that

F (0) = 0, lim inf
s↓0

F (s)
sα

> −∞ for some α >
d

d + p
. (9.3.8)

We consider the functional F : Pp(Rd) → (−∞,+∞] defined by

F(µ) :=

{∫
Rd F (ρ(x)) dL d(x) if µ = ρ ·L d ∈ Pr

p(Rd),
+∞ otherwise,

(9.3.9)

and its relaxed envelope F∗ defined as

F∗(µ) := inf
{

lim inf
n→+∞F(µn) : µn → µ in Pp(Rd)

}
. (9.3.10)

Remark 9.3.7 (The meaning of condition (9.3.8)). Condition (9.3.8) simply guar-
antees that the negative part of F (µ) is integrable in Rd. For, let us observe that
there exist nonnegative constants c1, c2 such that the negative part of F satisfies

F−(s) ≤ c1s + c2s
α ∀ s ∈ [0, +∞),

and it is not restrictive to suppose α ≤ 1. Since µ = ρL d ∈ Pp(Rd) and αp
1−α > d

we have∫
Rd

ρα(x) dL d(x) =
∫

Rd

ρα(x)(1 + |x|)αp(1 + |x|)−αp dL d(x)

≤
(∫

Rd

ρ(x)(1 + |x|)p dL d(x)
)α(∫

Rd

(1 + |x|)−αp/(1−α) dL d(x)
)1−α

< +∞

and therefore F−(ρ) ∈ L1(Rd).

Remark 9.3.8 (Lower semicontinuity of F). General results on integral functionals
[11] show that [79, 31] F∗ = F on Pr

p (Rd) and that F∗ = F on the whole of
Pp(Rd) if F has a superlinear growth at infinity.

Proposition 9.3.9 (Convexity of F). If

the map s �→ sdF (s−d) is convex and non increasing in (0,+∞), (9.3.11)

then the functionals F , F∗ are convex along (generalized, if p = 2) geodesics in
Pp(Rd).

Proof. By Proposition 9.1.3 we can limit us to check the geodesic convexity of F :
thus we consider two regular measures µi = ρiL d ∈ D(F) ⊂ Pr

p(Rd), i = 1, 2,
and the optimal transport map r for the p-Wasserstein distance Wp such that
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r#µ1 = µ2. Setting rt := (1 − t)i + tr, by Theorem 7.2.2 we know that rt is
an optimal transport map between µ1 and µt := rt#µ1 for any t ∈ [0, 1], and
Lemma 7.2.1 (for t ∈ [0, 1)) and the assumption µ2 ∈ Pr

p(Rd) (for t = 1) show
that (i × rt)#µ1 = (st × i)#µt for some optimal transport map st, therefore
st ◦ rt = i µ1-a.e. in Rd. This proves that rt is µ1-essentially injective for any
t ∈ [0, 1].

By Theorem 6.2.7 we know that r is approximately differentiable µ1-a.e. and
∇̃r is diagonalizable with nonnegative eigenvalues; since µ2 is regular, by Lemma
5.5.3 det ∇̃r(x) > 0 for µ1-a.e. x ∈ Rd. Therefore ∇̃rt is diagonalizable, too,
with strictly positive eigenvalues: applying Lemma 5.5.3 again we get µ1→2

t :=
(rt)#µ1 ∈ Pr

p(Rd) and

µ1→2
t = ρtL

d with ρt(rt(x)) =
ρ1(x)

det ∇̃rt(x)
for µ1-a.e. x ∈ Rd.

By (5.5.3) it follows that

F(µt) =
∫

Rd

F (ρt(y)) dy =
∫

Rd

F
( ρ(x)

det ∇̃rt(x)

)
det ∇̃rt(x) dx.

Since for a diagonalizable map D with nonnegative eigenvalues

t �→ det((1− t)I + tD)1/d is concave in [0, 1], (9.3.12)

the integrand above may be seen as the composition of the convex and non-
increasing map s �→ sdF (ρ(x)/sd) and of the concave map in (9.3.12), so that
the resulting map is convex in [0, 1] for µ1-a.e. x ∈ Rd. Thus we have

F
( ρ1(x)

det ∇̃rt(x)

)
det ∇̃rt(x) ≤ (1− t)F (ρ1(x)) + tF (ρ2(x))

and the thesis follows by integrating this inequality in Rd.
In order to check the convexity along generalized geodesics in the case p = 2,

we apply Proposition 9.2.10: we have to choose µ ∈ Pr
2 (X) and two optimal

transport maps r0, r1 ∈ L2(µ;X), setting rt := (1−t)r0+tr1. We know that r0, r1

are approximately differentiable, µ-essentially injective, and that ∇̃r0, ∇̃r1 are
symmetric (since p = 2) and strictly positive definite for µ-a.e. x ∈ Rd; moreover,
by applying (6.2.9) to r0 and r1 we get

〈rt(x)− rt(y), x− y〉 = (1− t)〈r0(x)− r0(y), x− y〉+ t〈r1(x)− r1(y), x− y〉 > 0

for x, y ∈ Rd \ N , for a suitable µ-negligible subset N of Rd. It follows that rt

are µ-essentially injective as well and we can argue as before by exploiting the
symmetry of ∇̃r0, ∇̃r1, obtaining

F(µt) ≤ (1− t)F(µ0) + tF(µ1) for µt := (rt)#µ. �
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In order to express (9.3.11) in a different way, we introduce the function

LF (z) := zF ′(z)− F (z) which satisfies − LF (e−z)ez =
d

dz
F (e−z)ez; (9.3.13)

denoting by F̂ the modified function F (e−z)ez we have the simple relation

L̂F (z) = − d

dz
F̂ (z), L̂2

F (z) = − d

dz
L̂F (z) =

d2

dz2
F̂ (z), where

L2
F (z) := LLF

(z) = zL′
F (z)− LF (z).

(9.3.14)

The nonincreasing part of condition (9.3.11) is equivalent to say that

LF (z) ≥ 0 ∀ z ∈ (0,+∞), (9.3.15)

and it is in fact implied by the convexity of F . A simple computation in the case
F ∈ C2(0, +∞) shows

d2

ds2
F (s−d)sd =

d2

ds2
F̂ (d · log s) = L̂2

F (d · log s)
d2

s2
+ L̂F (d · log s)

d

s2
,

and therefore

(9.3.11) is equivalent to L2
F (z) ≥ −1

d
LF (z) ∀ z ∈ (0, +∞), (9.3.16)

i.e.

zL′
F (z) ≥ (

1− 1
d

)
LF (z), the map z �→ z1/d−1LF (z) is non increasing. (9.3.17)

Observe that the bigger is the dimension d, the stronger are the above conditions,
which always imply the convexity of F .

Remark 9.3.10 (A “dimension free” condition). The weakest condition on F yield-
ing the geodesic convexity of F in any dimension is therefore

L2
F (z) = zL′

F (z)− LF (z) ≥ 0 ∀ z ∈ (0, +∞). (9.3.18)

Taking into account (9.3.14), this is also equivalent to ask that

the map s �→ F (e−s)es is convex and non increasing in (0, +∞). (9.3.19)

Among the functionals F satisfying (9.3.11) we quote:

the entropy functional: F (s) = s log s, (9.3.20)

the power functional: F (s) =
1

m− 1
sm for m ≥ 1− 1

d
. (9.3.21)
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Observe that (9.3.20) and (9.3.21) with m > 1 also satisfy (9.3.19) and F = F∗,
by Remark 9.3.8; on the other hands, if m < 1, F∗ is given by [79, 31]

F∗(µ) :=
1

m− 1

∫
Rd

F (ρ(x)) dL d(x) with µ = ρ ·L d + µs, µs ⊥ L d. (9.3.22)

In this case the functional takes only account of the density of the absolutely
continuous part of µ w.r.t. L d and the domain of F∗ is the whole Pp(Rd), which
strictly contains Pr

p (Rd).

Example 9.3.11 (The opposite Wasserstein distance). In the separable Hilbert
space X let us fix a base measure µ1 ∈ P2(X) and let us consider the functional

φ(µ) := −1
2
W 2

2 (µ1, µ). (9.3.23)

Proposition 9.3.12. For each couple µ2, µ3 ∈ P2(X) and each transfer plan µ2 3 ∈
Γ(µ2, µ3) we have

W 2
2 (µ1, µ2→3

t ) ≥ (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)

− t(1− t)
∫

X2
|x2 − x3|2 dµ2 3(x2, x3) ∀ t ∈ [0, 1].

(9.3.24)

In particular, by Remark 9.2.5, the map φ : µ �→ −1
2W 2

2 (µ1, µ) is (−1)-convex
along generalized geodesics.

Proof. We argue as in Theorem 7.3.2: by Proposition 7.3.1, for µ2, µ3 ∈ P2(X)
and µ2 3 ∈ Γ(µ2, µ3) we can find a plan µ ∈ Γ(µ1, µ2, µ3) such that

(π1,2→3
t )#µ ∈ Γo(µ1, µ2→3

t ), (π2,3)#µ = µ2 3. (9.3.25)

Therefore

W 2
2 (µ1, µ2→3

t ) =
∫

X3
|(1− t)x2 + tx3 − x1|2 dµ(x1, x2, x3)

=
∫

X3

(
(1− t)|x2 − x1|2 + t|x3 − x1|2 − t(1− t)|x2 − x3|2

)
dµ(x1, x2, x3)

≥ (1− t)W 2
2 (µ1, µ2) + tW 2

2 (µ1, µ3)− t(1− t)
∫

X2
|x2 − x3|2 dµ2 3(x2, x3).

�

9.4 Relative entropy and convex functionals of

measures

In this section we study in detail the case of relative entropies, which extend even
to infinite dimensional spaces the example (9.3.20) discussed in 9.3.6: for more
details and developments we refer to [67].
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Definition 9.4.1 (Relative entropy). Let γ, µ be Borel probability measures on a
separable Hilbert space X; the relative entropy of µ w.r.t. γ is

H(µ|γ) :=

⎧⎨⎩
∫

X

dµ

dγ
log

(
dµ

dγ

)
dγ if µ � γ,

+∞ otherwise.
(9.4.1)

As in Example 9.3.6 we introduce the nonnegative, l.s.c., (extended) real,
(strictly) convex function

H(s) :=

⎧⎪⎨⎪⎩
s(log s− 1) + 1 if s > 0,

1 if s = 0,
+∞ if s < 0,

(9.4.2)

and we observe that

H(µ|γ) =
∫

X

H
(dµ

dγ

)
dγ ≥ 0; H(µ|γ) = 0 ⇔ µ = γ. (9.4.3)

Remark 9.4.2 (Changing γ). Let γ be a Borel measure on X and let V : X →
(−∞, +∞] a Borel map such that

V + has p-growth (5.1.21), γ̃ := e−V · γ is a probability measure. (9.4.4)

Then for measures in Pp(X) the relative entropy w.r.t. γ is well defined by the
formula

H(µ|γ) := H(µ|γ̃)−
∫

X

V (x) dµ(x) ∈ (−∞,+∞] ∀µ ∈ Pp(X). (9.4.5)

In particular, when X = Rd and γ is the d-dimensional Lebesgue measure, we find
the standard entropy functional introduced in (9.3.20).

More generally, we can consider a

proper, l.s.c., convex function F : [0,+∞) → [0, +∞]
with superlinear growth

(9.4.6)

and the related functional

F(µ|γ) :=

⎧⎨⎩
∫

X

F
(dµ

dγ

)
dγ if µ � γ,

+∞ otherwise.
(9.4.7)

Lemma 9.4.3 (Joint lower semicontinuity). Let γn, µn ∈ P(X) be two sequences
narrowly converging to γ, µ in P(X�). Then

lim inf
n→∞ H(µn|γn) ≥ H(µ|γ), lim inf

n→∞ F(µn|γn) ≥ F(µ|γ). (9.4.8)
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The proof of this lemma follows easily from the next representation formula;
before stating it, we need to introduce the conjugate function of F

F ∗(s∗) := sup
s≥0

s · s∗ − F (s) < +∞ ∀ s∗ ∈ R, (9.4.9)

so that
F (s) = sup

s∗∈R

s∗ · s− F ∗(s∗); (9.4.10)

if s0 ≥ 0 is a minimizer of F then

F ∗(s∗) ≥ s∗s0 − F (s0), s ≥ s0 ⇒ F (s) = sup
s∗≥0

s∗ · s− F ∗(s∗). (9.4.11)

In the case of the entropy functional, we have H∗(s∗) = es∗ − 1.

Lemma 9.4.4 (Duality formula). For any γ, µ ∈ P(X) we have

F(µ|γ) = sup
{∫

X

S∗(x) dµ(x)−
∫

X

F ∗(S∗(x)) dγ(x) : S∗ ∈ C0
b (X�)

}
. (9.4.12)

Proof. This lemma is a particular case of more general results on convex integrals
of measures, well known in the case of a finite dimensional space X, see for instance
§2.6 of [11]. We present here a brief sketch of the proof for a general Hilbert space;
up to an addition of a constant, we can always assume F ∗(0) = −mins≥0 F (s) =
−F (s0) = 0.

Let us denote by F ′(µ|γ) the right hand side of (9.4.12). It is obvious that
F ′(µ|γ) ≤ H(µ|γ), so that we have to prove only the converse inequality.

First of all we show that F ′(µ|γ) < +∞ yields that µ � γ. For let us fix
s∗, ε > 0 and a Borel set A with γ(A) ≤ ε/2. Since µ, γ are tight measures (recall
that B(X) = B(X�), compact subset of X are compact in X�, too, and X� is
a separable metric space) we can find a compact set K ⊂ A, an open set (in X�)
G ⊃ A and a continuous function ζ : X� → [0, s∗] such that

µ(G \K) ≤ ε, γ(G) ≤ ε, ζ(x) = s∗ on K, ζ(x) = 0 on X \G.

Since F ∗ is increasing (by Definition (9.4.9)) and F ∗(0) = 0, we have

s∗µ(K)− F ∗(s∗)ε ≤
∫

K

ζ(x) dµ(x)−
∫

G

F ∗(ζ(x)) dγ(x)

≤
∫

X

ζ(x) dµ(x)−
∫

X

F ∗(ζ(x)) dγ(x) ≤ F ′(µ|γ)

Taking the supremum w.r.t. K ⊂ A and s∗ ≥ 0, and using (9.4.11) we get

εF
(
µ(A)/ε

) ≤ F ′(µ|γ) if µ(A) ≥ εs0.

Since F (s) has a superlinear growth as s → +∞, we conclude that µ(A) → 0 as
ε ↓ 0.
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Now we can suppose that µ = ρ · γ for some Borel function ρ ∈ L1(γ), so
that

F ′(µ|γ) = sup
{∫

X

(
S∗(x)ρ(x)− F ∗(S∗(x))

)
dγ(x) : S∗ ∈ C0

b (X�)
}

and, for a suitable dense countable set C = {s∗n}n∈N ⊂ R

F(µ|γ) =
∫

X

sup
s∗∈C

(
s∗ρ(x)− F ∗(s∗)

)
dγ(x)

= lim
k→∞

∫
X

sup
s∗∈Ck

(
s∗ρ(x)− F ∗(s∗)

)
dγ(x)

where Ck = {s∗1, · · · , s∗k}. Our thesis follows if we show that for every k∫
X

max
s∗∈Ck

(
s∗ρ(x)− F ∗(s∗)

)
dγ(x) ≤ F ′(µ|γ). (9.4.13)

For we call

Aj =
{

x ∈ X : s∗jρ(x)− F ∗(s∗j ) ≥ s∗i ρ(x)− F ∗(s∗i ) ∀ i ∈ {1, . . . , k}
}

,

and

A′
1 = A1, A′

j+1 = Aj+1 \
( j⋃

i=1

Ai

)
.

Since γ is Radon, we find compact sets Kj ⊂ A′
j, X�-open sets Gj ⊃ Aj with

Gj ∩Ki = ∅ if i �= j, and X�-continuous functions ζj such that

k∑
j=1

γ(Gj \Kj) + µ(Gj \Kj) ≤ ε, ζj ≡ s∗j on Kj , ζj ≡ 0 on X \Gj .

Denoting by ζ :=
∑k

j=1 ζj , M :=
∑k

j=1 |s∗j |, since the negative part of F ∗(s∗) is
bounded above by |s∗|s0 we have∫

X

max
s∗∈Ck

(
s∗ρ(x)− F ∗(s∗)

)
dγ(x) =

k∑
j=1

∫
A′

j

(
s∗jρ(x)− F ∗(s∗j )

)
dγ(x)

≤
k∑

j=1

∫
Kj

(
s∗jρ(x)− F ∗(s∗j )

)
dγ(x) + ε(M + Ms0)

=
k∑

j=1

∫
Kj

(
ζ(x)ρ(x)− F ∗(ζ(x))

)
dγ(x) + ε(M + Ms0)

≤
∫

X

(
ζ(x)ρ(x)− F ∗(ζ(x))

)
dγ(x) + ε(M + Ms0 + M + F ∗(M)).

Passing to the limit as ε ↓ 0 we get (9.4.13). �
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Lemma 9.4.5 (Entropy and marginals). Let π : X → X be a Borel map. For every
couple of probability measures γ, µ ∈ P(X) we have

H(π#µ|π#γ) ≤ H(µ|γ), F(π#µ|π#γ) ≤ F(µ|γ). (9.4.14)

Proof. It is not restrictive to assume that µ � γ: we denote by ρ a Borel map
γ-a.e. equal to the density dµ

dγ ; applying the disintegration theorem we can find a
Borel family of probability measures γx in X such that γ =

∫
X

γx d π#γ(x) and
γx(X \ π−1(x)) = 0 for π#γ-a.e. x.

It follows that µ and π#µ admit the representation

µ =
∫

X

ργx d π#γ(x) and π#µ = ρ̃ · π#γ with ρ̃(x) :=
∫

π−1(x)

ρ(y) dγx(y)

since for each Borel set A ⊂ X one has∫
π−1(A)

dµ(x) =
∫

A

(∫
π−1(x)

ρ(y) dγx(y)
)

d π#γ(x).

Jensen inequality yields

F (ρ̃(x)) ≤
∫

π−1(x)

F (ρ(y)) dγx(y),

and therefore

F(π#µ|π#γ) =
∫

X

F (ρ̃(x)) d π#γ(x) ≤
∫

X

(∫
π−1(x)

F (ρ(y)) dγx(y)
)

d π#γ(x)

≤
∫

X

F (ρ(x)) dγ(x) = F(µ|γ).
�

Corollary 9.4.6. Let πk : X → X be Borel maps such that

lim
k→∞

πk(x) = x ∀x ∈ X.

For every γ, µ ∈ P(X), setting γk := πk
#γ, µk := πk

#µ, we have

lim
k→∞

H(µk|γk) = H(µ|γ), lim
k→∞

F(µk|γk) = F(µ|γ). (9.4.15)

Proof. Lebesgue’s dominated convergence theorem shows that γk, µk narrowly
converge to γ, µ respectively. Combining Lemma 9.4.3 and 9.4.5 we conclude. �
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9.4.1 Log-concavity and displacement convexity

We want to characterize the probability measures γ inducing a geodesically con-
vex relative entropy functional H(·|γ) in Pp(X). The following lemma provides
the first crucial property; the argument is strictly related to the proof of the
Brunn-Minkowski inequality for the Lebesgue measure, obtained via optimal trans-
portation inequalities [126]. See also [25] for the link between log-concavity and
representation formulae like (9.4.23).

Lemma 9.4.7 (γ is log-concave if H(·|γ) is displacement convex). Suppose that
for each couple of probability measures µ1, µ2 ∈ P(X) with bounded support,
there exists µ ∈ Γ(µ1, µ2) such that H(·|γ) is convex along the interpolating curve
µ1→2

t =
(
(1−t)π1+tπ2

)
#

µ, t ∈ [0, 1]. Then for each couple of open sets A, B ⊂ X

and t ∈ [0, 1] we have

log γ((1− t)A + tB) ≥ (1− t) log γ(A) + t log γ(B). (9.4.16)

Proof. We can obviously assume that γ(A) > 0, γ(B) > 0 in (9.4.16); we consider

µ1 := γ(·|A) =
1

γ(A)
χA · γ, µ2 := γ(·|B) =

1
γ(B)

χB · γ,

observing that

H(µ1|γ) = − log γ(A), H(µ2|γ) = − log γ(B). (9.4.17)

If µ1→2
t is induced by a transfer plan µ ∈ Γ(µ1, µ2) along which the relative entropy

is displacement convex, we have

H(µ1→2
t |γ) ≤ (1− t)H(µ1|γ) + tH(µ2|γ) = −(1− t) log γ(A)− t log γ(B).

On the other hand the measure µ1→2
t is concentrated on (1−t)A+tB = π1→2

t (A×
B) and the next lemma shows that

− log γ((1− t)A + tB) ≤ H(µ1→2
t |γ). �

Lemma 9.4.8 (Relative entropy of concentrated measures). Let γ, µ ∈ P(X); if
µ is concentrated on a Borel set A, i.e. µ(X \A) = 0, then

H(µ|γ) ≥ − log γ(A). (9.4.18)

Proof. It is not restrictive to assume µ � γ and γ(A) > 0; denoting by γA the
probability measure γ(·|A) := γ(A)−1χA · γ, we have

H(µ|γ) =
∫

X

log
(dµ

dγ

)
dµ =

∫
A

log
( dµ

dγA
· 1
γ(A)

)
dµ

=
∫

A

log
( dµ

dγA

)
dµ−

∫
A

log
(
γ(A)

)
dµ = H(µ|γA)− log

(
γ(A)

)
≥ − log

(
γ(A)

)
. �
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The previous results justifies the following definition:

Definition 9.4.9 (log-concavity of a measure). We say that a Borel probability
measure γ ∈ P(X) on X is log-concave if for every couple of open sets A, B ⊂ X
we have

log γ((1− t)A + tB) ≥ (1− t) log γ(A) + t log γ(B). (9.4.19)

In Definition 9.4.9 and also in the previous theorem we confined ourselves to
pairs of open sets, to avoid the non trivial issue of the measurability of (1−t)A+tB
when A and B are only Borel (in fact, it is an open set whenever A and B are
open). Observe that a log-concave measure γ in particular satisfies

log γ(Br((1− t)x0 + tx1)) ≥ (1− t) log γ(Br(x0)) + t log γ(Br(x1)), (9.4.20)

for every couple of points x0, x1 ∈ X , r > 0, t ∈ [0, 1].
We want to show that in fact log concavity is equivalent to the geodesic

convexity of the Relative Entropy functional H(·|γ).
Let us first recall some elementary properties of convex sets in Rd. Let C ⊂ Rd

be a convex set; the affine dimension dim C of C is the linear dimension of its
affine envelope

aff C =
{
(1− t)x0 + tx1 : x0, x1 ∈ C, t ∈ R

}
, (9.4.21)

which is an affine subspace of Rd. We denote by int C the relative interior of C as
a subset of aff C: it is possible to show that

intC �= ∅, int C = C, H k(C \ int C) = 0 if k = dimC. (9.4.22)

Theorem 9.4.10. Let us suppose that X = Rd is finite dimensional and γ ∈ P(X)
satisfies the log-concavity assumptions on balls (9.4.20). Then supp γ is convex
and there exists a convex l.s.c. function V : X → (∞,+∞] such that

γ = e−V ·H k|aff(supp γ)
, where k = dim(supp γ). (9.4.23)

Conversely, if γ admits the representation (9.4.23) then γ is log-concave and the
relative entropy functional H(·|γ) is convex along any (generalized, if p = 2)
geodesic of Pp(X).

Proof. Let us suppose that γ satisfies the log-concave inequality on balls and
let k be the dimension of aff(supp γ). Observe that the measure γ satisfies the
same inequality (9.4.20) for the balls of aff(supp γ): up to an isometric change of
coordinates it is not restrictive to assume that k = d and aff(supp γ) = Rd.

Let us now introduce the set

D :=
{

x ∈ Rd : lim inf
r↓0

γ(Br(x))
rd

> 0
}
. (9.4.24)
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Since (9.4.20) yields

γ(Br(xt))
rk

≥
(

γ(Br(x0))
rk

)1−t (
γ(Br(x1))

rk

)t

t ∈ (0, 1), (9.4.25)

it is immediate to check that D is a convex subset of Rd with D ⊂ supp γ.
General results on derivation of Radon measures in Rd (see for instance

Theorem 2.56 in [11]) show that

lim sup
r↓0

γ(Br(x))
rd

< +∞ for L d-a.e. x ∈ Rd (9.4.26)

and

lim sup
r↓0

rd

γ(Br(x))
< +∞ for γ-a.e. x ∈ Rd. (9.4.27)

Using (9.4.27) we see that actually γ is concentrated on D (so that supp γ ⊂ D)
and therefore, being d the dimension of aff(supp γ), it follows that d is also the
dimension of aff(D).

If a point x̄ ∈ Rd exists such that

lim sup
r↓0

γ(Br(x̄))
rd

= +∞,

then (9.4.25) forces every point of int(D) to verify the same property, but this
would be in contradiction with (9.4.26), since we know that int(D) has strictly
positive L d-measure. Therefore

lim sup
r↓0

γ(Br(x))
rd

< +∞ for all x ∈ Rd (9.4.28)

and we obtain that γ � L d, again by the theory of derivation of Radon measures
in Rd. In the sequel we denote by ρ the density of γ w.r.t. L d and notice that by
Lebesgue differentiation theorem ρ > 0 L d-a.e. in D and ρ = 0 L d-a.e. in Rd \D.

By (9.4.20) the maps

Vr(x) = − log
(γ(Br(x))

ωdrd

)
are convex on Rd, and (9.4.28) gives that the family Vr(x) is bounded as r ↓ 0 for
any x ∈ D. Using the pointwise boundedness of Vr on D and the convexity of Vr

it is easy to show that Vr are locally equi-bounded (hence locally equi-continuous)
on int(D) as r ↓ 0. Let W be a limit point of Vr, with respect to the local uniform
convergence, as r ↓ 0: W is convex on int(D) and Lebegue differentiation theorem
shows that

∃ lim
r↓0

Vr(x) = − log ρ(x) = W (x) for L d-a.e. x ∈ int(D), (9.4.29)
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so that γ = ρL d = e−W χint(D)L
d. In order to get a globally defined convex and

l.s.c function V we extend W with the +∞ value out of int(D) and define V to
be its convex and l.s.c. envelope. It turns out that V coincides with W on int(D),
so that still the representation γ = e−V L d holds.

Conversely, let us suppose that γ admits the representation (9.4.23) for a
given convex l.s.c. function V and let µ1, µ2 ∈ Pp(X); if their relative entropies
are finite then they are absolutely continuous w.r.t. γ and therefore their sup-
ports are contained in aff(supp γ). It follows that the support of any optimal plan
µ ∈ Γo(µ1, µ2) in Pp(X) is contained in aff(supp γ)× aff(supp γ): up to a linear
isometric change of coordinates, it is not restrictive to suppose aff(supp γ) = Rd,
µ1, µ2 ∈ Pp(Rd), γ = e−V ·L d ∈ P(Rd).

In this case we introduce the density ρi of µi w.r.t. L d observing that

dµi

dγ
= ρieV i = 1, 2,

where we adopted the convention 0 · (+∞) = 0 (recall that ρi(x) = 0 for L d-a.e.
x ∈ Rd \D(V )). Therefore the entropy functional can be written as

H(µi|γ) =
∫

Rd

ρi(x) log ρi(x) dx +
∫

Rd

V (x) dµi(x), (9.4.30)

i.e. the sum of two geodesically convex functionals, as we proved discussing Ex-
amples 9.3.1 and Examples 9.3.6. Lemma 9.4.7 yields the log-concavity of γ; the
case of generalized geodesics in P2(X) is completely analogous. �

The previous theorem shows that in finite dimensions log-concavity of γ is
equivalent to the convexity of H(µ|γ) along (even generalized, if p = 2) geodesics
of anyone of the Wasserstein spaces Pp(X): the link between these two concepts
is provided by the representation formula (9.4.23).

When X is an infinite dimensional Hilbert space, (9.4.23) is no more true in
general, but the equivalence between log-concavity and geodesic convexity of the
relative entropy still holds. In particular all Gaussian measures, defined in Defini-
tion 6.2.1, induce a geodesically convex relative entropy functional (see condition
(5) in the statement below).

Theorem 9.4.11. Let X be a separable Hilbert space and let γ ∈ P(X). The fol-
lowing properties are equivalent:

(1) H(·|γ) is geodesically convex in Pp(X) for every p ∈ (1, +∞).

(2) H(·|γ) is convex along generalized geodesics in P2(X).

(3) For every couple of measures µ1, µ2 ∈ P(X) with bounded support there
exists a connecting plan µ ∈ Γ(µ1, µ2) along with H(·|γ) is displacement
convex.

(4) γ is log-concave.
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(5) For every finite dimensional orthogonal projection π : X → X, π#γ is rep-
resentable as in (9.4.23) for a suitable convex and l.s.c. function V .

Proof. The implications (1) ⇒ (3) and (2) ⇒ (3) are trivial, and (3) ⇒ (4) follows
by Lemma 9.4.7.
Now we show that (4) ⇒ (5), using Theorem 9.4.10: if A, B are (relatively) open
subsets of π(X) and t ∈ [0, 1] we should prove that

log
(
π#γ

(
(1− t)A + tB

)) ≥ (1− t) log
(
π#γ

(
A
))

+ t log
(
π#γ

(
B
))

. (9.4.31)

By definition π#γ
(
A
)

= γ
(
π−1A

)
, π#γ

(
B
)

= γ
(
π−1B

)
, and it is immediate to

check that
π#γ

(
(1− t)A + tB

)
= γ

(
(1− t)π−1A + tπ−1B

)
since π−1

(
(1 − t)A + tB

)
= (1 − t)π−1A + tπ−1B. Thus (9.4.31) follows by the

log-concavity of γ applied to the open sets π−1A, π−1B.
(5) ⇒ (1): we choose a sequence πh of finite dimensional orthogonal projections
on X such that πh(x) → x for any x ∈ X as h →∞, set γh := πh

#γ and

φh(µ) := H(µ|γh), φ(µ) := H(µ|γ) ∀µ ∈ P(X).

Since each functional φh is geodesically convex in Pp(X), by Theorem 9.4.10, the
thesis follows by Lemma 9.1.4 if we show that φ is the Γ-limit of φh as h → ∞:
thus we have to check conditions (9.1.4) and (9.1.5).

(9.1.4) follows immediately by Lemma 9.4.3; in order to check (9.1.5) we
simply choose µh := πh

#µ and we apply Corollary 9.4.6.
The implications (5) ⇒ (2) follows by the same approximation argument, invoking
Lemma 9.2.9. �

If γ is log-concave and F satisfies (9.3.19), then all the integral functionals
F(·|γ) introduced in (9.4.7) are geodesically convex in Pp(X) and convex along
generalized geodesics in P2(X).

Theorem 9.4.12 (Geodesical convexity for relative integral functionals). Suppose
that γ is log-concave and F : [0, +∞) → [0, +∞] satisfies conditions (9.4.6) and
(9.3.19). Then the integral functional F(·|γ) is geodesically convex in Pp(X) and
convex along generalized geodesics in P2(X).

Proof. The same approximation argument of the proof of the previous theorem
shows that it is sufficient to consider the final dimensional case X := Rd. Arguing
as in the final part of the proof of Theorem 9.4.10 we can assume that γ := e−V L d

for a convex l.s.c. function V : Rd → (−∞, +∞] whose domain has not empty
interior. For every couple of measure µ1, µ2 ∈ D(F(·|γ)) we have

µi = ρieV · γ, F(µi|γ) =
∫

Rd

F (ρi(x)eV (x))e−V (x) dx i = 1, 2. (9.4.32)
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As in Proposition 9.3.9, we denote by r the optimal transport map for the p-
Wasserstein distance pushing µ1 to µ2 and we set rt := (1−t)i+tr, µt := (rt)#µ1;
arguing as in that proposition, we get

F(µt|γ) =
∫

Rd

F
(ρ(x)eV (rt(x))

det ∇̃rt(x)

)
det ∇̃rt(x)e−V (rt(x)) dx, (9.4.33)

and the integrand above may be seen as the composition of the convex and non-
increasing map s �→ F (ρ(x)e−s)es with the concave curve

t �→ −V (rt(x)) + log(det ∇̃rt(x)),

since D(x) := ∇̃r(x) is a diagonalizable map with nonnegative eigenvalues and

t �→ log det
(
(1− t)I + tD(x)

)
is concave in [0, 1].

The case of convexity along generalized geodesics in P2(Rd) follows by the same
argument, recalling the final part of the proof of Proposition 9.3.9 once again.

�





Chapter 10

Metric Slope and Subdifferential
Calculus in Pp(X)

As we have seen in Section 1.4, in the classical theory of subdifferential calculus for
proper, lower semicontinuous functionals φ : X → (−∞,+∞] defined in a Hilbert
space X, the Fréchet Subdifferential ∂φ : X → 2X of φ is a multivalued operator
defined as

ξ ∈ ∂φ(v) ⇐⇒ v ∈ D(φ), lim inf
w→v

φ(w)− φ(v)− 〈ξ, w − v〉
|w − v| ≥ 0, (10.0.1)

which we will also write in the equivalent form for v ∈ D(φ)

ξ ∈ ∂φ(v) ⇐⇒ φ(w) ≥ φ(v) + 〈ξ, w − v〉+ o
(|w − v|) as w → v. (10.0.2)

As usual in multivalued analysis, the proper domain D(∂φ) ⊂ D(φ) is defined as
the set of all v ∈ X such that ∂φ(v) �= ∅; we will use this convention for all the
multivalued operators we will introduce.

The Fréchet subdifferential occurs quite naturally in the Euler equations for
minima of (smooth perturbation of) φ:

A. Euler equation for quadratic perturbations. If vτ is a minimizer of

w �→ Φ(τ, v;w) := φ(w) +
1
2τ
|w − v|2 for some τ > 0, v ∈ X (10.0.3)

then
vτ ∈ D(∂φ) and − vτ − v

τ
∈ ∂φ(vτ ). (10.0.4)

For λ-convex functionals (recall Definition 2.4.1 and Remark 2.4.4) the Fréchet
subdifferential enjoys at least two other simple but fundamental properties, which
play a crucial role in the corresponding variational theory of evolution equations:
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B. Characterization by variational inequalities and monotonicity. If φ is λ-
convex, then

ξ ∈ ∂φ(v) ⇐⇒ φ(w) ≥ φ(v) + 〈ξ, w − v〉+
λ

2
|w − v|2 ∀w ∈ D(φ);

(10.0.5)
in particular,

ξi ∈ ∂φ(vi) =⇒ 〈ξ1 − ξ2, v1 − v2〉 ≥ λ|v1 − v2|2 ∀ v1, v2 ∈ D(∂φ).
(10.0.6)

C. Convexity and strong-weak closure. [28, Chap. II, Ex. 2.3.4, Prop. 2.5] If
φ is λ-convex, then ∂φ(v) is closed and convex, and for every sequences
(vn), (ξn) ∈ X we have

ξn ∈ ∂φ(vn), vn → v, ξn ⇀ ξ =⇒ ξ ∈ ∂φ(v), φ(vn) → φ(v).
(10.0.7)

Modeled on the last property C and following a terminology introduced by F.H.
Clarke, see e.g. [113, Chap. 8], we say that a functional φ is regular if

ξn ∈ ∂φ(vn), ϕn = φ(vn)
vn → v, ξn ⇀ ξ, ϕn → ϕ

}
=⇒ ξ ∈ ∂φ(v), ϕ = φ(v). (10.0.8)

D. Minimal selection and slope. (cf. Proposition 1.4.4) If φ is regular (in partic-
ular if φ is λ-convex) for every v ∈ D(φ) the metric slope

|∂φ|(v) = lim sup
w→v

(φ(v)− φ(w))+

|w − v| (10.0.9)

is finite if and only if ∂φ(v) �= ∅ and

|∂φ|(v) = min
{
|ξ| : ξ ∈ ∂φ(v)

}
. (10.0.10)

E. Chain rule. If v : (a, b) → D(φ) is a curve in X then

d

dt
φ(v(t)) = 〈ξ, v′(t)〉 ∀ ξ ∈ ∂φ(v(t)), (10.0.11)

at each point t where v and φ ◦ v are differentiable and ∂φ(v(t)) �= ∅. In
particular (see [28, Chap. III, Lemma 3.3] and Remark 1.4.6) if φ is also
λ-convex, v ∈ AC(a, b;X) (see Remark 1.1.3), and∫ b

a

|∂φ|(v(t))|v′(t)| dt < +∞, (10.0.12)

then φ ◦ v is absolutely continuous in (a, b) and (10.0.11) holds for L 1-a.e.
t ∈ (a, b).
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The aim of this chapter is to extend the notion of Fréchet subdifferentiability and
these properties to the Wasserstein framework (see also [38] for related results). In
the next section we shall consider the simpler case of regular measures in P2(X),
where the theory exhibit an evident formal analogy with the Euclidean one.

After a detailed analysis of the differentiability properties of the Wasserstein
distance map Wp(·, µ) from a fixed reference measure µ ∈ Pp(X) that we will
carry out in Section 10.2, in the third section we will attack the case of general
measures in Pp(X). Examples are provided in the last section of this chapter.

10.1 Subdifferential calculus in Pr
2(X): the regular case

In this section we focus our attention to functionals φ defined on P2(X) (i.e. here
p = 2) and we present the main definitions and results on subdifferentiability in
the (considerably) simplifying assumption that each measure µ in D(|∂φ|) can be
pushed on every ν ∈ D(φ) by a unique optimal transport map, which we denoted
by tν

µ in (7.1.4). To ensure this property we are supposing that

φ : P2(X) → (−∞, +∞] is proper and lower semicontinuous,
with D(|∂φ|) ⊂ Pr

2 (X);
(10.1.1a)

we further simplify some technical point by assuming that for some τ∗ > 0 the
functional

ν �→ Φ(τ, µ; ν) =
1
2τ

W 2
2 (µ, ν) + φ(ν) admits at least

a minimum point µτ , for all τ ∈ (0, τ∗) and µ ∈ P2(X).
(10.1.1b)

Notice that D(φ) ⊂ Pr
2 (X) is a sufficient but not necessary condition for (10.1.1a),

see the example of the internal energy functional discussed in Theorem 10.4.13.
The formal mechanism for translating statements from the euclidean frame-

work to the Wasserstein formalism is simple: if µ ↔ v is the reference point,
scalar products 〈·, ·〉 have to be intended in the reference Hilbert space L2(µ; X)
(which contains the tangent space TanµP2(X)) and displacement vectors w − v
corresponds to transport maps tν

µ − i. According to these two natural rules, the
transposition of (10.0.1) yields

Definition 10.1.1 (Fréchet subdifferential). Let φ : P2(X) → (−∞, +∞] be a
functional satisfying (10.1.1a) and let µ ∈ D(|∂φ|). We say that ξ ∈ L2(µ; X)
belongs to the Fréchet subdifferential ∂φ(µ) if

lim inf
ν→µ

φ(ν)− φ(µ)− ∫
X
〈ξ(x), tν

µ(x)− x〉 dµ(x)
W2(µ, ν)

≥ 0, (10.1.2)

or, with equivalent simpler notation,

φ(ν)− φ(µ) ≥
∫

X

〈ξ(x), tν
µ(x)− x〉 dµ(x) + o

(
W2(µ, ν)

)
. (10.1.3)
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When ξ ∈ ∂φ(µ) also satisfies

φ(t#µ)− φ(µ) ≥
∫

X

〈ξ(x), t(x)− x〉 dµ(x) + o
(‖t− i‖L2(µ;X)

)
, (10.1.4)

then we will say that ξ is a strong subdifferential.

It is obvious that ∂φ(µ) is a closed convex subset of L2(µ;X); in fact, we can
also impose that it is contained in the tangent space TanµP2(X), since the vector
ξ in (10.1.3) acts only on tangent vectors (see (8.5.1) and Theorem 8.5.1).

A. Euler equation for quadratic perturbations. When we want to minimize the
perturbed functional (10.1.1b) we get a result completely analogous to the eu-
clidean one (10.0.4):

Lemma 10.1.2. Let φ be satisfying (10.1.1a,b) and let µτ be a minimizer of
(10.1.1b); then µτ ∈ D(|∂φ|) and

1
τ

(
tµ
µτ
− i

) ∈ ∂φ(µτ ) is a strong subdifferential. (10.1.5)

Proof. The minimality of µτ gives

φ(ν)− φ(µτ ) = Φ(τ, µ; ν)− Φ(τ, µ;µτ ) +
1
2τ

(
W 2

2 (µτ , µ)−W 2
2 (ν, µ)

)
≥ 1

2τ

(
W 2

2 (µτ , µ)−W 2
2 (ν, µ)

)
∀ν ∈ P2(X).

Now we observe that if ν = t#µτ

W 2
2 (µτ , µ) =

∫
X

|tµ
µτ

(x)− x|2 dµτ (x), W 2
2 (ν, µ) ≤

∫
X

|t(x)− tµ
µτ

(x)|2 dµτ (x),

and therefore the elementary identity 1
2 |a|2 − 1

2 |b|2 = 〈a, a− b〉 − 1
2 |a− b|2 yields

φ(ν)− φ(µτ ) ≥ 1
2τ

∫
X

(
|tµ

µτ
(x)− x|2 − |tµ

µτ
(x)− t(x)|2

)
dµτ (x)

=
∫

X

(1
τ
〈tµ

µτ
(x)− x, t(x)− x〉 − 1

2τ
|t(x)− x|2

)
dµτ (x)

=
∫

X

1
τ
〈tµ

µτ
(x)− x, t(x)− x〉 dµτ (x)− 1

2τ
‖t− i‖2L2(µτ ;X).

We deduce 1
τ

(
tµ
µτ
− i

) ∈ ∂φ(µτ ) and the strong subdifferentiability condition. �
The above result, though simple, is very useful and usually provides the

first crucial information when one looks for the differential properties of discrete
solutions of the variational scheme (2.0.4). The nice argument which combine the
minimality of µτ and the possibility to use any “test” transport map t to estimate
W 2

2 (t#ν, µ) was originally introduced by F. Otto.
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10.1.1 The case of λ-convex functionals along geodesics

Let us now focus our attention to the case of a λ-convex functional:

φ is λ-convex on geodesics, according to Definition 9.1.1. (10.1.6)

B. Characterization by Variational inequalities and monotonicity. Suppose that φ
satisfies (10.1.1a) and (10.1.6). Then a vector ξ ∈ L2(µ;X) belongs to the Fréchet
subdifferential of φ at µ iff

φ(ν)− φ(µ) ≥
∫

X

〈ξ(x), tν
µ(x)− x〉 dµ(x) +

λ

2
W 2

2 (µ, ν) ∀ ν ∈ D(φ). (10.1.7)

In particular if ξi ∈ ∂φ(µi), i = 1, 2, and t = tµ2
µ1

is the optimal transport map,
then ∫

X

〈ξ2(t(x))− ξ1(x), t(x)− x〉 dµ1(x) ≥ λW 2
2 (µ1, µ2). (10.1.8)

Proof. One implication is trivial. To prove the other one, suppose that ξ ∈ ∂φ(µ)
and ν ∈ D(φ); for t ∈ [0, 1] we set µt := (i + t(tν

µ − i))#µ and we recall that the
λ-convexity yields

φ(µt)− φ(µ)
t

≤ φ(ν)− φ(µ)− λ

2
(1− t)W 2

2 (µ, ν).

On the other hand, since W2(µ, µt) = tW2(µ, ν), Fréchet differentiability yields

lim inf
t↓0

φ(µt)− φ(µ)
t

≥ lim inf
t→0+

1
t

∫
X

〈ξ(x), tµt
µ (x)− x〉 dµ(x)

≥
∫

X

〈ξ(x), tν
µ(x)− x〉 dµ(x),

since tµt
µ (x) = x + t(tν

µ(x)− x). �

C. Convexity and strong-weak closure. The next step is to show the closure of
the graph of ∂φ: here one has to be careful in the meaning of the convergence of
vectors ξn ∈ L2(µn;X), which belongs to different L2-spaces, and we will adopt
Definition 5.4.3, see also Theorem 5.4.4 for the main properties of this convergence.

Lemma 10.1.3 (Closure of the subdifferential). Let φ be a λ-convex functional
satisfying (10.1.1a), let (µn) be converging to µ ∈ D(φ) in P2(X) and let ξn ∈
∂φ(µn) be satisfying

sup
n

∫
X

|ξn(x)|2 dµn(x) < +∞, (10.1.9)

and converging to ξ according to Definition 5.4.3. Then ξ ∈ ∂φ(µ).
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Proof. Let us fix ν ∈ D(φ) and the related optimal transport map tν
µn

, and let
µn = (i × ξn × tν

µn
)#µn. Observe that the sequence µn is relatively compact in

P(X ×X� ×X), by Lemma 5.2.2 (the tightness of second marginals follows by
(10.1.9) and Lemma 5.1.12) and

π1,3
# µn ∈ Γo(µn, ν), γn = π1,2

# µn is as in Theorem 5.4.4. (10.1.10)

By (10.1.7) we know that

φ(ν) ≥ φ(µn) +
∫

X×X×X

〈x2, x3 − x1〉 dµn(x1, x2, x3) +
λ

2
W 2

2 (µn, ν). (10.1.11)

If µ is any limit point of µn in P(X × X� × X), applying Lemma 5.2.4 and
the lower semicontinuity of φ (recall that |x1|2 and |x3|2 are uniformly integrable
w.r.t. µn, by the convergence of µn in P2(X) and the fact that the third marginal
of µn is ν) we get

φ(ν) ≥ φ(µ) +
∫

X×X×X

〈x2, x3 − x1〉 dµ(x1, x2, x3) +
λ

2
W 2

2 (µ, ν). (10.1.12)

On the other hand, π1,3
# µ ∈ Γo(µ, ν) and (10.1.12) easily yields µ ∈ D(|∂φ|); by

(10.1.1a) we know that π1,3
# µ is induced by the unique optimal transport map tν

µ.
Invoking Lemma 5.3.2 we get

φ(ν) ≥ φ(µ) +
∫

X×X

〈x2, t
ν
µ(x1)− x1〉 dγ(x1, x2) +

λ

2
W 2

2 (µ, ν)

= φ(µ) +
∫

X

〈γ̄(x1), tν
µ(x1)− x1〉 dµ(x1) +

λ

2
W 2

2 (µ, ν),

with γ = π1,2
# µ. Since Theorem 5.4.4 yields ξ = γ̄, we conclude. �

10.1.2 Regular functionals

Definition 10.1.4. A functional φ : P2(X) → (−∞,+∞] satisfying (10.1.1a) is
regular if whenever the strong subdifferential ξn ∈ ∂φ(µn), ϕn = φ(µn) satisfy⎧⎨⎩µn → µ in P2(X), ϕn → ϕ, sup

n
‖ξn‖L2(µn;X) < +∞

ξn → ξ weakly, according to Definition 5.4.3,
(10.1.13)

then ξ ∈ ∂φ(µ) and ϕ = φ(µ).

We just proved that λ-convex functionals are indeed regular.
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D. Minimal selection and slope.

Lemma 10.1.5. Let φ be a regular functional satisfying (10.1.1a,b). µ ∈ D(|∂φ|) if
and only if ∂φ(µ) is not empty and

|∂φ|(µ) = min
{
‖ξ‖L2(µ;X) : ξ ∈ ∂φ(µ)

}
. (10.1.14)

By the convexity of ∂φ(µ) there exists a unique vector ξ ∈ ∂φ(µ) which attains the
minimum in (10.1.14): we will denote it by ∂◦φ(µ).

Proof. It is clear from the very definition of Fréchet subdifferential that

|∂φ|(µ) ≤ ‖ξ‖L2(µ;X) ∀ ξ ∈ ∂φ(µ);

thus we should prove that if |∂φ|(µ) < +∞ there exists ξ ∈ ∂φ(µ) such that
‖ξ‖L2(µ;X) ≤ |∂φ|(µ). We argue by approximation: for µ ∈ D(|∂φ|) and τ ∈ (0, τ∗),
let µτ be a minimizer of (10.1.1b); by Lemma 10.1.2 and 3.1.5 we know that

ξτ =
1
τ

(
tµ
µτ
− i

) ∈ ∂φ(µτ ),
∫

X

|ξτ (x)|2 dµτ (x) =
W 2

2 (µ, µτ )
τ 2

,

ξτ is a strong subdifferential, and for a suitable vanishing subsequence τn → 0

lim
n→∞

∫
X

|ξτn
(x)|2 dµτn

(x) = |∂φ|2(µ). (10.1.15)

By Theorem 5.4.4(c) we know that ξτ has some limit point ξ ∈ L2(µ; X) as τ ↓ 0,
according to Definition 5.4.3. By (10.1.13) we conclude. �

E. Chain rule. Let φ : P2(X) → (−∞,+∞] be a regular functional satisfying
(10.1.1a,b), and let µ : (a, b) �→ µt ∈ D(φ) ⊂ P2(X) be an absolutely continuous
curve with tangent velocity vector vt. Let Λ ⊂ (a, b) be the set of points t ∈ (a, b)
such that

(a) |∂φ|(µt) < +∞;

(b) φ ◦ µ is approximately differentiable at t (recall Definition 5.5.1);

(c) condition (8.4.6) of Proposition 8.4.6 holds.

Then

d̃

dt
φ(µt) =

∫
X

〈ξt(x),vt(x)〉 dµt(x) ∀ ξt ∈ ∂φ(µt), ∀t ∈ Λ. (10.1.16)

Moreover, if φ is λ-convex (10.1.6) and∫ b

a

|∂φ|(µt)|µ′|(t) dt < +∞, (10.1.17)
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then the map t �→ φ(µt) is absolutely continuous, and (a, b) \ Λ is L 1-negligible.

Proof. Let t̄ ∈ Λ; observing that

vh :=
1
h

(
t
µt̄+h
µt̄

− i
)→ vt̄ in L2(µt̄; X), (10.1.18)

we have

φ(µt̄+h)− φ(µt̄) ≥ h

∫
X

〈vh(x), ξt̄(x)〉 dµt̄(x) + o(h). (10.1.19)

Dividing by h and taking the right and left limits as h → 0 we obtain that the left
and right approximate derivatives d̃/dt±φ(µt) satisfy

d̃

dt+
φ(µt)|t=t̄

≥
∫

X

〈vt̄(x), ξt̄(x)〉 dµt̄(x),
d̃

dt−
φ(µt)|t=t̄

≤
∫

X

〈vt̄(x), ξt̄(x)〉 dµt̄(x)

and therefore we find (10.1.16).
In the λ-convex case, since |∂φ| is a strong upper gradient (see Definition 1.2.1

and Corollary 2.4.10), we already know that t �→ φ(µt) is absolutely continuous in
(a, b) and thus the conditions (a,b, c) hold L 1-a.e. in (a, b). �

10.2 Differentiability properties of the p-Wasserstein
distance

In this section we present a careful analysis of the differentiability properties of the
Wasserstein distance function ν �→ W p

p (µ, ν) from a fixed measure µ ∈ Pp(X).
This important example, which is a basic ingredient of the Minimizing Move-

ment approach developed in Chapter 2, will provide some basic tools for dealing
with more general functionals (as in step A of the previous section) and will suggest
the right way to define their Fréchet subdifferential in terms of plans.

The main ingredient, a super-differentiability result which is essential to the
developments of the next Section 10.3, is provided by Theorem 10.2.2. The remain-
ing part is devoted to study the (more delicate) sub-differentiability properties of
Wp, which are interesting by themselves, even if they do not play a crucial role in
the sequel.

First of all, we recall a useful property of the differential jp(x) = |x|p−2x of
the function p−1|x|p in X , p ∈ (1,∞); we first introduce the strictly positive and
continuous function

hp(t0) :=
∫ 1

0

(1− t)|t− t0|p−2 dt =
(1− t0)p − tp0 + ptp−1

0

p(p− 1)
, (10.2.1)

and the positive constants

cp := min
t0∈[0,1]

hp(t0), Cp := max
t0∈[0,1]

hp(t0), (10.2.2)
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observing that

cp ≥ 21−p

p(p− 1)
for p ≥ 2, Cp ≤ 22−p

p− 1
for p ≤ 2. (10.2.3)

Lemma 10.2.1. If p ≥ 2 then for each couple of points x1, x2 in the Hilbert space
X we have

cp|x1 − x2|p ≤ 1
p
|x2|p − 1

p
|x1|p − 〈jp(x1), x2 − x1〉

≤ (p− 1)
2

|x2 − x1|2 max
(|x2|, |x1|

)p−2
.

(10.2.4)

Analogously, if p ≤ 2 we have

p− 1
2

|x2 − x1|2 min
(|x2|, |x1|

)p−2

≤ 1
p
|x2|p − 1

p
|x1|p − 〈jp(x1), x2 − x1〉 ≤ Cp|x2 − x1|p.

(10.2.5)

Proof. Let us denote by xt, t ∈ (0, 1), the segment xt := (1 − t)x1 + tx2; it is
not restrictive to suppose that xt �= 0 for each value of t. Therefore the convex
map t �→ p−1|xt|p is of class C2 and denoting by g(t) its (nonnegative) second
derivative we have

1
p
|x2|p − 1

p
|x1|p − 〈jp(x1), x2 − x1〉 =

∫ 1

0

(1− t)g(t) dt. (10.2.6)

A direct calculation shows

d

dt
p−1|x|p = |xt|p−2〈xt, x2 − x1〉,

g(t) =
d2

dt2
p−1|x|p = |xt|p−2|x2 − x1|2 + (p− 2)|xt|p−4

(〈xt, x2 − x1〉
)2

,

and therefore

|xt|p−2|x2 − x1|2 ≤ g(t) ≤ (p− 1)|xt|p−2|x2 − x1|2 if p ≥ 2,

(p− 1)|xt|p−2|x2 − x1|2 ≤ g(t) ≤ |xt|p−2|x2 − x1|2 if p ≤ 2.

The second inequality of (10.2.4) and the first one of (10.2.5) follow easily by
(10.2.6). In order to prove the other inequalities, let us denote by t0 ∈ [0, 1] the
value corresponding to the point of minimal norm along the segment xt. It is easy
to check that

|xt| ≥ |xt − xt0 | = |x2 − x1| |t− t0|;
taking into account of (10.2.2) we conclude. �
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We can apply the above result to establishing a sort of super-differentiability
property of the Wasserstein distance; to clarify our notation, we will call µ2 the
reference measure, and we are studying the map

ψ : µ �→ ψ(µ) :=
1
p
W p

p (µ, µ2) near a given measure µ1 ∈ Pp(X). (10.2.7)

Some other notation will be useful: for a given plan µ1 2 ∈ Γ(µ1, µ2) ⊂ Pp(X×X)
and µ3 ∈ Pp(X) we set

Γ(µ1 2, µ3) :=
{

µ ∈ Pp(X ×X ×X) : π1,2
# µ = µ1 2, π3

#µ = µ3
}
, (10.2.8)

which is a subset of Γ(µ1, µ2, µ3); a “3-plan” µ ∈ Γ(µ1, µ2, µ3) induces the “pseudo-
distances”

W p
p,µ(µi, µj) :=

∫
X3
|xi − xj |p dµ(x1, x2, x3) i, j ∈ {1, 2, 3}, (10.2.9)

some of which reduce to the Wasserstein ones, if πi,j
# µ ∈ Γo(µi, µj). In particular,

we will often consider

Γo(µ1 2, µ3) :=
{
µ ∈ Pp(X3) : π1,2

# µ = µ1 2, π1,3
# µ ∈ Γo(µ1, µ3)

}
, (10.2.10)

observing that for µ1 2 ∈ Γo(µ1, µ2) and µ ∈ Γo(µ1 2, µ3) we have

Wp,µ(µ1, µ2) = Wp(µ1, µ2) and Wp,µ(µ1, µ3) = Wp(µ1, µ3). (10.2.11)

Theorem 10.2.2 (Super-differentiability of Wp). Let us fix µ1, µ2 ∈ Pp(X), µ1 2 ∈
Γo(µ1, µ2), and let ψ be defined as in (10.2.7). Then for every µ3 ∈ Pp(X) and
µ ∈ Γ(µ1 2, µ3) we have

ψ(µ3)− ψ(µ1) +
∫

X3
〈jp(x2 − x1), x3 − x1〉 dµ ≤ o

(
Wp,µ(µ1, µ3)

)
(10.2.12)

where for p ≥ 2

o
(
Wp,µ(µ1, µ3)

)
= (p−1)W 2

p,µ(µ1, µ3)
(
Wp(µ1, µ2)+Wp,µ(µ1, µ3)

)p−2

(10.2.13)

and for p ≤ 2

o
(
Wp,µ(µ1, µ3)

)
=

22−p

p− 1
W p

p,µ(µ1, µ3). (10.2.14)

In particular

lim sup
Wp,µ(µ3,µ1)→0

µ∈Γ(µ1 2,µ3)

ψ(µ3)− ψ(µ1) +
∫

X3 〈jp(x2 − x1), x3 − x1〉 dµ

Wp,µ(µ3, µ1)
≤ 0. (10.2.15)

If we restrict µ to belong to Γo(µ1 2, µ3), then we can replace Wp,µ(µ1, µ3) with
Wp(µ1, µ3) in (10.2.12), (10.2.13), (10.2.14), (10.2.15).
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Proof. Let us check (10.2.12) for p ≥ 2, the other case being even easier: since
µ ∈ Γ(µ1 2, µ3) and µ1 2 is optimal, we have by (10.2.4)

1
p
W p

p (µ3, µ2)− 1
p
W p

p (µ1, µ2) +
∫

X3
〈jp(x2 − x1), x3 − x1〉 dµ

≤
∫

X3

(1
p
|x3 − x2|p − 1

p
|x2 − x1|p − 〈jp(x2 − x1), x3 − x1〉

)
dµ

≤(p− 1)
∫

X3
|x3 − x1|2 max

(|x2 − x1|, |x3 − x2|
)p−2

dµ

≤(p− 1)
(∫

X3
|x3 − x1|p dµ

)2/p(∫
X3

(|x2 − x1|+|x3 − x1|
)p

dµ
)(p−2)/p

≤(p− 1)W 2
p,µ(µ1, µ3)

(
Wp(µ1, µ2) + Wp,µ(µ1, µ3)

)p−2

.
�

Remark 10.2.3 (Super-differentiability). Recalling that, at least in the case p = 2,
the function −ψ is (−1)-convex along geodesics, it is not surprising that we proved
a super -differentiability result for ψ, i.e. a sub-differentiability property for −ψ.
The converse property requires a more refined argument and it does not hold in
general: we will discuss this property in the next theorem.

Remark 10.2.4 (The regular case). Let us suppose that µ1 ∈ Pr
p(X) in the previ-

ous statement; then Γo(µ1, µ2) contains the unique plan µ1 2 =
(
i× tµ2

µ1

)
#

µ1 and

Γo(µ1 2, µ3) contains the unique plan µ =
(
i× tµ2

µ1 × tµ3

µ1

)
#

µ1; therefore (10.2.12)
becomes (up to a change of sign)

ψ(µ3)− ψ(µ1) +
∫

X

〈jp

(
tµ2

µ1(x1)− x1

)
, tµ3

µ1(x1)− x1〉 dµ1(x1) ≤ o
(
Wp(µ1, µ3)

)
.

(10.2.16)
Recalling Definition 10.1.1 we could say that

jp

(
tµ2

µ1 − i
) ∈ ∂(−ψ)(µ1), (10.2.17)

which is formally analogous to the euclidean formula

jp(x2 − x1) ∈ ∂(−ψ)(x1) where ψ(x1) :=
1
p
|x1 − x2|p. (10.2.18)

In the case of a general measure µ1, (10.2.17) suggests an extended notion
for the subdifferential of −ψ: anticipating the definition of the next section, we
will say that the rescaled plans

γ :=
(
x1, jp(x2 − x1)

)
#

µ1 2 for µ1 2 ∈ Γo(µ1, µ2) (10.2.19)

will belong to the extended subdifferential ∂(−ψ)(µ1).
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Remark 10.2.5. One may wonder about the use of general plans µ ∈ Γ(µ1 2, µ3)
instead of µ ∈ Γo(µ1 2, µ3) in (10.2.12),· · · ,(10.2.15): this choice corresponds to
consider more general perturbation of µ1 than those obtained by optimal trans-
ports: this is the reason why these perturbations have to be measured in the
pseudo-distance Wp,µ(·, ·) instead of Wp(·, ·).

This choice will reveal more flexible and useful when one considers the Euler
equation for minima of the Yosida approximation of a given functional, as we
will discuss in the point A of the next section and in some of the examples of
Section 10.4.

When Γo(µ1, µ2) contains a unique element induced by a transport, then we
can prove a corresponding sub-differentiability (and therefore differentiability) of
the Wasserstein distance.

Theorem 10.2.6 (Sub-differentiability of Wp). Let us fix µ1, µ2 ∈ Pp(X) and let
us suppose that Γo(µ1, µ2) contains a unique element µ1 2 =

(
i×r

)
#

µ1. Then the
distance function µ �→ ψ(µ) = 1

pW p
p (µ, µ2) satisfies

lim inf
Wp(µ1,µ3)→0

µ∈Γo(µ1,µ3)

ψ(µ3)− ψ(µ1) +
∫

X2 〈jp(r(x1)− x1), x3 − x1〉 dµ

Wp(µ3, µ1)
≥ 0. (10.2.20)

Proof. Being µ1 2 induced by a transport r, any element µ ∈ Γ(µ1 2, µ3) is of the
form µ =

(
x1, r(x1), x2

)
#

µ1 3 for some µ1 3 ∈ Γo(µ1, µ3). In particular we can
rewrite (10.2.20) in the form

lim inf
Wp(µ1,µ3)→0

µ∈Γo(µ1 2,µ3)

ψ(µ3)− ψ(µ1) +
∫

X3 〈jp(x2 − x1), x3 − x1〉 dµ

Wp(µ3, µ1)
≥ 0. (10.2.21)

Let us choose a sequence (µ3
n) converging to µ1 in Pp(X) and a corresponding

sequence of plans µn ∈ Γo(µ1 2, µ3
n) such that

lim inf
µ3→µ1

µ∈Γo(µ1 2,µ3)

ψ(µ3)− ψ(µ1) +
∫

X3 〈jp(x2 − x1), x3 − x1〉 dµ

Wp(µ3, µ1)
=

lim
n→∞

ψ(µ3
n)− ψ(µ1) +

∫
X3 〈jp(x2 − x1), x3 − x1〉 dµn

Wp(µ3
n, µ1)

.

Choosing βn such that

π1,3
# βn = π1,3

# µn ∈ Γo(µ1, µ3
n), π2,3

# βn ∈ Γo(µ2, µ3
n),

we observe that π1,2
# βn ∈ Γ(µ1, µ2), so that

W p
p (µ3

n, µ2)−W p
p (µ1, µ2) ≥

∫
X3

(
|x3 − x2|p − |x1 − x2|p

)
dβn.



10.2. Differentiability properties of the p-Wasserstein distance 239

Now we denote by λn := Wp(µ3
n, µ1) and we rescale µn, βn so that

µn =
(
π1, π2, π1 + λnπ3

)
#

µ̂n, βn =
(
π1, π2, π1 + λnπ3

)
#

β̂n

obtaining

1
p
W p

p (µ3
n, µ2)− 1

p
W p

p (µ1, µ2) ≥ 1
p

∫
X3

(
|x2 − x1 − λnx3|p − |x2 − x1|p

)
dβ̂n

≥ −λn

∫
X3
〈jp(x2 − x1), x3〉 dβ̂n,

∫
X3
〈jp(x2 − x1), x3 − x1〉 dµn = λn

∫
X3
〈jp(x2 − x1), x3〉 dµ̂n.

It follows that the “lim inf” of (10.2.21) is bounded from below by

lim sup
n→∞

∫
X3
〈jp(x2 − x1), x3〉 dµ̂n −

∫
X3
〈jp(x2 − x1), x3〉 dβ̂n.

Let us extract subsequences (still denoted by µ̂n, β̂n) narrowly converging in
P(X×X×X�) to µ̂, β̂ ∈ Pp(X3): by construction π1,3

# µ̂ = π1,3
# β̂ and, applying

the next Lemma 10.2.8, we get

π1,2
# β̂n = π1,2

# βn → µ1 2 in Pp(X ×X),

so that π1,2
# µ̂ = π1,2

# β̂ = µ1 2; therefore, since µ1 2 is induced by a transport map,
Lemma 5.3.2 gives that µ̂ = β̂. By Lemma 5.2.4 we conclude that

lim sup
n→∞

∫
X3
〈jp(x2 − x1), x3〉 dµ̂n −

∫
X3
〈jp(x2 − x1), x3〉 dβ̂n

=
∫

X3
〈jp(x2 − x1), x3〉 dµ̂−

∫
X3
〈jp(x2 − x1), x3〉 dβ̂ = 0.

�

As a corollary of the super-differentiability property (10.2.16) and of the
sub-differentiability property (10.2.20) we obtain a differentiability property of
the Wasserstein distance at regular measures.

Corollary 10.2.7 (Differentiability of Wp at regular measures). If µ1 ∈ Pr
p (X)

then for every µ2 ∈ Pp(X) the distance function ψ : µ �→ 1
pW p

p (µ, µ2) satisfies

lim
µ3→µ1

ψ(µ3)− ψ(µ1) +
∫

X
〈jp(t

µ2

µ1(x)− x), tµ3

µ1(x)− x〉 dµ1(x)

Wp(µ3, µ1)
= 0. (10.2.22)

We prove now a result we used in the proof of Proposition 10.2.6.
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Lemma 10.2.8 (Continuity of optimal plans). Let µ1, µ2 ∈ Pp(X) and assume that
Γo(µ1, µ2) = {µ1 2}. Then, for any choice of β ∈ Γ(µ1, µ2, µ3) ⊂ Pp(X3) with
π2,3

# β ∈ Γo(µ2, µ3) we have

π1,2
# β → µ1 2 in Pp(X ×X) as Wp,β(µ1, µ3) → 0.

Proof. Notice that the triangular inequality yields

Wp,β(µ1, µ2) ≤ Wp,β(µ1, µ3) + Wp(µ2, µ3)

≤ Wp,β(µ1, µ3) + Wp(µ1, µ2) + Wp(µ1, µ3)

≤ 2Wp,β(µ1, µ3) + Wp(µ1, µ2)

therefore any limit point of π1,2
# β (belonging to the Pp(X)-compact set Γ(µ1, µ2))

as Wp,β(µ1, µ3) → 0 belongs to Γo(µ1, µ2). Since Γo(µ1, µ2) = {µ1 2} this proves
the convergence of π1,2

# β to µ1 2. �

10.3 Subdifferential calculus in Pp(X): the general case

When one tries to extend the results of the previous Section 10.1 to functionals
which should be “differentiable” on general (thus possibly not regular) probabil-
ity measures, one realizes immediately that vector transport fields are no more
sufficient to describe a satisfactory notion of subdifferential, even for convex func-
tionals. There are at least two main reasons for that:

• Minima µτ of quadratic perturbations (10.1.1b) cannot be pushed to the ref-
erence measure µ by a transport map: thus the starting point (10.1.5) of point
A is no more valid, in general. Notice that this property is essential to prove
the existence of a minimal selection in ∂φ(µ) when the metric slope |∂φ|(µ)
is finite (point D).

• The reference measure µ cannot be pushed to general “testing” measures ν by
a transport tν

µ: thus the formal identification of the Euclidean difference vector
w − v with the displacement map tν

µ − i is no longer available. Notice that
this was an essential ingredient in Definition (10.1.2) and in the subsequent
points B, C, E.

The above remarks suggest that rescaled plans with assigned first marginal µ
should be used instead of vector fields to describe a useful notion of subdifferential.
Of course, dealing with plans is less intuitive and notation becomes more complex;
moreover, if for vector fields t, s ∈ L2(µ; X) the scalar product 〈t, s〉L2(µ;X) is
unambiguously defined, things become subtler when one tries to find an analogous
coupling for two plans γ, σ whose first marginals is µ.

Nevertheless, reasoning in terms of plans allow to recover all the main prop-
erties for a subdifferential theory, which we detailed at the beginning of the present
chapter both in the Euclidean and in the Pr

2 (X)-case.
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In this section we are thus considering a functional

φ : Pp(X) → (−∞, +∞], proper and lower semicontinuous (10.3.1a)

such that

ν �→ Φ(τ, µ; ν) =
1

pτp−1
W p

p (µ, ν) + φ(ν) admits at least

a minimum point µτ , for all τ ∈ (0, τ∗) and µ ∈ Pp(X).
(10.3.1b)

This condition is surely satisfied if φ is bounded below and lower semicontinu-
ous w.r.t. narrow convergence of P(X�) on Wp-bounded sets. If p = 2 and φ
is λ-convex along generalized geodesics, then lower semicontinuity w.r.t. W2 is
sufficient, thanks to Theorem 4.1.2.

In order to deal with the case p �= 2 we introduce the set

Ppq(X ×X) :=
{

µ ∈ P(X ×X) : |µ|1,p + |µ|2,q < +∞
}

(10.3.2)

where, for µ ∈ P(X ×X), we defined

|µ|pj,p :=
∫

X×X

|xj |p dµ(x1, x2), j = 1, 2, p > 1. (10.3.3)

Recalling (7.1.12), we will say that a sequence (µn) ⊂ Ppq(X ×X) converges to
µ in Ppq(X ×X) as n →∞ if

µn narrowly converge to µ in P(X ×X) and
|µn|1,p → |µ|1,p, |µn|2,q → |µ|2,q as n →∞.

(10.3.4)

By applying Theorem 5.1.13 it is easy to check that we can replace the first
condition in (10.3.4) by the weaker one

µn narrowly converge to µ in P(X� ×X�). (10.3.5)

The above notion of convergence (10.3.4) is induced by a distance: e.g. we can
take the sum of a distance inducing the narrow convergence in P(X×X) and the
p, q Wasserstein distances between the first and the second marginals of a given
couple of plans µ,ν ∈ Ppq(X ×X). When p = q this distance is equivalent to the
p-Wasserstein distance in Pp(X2).

Definition 10.3.1 (Extended Fréchet subdifferential). Let q = p′ = p
p−1 , let φ :

Pp(X) → (−∞, +∞] be a functional satisfying (10.3.1a) and let µ1 ∈ D(φ). We
say that γ ∈ Ppq(X×X), belongs to the (extended) Fréchet subdifferential ∂φ(µ1)
if

(i) π1
#γ = µ1;
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(ii) φ(µ3)− φ(µ1) ≥ inf
µ∈Γo(γ,µ3)

∫
X3
〈x2, x3 − x1〉 dµ + o

(
Wp(µ1, µ3)

)
. (10.3.6)

We say that γ ∈ ∂φ(µ1) is also a strong Fréchet subdifferential if for every µ ∈
Γ(γ, µ3) it satisfies the stronger condition

φ(µ3)− φ(µ1) ≥
∫

X3
〈x2, x3 − x1〉 dµ + o

(
Wp,µ(µ1, µ3)

)
. (10.3.7)

Remark 10.3.2 (First variation along vector fields). If γ ∈ ∂φ(µ1) is a strong
subdifferential, we can choose µ3 and µ of the type

µ3 := (x1 + εr(x1))#µ1, µ = (x1, x2, x1 + εr(x1))#γ (10.3.8)

for an arbitrary vector field r ∈ Lp(µ1;X).
In this case Wp,µ(µ3, µ) = ε‖r‖Lp(µ;X), and therefore we get a lower bound

for the directional derivative of φ along r:

lim inf
ε↓0

φ
(
(i + εr)#µ1

)− φ
(
µ1

)
ε

≥
∫

X2
〈x2, r(x1)〉dγ(x1, x2) (10.3.9)

=
∫

X

〈γ̄(x1), r(x1)〉 dµ1(x1). (10.3.10)

Observe that this property is stronger than the corresponding one (10.3.6) satisfied
by a generic element of the Fréchet subdifferential of φ, since we are free to take
variations along arbitrary vector fields, whereas (10.3.6) forces us to use only p-
optimal transports. We will see that each minimizer of (10.3.1b) is a point of strong
subdifferentiability: this is particularly useful in the case of functionals which are
not geodesically convex (see e.g. [75]).
On the other hand, requiring (10.3.7) for general subdifferentials would induce a
too strong notion, which would not satisfy in general the closure property of the
next Lemma 10.3.8 even for λ-convex functionals. (10.3.9) will be related to extra
properties of µ1, and an important example will be provided by minimizers of
(10.3.1b), as we will discuss in Lemma 10.3.4.

Remark 10.3.3 (Consistency). Suppose that p = 2 and that µ1 ∈ Pr
2 (X); then

ξ ∈ L2(µ1; X) belongs to the Fréchet subdifferential ∂φ(µ1), according to Defini-
tion 10.1.1, if and only if

γ =
(
i× ξ

)
#

µ1 ∈ ∂φ(µ1). (10.3.11)

In fact, Γo(γ, µ3) contains the unique element µ =
(
i × ξ × tµ3

µ1

)
#

µ1, so that the
integral in (10.3.6) becomes

inf
µ∈Γo(γ,µ3)

∫
X3
〈x2, x3 − x1〉 dµ =

∫
X

〈ξ(x), tµ3

µ1(x)− x〉 dµ1(x),

as in (10.1.3).
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Moreover, if γ ∈ ∂φ(µ1) according to Definition 10.3.1, then its barycentric projec-
tion γ̄ ∈ L2(µ1;X) according to (5.4.9) belongs to ∂φ(µ1). This property follows
easily from the relation for µ ∈ Γo(γ, µ3)∫

X3
〈x2, x3 − x1〉 dµ(x1, x2, x3) =

∫
X2
〈x2, t

µ3

µ1(x1)− x1〉 dγ(x1, x2)

=
∫

X

〈γ̄(x1), t
µ3

µ1(x1)− x1〉 dµ1(x1).

Motivated by the above remark, we will introduce the shorter notation

ξ ∈ ∂φ(µ1) ⇐⇒ ξ ∈ Lq(µ1;X), (i× ξ)#µ1 ∈ ∂φ(µ1), (10.3.12)

observing that, by Lemma 5.3.2, ξ ∈ Lq(µ1;X) belongs to ∂φ(µ1) if

φ(µ2)− φ(µ1) ≥ inf
µ∈Γo(µ1,µ2)

∫
X2
〈ξ(x1), x2 − x1〉 dµ + o

(
Wp(µ1, µ2)

)
, (10.3.13)

and, also for general p ∈ (1, +∞),

if µ ∈ Pr
p (X), γ ∈ Ppq(X ×X), (γ ∈ ∂φ(µ) ⇐⇒ γ̄ ∈ ∂φ(µ)). (10.3.14)

With the notion introduced in Definition 10.3.1 we can now revisit the five prop-
erties A,B,C,D,E discussed at the beginning of this chapter. The starting point is
an easy consequence of Theorem 10.2.2.

A. Euler equation for the Moreau-Yosida approximations.

Lemma 10.3.4. Let φ : Pp(X) → (−∞,+∞] be satisfying (10.3.1a) and let µτ be
a minimizer of (10.3.1b); if γ̂τ ∈ Γo(µτ , µ), then the rescaled plans

γτ := (ρτ )#γ̂τ with ρτ (x1, x2) :=
(
x1, jp

(x2 − x1

τ

))
(10.3.15)

and the associated plans µτ ∈ Γ(γτ , µ3) satisfy

φ(µ3)− φ(µτ )−
∫

X3
〈x2, x3 − x1〉 dµτ ≥ o(Wp,µτ

(µ3, µτ )). (10.3.16)

In particular, restricting (10.3.16) to plans µτ ∈ Γo(γτ , µ3), we get

γτ ∈ ∂φ(µτ ) (10.3.17)

and γτ is also a strong subdifferential, according to (10.3.7).

Proof. If µτ is a minimizer of (10.3.1b), Theorem 10.2.2 yields for µ1 := µτ ,
µ2 := µ, and for every µ3 ∈ Pp(X) and µ̂τ ∈ Γ(γ̂τ , µ3)

φ(µ3)− φ(µτ ) ≥ −
( 1

pτp−1
W p

p (µ3, µ)− 1
pτp−1

W p
p (µτ , µ)

)
≥

∫
X3
〈jp

(x2 − x1

τ

)
, x3 − x1〉 dµ̂τ − o(Wp,µ̂τ

(µ3, µτ )),

which is exactly (10.3.16), after the appropriate rescaling (10.3.15). �
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Observe that in the previous corollary γτ belongs to the set of all the rescaled
optimal plans, whose first marginal is µτ ; moreover∫

X2
|x2|qdγτ =

∫
X2

∣∣∣∣x2 − x1

τ

∣∣∣∣p dγ̂τ =
(W p

p (µτ , µ)
τp

)
< +∞. (10.3.18)

Remark 10.3.5 (∂φ(µτ ) is not empty). We shall see at the end of Section 10.4.6
that, at least for p = 2, there exists a rescaled plan γ◦

τ = (ρτ )#γ̂◦
τ for some

γ̂◦
τ ∈ Γo(µτ , µ) whose barycenter γ̄◦

τ is a strong subdifferential in ∂φ(µτ ): it is
characterized by the minimum condition

τ‖γ̄◦
τ‖L2(µτ ;X) = min

{
‖γ̄τ − i‖L2(µτ ;X) : γ̂τ ∈ Γo(µτ , µ)

}
. (10.3.19)

In particular ∂φ(µτ ) is not empty.

10.3.1 The case of λ-convex functionals along geodesics

As in Section 10.1, we turn now our attention to λ-(geodesically) convex function-
als. We already recalled in Section 9.1 what “convexity” here means.

B. Characterization by Variational inequalities and monotonicity

Theorem 10.3.6. Let φ : Pp(X) → (−∞, +∞] be a proper, lower semicontinuous
and λ-convex functional. A plan γ ∈ Ppq(X ×X) belongs to ∂φ(µ1) if and only
if

(i) π1
#γ = µ1;

(ii) for any µ3 ∈ Pp(X) there exists µ ∈ Γo(γ, µ3) satisfying

φ(µ3)− φ(µ1) ≥
∫

X3
〈x2, x3 − x1〉 dµ +

λ

2
W 2

p (µ1, µ3). (10.3.20)

Moreover, (10.3.20) holds for every plan µ ∈ Γo(γ, µ3) such that φ is λ-convex
along π1,2

# µ. For every couple of subdifferentials γi ∈ ∂φ(µi), i = 1, 2, there exists
a plan µ ∈ Γ(γ1, γ2) ⊂ P(X2 ×X2) such that π1,3

# γ ∈ Γo(µ1, µ2) and∫
X4
〈x2 − x4, x1 − x3〉 dµ ≥ λW 2

p (µ1, µ3). (10.3.21)

Proof. (10.3.20) directly yields (10.3.6); conversely, if (10.3.6) holds, we fix µ3 ∈
D(φ) and we apply (10.3.6) to the measures µ1→3

t induced by some plan µ1 3 ∈
Γo(µ1, µ3) along which φ is λ-convex. Thus we find plans µ̂t ∈ Γo(γ, µ1→3

t ) such
that

φ(µ1→3
t )− φ(µ1) ≥

∫
X3
〈x2, x3 − x1〉 dµ̂t + o(t) = t

∫
X3
〈x2, x3 − x1〉 dµt + o(t),
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where µt ∈ Γo(γ, µ3) is defined by the relation µ̂t := (π1,2,1→3
t )#µt. On the other

hand, the λ-convexity of φ yields for

φ(µ3)− φ(µ1) ≥ φ(µ1→3
t )− φ(µ1) + λ

2
t(1− t)W 2

p (µ1, µ3)
t

≥
∫

X3
〈x2, x3 − x1〉 dµt +

λ

2
(1− t)W 2

p (µ1, µ3) + o(1).

Passing to the limit as t ↓ 0 we get (10.3.20) from Lemma 5.2.4, where µ is any
limit point of µt in P(X ×X� ×X) as t ↓ 0 (recall Lemma 5.2.2).

(10.3.21) follows by the same argument, simply inverting the role of µ3 (which
now is called µ2) and µ1 : notice that for a given optimal plan µ1 3 ∈ Γo(µ1, µ2)
along which φ is λ-convex, we can always find a 4-plan µ such that

π1,2
# µ = γ1, π3,4

# µ = γ2, π1,3
# µ = µ1 3. �

Remark 10.3.7. The proof shows that if µ1 3 ∈ Γo(µ1, µ3) is an optimal plan along
which φ is λ-convex, we can always choose µ ∈ Γo(γ, µ3) in (10.3.20) such that
π1,3

# µ = µ1 3.

C. Convexity, strong-weak closure, and Γ-convergence. The following lemma ex-
tends Lemma 10.1.3 to the more general setting of subdifferential plans; we also
take account of a varying family of functionals φh which are Γ(Pp(X))-convergent
to φ as n →∞, as in (9.1.4), (9.1.5).

Lemma 10.3.8 (Closure of the subdifferential). Let φh : Pp(X) → (−∞,+∞] be
λ-geodesically functionals which Γ(Pp(X))-converge to φ as h →∞. If

γh ∈ ∂φh(µh), µh → µ in Pp(X), µ ∈ D(φ)
sup

h
|γh|2,q < +∞, γh → γ in P(X ×X�), (10.3.22)

then γ ∈ ∂φ(µ).

Proof. By (9.1.5) for a given µ3 ∈ D(φ) we can find a sequence µ3
h converging to

µ3 in Pp(X) such that φh(µ3
h) → φ(µ3) as h → ∞. Theorem 10.3.6 yields plans

µh ∈ Γo(γh, µ3
h) such that

φh(µ3
h)− φh(µh) ≥

∫
X3
〈x2, x3 − x1〉 dµh +

λ

2
W 2

p (µh, µ3
h).

Let µ ∈ Γo(γ, µ3) be a limit point in P(X ×X� ×X) of µh (its existence follows
by Lemma 5.2.2 together with Lemma 5.1.12). We wish to pass to the limit in this
inequality. To this aim, notice that the upper limit of the first side is less than
φ(µ3)− φ(µ1), thanks to (9.1.4), therefore it suffices to show that

lim
h→∞

∫
X3
〈x2, x3 − x1〉 dµh =

∫
X3
〈x2, x3 − x1〉 dµ. (10.3.23)
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Since ∫
X3
〈x2, x3 − x1〉 dµh =

∫
X3
〈x2, x3〉 dπ2,3

# µh −
∫

X3
〈x2, x1〉 dµh

and the same decomposition can be done for µ, we may apply Lemma 5.2.4 first
to π2,3

# µh (whose second marginal is µ3
h) and then to the bounded sequence µh

(whose first marginals is µh): since the these marginals are converging in Pp(X)
and therefore have uniformly integrable p-moments, we obtain (10.3.23). �

As a consequence one obtains also that for lower semicontinuous functionals
the graph of ∂φ(µ) is closed w.r.t. narrow convergence in P(X × X�) along
pq-bounded sequences.

10.3.2 Regular functionals

We can introduce a property analogous to 10.1.4 even in the case of the extended
subdifferential.

Definition 10.3.9 (Regular functionals). A functional φ : Pp(X) → (−∞,+∞]
satisfying (10.3.1a) is regular if whenever the strong subdifferentials γn ∈ ∂φ(µn),
ϕn = φ(µn) satisfy

ϕn → ϕ ∈ R, µn → µ in Pp(X),
sup

n
|γn|2,q < +∞, γn → γ in P(X ×X�), (10.3.24)

then γ ∈ ∂φ(µ) and ϕ = φ(µ).

D. Minimal selection and slope

Theorem 10.3.10 (Metric slope and subdifferential). Let φ : Pp(X) → (−∞,+∞]
be a regular functional satisfying (10.3.1a,b). Then µ ∈ D(|∂φ|) if and only if
∂φ(µ) is not empty and we have

|∂φ|(µ) = min
{
|γ|2,q : γ ∈ ∂φ(µ)

}
∀µ ∈ D(|∂φ|) = D(∂φ). (10.3.25)

Moreover, if µτ is a minimizer of (10.3.1b) and γτ is defined as in Lemma 10.3.4,
then there exists a vanishing sequence τn → 0 such that

|∂φ|q(µ) = lim
n→∞

W p
p (µ, µτn

)
τn

p
= lim

n→∞
φ(µ)− φ(µτn

)
τn

= lim
n→∞ |γτn

|q2,q. (10.3.26)

Finally if τn is a vanishing sequence satisfying (10.3.26), then any limit point γ of
the (relatively compact) family (γτn

) in P(X ×X�) is a minimizer of (10.3.25)
and it is also a limit point in the topology of Ppq(X ×X). When p = 2 the same
result holds for the sequence of strong subdifferentials γ̄◦

τn
∈ ∂φ(µτn

), provided by
Remark 10.3.5.
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Proof. Let us first prove that

|∂φ|(µ) ≤ |γ|2,q ∀γ ∈ ∂φ(µ). (10.3.27)

This follows directly from (10.3.6), since if γ ∈ ∂φ(µ) for each µ3 ∈ D(φ) and
µ ∈ Γo(γ, µ3) satisfying (10.3.6) we get the estimate

φ(µ)− φ(µ3) ≤
(∫

|x2|q dµ
)1/q(∫

|x3 − x1|p dµ
)1/p

+ o
(
Wp(µ, µ3)

)
= |γ|2,qWp(µ, µ3) + o

(
Wp(µ, µ3)

)
,

which is independent on the choice of µ. Dividing by Wp(µ, µ3) and passing to the
limit as µ3 → µ we get (10.3.27).

Conversely, let µ ∈ D(|∂φ|) and let us denote by µτ a minimizer of (10.3.1b).
If γτ ∈ ∂φ(µτ ) is defined as in Lemma 10.3.4, we know by Remark 3.1.7 and
(10.3.18) that γτ is a strong subdifferential and (10.3.26) holds for a suitable
vanishing subsequence τn → 0. Since µτ → µ in Pp(X) as τ ↓ 0, the regularity
of φ ensures that any limit point γ in P(X ×X�) of the family γτn

as n → ∞
belongs to ∂φ(µ). By the lower semicontinuity of the map γ �→ |γ|2,q with respect
to narrow convergence in P(X×X�), we obtain |γ|2,q ≤ |∂φ|(µ) which, combined
with (10.3.27) yields that γ is a minimizer of (10.3.25). Applying Theorem 5.1.13
to the second marginal of γτn

we conclude.
The argument for γ̄◦

τn
is completely analogous. �

When one considers vectors instead of plans, it is easy to show that there
exists a unique selection of minimal norm in ∂φ(µ) by an argument of strict con-
vexity of the norm. In the case of plans, this result is no more obvious, since the
map γ �→ |γ|2,q is linear along convex combination. One can try to circumvent this
difficulty by considering convex interpolation of plans, but it is not clear if ∂φ(µ)
is stable under this kind of interpolation. On the other hand, strong subdifferen-
tials are closed under interpolation, so that suitably combining interpolation and
approximation, we can prove that the minimal selection is unique even for plan
subdifferentials.

Theorem 10.3.11 (Minimal selection). Let φ be regular functional satisfying
(10.3.1a,b), and let µ ∈ D(∂φ). There exists a unique plan γ0 ∈ ∂φ(µ) which
attains the minimum

|γ0|2,q = min
{
|γ|2,q : γ ∈ ∂φ(µ)

}
= |∂φ|(µ). (10.3.28)

Consequently γ0 is the unique narrow limit point in P(X×X�) and in Ppq(X×
X) of any family (of strong subdifferentials, according to (10.3.7)) γτn

(when
p = 2 we can also choose the barycenters γ̄◦

τn
as in Remark 10.3.5) satisfying the

asymptotic property (10.3.26) of the previous theorem, and we will denote it by the
symbol ∂◦φ(µ).
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Proof. Let γ ∈ ∂φ(µ) be attaining the minimum in (10.3.25) (the existence of min-
imizers is a direct consequence of the regularity of φ and a compactness argument
in P(X ×X�) based on Lemma 5.2.2 and Lemma 5.1.12), let µτ be a minimizer
of (10.3.1b); by the definition of subdifferential, we can find plans µ̂τ ∈ Γo(γ, µτ )
such that

φ(µτ )− φ(µ) ≥
∫

X3
〈x2, x3 − x1〉 dµ̂τ + o

(
Wp(µ, µτ )

)
. (10.3.29)

We rescale µ̂τ as
µτ =

(
π1, π2, τ−1(π1 − π3)

)
#

µ̂τ

and we consider a limit point µ ∈ Pp(X3) of µτn
in P(X × X ×X�), τn → 0

being a vanishing sequence satisfying (10.3.26).
By the previous theorem we know that

lim
n→∞

φ(µ)− φ(µτn
)

τn
= |∂φ|q(µ) = |γ|q2,q =

∫
X3
|x2|q dµ =

∫
X3
|x3|p dµ,

and by (10.3.29) and Lemma 5.2.4

lim
n→∞

φ(µ)− φ(µτn
)

τn
≤

∫
X3
〈x2, x3〉 dµ,

so that ∫
X3

(1
q
|x2|q +

1
p
|x3|p − 〈x2, x3〉

)
dµ ≤ 0, (10.3.30)

i.e. x2 = jp(x3) for µ-a.e. (x1, x2, x3) ∈ X3. It follows that all the sequence µτn

is converging to µ and
(
π1, jp ◦ π3

)
#

µτn
is converging to γ in P(X × X). We

observe that

γτ :=
(
π1−τπ3, jp◦π3

)
#

µτ ∈ ∂φ(µτ ) is a rescaled optimal plan as in (10.3.15),

and γτn
has the same limit points in Pp(X×X�) of

(
π1, jp ◦π3

)
#

µτn
by Lemma

5.2.1; therefore γτn
converges to γ in P(X ×X).

Let us now suppose that γ1,γ2 ∈ ∂φ(µ) attain the minimum in (10.2.13).
We thus find two families γi,τn

∈ ∂φ(µτn
) such that

γi,τn
→ γi, |γi,τn

|2,q → |γi|2,q = |∂φ|(µ) as n →∞.

Being γi,τ strong subdifferentials, the next lemma shows that for every 3-plan ντn

such that π1,2
# ντn

= γ1,τn
, π1,3

# ντn
= γ2,τn

the interpolated plan

γ1/2,τn
:= (π1,2→3

1/2 )#ντn
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still is a strong subdifferential in ∂φ(µ). Being {ντn
}n∈N a tight family, possibly

extracting a vanishing subsequence τn′ so that ντn′ → ν in P(X × X� × X�),
we know that

π1,2
# ν = γ1, π1,3

# ν = γ2, (π1,2→3
1/2 )#ν ∈ ∂φ(µ).

The uniform convexity of the Lp-norm and the minimality of γi yield γ1 = γ2. �
Lemma 10.3.12 (Interpolation of strong subdifferentials). If γ1 2, γ1 3 ∈ Ppq(X ×
X) belong to the strong subdifferential of a functional φ at µ ∈ Pp(X), then for
every γ ∈ Pp(X3) and t ∈ [0, 1] we have

π1,i
# γ = γ1 i i = 2, 3 =⇒ γ1,2→3

t = (π1,2→3
t )#γ ∈ ∂φ(µ), (10.3.31)

γ1,2→3
t being also a strong subdifferential.

Proof. For µ4 ∈ D(φ) and µt ∈ Γ(γ1,2→3
t , µ4), arguing as in Proposition 7.3.1, it

is not difficult to construct a new plan µ ∈ P(X4) such that

π1,2,3
# µ = γ,

(
π1, π2→3

t , π4
)
#

µ = µt.

Since

π1,2,4
# µ ∈ Γ(γ1 2, µ4), π1,3,4

# µ ∈ Γ(γ1 3, µ4), (π1,2→3,4
t )#µ ∈ Γ(γ1,2→3

t , µ4),

applying (10.3.7) we get

φ(µ4)− φ(µ) ≥
∫

X4
〈x2, x4 − x1〉 dµ + o

(
Wp,µ(µ, µ4)

)
,

φ(µ4)− φ(µ) ≥
∫

X4
〈x3, x4 − x1〉 dµ + o

(
Wp,µ(µ, µ4)

)
,

so that

φ(µ4)− φ(µ) ≥
∫

X4
〈(1− t)x2 + tx3, x4 − x1〉 dµ + o

(
Wp,µ(µ, µ4)

)
=

∫
X3
〈y, x4 − x1〉 dµt(x1, y, x4) + o

(
Wp,µt

(µ, µ4)
)
.

�
Remark 10.3.13 (The distinguished role of the minimal selection ∂◦φ(µ)). The
above theorem is particularly useful in combination with Remark 10.3.2: in many
examples it shows that the minimal selection ∂◦φ(µ) enjoys both the variational
inequalities characterization (10.3.20) along optimal transports and a directional
derivative inequality like (10.3.9) along general smooth vector fields.
This last property is not a consequence of general abstract conditions (like con-
vexity for (10.3.20)), but it can directly checked by approximating ∂◦φ(µ) as in
Theorem 10.3.11 and showing that the differential properties provided by (10.3.9)
on the approximating sequence pass to the limit if the vector field r is sufficiently
regular.
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Remark 10.3.14 (A refined convergence result for λ-convex functionals). If the
regular functional φ is λ-geodesically convex in Pp(X) according to Definition
9.1.1,and satisfies (10.3.1a,b), the whole rescaled family (γτ )0<τ<1/λ− considered
in Theorem 10.3.10 and 10.3.11 satisfies

|∂φ|q(µ) = lim
τ↓0

W p
p (µ, µτ )

τ p
= lim

τ↓0
φ(µ)− φ(µτ )

τ
= lim

τ↓0
|γτ |q2,q (10.3.32)

and therefore is converging to γ = ∂◦φ(µ) in Pp(X ×X) as τ ↓ 0: it is sufficient
to apply the estimates of Theorem 3.1.6 and Remark 3.1.7.

Combining Theorem 10.3.11 with (10.3.14) we show that for measures µ ∈
Pr

p(X)∩D(|∂φ|) the minimal selection ∂◦φ(µ) is induced by a (unique) transport
map in the cotangent space of µ, that we call ∂◦φ(µ).

Corollary 10.3.15 (∂◦φ(µ) = ∂◦φ(µ) if µ is regular). If φ is a regular functional
and µ ∈ Pr

p (X) ∩D(|∂φ|) then

{(i× ξ)#µ} = ∂◦φ(µ) (10.3.33)

for some map ξ with jq(ξ) ∈ Tanr
µPp(X) = TanµPp(X). We denote this vector

by ∂◦φ(µ).

Proof. If γ ∈ ∂◦φ(µ) then by (10.3.14) the plan (i× γ̄)#µ belongs to ∂φ(µ) and
therefore∫

X2
|x2|q dγ(x1, x2) =

∫
X

(∫
X

|x2|q dγx1
(x2)

)
dµ(x1) ≥

∫
X

|γ̄(x1)|q dµ(x1).

The minimality of γ and the usual strict convexity argument yield γx1
= δγ̄(x1)

for µ-a.e. x1 ∈ X , i.e. γ = (i× γ̄)#µ.
To show that jq(γ̄) belongs to Tanr

µPp(X) we observe that by the regularity
of µ the rescaled plans γτ introduced in Lemma 10.3.4 and Theorem 10.3.10 are
given by

γτ =
(
tµτ
µ × jp

(i− tµτ
µ

τ

))
#

µ.

Since, by Theorem 10.3.11, γτ narrowly converge in P(X ×X�) to γ as τ ↓ 0,
choosing test functions of the form ϕ(x1)x2 with ϕ Lipschitz, we easily get

jp

( i− tµτ
µ

τ

)→ γ̄ in the duality with Lipschitz functions.

On the other hand, since |γτ |2,q → |γ|2,q we have also

lim
τ↓0

∥∥∥∥jp

( i− tµτ
µ

τ

)∥∥∥∥
Lq(µ;X)

= ‖γ̄‖Lq(µ;X)

and therefore the two informations together give that jp

(
τ−1(i − tµτ

µ )
) → γ̄ in

Lq(µ; X). By applying the duality map jq we obtain that τ−1(i− tµτ
µ ) → jq(γ̄) in

Lp(µ; X), so that jq(γ̄) ∈ Tanr
µPp(X). �
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Let us now consider a sequence of functionals (φh) which is Γ(Pp(X))-
converging to φ; if φh are λ-geodesically convex, Lemma 10.3.8 shows that limits of
Fréchet subdifferentials of φh are Fréchet subdifferentials of φ. In many situations
a converse approximation results would be useful, too; in other words, it would
interesting to know if a given plan γ ∈ ∂φ(µ) can be approximated by a sequence
of plans γh ∈ ∂φh(µh).

If γ is the minimal selection ∂◦φ(µ) and we reinforce a little bit the con-
vergence assumption on φh, this approximation can always be performed, and we
can also find an approximating sequence γh of strong subdifferentials. We can
thus reproduce in the Wasserstein setting the same result which in the Euclidean
case follows from the convergence of (φh) in the sense of Mosco (i.e. with different
topologies in the lim inf inequality (9.1.4) and the lim sup inequality (9.1.5)).

Lemma 10.3.16. Suppose that φh : Pp(X) → (−∞,+∞] is a sequence of function-
als which satisfy (10.3.1b) (for some τ∗ > 0 independent of h) and the equicoerci-
vity-like condition

inf
ν∈Pp(X)

h∈N

{
φh(ν) +

1
pτp−1

∗
W p

p (µ̄, ν)
}

> −∞ (10.3.34)

for some µ̄ ∈ Pp(X). Assume that φ is a proper regular functional which is the
limit of φh in the sense that

µh → µ in P(X�),

sup
h∈N

∫
X

|x|p dµh < +∞

⎫⎬⎭ =⇒ lim inf
h→∞

φh(µh) ≥ φ(µ), (10.3.35)

∀µ ∈ Pp(X) ∃µh → µ in Pp(X) : lim
h→∞

φh(µh) = φ(µ). (10.3.36)

Then φ satisfies (10.3.1a,b) and for every µ ∈ D(∂φ) there exist a sequence (µh)
converging to µ in Pp(X) and strong subdifferentials γh ∈ ∂φh(µh) such that

γh → ∂◦φ(µ) in Ppq(X ×X) as h →∞. (10.3.37)

The proof is based on the next typical Γ-convergence lemma, ensuring con-
vergence of minimizers to minimizers and convergence of the extremal values.

Lemma 10.3.17. Under the same assumptions of Lemma 10.3.16, for a given se-
quence (µh) ⊂ Pp(X) converging to µ in Pp(X) and τ ∈ (0, τ∗) such that
(10.3.34) holds, let us consider sequences µh

τ , γh
τ such that

µh
τ is a minimum for ν �→ φh(ν) +

1
pτp−1

W p
p (µh, ν), (10.3.38)

and γh
τ ∈ ∂φ(µh

τ ) is obtained by rescaling an optimal plan γ̂h
τ ∈ Γo(µh

τ , µh) as in
Lemma 10.3.4:

γh
τ := (ρτ )#γ̂h

τ with ρτ (x1, x2) :=
(
x1, jp

(x2 − x1

τ

))
. (10.3.39)
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Then the families {µh
τ }h∈N, {γh

τ }h∈N, and {γ̂h
τ }h∈N are relatively compact in

Pp(X), Pp(X × X), and in Ppq(X × X) respectively, Furthermore, for any
γτ = limi γhi

τ , the measure µτ := π1
#γτ minimizes (10.3.1b) and

lim
i→∞

φhi
(µhi

τ ) = φ(µτ ), lim
i→∞

Wp(µhi
τ , µhi) = Wp(µτ , µ). (10.3.40)

Proof. (10.3.34) and the estimate (2.2.4) (see also Remark 2.2.4) yield that µh
τ is

bounded in Pp(X) and therefore the sequence γ̂h
τ is narrowly relatively compact in

P(X�×X). Let γ̂τ be a limit point of γ̂hi
τ as i →∞ and let µτ := π1

#γ̂τ = π1
#γτ ;

we choose ν ∈ D(φ) and a sequence (νh) converging to ν in Pp(X) such that
φh(νh) → φ(ν) as in (10.3.36). Passing to the limit in the inequality

φh(µh
τ ) +

1
pτp−1

W p
p (µh

τ , µh) ≤ φh(νh) +
1

pτp−1
W p

p (νh, µh)

with n = hi, using (10.3.35) and the lower semicontinuity of the Wasserstein
distance w.r.t. narrow convergence in Pp(X�) (see Lemma 7.1.4), we get

φ(µτ ) +
1

pτp−1
W p

p (µτ , µ) ≤ lim sup
h→∞

φh(µh
τ ) +

1
pτp−1

W p
p (µh

τ , µh)

≤ φ(ν) +
1

pτp−1
W p

p (ν, µ).
(10.3.41)

This shows that µτ minimizes (10.3.1b). Choosing ν = µτ , the same argument
provides convergence in energy, i.e.

lim
i→∞

φhi
(µhi

τ ) +
W p

p (µhi
τ , µ)

pτp−1
= φ(µτ ) +

W p
p (µτ , µ)
pτp−1

.

But since the two terms are separately lower semicontinuous we obtain (10.3.40).
By applying (7.1.16), we obtain that the second marginals of the plans(

π2, π1−π2
)
#

γ̂hi
τ are narrowly converging in P(X) and have uniformly integrable

p-moments; since the first marginals (i.e. µh) are also converging in Pp(X), we
obtain (

π2, π1 − π2
)
#

γ̂hi
τ → (

π2, π1 − π2
)
#

γ̂τ in Pp(X ×X).

It follows that γ̂hi
τ → γ̂τ in Pp(X ×X) and, as a consequence, and γhi

τ → γτ in
Ppq(X ×X) and µhi

τ → µτ in Pp(X). �

Proof of Lemma 10.3.16. Let d be a distance in Ppq(X × X) inducing the con-
vergence (10.3.4); by the same construction of Proposition 5.1.8, Lemma 10.3.16
is equivalent to check that any open ball centered at γ = ∂◦φ(µ) contains strong
subdifferentials γh ∈ ∂φ(µh) for sufficiently large h.

We argue by contradiction: thus we suppose that ε > 0 and a sequence
hi →∞ exist such that

γhi
is a strong subdifferential in ∂φhi

(µhi
) =⇒ d(γhi

, γ) > ε. (10.3.42)
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We perform a diagonal argument (first keep τ fixed and let hi → ∞, then let
τ ↓ 0): by the previous lemma we know that for any τ ∈ (0, τ∗) the family {γhi

τ }i∈N

(defined as in (10.3.38) and (10.3.39)) has a limit point γτ in Ppq(X × X). We
take a sequence τn → 0 such that (10.3.26) is fulfilled by µτn

= π1
#γτn

and by
Theorem 10.3.11 we can find n̄ ∈ N such that d(γτn̄

, γ) < ε/2. Since γτn̄
is a limit

point of (γhi
τn̄

) in Ppq(X×X) as i →∞, we get a contradiction with (10.3.42). �

E. Chain rule. We conclude this section by proving a chain rule for functionals
along absolutely continuous curves.

Proposition 10.3.18 (Chain rule). Let φ : Pp(X) → (−∞, +∞] be a regular func-
tional satisfying (10.3.1a,b), and let µ : (a, b) �→ µt ∈ D(φ) ⊂ Pp(X) be an
absolutely continuous curve with tangent velocity vector vt. Let Λ ⊂ (a, b) be the
set of points t ∈ (a, b) such that

(a) |∂φ|(µt) < +∞;

(b) φ ◦ µ is approximately differentiable at t;

(c) condition (8.4.6) of Proposition 8.4.6 holds.

Then

d̃

dt
φ(µt) =

∫
〈x2,vt(x1)〉 dγt(x1, x2) ∀γt ∈ ∂φ(µt), ∀ t ∈ Λ. (10.3.43)

Moreover, if φ is λ-convex and (10.1.17) holds, then the map t �→ φ(µt) is abso-
lutely continuous and (a, b) \ Λ is L 1-negligible.

Proof. We have simply to evaluate the time derivative of φ ◦ µ at a point t̄ ∈ Λ.
We take γ t̄ ∈ ∂φ(µt̄) and µ̂h ∈ Γo(γ t̄, µt̄+h) so that

φ(µt̄+h)− φ(µt̄) ≥
∫

X3
〈x2, x3 − x1〉 dµ̂h + o(h) (10.3.44)

= h

∫
X3
〈x2, x3〉 dµh + o(h),

with µh :=
(
π1, π2, h−1(π3 − π1)

)
#

µ̂h. We know by (8.4.6) that

lim
h→0

π1,3
# µh =

(
i× vt̄

)
#

µt̄, in Pp(X ×X)

and therefore, since π1,2
# µh = γ t̄, we infer from Lemma 5.3.2 that

lim
h→0

µh =
(
x1, x2,vt̄(x1)

)
#

γ t̄ in Pp(X3).

Therefore, dividing by h and passing to the limit in (10.3.44) we obtain that the
approximate derivatives d̃/dt±φ(µt) satisfy

d̃

dt+
φ(µt)

∣∣∣
t=t̄
≥

∫
〈x2,vt̄(x1)〉 dγ t̄,

d̃

dt−
φ(µt)

∣∣∣
t=t̄
≤

∫
〈x2,vt̄(x1)〉dγ t̄
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and therefore we find (10.3.43).
In the convex case, since |∂φ| is a strong upper gradient, we already know

that φ(µt) is absolutely continuous and thus (a, b) \ Λ is L 1-negligible. �

10.4 Example of subdifferentials

In this section we consider in the detail the subdifferential of the convex function-
als presented in Chapter 9 (potential energy, interaction energy, internal energy,
negative Wasserstein distance), with a particular attention to the characterization
of the elements with minimal norm.

We start by considering a general, but smooth, situation.

10.4.1 Variational integrals: the smooth case

In order to clarify the underlying structure of many examples and the link between
the notion of Wasserstein subdifferential and the standard variational calculus for
integral functionals, we first consider the case of a variational integral of the type

F (µ) :=

⎧⎨⎩
∫

Rd

F (x, ρ(x),∇ρ(x)) dx if µ = ρ ·L d with ρ ∈ C1(Rd)

+∞ otherwise.
(10.4.1)

Since we are not claiming any generality and we are only interested in the form of
the subdifferential, we will assume enough regularity to justify all the computa-
tions; therefore, we suppose that F : Rd×[0,+∞)×Rd → [0,+∞) is a C2 function
with F (x, 0, p) = 0 for every x, p ∈ Rd and we consider the case of a smooth and
strictly positive density ρ: as usual, we denote by (x, z, p) ∈ Rd × R × Rd the
variables of F and by δF/δρ the first variation density

δF

δρ
(x) := Fz(x, ρ(x),∇ρ(x))−∇ · Fp(x, ρ(x),∇ρ(x)). (10.4.2)

Lemma 10.4.1. If µ = ρ · L d ∈ Pr
p(Rd) with ρ ∈ C1(Rd) satisfies F (µ) < +∞

and w ∈ Lq(µ; Rd) belongs to the strong subdifferential of F at µ, then

w(x) = ∇δF

δρ
(x) for µ-a.e. x ∈ Rd, (10.4.3)

and for every vector field ξ ∈ C∞
c (Rd; Rd) we have∫

Rd

w(x) · ξ(x) dµ(x) = −
∫

Rd

δF

δρ
(x)∇ · (ρ(x)ξ(x)

)
dx. (10.4.4)

The same result holds if p = 2, ρ ∈ C2
c (Rd) and w ∈ ∂F (µ) ∩ TanµP2(Rd).
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Proof. We take a smooth vector field ξ ∈ C∞
c (Rd; Rd) and we set for ε ∈ R

sufficiently small µε := (i + εξ)#µ. If w is a strong subdifferential, by (10.3.10)
we know that

lim sup
ε↑0

F (µε)−F (µ)
ε

≤
∫

Rd

w(x) · ξ(x) dµ(x) ≤ lim inf
ε↓0

F (µε)−F (µ)
ε

;

(10.4.5)
on the other hand, by Lemma 5.5.3 we know that µε = ρεL d with

ρε(y) =
ρ

det(I + ε∇ξ)
◦ (i + εξ

)−1(y) ∀ y ∈ Rd. (10.4.6)

The map (x, ε) �→ ρε(x) is of class C2 with ρε(x) = ρ(x) outside a compact set
and

ρε(x)|ε=0
= ρ(x),

∂ρε(x)
∂ε |ε=0

= −∇ · (ρ(x)ξ(x)
)
. (10.4.7)

Standard variational formulae (see e.g. [76, Vol. I, 1.2.1]) yield

lim
ε→0

F (µε)−F (µ)
ε

= −
∫

Rd

δF

δρ
(x)∇ · (ρ(x)ξ(x)

)
dx, (10.4.8)

which shows (10.4.4).
Let us now suppose that p = 2 and w ∈ ∂F (µ)∩TanµP2(Rd); then (10.4.8)

holds whenever i + εξ is, an optimal transport map for |ε| small enough, and in
particular for gradient vector fields ξ = ∇ζ with ζ ∈ C∞

c (Rd). Since TanµP2(Rd)
is the closure in L2(µ; Rd) of the space of such gradients, we have∫

Rd

w(x)·ξ(x) dµ(x) = −
∫

Rd

∇δF

δρ
(x)·ξ(x) dµ(x) ∀ ξ ∈ TanµP2(Rd). (10.4.9)

We obtain (10.4.3) noticing that δF/δρ ∈ TanµP2(Rd), by the assumption that
ρ ∈ C2

c (Rd). �

10.4.2 The potential energy

Let V : X → (−∞, +∞] be a proper, l.s.c. and λ-convex functional (here it is
sufficient to consider the case λ ≤ 0) and let V be the functional defined by (9.3.2)
on Pp(X) (here p ≥ 2 if λ < 0). We denote by graph ∂V the graph of the Fréchet
subdifferential of V in X × X , i.e. the subset of the couples (x1, x2) ∈ X × X
satisfying

V (x3) ≥ V (x1) + 〈x2, x3 − x1〉+
λ

2
|x1 − x2|2 ∀x3 ∈ X. (10.4.10)

As usual, ∂oV (x) denotes the element of minimal norm in ∂V (x).
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Proposition 10.4.2. Let γ ∈ Ppq(X ×X) with µ = π1
#γ.

(i) γ is a strong subdifferential of V at µ if and only if it satisfies supp γ ⊂
graph ∂V .

(ii) γ = ∂◦V(µ) if and only if γ is induced by the transport ξ = ∂◦V , i.e.
γ = (i× ξ)#µ where ξ(x) = ∂◦V (x) for µ-a.e. x ∈ X; in particular

|∂φ|q(µ) =
∫

X

|∂V |q(x) dµ(x) =
∫

X

|∂◦V (x)|q dµ(x). (10.4.11)

Proof. We suppose λ = 0 and p = 2: the proof of the general case can be obtained
by obvious modifications.

(i) If γ ∈ Ppq(X × X) with supp γ ⊂ graph ∂V then for every µ3 ∈ D(V)
and µ ∈ Γ(γ, µ3) (10.4.10) holds µ-a.e. in X3 and therefore

V(µ3)−V(µ)−
∫

X3
〈x2, x3−x1〉 dµ =

∫
X3

(
V (x3)−V (x2)−〈x2, x3−x1〉

)
dµ ≥ 0.

Conversely, suppose that (10.3.7) holds: then choosing µ3 ∈ D(V), µ ∈ Γ(γ, µ3),
µt := (x1, x2, (1 − t)x1 + tx3)#µ, µ1→3

t := π3
#µt, and recalling that V is convex

along any interpolating plan, we have

V(µ3)− V(µ1) ≥ lim inf
t↓0

V(µ1→3
t )− V(µ1)

t
≥

∫
X3
〈x2, x3 − x1〉 dµ. (10.4.12)

If supp γ is not a subset of graph ∂V , by the lower semicontinuity of V we can
find x̂1, x̂2, x̂3 ∈ X and ρ > 0 such that

V (x̂3) < V (x1) + 〈x2, x̂3 − x1〉 ∀ (x1, x2) ∈ R := Bρ(x̂1)×Bρ(x̂2)

and γ(R) > 0; thus, integrating the above relation in R with respect to γ yields∫
R

(
V (x̂3)− V (x1)− 〈x2, x̂3 − x1〉

)
dγ(x1, x2) < 0. (10.4.13)

We introduce the map r equal to x1 on X2 \ R and equal to x̂3 on R and we set
µ3 := r#γ, µ := (x1, x2, r(x1, x2))#γ ∈ Γ(γ, µ3). Applying (10.4.12) we get

0 ≤ V(µ3)− V(µ1)−
∫

X3
〈x2, x3 − x1〉 dµ(x1, x2, x3)

=
∫

X2

(
V (r(x1, x2))− V (x1)− 〈x2, r(x1, x2)− x1〉

)
dγ(x1, x2)

=
∫

R

(
V (x̂3)− V (x1)− 〈x2, x̂3 − x1〉

)
dγ(x1, x2),

which contradicts (10.4.13).
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(ii) We now show (10.4.11), which in particular characterizes ∂◦V(µ). For
τ > 0 we call rτ the resolvent map which provides for any x the unique solution
of the strictly convex minimization problem

min
y∈X

1
2τ
|y − x|2 + V (y).

We set µτ := (rτ )#µ and we check that µτ is the minimizer of (10.3.1b): for every
ν ∈ D(V) and γ ∈ Γo(µ, ν) we have

V(ν) +
1
2τ

W 2
2 (ν, µ) =

∫
X2

V (x2) +
1
2τ
|x2 − x1|2 dγ

≥
∫

X

V (rτ (x1)) +
1
2τ
|rτ (x1)− x1|2 dµ

≥ V(µτ ) +
1
2τ

W 2
2 (µ, µτ ).

Recalling that |∂V|2(µ) = limτ↓0 W 2
2 (µ, µτ )/τ2 and that

|x− rτ (x)|2
τ2

≤ |∂◦V (x)|2, lim
τ↓0

|x− rτ (x)|2
τ 2

= |∂◦V (x)|2,

we obtain

|∂V|2(µ) = lim
τ↓0

∫
X

|x− rτ (x)|2
τ2

dµ(x) =
∫

X

|∂◦V (x)|2 dµ(x). �

Remark 10.4.3. It would not be difficult to show that if V ∈ C1(X) is a functional
with bounded Fréchet derivatives, then V is regular and ξ = ∂◦V(µ) iff ξ(x) =
∇V (x).

10.4.3 The internal energy

Let F be the functional

F(µ) :=

⎧⎨⎩
∫

Rd

F (ρ(x)) dL d(x) if µ = ρ ·L d ∈ Pr
p(Rd),

+∞ otherwise,
(10.4.14)

for a convex differentiable function satisfying

F (0) = 0, lim inf
s↓0

F (s)
sα

> −∞ for some α >
d

d + p
(10.4.15)

as in Example 9.3.6. Recall that if F has superlinear growth at infinity then the
functional F is l.s.c. with respect to the narrow convergence (indeed, under this
growth condition the lower semicontinuity can be checked w.r.t. to the stronger
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weak L1 convergence, by Dunford-Pettis theorem, and lower semicontinuity w.r.t.
weak L1 convergence is a direct consequence of the convexity on F). More gener-
ally, in the case when F has a (sub-)linear growth, i.e.

lim
z→+∞

F (z)
z

= sup
z>0

F (z)
z

= θ < +∞, (10.4.16)

we consider the lower semicontinuous envelope of F , given by

F∗(µ) =
∫

Rd

F (ρ) dx + θµs(Rd), µ = ρ ·L d + µs, µs ⊥ L d. (10.4.17)

We set LF (z) = zF ′(z) − F (z) : [0,+∞) → [0,+∞) and we observe that LF is
strictly related to the convex function

G(z, s) := sF (z/s), z ∈ [0,+∞), s ∈ (0, +∞), (10.4.18)

since
∂

∂s
G(z, s) = −z

s
F ′(z/s) + F (z/s) = −LF (z/s). (10.4.19)

In particular (recall that F (0) = 0, by (10.4.15))

G(z, s) ≤ F (z) for s ≥ 1,
F (z)−G(z, s)

s− 1
↑ LF (z) as s ↓ 1. (10.4.20)

We will also suppose that F satisfies condition (9.3.11), i.e.

the map s �→ sdF (s−d) is convex and non increasing in (0,+∞), (10.4.21)

yielding the geodesic convexity of F , F∗.
The following lemma shows the existence of the directional derivative of F

(or F∗) along a suitable class of directions including all optimal transport maps.

Lemma 10.4.4 (Directional derivative of F∗). Suppose that F : [0, +∞) → R

is a convex differentiable function satisfying (10.4.21) and (10.4.15). Let µ =
ρL d + µs ∈ D(F∗), r ∈ Lp(µ; Rd) and t̄ > 0 be such that

(i) r is approximately differentiable ρL d-a.e. and rt := (1 − t)i + tr is ρL d-
injective with | det ∇̃rt(x)| > 0 ρL d-a.e., for any t ∈ [0, t̄];

(ii) ∇̃rt̄ is diagonalizable with positive eigenvalues;

(iii) µs ⊥ L d and (rt)#µs ⊥ L d for any t ∈ [0, t̄];

(iv) F∗((rt̄)#µ) < +∞.

Then the map t �→ t−1
(F∗((rt)#µ)− F∗(µ)

)
is nondecreasing in [0, t̄] and

+∞ > lim
t↓0

F∗((rt)#µ)−F∗(µ)
t

= −
∫

Rd

LF (ρ)tr ∇̃(r − i) dx. (10.4.22)

The identity above still holds when assumptions (ii) on r is replaced by
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(ii′) ‖∇̃(r − i)‖L∞(ρL d;Rd×d) < +∞ (in particular if r − i ∈ C∞
c (Rd; Rd)),

and F satisfies in addition the “doubling” condition

∃C > 0 : F (z + w) ≤ C
(
1 + F (z) + F (w)

) ∀ z, w. (10.4.23)

Proof. By assumptions (i) and (ii), taking into account Lemma 5.5.3 and the
representation (10.4.17) of F∗ we have

F∗((rt)#µ)−F∗(µ) =
∫

Rd

F

(
ρ(x)

det ∇̃rt(x)

)
det ∇̃rt(x) dx−

∫
Rd

F (ρ(x)) dx

=
∫

Rd

(
G(ρ(x),det ∇̃rt(x))− F (ρ(x))

)
dx

for any t ∈ (0, t̄]. By the argument given in Proposition 9.3.9, (iii), assumption
(10.4.21) together with (9.3.12) imply that the function

G(ρ(x), det ∇̃rt)− F (ρ(x))
t

t ∈ (0, t̄] (10.4.24)

is nondecreasing w.r.t. t and bounded above by an integrable function (take t = t̄
and apply (iv)). Therefore the monotone convergence theorem gives

lim
t↓0

F∗((rt)#µ)−F∗(µ)
t

=
∫

Rd

d

dt
G(ρ(x),det ∇̃rt(x))

∣∣
t=0

dx

and the expansion det ∇̃rt = 1 + t tr ∇̃(r − i) + o(t) together with (10.4.19) give
the result.

In the case when (ii′) holds, the argument is analogous but, since condition
(ii) fails, we cannot rely anymore on the monotonicity of the function in (10.4.24).
However, using the inequalities

F (w)− F (0) ≤ wF ′(w) ≤ F (2w)− F (w)

and the doubling condition we easily see that the derivative w.r.t. s of the function
G(z, s) can be bounded by C(1 + F+(z)) for |s− 1| ≤ 1/2. Therefore we can use
the dominated convergence theorem instead of the monotone convergence theorem
to pass to the limit. �

The next technical lemma shows that we can “integrate by parts” in (10.4.22)
preserving the inequality, if LF (ρ) is locally in W 1,1.

Lemma 10.4.5 (A “weak” integration by parts formula). Under the same assump-
tions of Lemma 10.4.4, let us suppose that

(i) supp µ ⊂ Ω, Ω being a convex open subset of Rd (not necessarily bounded);

(ii) LF (ρ) ∈ W 1,1
loc (Ω);
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(iii) K = supp(rt̄)#µ is a compact subset of Ω for some t̄ ∈ (0, 1];

(iv) r satisfies the property (ii) of Theorem 6.2.9, i.e. there exists a sequence rh

of functions in BVloc(Rd; Rd) such that rh(x) ∈ K for ρL d-a.e. x ∈ Rd and
lim

h→∞
µ
({rh �= r}) = 0.

Then we can find an increasing family of nonnegative Lipschitz functions χk :
Rd → [0, 1] with compact support in Ω such that χk ↑ χΩ and

−
∫

Rd

LF (ρ(x))tr ∇̃(r − i) dx ≥ lim sup
k→∞

∫
Rd

〈∇LF (ρ), r − i〉χk dx. (10.4.25)

Proof. Possibly replacing r by rt̄, we can assume that t̄ = 1 in (iii). Let us
first recall that by Calderon-Zygmund theorem (see for instance [11]) for every
vector field s ∈ BVloc(Rd; Rd) the approximate divergence tr (∇̃s) is the absolutely
continuous part of the distributional divergence D · s; therefore we have∫

Rd

v tr (∇̃s) dx ≤ −
∫

Rd

〈∇v, s〉 dx, (10.4.26)

provided D ·s ≥ 0 and v ∈ C∞
c (Rd) is nonnegative. If s is bounded, by approxima-

tion the same inequality remains true for every nonnegative function v ∈ W 1,1(Rd).
For every Lipschitz function η : Rd → [0, 1] with compact support in Ω and each
function s = rh, choosing v := ηLF (ρ) ∈ W 1,1(Rd) we get∫

Rd

(
ηLF (ρ)

)
tr (∇̃rh) dx ≤ −

∫
Rd

〈∇(
ηLF (ρ)

)
, rh〉 dx; (10.4.27)

taking into account that µ({∇̃r �= ∇̃rh}) → 0 (because the approximate differ-
entials coincide at points of density one of the coincidence set) and that LF (ρ)
vanishes where ρ vanishes, we recover the inequality∫

Rd

(
ηLF (ρ)

)
tr (∇̃r) dx ≤ −

∫
Rd

〈∇(
ηLF (ρ)

)
, r〉 dx. (10.4.28)

On the other hand, a standard integration by parts yields∫
Ω

(
ηLF (ρ)

)
tr (∇i) dx = −

∫
Ω

〈∇(
ηLF (ρ)

)
, i〉 dx; (10.4.29)

summing up with (10.4.28) and inverting the sign we find

−
∫

Rd

(
ηLF (ρ)

)
tr (∇̃(r − i)) dx ≥

∫
Rd

〈∇(
ηLF (ρ)

)
, r − i〉 dx. (10.4.30)

Now we choose carefully the test function η. We consider an increasing family
bounded open convex sets Ωk such that

Ωk ⊂⊂ Ω, Ω =
∞⋃

k=1

Ωk
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and for each convex set Ωk we consider the function

χk(x) := k d(x, Rd \ Ωk) ∧ 1. (10.4.31)

χk is an increasing family of nonnegative Lipschitz functions which take their
values in [0, 1] and satisfy χk(x) ≡ 1 if d(x, Rd \ Ωk) ≥ 1

k ; in particular, χk ≡ 1 in
K for k sufficiently large. Moreover χk is concave in Ωk, since the distance function
d(·, Rd \ Ωk) is concave. Choosing η := χk in (10.4.30) we get

−
∫

Rd

(
χkLF (ρ)

)
tr (∇̃(r − i)) dx ≥

∫
Rd

〈∇LF (ρ), r − i〉χk dx

+
∫

Ωk

〈∇χk, r − i〉LF (ρ) dx (10.4.32)

≥
∫

Rd

〈∇LF (ρ), r − i〉χk dx

since the integrand of (10.4.32) is nonnegative: in fact, for L d-a.e. x ∈ Ωk where
LF (ρ(x)) is strictly positive, the concavity of χk and r(x) ∈ K yields

〈∇χk(x), r(x)− i(x)〉 ≥ χk(r(x))− χk(x) = 1− χk(x) ≥ 0.

Passing to the limit as k → ∞ in the previous integral inequality, we obtain
(10.4.25) (recall that the function in the left hand side of (10.4.25) is semiintegrable
by (10.4.22)). �

In the following two theorems we characterize ∂◦F∗(µ) and give (under the
doubling condition, but see Remark 10.4.7) a formula for the slope of the func-
tional, showing that∇LF (ρ)/ρ is the minimal selection in the subdifferential. Since
F∗ = F in the superlinear case, we consider the functional F∗ only.

Theorem 10.4.6 (Slope and subdifferential of F∗). Suppose that F : [0, +∞) → R

is a convex differentiable function satisfying (10.4.15), (10.4.21) and (10.4.23).
Assume that F∗ has finite slope at µ ∈ Pp(Rd) with µ = ρ ·L d +µs and µs ⊥ L d.
Then the following statements hold:

(a) LF (ρ) ∈ W 1,1(Rd) and ∇LF (ρ) = wρ for some function w ∈ Lq(ρL d; Rd).
Moreover (∫

Rd

|w(x)|qρ(x) dx
)1/q

≤ |∂F∗|(µ) < +∞. (10.4.33)

(b) If µ ∈ Pr
p (Rd) then equality holds in (10.4.33) and w = ∂◦F∗(µ).

Conversely, if LF (ρ) ∈ W 1,1
loc (Rd) and ∇LF (ρ) = wρ for some w ∈ Lq(µ; Rd),

then F∗ has a finite slope at µ = ρL d and w = ∂◦F∗(µ).
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Proof. (a) We apply first (10.4.22) with r = 0 ρL d-a.e. and r = i on a L d-
negligible set on which µs is concentrated and take into account that

Wp(µ, ((1− t)i + tr)#µ) ≤ t‖i‖Lp(ρL d;Rd)

to obtain
d

∫
Rd

LF (ρ) dx ≤ |∂F∗|(µ)‖i‖Lp(ρL d;Rd),

so that LF (ρ) ∈ L1(Rd). Next, we apply (10.4.22) with r−i equal to a C∞
c (Rd; Rd)

function t ρL d-a.e. (notice that condition (i) holds with t̄ < sup |∇t|) and equal to
0 on a L d-negligible set on which µs is concentrated, and use again the inequality
Wp(µ, ((1− t)i + tr)#µ) ≤ t‖r − i‖Lp(ρL d) to obtain∫

Rd

LF (ρ)tr (∇t) dx ≤ |∂F∗|(µ)‖t‖Lp(ρL d) ≤ |∂F∗|(µ) sup
Rd

|t|,

having used also the fact that the approximate differential ∇̃(r−i) (by definition)
coincides with the classical differential∇t ρL d-a.e. As t is arbitrary, Riesz theorem
gives that LF (ρ) is a function of bounded variation (i.e. its distributional derivative
DLF (ρ) is a finite Rd-valued measure in Rd), so that we can rewrite the inequality
as ∣∣∣∣∣

d∑
i=1

∫
Rd

ti dDiLF (ρ)

∣∣∣∣∣ ≤ |∂F|(µ)‖t‖Lp(ρL d;Rd).

By Lp duality theory there exists w ∈ Lq(ρL d; Rd) with ‖w‖q ≤ |∂F|(µ) such
that

d∑
i=1

∫
Rd

ti dDiLF (ρ) =
∫

Rd

〈w, t〉 dρL d ∀t ∈ C∞
c (Rd, Rd).

Therefore LF (ρ) ∈ W 1,1(Rd) and ∇LF (ρ) = wρ. This leads to the inequality ≤
in (10.4.33).
(b) Assume now that µ ∈ Pr

p(Rd). In order to show that equality holds in (10.4.33)
we will prove that (i×w)#µ belongs to ∂F∗(µ). We have to show that (10.1.7)
holds for any ν ∈ Pp(Rd) and, by approximation, we can assume that ν ∈ Pr

p(Rd)
and that F∗(ν) is finite. Using the doubling condition it is also easy to find a
sequence of measures νh with compact support converging to ν in Pp(X) and such
that F∗(νh) converges to F∗(ν), hence we can also assume that supp ν is compact.
Setting r = tν

µ, by Theorem 6.2.7 and the argument in the beginning of Proposition
9.3.9, we know that all the conditions of Lemma 10.4.4 are fulfilled. Theorem 6.2.9
shows that also Lemma 10.4.5 holds; therefore, by applying (10.4.22), the geodesic
convexity of F∗, and (10.4.25) we obtain

F∗(ν)−F∗(µ) ≥ lim sup
h→∞

∫
Rd

〈∇LF (ρ), (r − i))χh dx

= lim sup
h→∞

∫
Rd

〈w, (r − i))χhρ dx =
∫

Rd

〈w, r − i〉 dµ,
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proving that w ∈ ∂F∗(µ).
Finally, we notice that our proof that w = ∇LF (ρ)/ρ ∈ ∂F∗(µ) does not

use the finiteness of slope, but only the assumption w ∈ Lq(µ; Rd), therefore
these conditions imply that the subdifferential is not empty and that the slope is
finite. �
Remark 10.4.7 (The non-doubling case). The doubling assumption seems to play
an essential role in the previous proof, as it allows to differentiate the energy func-
tionals along smooth and compactly supported directions. Notice also that the
proof that the assumptions LF (ρ) ∈ W 1,1(Rd) and ∇LF (ρ) = wρ with w ∈ Lq

imply that w is in the subdifferential does not use the doubling condition. In
the non-doubling case the characterization of the minimal subdifferential could
still be obtained through a monotone approximation argument of F by doubling
functions Fn (which yields indeed the Γ-convergence of the corresponding energy
functionals) based on Lemma 10.3.16. This argument is explained in detail in a
more relevant case for the applications, the entropy functional in infinite dimen-
sions (see Theorem 10.4.17: in this case the approximating functionals are the
entropies with respect to finite dimensional projections of the reference measure).

Let us now consider a particular class of functions F with sublinear growth:
assuming that θ−F (z)/z → 0 sufficiently slowly as z →∞, we prove that finiteness
of slope implies absolute continuity of the measure. This assumptions covers all
power functions −tm with m > 1− 1/d (leaving open only the case m = 1− 1/d,
where still (10.4.21) holds).

Theorem 10.4.8 (Finiteness of slope implies regularity). Let us suppose that F is
a convex differentiable function in [0,+∞) satisfying (10.4.15), (10.4.21), and

lim
z→+∞ z1/d

(
θ − F (z)

z

)
= +∞. (10.4.34)

If the metric slope |∂F∗|(µ) is finite at µ ∈ Pp(X) then µ ∈ Pr
p(X).

Proof. Let µ ∈ D(F∗) be fixed, assume that |∂F∗|(µ) < ∞, and write µ =
ρL d + µs, with µs singular with respect to L d. We call E a Borel L d-negligible
set on which µs is concentrated, i.e.

E ∈ B(Rd), µs(Rd \ E) = 0, L d(E) = 0.

We now claim that µ is absolutely continuous. If not, let Q = [0, 1]d and let r
be the optimal transport map between µ0 := χQL d and µ. By Theorem 6.2.7
we know that r is approximately differentiable and that ∇̃r is diagonalizable with
nonnegative eigenvalues µ0-a.e.; the argument in the beginning of Proposition 9.3.9
shows that (1− t)i + tr is µ0-essentially injective for any t ∈ [0, 1).

We define Q1 := r−1(E) and Q2 = Q \Q1. Since E is L d-negligible the area
formula (5.5.2) gives det ∇̃r = 0 L d-a.e. on Q1. Notice also that L d(Q1) is the
total mass of µs.



264 Chapter 10. Metric Slope and Subdifferential Calculus in Pp(X)

We define rt := ti+(1−t)r, µt := (rt)#µ0 and Jt := det ∇̃rt. The concavity
of the map t �→ J

1/d
t and the fact that J0(x) ≥ 0, J1(x) = 1 L d-a.e. in Q yield

Jt(x) ≥ td for L d-a.e. x ∈ Q. (10.4.35)

Therefore from (5.5.3) we get µt = (ρ1
t + ρ2

t )L
d with

ρi
t =

1
Jt ◦ r−1

t

|rt(Qi).

Moreover, the µ0-essential injectivity of rt and the fact that µt � L d imply that
rt(Q1) ∩ rt(Q2) is L d-negligible, so that we have the decomposition

F∗(µt) = F(µt) =
∫

Q1

F
( 1

Jt(y)

)
Jt(y) dy +

∫
rt(Q2)

F
( 1

Jt(r−1
t (x))

)
dx. (10.4.36)

On the other hand, r|Q2 is the optimal transport map between χQ2L
d and ρL d

and ρ2
t is the value of the unique constant speed geodesic at time t, see Chapter 7

(here we apply the interpolation theory to pairs of measures whose common total
mass is not necessarily 1).

Since ρL d is regular as well we can find the optimal transport map s between
ρL d and χQ2L

d and setting st = ((1 − t)i + ts), the uniqueness of geodesic
interpolation gives ρ2

t L
d = (st)#

(
ρL d

)
, hence∫

rt(Q2)

F
( 1

Jt(r−1
t (x))

)
dx = F(ρ2

t ) = F∗((st)#
(
ρL d

)
) =

∫
Rd

F
( ρ(x)

J̌t(x)

)
J̌t(x) dx,

with J̌t := det ∇̃ŝt and

F∗(µ)−F∗(µt)
t

= t−1
(∫

Rd

F (ρ(x)) dx−
∫

Rd

F
( ρ(x)

J̌t(x)

)
J̌t(x) dx

)
+ t−1

∫
Q1

(
θ − F

( 1
Jt(y)

)
Jt(y)

)
dy.

From Lemma 10.4.5 and (10.4.22) we get

−∞ < A := −
∫

Rd

〈∇LF (ρ(x)), s(x)− x〉 dx

≤ lim
t↓0

t−1
(∫

Rd

F (ρ(x)) dx−
∫

Rd

F
( ρ(x)

J̌t(x)

)
J̌t(x) dx

)
.

Passing to the limit as t ↓ 0 and using the identity Wp(µt, µ0) = tWp(µ0, µ)
we get

lim sup
t↓0

∫
Q1

t−1
(
θ − F

( 1
Jt(y)

)
Jt(y)

)
dy ≤ |∂F|(µ)Wp(µ0, µ)−A < +∞.
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We observe that if det ∇̃r(y) = 0 we have limt↓0 Jt(y) = 0 and by (10.4.35) we get

lim inf
t↓0

t−1
(
θ − F

( 1
Jt(y)

)
Jt(y)

)
≥ lim inf

t↓0
J
−1/d
t (y)

(
θ − F

( 1
Jt(y)

)
Jt(y)

)
= lim inf

z↑+∞
z1/d

(
θ − F (z)/z

)
= +∞.

Since det ∇̃r(y) = 0 for L d-a.e. y ∈ Q1, Fatou’s Lemma yields

lim inf
t↓0

∫
Q1

t−1
(
θ − F

( 1
Jt(y)

)
Jt(y)

)
dy = +∞

whenever L d(Q1) = µs(Rd) > 0. �

10.4.4 The relative internal energy

In this section we briefly discuss the modifications which should be apported to the
previous results, when one consider a relative energy functional as in Section 9.4.

We thus consider a log-concave probability measure γ = e−V ·L d ∈ P(Rd)
induced by a convex l.s.c. potential

V : Rd → (−∞,+∞], with Ω = intD(V ) �= ∅. (10.4.37)

We are also assuming that the energy density

F : [0, +∞) → [0,+∞] is convex and l.s.c.,
it satisfies the doubling property (10.4.23),

and the geodesic convexity condition (9.3.19),
(10.4.38)

which yield that the map s �→ F̂ (s) := F (e−s)es is convex and non increasing in
R. The functional

F(µ|γ) :=
∫

Rd

F (σ) dγ =
∫

Ω

F
(
ρ/e−V

)
e−V dx, µ = σ · γ = ρL d (10.4.39)

is therefore geodesically convex in Pp(Rd), by Theorem 9.4.12. It is easy to check
that whenever F̂ is not constant (case which corresponds to a linear F and a
constant functional F), F has a superlinear growth and therefore F is lower semi-
continuous in Pp(X).

As already observed in Remark 10.4.7, the doubling property (10.4.38) could
be avoided; here we are assuming it for the sake of simplicity.

Theorem 10.4.9 (Subdifferential of F(·|γ)). The functional F(·|γ) has finite slope
at µ = σ · γ ∈ D(F) if and only if LF (σ) ∈ W 1,1

loc (Ω) and ∇LF (σ) = σw for some
function w ∈ Lq(µ; Rd). In this case( ∫

Rd

|w(x)|q dµ(x)
)1/q

= |∂F|(µ), (10.4.40)

and w = ∂◦F(µ).
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Proof. We argue as in Theorem 10.4.6: in the present case the directional derivative
formula (10.4.22) becomes

+∞ > lim
t↓0

F((rt)#µ|γ)−F(µ|γ)
t

= −
∫

Rd

LF (ρ/e−V )
(
e−V tr ∇̃(r − i)− e−V 〈∇V, r − i〉

)
dx

= −
∫

Rd

LF (σ)tr ∇̃
(
e−V (r − i)

)
dx

(10.4.41)

for every vector field r satisfying the assumptions of Lemma 10.4.4 and F(r#µ|γ)<
+∞. Choosing as before r = i + eV t, t ∈ C∞

c (Ω; Rd), since V is bounded in each
compact subset of Ω, we get∫

Ω

LF (σ)tr∇t dx ≤ |∂F|(µ) sup
Rd

|eV t|,

so that LF (σ) ∈ BVloc(Ω). Choosing now r = i + t with t ∈ C∞
c (Ω; Rd) we get∣∣∣∣∣

d∑
i=1

∫
Ω

ti dDiLF (σ) dγ

∣∣∣∣∣ ≤ |∂F|(µ)‖t‖Lp(µ;Rd)

so that there exists w ∈ Lp(µ; Rd) such that

d∑
i=1

∫
Ω

ti dDiLF (σ) dγ =
∫

Rd

〈w, t〉 dµ =
∫

Rd

〈ρw, t〉e−V dx ∀ t ∈ C∞
c (Ω; Rd),

thus showing that LF (σ) ∈ W 1,1
loc (Ω) and ∇LF (σ) = ρe−V w = σw.

Conversely, if LF (σ) ∈ W 1,1
loc (Ω) with ∇LF (σ) = σw and w ∈ Lq(µ; Rd),

arguing as in Lemma 10.4.5 we have for every measure ν = r#µ with compact
support in Ω

F(ν|γ)−F(µ|γ) ≥ lim sup
k→∞

−
∫

Ω

LF (σ)tr ∇̃(
e−V (r − i)

)
χk dx

≥ lim sup
k→∞

∫
Ω

〈χk∇LF (σ) + LF (σ)∇χk, r − i〉 dγ

≥ lim sup
k→∞

∫
Ω

〈∇LF (σ), r − i〉χk dγ

≥ lim sup
k→∞

∫
Ω

〈w, r − i〉χk dµ =
∫

Ω

〈w, r − i〉 dµ,

which shows through a density argument that w ∈ ∂F(µ). �
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10.4.5 The interaction energy

In this section we consider the interaction energy functionalW : Pp(X) → [0,+∞]
defined by

W(µ) :=
1
2

∫
X×X

W (x− y) dµ× µ(x, y).

Without loss of generality we shall assume that W : X → [0, +∞) is an even func-
tion; our main assumption, besides the convexity of W , is the doubling condition

∃CW > 0 : W (x + y) ≤ CW

(
1 + W (x) + W (y)

) ∀x, y ∈ X. (10.4.42)

Let us first state a preliminary result: we are denoting by µ̄ the barycenter of the
measure µ:

µ̄ :=
∫

X

x dµ(x). (10.4.43)

Lemma 10.4.10. Assume that W : X → [0,+∞) is convex, Gateaux differentiable,
even, and satisfies the doubling condition (10.4.42). Then for any µ ∈ D(W) we
have ∫

X

W (x) dµ(x) ≤ CW

(
1 +W(µ) + W (µ̄)

)
< +∞, (10.4.44)∫

X×X

|∇W (x− y)| dµ× µ(x, y) ≤ CW

(
1 + SW +W(µ)

)
< +∞, (10.4.45)

where SW := sup|y|≤1 W (y). In particular w := (∇W )∗µ is well defined for µ-a.e.
x ∈ X, it belongs to L1(µ;X), and it satisfies∫

X2×X

〈∇W (x1 − x2), y1 − x1〉 dγ(x1, y1) dµ(x2)

=
∫

X2
〈w(x1), y1 − x1〉 dγ(x1, y1),

(10.4.46)

for every plan γ ∈ Γ(µ, ν) with ν ∈ D(W). In particular, choosing γ := (i×r)#µ,
we have∫

X×X

〈∇W (x− y), r(x)〉 dµ× µ(x, y) =
∫

X

〈w(x), r(x)〉dµ(x) (10.4.47)

for every vector field r ∈ L∞(µ; X) and for r := λi, λ ∈ R.

Proof. By Jensen inequality we have

W (x− µ̄) ≤
∫

X

W (x− y) dµ(y) ∀x ∈ X, (10.4.48)

so that a further integration yields∫
X

W (x− µ̄) dµ(x) ≤ W(µ); (10.4.49)
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(10.4.44) follows directly from (10.4.49) and the doubling condition (10.4.42), since
W (x) ≤ CW

(
1 + W (x− µ̄) + W (µ̄)

)
.

Combining the doubling condition and the convexity of W we also get

|∇W (x)| = sup
|y|≤1

〈∇W (x), y〉 ≤ sup
|y|≤1

W (x + y)−W (x)

≤ CW

(
1 + W (x) + sup

|y|≤1

W (y)
)
,

(10.4.50)

which yields (10.4.45).
If now ν ∈ D(W) and γ ∈ Γ(µ, ν), then the positive part of the map

(x1, y1, x2) �→ 〈∇W (x1 − x2), y1 − x1〉 belongs to L1(γ × µ) since convexity yields

〈∇W (x1 − x2), y1 − x1〉 ≤ W (y1 − x2)−W (x1 − x2),

and the right hand side of this inequality is integrable:∫
X3

W (y1−x2) dγ×µ =
∫

X2
W (y1−x2) dν×µ ≤ C

(
1+W(ν)+W(µ)+W (ν̄−µ̄)

)
,

∫
X3

W (x1 − x2) dγ × µ =
∫

X2
W (x1 − x2) dµ× µ = W(µ).

Therefore we can apply Fubini-Tonelli theorem to obtain∫
X3
〈∇W (x1 − x2), y1 − x1〉 dγ × µ(x1, y1, x2)

=
∫

X2

(∫
X

〈∇W (x1 − x2), y1 − x1〉 dµ(x2)
)

dγ(x1, y1)

=
∫

X2
〈
(∫

X

∇W (x1 − x2) dµ(x2)
)
, y1 − x1〉 dγ(x1, y1)

=
∫

X2
〈w(x1), y1 − x1〉 dγ(x1, y1),

which yields (10.4.46). �

Theorem 10.4.11 (Minimal subdifferential of W). Assume that W : X → [0, +∞)
is convex, Gateaux differentiable, even, and satisfies the doubling condition
(10.4.42). Then µ ∈ Pp(X) belongs to D(|∂W|) if and only if w = (∇W ) ∗ ρ ∈
Lq(µ; X). In this case w = ∂◦W(µ).

Proof. As we did for the internal energy functional, we start by computing the
directional derivative of W along a direction induced by a transport map r = i+t,
with t bounded and with a compact support (by the growth condition on W , this
ensures that W(r#µ) < +∞). Since the map

t �→ W ((x− y) + t(t(x)− t(y)))−W (x− y)
t
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is nondecreasing w.r.t. t, the monotone convergence theorem and (10.4.47) give
(taking into account that ∇W is an odd function)

+∞ > lim
t↓0

W((i + tt)#µ−W(µ)
t

=
1
2

∫
X×X

〈∇W (x− y), (t(x)− t(y))〉 dµ× µ =
∫

X

〈w, t〉 dµ.

On the other hand, since |∂W|(µ) < +∞, using the inequality Wp((i+tt)#µ, µ) ≤
‖t‖Lp(µ;X) we get ∫

X

〈w, t〉 dµ ≥ −|∂W|(µ)‖t‖Lp(µ);

changing the sign of t we obtain∣∣∣∣∫
X

〈w, t〉 dµ

∣∣∣∣ ≤ |∂W|(µ)‖t‖Lp(µ),

and this proves that w ∈ Lq(µ;X) and that ‖w‖Lq ≤ |∂W|(µ).
Now we prove that if w = (∇W ) ∗ µ ∈ Lq(µ; X), then it belongs to ∂W(µ).

Let us consider a test measure ν ∈ D(W), a plan γ ∈ Γ(µ, ν), and the directional
derivative of W along the direction induced by γ. Since the map

t �→ W ((1− t)(x1 − x2) + t(y1 − y2))−W (x1 − x2)
t

is nondecreasing w.r.t. t, the monotone convergence theorem, the fact that ∇W is
an odd function, and (10.4.47) give

W(ν)−W(µ) ≥ lim
t↓0

W(((1− t)π1 + tπ2)#γ −W(µ)
t

=
1
2

∫
X2×X2

〈∇W (x1 − x2), (y1 − x1)− (y2 − x2)〉 dγ × γ

=
∫

X2
〈w(x1), y1 − x1〉 dγ(x1, y1),

and this proves that (i×w)#µ ∈ ∂W(µ). �

10.4.6 The opposite Wasserstein distance

In this section we compute the (metric) slope of the function ψ(·) := −1
2
W 2

2 (·, µ2),
i.e. the limit

1
2

lim sup
ν→µ

W 2
2 (ν, µ2)−W 2

2 (µ, µ2)
W2(ν, µ)

= |∂ψ|(µ); (10.4.51)

observe that the triangle inequality shows that the “lim sup” above is always less
than W2(µ, µ2); however this inequality is always strict when optimal plans are not
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induced by transports, as the following theorem shows; the right formula for the
slope involves the minimal L2 norm of the barycentric projection of the optimal
plans and gives that the minimal selection is always induced by a map.

Theorem 10.4.12 (Minimal subdifferential of the opposite Wasserstein distance).
Let ψ(µ) = − 1

2
W 2

2 (µ, µ2). Then

|∂ψ|2(µ) = min
{∫

X

|γ̄ − i|2 dµ : γ ∈ Γo(µ, µ2)
}

∀µ ∈ P2(X), (10.4.52)

and ∂◦ψ(µ) = γ̄ − i is a strong subdifferential, where γ is the unique minimizing
plan above.
Moreover µ �→ |∂ψ|(µ) is lower semicontinuous with respect to narrow convergence
in P(X), along sequences bounded in P2(X).

Proof. Notice first that the minimum is uniquely attained because of the convexity
of Γo(µ, µ2), the linearity of the barycentric projection, and the strict convexity
of the L2 norm.

We show first that for any γ ∈ Γo(µ, µ2) the plan η = (i × (γ̄ − i))#µ
belongs to ∂ψ(µ), i.e. γ̄ − i ∈ ∂ψ(µ), proving the inequality ≤ in (10.4.52). For
every ν ∈ P2(X) and ν ∈ Γ(µ, ν) it would be sufficient to show that (recall that
ψ is −1 convex)

ψ(ν) ≥ ψ(µ) +
∫

X2
〈γ̄(x1)− x1, x2 − x1〉 dν(x1, x2)− 1

2
W 2

ν (µ, ν). (10.4.53)

Let β ∈ Γ(µ, µ2, ν) be the 3-plan determined by the condition

βx1
= γx1 × νx1 for µ-a.e. x1.

Since π1, 2
# β = γ ∈ Γo(µ, µ2) and π1, 3

# β = ν ∈ Γ(µ, ν), we have the inequalities

ψ(ν)− ψ(µ) +
1
2
W 2

ν (µ, ν) = −1
2
W 2

2 (ν, µ2) +
1
2
W 2

2 (µ, µ2) +
1
2
W 2

ν (µ, ν)

≥ −1
2
‖x2 − x3‖2L2(β;X) +

1
2
‖x2 − x1‖2L2(β;X) +

1
2
‖x3 − x1‖2L2(β;X)

=
∫

X3
〈x2 − x1, x3 − x1〉 dβ(x1, x2, x3)

=
∫

X

(∫
X2
〈x2 − x1, x3 − x1〉 dγx1(x2)× dνx1(x3)

)
dµ(x1)

=
∫

X

(∫
X

〈γ̄(x1)− x1, x3 − x1〉 dνx1(x3)
)

dµ(x1)

=
∫

X2
〈γ̄(x1)− x1, x2 − x1〉 dν(x1, x2),

proving (10.4.53).
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In order to show that equality holds in (10.4.52) we notice that(∫
X2
|x2|2 dγ

)1/2

≥ ‖γ̄‖L2(µ;X) ≥ ‖Pµ(γ̄)‖L2(µ;X) ∀γ ∈ Γ(µ, µ2),

where Pµ : L2(µ;X) → TanµP2(X) is the orthogonal projection. Therefore, tak-
ing into account that the slope is equal to the minimal norm in the subdifferential,
it would be sufficient to show that any γ ∈ ∂ψ(µ) satisfies Pµ(γ̄) = η̄ − i for
some η ∈ Γo(µ, µ2). Denoting by 〈·, ·〉 the scalar product in L2(µ; X), by applying
Hahn-Banach theorem in TanµP2(X) it suffices to show the inequality

〈Pµ(γ̄),v〉 ≤ max
w∈K

〈w,v〉 ∀v ∈ TanµP2(X), (10.4.54)

where K ⊂ L2(µ;X) is the bounded, closed, and convex set defined by

K :=
{
η̄ − i : η ∈ Γo(µ, µ2)

}
.

Notice indeed that K ⊂ TanµP2(X) by Theorem 12.4.4 and Theorem 8.5.5.
By a density argument it suffices to check (10.4.54) when v has the property

that i + εv is an optimal map, and the unique one, for some ε > 0: indeed,
it suffices to recall that for any optimal transport map r the interpolated maps
rt = (1 − t)i + tr are the unique optimal transport maps (see Lemma 7.2.1) for
any t ∈ [0, 1), so that the property above is fulfilled with ε = t and v = r − i.
Then we use the fact that the positive cone induced by these vectors is dense in
TanµP2(X), by Theorem 8.5.5. By homogeneity, we assume that ε = 1. Under
these assumptions on v, for t ∈ [0, 1] we set

µt := (i + tv)#µ and αt := (π1, π2, (i + tv) ◦ π1)#γ,

noticing that Lemma 5.3.2 gives that αt is the unique 3-plan such that π1, 2
# αt = γ

and π1, 3
# αt = µt. As a consequence, since γ ∈ ∂ψ(µ), the inequality

ψ(µt) ≥ ψ(µ) +
∫

X3
〈x2, x3− x1〉 dαt − 1

2
W 2

2 (µ, µt) = t

∫
X

〈γ̄, v〉 dµ− 1
2
W 2

2 (µ, µt)

must hold. Since W 2
2 (µ, µt) = t2W 2

2 (µ, µ1), dividing both sides by t and passing
to the limit as t ↓ 0 we obtain

lim inf
t↓0

W 2
2 (µ, µ2)−W 2

2 (µt, µ
2)

t
≥ 2

∫
X

〈γ̄, v〉 dµ = 2
∫

X

〈Pµ(γ̄),v〉 dµ.

On the other hand, Proposition 7.3.6 and (7.3.17) give that the derivative on the
left is equal to

max
η∈Γo(µ,µ2)

2
∫

X2
〈v(x1), x2 − x1〉 dη = max

η∈Γo(µ,µ2)
2
∫

X2
〈v(x1), η̄(x1)− x1〉 dµ,
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so that, recalling the definition of K, (10.4.53) holds.
Now we show the stated lower semicontinuity of the slope. Let (µn) ⊂

P2(X) be a bounded sequence narrowly converging in P2(X) to µ and let γn ∈
Γo(µn, µ2). We assume that |∂ψ|(µn) converges to L and we have to show that
L ≥ |∂ψ|(µ). Since the marginals of γn are converging in P2(X) (and there-
fore tight), we can assume, possibly extracting a subsequence, that γn narrowly
converge in P(X × X) to some plan γ. By Proposition 7.1.3 we obtain that
γ ∈ Γo(µ, µ2). Using test functions of the form 〈x2−x1, ϕ(x1)〉, with ϕ ∈ C0

b (X ;X),
we immediately obtain that (γ̄n − i)µn narrowly converge in the duality with
C0

b (X; X) to (γ̄ − i)µ.
Now we claim that ‖γ̄ − i‖L2(µ) ≤ L. Indeed, for any ϕ ∈ C0

b (X; X) we can
pass to the limit as n →∞ in the inequality∣∣∣∣∫

X

〈ϕ, γ̄n − i〉 dµn

∣∣∣∣ ≤ ‖γ̄n − i‖L2(µn;X)‖ϕ‖L2(µn;X)

to obtain ∣∣∣∣∫
X

〈ϕ, γ̄ − i〉 dµ

∣∣∣∣ ≤ L‖ϕ‖L2(µ;X),

whence the stated inequality follows. Using the inequality |∂ψ|(µ) ≤ ‖γ̄ − i‖L2(µ)

we obtain that |∂ψ|(µ) ≤ L. �
We conclude this section by proving Remark 10.3.5: setting now ψ(·) :=

−1
2W 2

2 (·, µ), we simply observe that if µτ is a minimizer of (10.3.1b), then

γτ ∈ ∂ψ(µτ ) =⇒ γτ ∈ ∂φ(µτ ), (10.4.55)

since
φ(ν)− φ(µτ ) ≥ ψ(ν)− ψ(µτ ) ∀ ν ∈ P2(X).

10.4.7 The sum of internal, potential and interaction energy

In this section we consider, as in [38], the functional φ : Pp(X) → (−∞,+∞]
given by the sum of internal, potential and interaction energy:

φ(µ) :=
∫

Rd

F (ρ) dx +
∫

Rd

V dµ +
1
2

∫
Rd×Rd

W dµ× µ if µ = ρL d, (10.4.56)

setting φ(µ) = +∞ if µ ∈ Pp(Rd) \Pr
p(Rd). Recalling the “doubling condition”

stated in (10.4.23), we make the following assumptions on F , V and W :

(F) F : [0,+∞) → R is a doubling, convex differentiable function with superlin-
ear growth satisfying (10.4.15) (i.e. the bounds on F−) and (10.4.21) (yielding
the geodesic convexity of the internal energy).

(V) V : Rd → (−∞,+∞] is a l.s.c. λ-convex function with proper domain D(V )
with nonempty interior Ω ⊂ Rd;
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(W) W : Rd → [0, +∞) is a convex, differentiable, even function satisfying the
doubling condition (10.4.42).

Notice that we have assumed that F has a superlinear growth only for sim-
plicity: also the case of (sub-)linear growth could be considered, proving along the
lines of Theorem 10.4.8 that finiteness of the slope implies regularity of the mea-
sure. Also the doubling assumptions could be relaxed, see Remark 10.4.7. Finally,
the finiteness of φ yields

supp µ ⊂ Ω = D(V ), µ(∂Ω) = 0, (10.4.57)

so that its density ρ w.r.t. L d can be considered as a function of L1(Ω).
The same monotonicity argument used in the proof of Lemma 10.4.4 gives

+∞ > lim
t↓0

∫
Rd V d((1− t)i + tr))#µ− ∫

Rd V dµ

t
=

∫
Rd

〈∇V, r − i〉 dµ, (10.4.58)

whenever both
∫

Rd V dµ < +∞ and
∫

Rd V dr#µ < +∞.
Analogously, denoting by W the interaction energy functional induced by

W/2, arguing as in the first part of Theorem 10.4.11 we have

+∞ > lim
t↓0

W(((1− t)i + tr)#µ)−W(µ)
t

=
∫

Rd

〈(∇W ) ∗ µ), r − i〉 dµ, (10.4.59)

whenever W(µ) + W(r#µ) < +∞. The growth condition on W ensures that
µ ∈ D(W) implies r#µ ∈ D(W) if either r − i is bounded or r = 2i (here we use
the doubling condition).

We have the following characterization of the minimal selection in the subd-
ifferential ∂◦φ(µ):

Theorem 10.4.13 (Minimal subdifferential of φ). A measure µ = ρL d ∈ D(φ) ⊂
Pp(Rd) belongs to D(|∂φ|) if and only if LF (ρ) ∈ W 1,1

loc (Ω) and

ρw = ∇LF (ρ) + ρ∇V + ρ(∇W ) ∗ ρ for some w ∈ Lq(µ; Rd). (10.4.60)

In this case the vector w defined µ-a.e. by (10.4.60) is the minimal selection in
∂φ(µ), i.e. w = ∂◦φ(µ).

Proof. We argue exactly as in the proof of Theorem 10.4.6, computing the Gateaux
derivative of φ in several directions r, using Lemma 10.4.4 for the internal energy
and (10.4.58), (10.4.59) respectively for the potential and interaction energy.

Choosing r = i + t, with t ∈ C∞
c (Ω; Rd), we obtain

−
∫

Rd

LF (ρ)∇ · t dx +
∫

Rd

〈∇V, t〉 dµ +
∫

Rd

〈(∇W ) ∗ ρ, t〉 dµ ≥ −|∂φ|(µ)‖t‖Lp(µ).

(10.4.61)
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Since V is locally Lipschitz in Ω and ∇W ∗ ρ is locally bounded, following the
same argument of Theorem 10.4.6, we obtain from (10.4.61) first that LF (ρ) ∈
BVloc(Rd) and then that LF (ρ) ∈ W 1,1

loc (Rd), with

∇LF (ρ) + ρ∇V + ρ(∇W ) ∗ ρ = wρ for some w ∈ Lq(µ; Rd) (10.4.62)

with ‖w‖Lq ≤ |∂φ|(µ).
In order to show that the vector w is in the subdifferential (and then, by the

previous estimate, it is the minimal selection) we choose eventually a test mea-
sure ν ∈ D(φ) with compact support contained in Ω and the associated optimal
transport map r = tν

µ; Lemma 10.4.4, (10.4.58), (10.4.59), and Lemma 10.4.5 yield

φ(ν)− φ(µ) ≥ d

dt
φ (((1− t)i + tr)#µ)

∣∣
t=0+

= −
∫

Ω

LF (ρ)∇̃ · (r − i) dx +
∫

Ω

〈∇V, r − i〉 dµ +
∫

Ω

〈(∇W ) ∗ ρ, r − i〉 dµ

≥ lim sup
h→∞

∫
Ω

〈∇LF (ρ), r − i〉χh dx +
∫

Ω

〈∇V + (∇W ) ∗ ρ, r − i〉 dµ

= lim sup
h→∞

∫
Ω

〈∇LF (ρ) + ρ∇V + ρ(∇W ) ∗ ρ, r − i〉χh dx

=
∫

Ω

〈ρw, r − i〉 dx =
∫

Ω

〈w, r − i〉 dµ.

Finally, we notice that the proof that w belongs to the subdifferential did not
use the finiteness of slope, but only the assumption (previously derived by the
finiteness of slope) that LF (ρ) ∈ W 1,1

loc (Ω), (10.4.60), and φ(µ) < +∞; therefore
these conditions imply that the subdifferential is not empty, hence the slope is
finite and the vector w is the minimal selection in ∂φ(µ). �

We know that for general λ-convex functionals the metric slope is l.s.c. with
respect to convergence in Pp(Rd). In the case of the functional φ of (10.4.56) the
slope is also lower semicontinuous w.r.t. the narrow convergence.

Proposition 10.4.14 (Narrow lower semicontinuity of |∂φ|). Let us suppose that
assumptions (F,V,W) are satisfied; if (µn) ⊂ Pp(Rd) is a bounded sequence nar-
rowly converging to µ in P(Rd) with supn φ(µn) < +∞, wn ∈ ∂◦φ(µn) have
bounded Lq(µn; Rd) norms and are weakly converging to w ∈ Lq(µ; Rd) in the
sense of Definition 5.4.3, then w ∈ ∂◦φ(µ). We have also

lim inf
n→∞ |∂φ|(µn) ≥ |∂φ|(µ). (10.4.63)

Proof. Observe that thanks to Theorem 5.4.4

+∞ > lim inf
n→∞ |∂φ|q(µn) = lim inf

n→∞

∫
X

|wn(x)|q dµn(x) ≥
∫

X

|w(x)|q dµ(x).



10.4. Example of subdifferentials 275

Let now ρn be such that µn = ρnL d; since the p-moment of µn is bounded and
the negative part of V has a linear growth, we know that

sup
n

∫
Rd

F (ρn(x)) dx < +∞, sup
n

∫
Rd

(
V +(x) + |x|p

)
ρn(x) dx < +∞.

Thanks to the superlinear growth of F , we deduce that ρn weakly converge to ρ
in L1(Rd), ρ being the Lebesgue density of µ.

Since LF (ρ) ≤ F (2ρ)− 2F (ρ), the doubling condition shows that LF (ρn) is
bounded in L1(Ω); since ∇V is locally bounded, we know that

ρn∇V → ρ∇V, weakly in L1
loc(Ω); (10.4.64)

(10.4.50) and Lemma 5.1.7 show that∫
Ω2
〈∇W (x− y), t(y)〉ρn(x)ρn(y) dx dy →

∫
Ω2
〈∇W (x− y), t(y)〉ρ(x)ρ(y) dx dy

for every vector field t ∈ L∞(Ω), so that ρn(∇W )∗ρn weakly converge to ρ(∇W )∗ρ
in L1(Ω).

We thus deduce that LF (ρn) is bounded in BVloc(Ω); we can extract a further
subsequence such that

LF (ρn) → L in L1
loc(R

d) and pointwise L d-a.e. (10.4.65)

A standard truncation argument and the fact that LF is a monotone function
yield L(x) = LF (ρ(x)) for L d-a.e. x ∈ Ω, and therefore ∇LF (ρn) → ∇LF (ρ) in
the sense of distributions.

Combining all the above results, we get

ρw = ∇LF (ρ) + ρ∇V + ρ(∇W ) ∗ ρ for w ∈ Lq(µ; Rd), (10.4.66)

so that w = ∂◦φ(µ). �
An interesting particular case of the above result is provided by the relative

entropy functional: let us choose p = 2, W ≡ 0 and

F (s) := s log s, γ :=
1
Z

e−V ·L d = e−(V (x)+log Z) ·L d,

with Z > 0 chosen so that γ(Rd) = 1. Recalling Remark 9.4.2, the functional φ
can also be written as

φ(µ) = H(µ|γ)− log Z. (10.4.67)

Since in this case LF (ρ) = ρ, a vector w ∈ L2(µ; Rd) is the minimal selection
∂◦φ(µ) if and only if

−
∫

Rd

∇ · ζ(x) dµ(x) =
∫

Rd

〈w(x), ζ(x)〉 dµ(x)−
∫

Rd

〈∇V (x), ζ(x)〉dµ(x),

(10.4.68)
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for every test function ζ ∈ C∞
c (Rd; Rd); (10.4.68) can also be written in terms of

σ = dµ
dγ as

−
∫

Rd

σ∇ · (e−V (x)ζ(x)) dx =
∫

Rd

〈σw(x), e−V (x)ζ(x)〉dx, (10.4.69)

which shows that σw = ∇σ.

10.4.8 Relative entropy and Fisher information in infinite
dimensions

Let X be an infinite dimensional (separable) Hilbert space, and let Q : X → X
be a bounded, positive definite, symmetric linear operator of trace class.

We introduce the orthonormal system (en) of eigenvectors of Q, i.e. satisfying

Qen = λnen, λn > 0,
∞∑

n=1

λn = trQ < +∞. (10.4.70)

We denote by Xd the finite dimensional subspace generated by the first d eigen-
vectors, by π̂d the orthogonal projection of X onto Xd, and by Qd : X → Xd the
linear operator defined by Qd := π̂d ◦Q, Qdx =

∑d
j=1 λj〈x,ej〉ej .

Let γ be the centered Gaussian measure with covariance operator Q−1: γ is
determined by its finite dimensional projections γd := (π̂d)#γ, which are given by

γd :=
1√

(2π)d det Qd

e−
1
2 〈Q−1

d x,x〉 ·H d|Xd
. (10.4.71)

Notice that

det Qd :=
d∏

j=1

λj and 〈Q−1
d x, x〉 =

d∑
j=1

λ−1
j 〈x, ej〉2. (10.4.72)

In Section 9.4 we studied the properties of the relative entropy functional

φ(µ) := H(µ|γ), (10.4.73)

which is a geodesically convex functional in P2(X).
Let us recall the standard definition of generalized partial derivatives for

functions in L1(γ) [25, Def. 5.2.7]:

Definition 10.4.15 (Partial and logarithmic derivatives). Let ρ : X → R be a Borel
function with

∫
X
|x||ρ| dγ < +∞. The function ρ has generalized partial derivative

σj := ∂ej
ρ ∈ L1(γ) along ej if for any smooth cylindrical function ζ ∈ Cyl(X)

one has the “integration by parts” formula

−
∫

X

ρ(x)∂ej ζ(x) dγ(x) =
∫

X

σj(x)ζ(x) dγ(x)− λ−1
j

∫
X

〈x, ej〉ζ(x)ρ(x) dγ(x).

(10.4.74)
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We say that µ = ρ · γ ∈ Pr
2 (X) has wj as logarithmic partial derivative along ej

if ∂ej
ρ ∈ L1(γ) and wj =

∂ej
ρ

ρ ∈ L2(µ), i.e.

−
∫

X

∂ej
ζ(x) dµ(x) =

∫
X

wj(x)ζ(x) dµ(x)− λ−1
j

∫
X

〈x,ej〉ζ(x) dµ(x). (10.4.75)

By a standard smoothing argument, as in the finite dimensional case, one can
check that the integral identities above holds for any cylindrical bounded function
ζ of class C1 with a bounded gradient.

Definition 10.4.16 (Logarithmic gradient and Fisher information functional). If µ

has logarithmic partial derivatives wj =
∂ej

ρ

ρ ∈ L2(µ) for every j ∈ N and

∞∑
j=1

∫
X

|wj(x)|2 dµ(x) < +∞, (10.4.76)

we define the “logarithmic gradient” of µ as follows:

w(x) =
∇ρ

ρ
:=

∞∑
j=1

wj(x)ej ∈ L2(µ;X). (10.4.77)

The Fisher information functional I (µ|γ) is defined as ‖w‖2L2(µ;X).

The following theorem shows that the Fisher information functional is indeed
the minimal slope of the entropy functional even in the infinite-dimensional case.
The proof requires the validity of the statement in the finite dimensional case and
an approximation based on the Γ-convergence of the finite-dimensional entropy
functionals.

Theorem 10.4.17. A measure µ = ρ · γ ∈ Pr
2 (X) with finite relative entropy

φ(µ) = H(µ|γ) belongs to D(|∂φ|) if and only if µ has a logarithmic gradient
w = ∇ρ

ρ ∈ L2(µ;X) according to Definition 10.4.16. In this case w = ∂◦φ(µ) and

|∂φ|2(µ) =
∫

X

|∇ρ(x)|2
ρ(x)2

dµ(x) =
∫

X

|∇ρ(x)|2
ρ(x)

dγ(x) = I (µ|γ). (10.4.78)

Proof. Let us suppose that all the components wj of w ∈ L2(µ; X) satisfy
(10.4.75). We fix an integer d and we consider the orthogonal projection π̂d of
X onto Xd. We consider cylindrical functions of the form ζ(x) = ψ(π̂d(x)) for
ψ : Xd → X bounded, of class C1 and with a bounded gradient. If we introduce
the measure µd := (π̂d)#µ, we can disintegrate µ w.r.t. µd as µ =

∫
Xd

µx dµd(x),
with µx ∈ P(X) concentrated on π̂−1

d (x) and we can define the vector field

wd(x) :=
∫

X

w(y) dµx(y), (10.4.79)
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which satisfies∫
X

〈w(x), ψ(π̂d(x))〉 dµ(x) =
∫

Xd

〈wd(y),ψ(y)〉dµd(y). (10.4.80)

Choosing ψ of the form
∑d

j=1 ψjej , using (10.4.75) and the previous identity, we
obtain

−
∫

Xd

d∑
j=1

∂ψj

∂ej
(x) dµd(x) =

∫
Xd

〈wd(x),ψ(x)〉dµd(x)−
∫

Xd

〈Q−1x,ψ(x)〉 dµd(x).

(10.4.81)
Since (by Jensen inequality) wd ∈ L2(µd; Rd) and∫

Xd

|wd(x)|2 dµd(x) ≤
∫

X

|w(x)|2 dµ(x), (10.4.82)

from (10.4.68) (stated for Rd but still true for Xd) we obtain that wd ∈ ∂◦φd(µd)
where φd(µ) := H(µ|γd). Lemma 9.4.3 and Lemma 9.4.5 show that φd is
Γ(P2(X)) converging to φ as d → +∞. Since µd → µ in Pp(X) and wd are
easily seen to be converging to w according to Definition 5.4.3 (by compactness,
see Theorem 5.4.4(a), one needs only to check condition (10.4.47) on cylindrical
test functions ζ), we can apply Lemma 10.3.8 which shows that w ∈ ∂φ(µ) and
therefore

|∂φ|2(µ) ≤ I (µ|γ).

In order to prove the opposite implication, let us now suppose that w = ∂◦φ(µ):
applying Lemma 10.3.16 to the sequence of functionals φd(µ) = H(µ|γd), we find
two sequences νd → µ in P2(X) and wd ∈ ∂◦φd(νd) converging to w according
to Definition 5.4.3, i.e. the plans (i × wd)#νd ∈ ∂◦φd(νd) narrowly converge in
P(X × X�) to (i × w)#µ ∈ ∂◦φ(µ) (actually the lemma provides the stronger
convergence in P2(X×X), not needed here). By the finite dimensional result, we
know that

−
∫

X

∂ej
ζ(x) dνd(x) =

∫
X

〈wd(x),ej〉ζ(x) dνd(x)− λ−1
j

∫
X

〈x, ej〉ζ(x) dνd(x)

for every j = 1, . . . , d and ζ ∈ Cyl(X). Keeping j and ζ fixed, we can pass to
the limit as d →∞ to obtain (10.4.75) (the convergence of the rightmost integral
follows by Lemma 5.1.7). �



Chapter 11

Gradient Flows and Curves of
Maximal Slope in Pp(X)

In this chapter we state some of the main results of the paper, concerning exis-
tence, uniqueness, approximation, and qualitative properties of gradient flows µt

generated by a proper, l.s.c. functional φ in Pp(X), X being a separable Hilbert
space. Taking into account the first part of this book and the (sub)differential the-
ory developed in the previous chapter, there are at least four possible approaches
to gradient flows which can be adapted to the framework of Wasserstein spaces:

1. The “Minimizing Movement” approximation. We can simply consider any li-
mit curve of the variational approximation scheme we introduced at the be-
ginning of Chapter 2 (see Definition 2.0.6), i.e. a “Generalized minimizing
movement” GMM(Φ; µ0) in the terminology suggested by E. De Giorgi.
In the context of P2(Rd) this procedure has been first used in [83, 104, 105,
103, 106] and subsequently it has been applied in many different contexts,
e.g. by [82, 99, 107, 73, 74, 78, 66, 35, 36, 1, 75, 63].

2. Curves of Maximal Slope. We can look for absolutely continuous curves µt ∈
ACp

loc((0,+∞); Pp(X)) which satisfy the differential form of the Energy in-
equality

d

dt
φ(µt) ≤ −1

p
|µ′|p(t)− 1

q
|∂φ|q(µt) ≤ −|∂φ|(µt) · |µ′|(t) (11.0.1)

for L 1-a.e. t ∈ (0, +∞). Notice that in the present case of Pp(X), we estab-
lished in Chapter 8 a precise description of absolutely continuous curve (in
terms of the continuity equation) and of the metric velocity (in terms of the
Lp(µt; X)-norm of the related velocity vector field); moreover, in Chapter 10
we have shown an equivalent differential characterization of the slope |∂φ| in
terms of the Lq(µt;X)-norm of the Fréchet subdifferential of φ.
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3. The pointwise differential formulation. Since we have at our disposal a notion
of tangent space and the related concepts of velocity vector field vt and
(sub)differential ∂φ(µt), we can reproduce the simple definition of gradient
flow modeled on smooth Riemannian manifold, i.e.

vt ∈ −∂φ(µt), (11.0.2)

trying to adapt it to the case p �= 2 and to extended plan subdifferentials.

4. Systems of Evolution Variational Inequalities (E.V.I.). When p = 2, in the
case of λ-convex functionals along geodesics in P2(X), we can try to find
solutions of the family of “metric” variational inequalities

1
2

d

dt
W 2

2 (µt, ν) ≤ φ(ν)− φ(µt)− λ

2
W 2

2 (µt, ν) ∀ ν ∈ D(φ). (11.0.3)

This formulation provides the best kind of solutions, for which in particular
one can prove not only uniqueness, but also error estimates. On the other
hand it imposes severe restrictions on the space (p = 2) and on the functional
(λ-convexity along generalized geodesics).

In any case, the variational approximation scheme is the basic tool for proving
existence of gradient flows: at the highest level of generality, when the functional
φ does not satisfy any convexity or regularity assumption, one can only hope to
prove the existence of a limit curve which will satisfy a sort of “relaxed” differential
equation: we will present the basic steps of the convergence argument at the end
of the next section, in a simplified situation.

As we will see in the next section, when φ satisfies more restrictive regularity
assumptions, one can show that the first three notions essentially coincide; if φ is
also λ-convex and p = 2, they are also equivalent to the most restrictive fourth
one.

It is then possible to prove the convergence of the discrete solutions to a
curve of maximal slope (or to a solution of the E.V.I. system) by applying the
general theorems of Chapter 2 (respectively, of Chapter 4): we will devote the last
two sections to present a brief account of these metric approaches.

11.1 The gradient flow equation and its metric

formulations

Definition 11.1.1 (Gradient flows). We say that a map µt∈ACp
loc((0,+∞);Pp(X))

is a solution of the gradient flow equation

jp(vt) ∈ −∂φ(µt) t > 0, (11.1.1)

if denoting by vt ∈ Tanµt
Pp(X) its velocity vector field, its dual vector field jp(vt)

belongs to the (reduced) subdifferential (10.3.12) of φ at µt for L 1-a.e. t > 0.
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The above definition is equivalent to the requirement that there exists a
Borel vector field vt such that vt ∈ TanµPp(X) for L 1-a.e. t > 0, ‖vt‖Lp(µt) ∈
Lp

loc(0, +∞), the continuity equation

∂tµt +∇ · (vtµt

)
= 0 in X × (0,+∞) (11.1.2)

holds in the sense of distributions according to (8.3.8), and finally

jp(vt) ∈ −∂φ(µt) for L 1-a.e. t > 0. (11.1.3)

The last inclusion is also equivalent (see (10.3.12) and Definition 10.3.1 for the
definition of ∂φ) to(

i× jp(−vt)
)
#

µt ∈ ∂φ(µt) for L 1-a.e. t > 0. (11.1.4)

Observe that in the case p = 2 (11.1.1) simplifies to

vt ∈ −∂φ(µt), or, equivalently,
(
i× (−vt)

)
#

µt ∈ ∂φ(µt), (11.1.5)

for L 1-a.e. t > 0. Before studying the question of existence of solutions to (11.1.1),
which we will postpone to the next sections, we want to discuss some preliminary
issues.

First of all we mention the basic (but formal, at this level) example, which
provides one of the main motivations to study this kind of gradient flows.

Example 11.1.2 (Gradient flows and evolutionary PDE’s of diffusion type). In
the space-time open cylinder Rd × (0,+∞) we look for nonnegative solutions ρ :
Rd × (0, +∞) of a parabolic equation of the type

∂tρ−∇ ·
(
ρ∇( δF

δρ

))
= 0 in Rd × (0,+∞), (11.1.6)

where
δF (ρ)

δρ
= −∇ · Fp(x, ρ,∇ρ) + Fz(x, ρ,∇ρ).

is the first variation of a typical integral functional as in (10.4.1)

F (ρ) =
∫

Rd

F (x, ρ(x),∇ρ(x)) dx (11.1.7)

associated to a (smooth) Lagrangian F = F (x, z, p) : Rd × [0, +∞)×Rd → R.
Observe that (11.1.6) has the following structure:

∂tρ +∇ · (ρv) = 0 (continuity equation), (11.1.8a)
ρv = ρ∇ψ (gradient condition), (11.1.8b)

ψ = −δF (ρ)
δρ

(nonlinear relation). (11.1.8c)
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Observe that in the case when F depends only on z = ρ then we have

δF (ρ)
δρ

= Fz(ρ), ρ∇Fz(x, ρ) = ∇LF (ρ), LF (z) := zF ′(z)− F (z). (11.1.9)

Since we look for nonnegative solutions having (constant, by (11.1.8a), normalized)
finite mass

ρ(x, t) ≥ 0,
∫

Rd

ρ(x, t) dx = 1 ∀t ≥ 0, (11.1.10)

and finite quadratic momentum∫
Rd

|x|2ρ(x, t) dx < +∞ ∀ t ≥ 0, (11.1.11)

recalling Example 10.4.1, we can

identify ρ with the measures µt := ρ(·, t) ·L d, (11.1.12)

and we consider F as a functional defined in P2(Rd). Then any smooth positive
function ρ is a solution of the system (11.1.8a,b,c) if and only if µ is a solution in
P2(Rd) of the Gradient Flow equation (11.1.1) for the functional F .

Observe that (11.1.8a) coincides with (11.1.2), the gradient constraint
(11.1.8b) corresponds to the tangent condition vt ∈ Tanµt

P2(Rd) of (11.1.3), and
the nonlinear coupling ψ = −δF (ρ)/δρ is equivalent to the differential inclusion
vt ∈ −∂F (µt) of (11.1.3).

At this level of generality the equivalence between the system (11.1.8a,b,c)
and the evolution equation (11.1.1) is known only for smooth solution (which, by
the way, may not exist); nevertheless, the point of view of gradient flow in the
Wasserstein spaces, which was introduced by F. Otto in a series of pioneering
and enlightening papers [104, 83, 106, 107], still presents some interesting features,
whose role should be discussed in each concrete case:

a) The gradient flow formulation (11.1.1) suggests a general variational scheme
(the Minimizing Movement approach, which we discussed in the first part of
this book and which we will apply in the next sections) to approximate the
solution of (11.1.8a,b,c): proving its convergence is interesting both from the
theoretical (cf. the papers quoted at the beginning of the chapter) and the
numerical point of view [88].

b) The variational scheme exhibits solutions which are a priori nonnegative,
even if the equation does not satisfies any maximum principle as in the fourth
order case [105, 75].

c) Working in Wasserstein spaces allows for weak assumptions on the data:
initial values which are general measures (as for fundamental solutions, in
the linear cases) fit quite naturally in this framework.
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d) The gradient flow structure suggests new contraction and energy estimates,
which may be useful to study the asymptotic behaviour of solutions to
(11.1.8a,b,c) [107, 17, 34, 38, 2, 118, 58], or to prove uniqueness under weak
assumptions on the data.

e) The interplay with the theory of Optimal Transportation provides a novel
point of view to get new functional inequalities with sharp constants [108,
125, 3, 44, 16, 54].

f) The variational structure provides an important tool in the study of the
dependence of solutions from perturbation of the functional.

g) The setting in space of measures is particularly well suited when one considers
evolution equations in infinite dimensions and tries to “pass to the limit” as
the dimension d goes to ∞.

11.1.1 Gradient flows and curves of maximal slope

Our first step is to compare solutions to (11.1.1) with the curves of Maximal Slope
we introduced in 1.3.2: we are thus discussing the equivalence of the second and
of the third formulation introduced at the beginning of this chapter.

As usual, we are at least assuming that

φ : Pp(X) → (−∞,+∞], proper and lower semicontinuous, (11.1.13a)

is such that

ν �→ Φ(τ, µ; ν) =
1

pτp−1
W p

p (µ, ν) + φ(ν) admits at least

a minimum point µτ , for all τ ∈ (0, τ∗) and µ ∈ Pp(X).
(11.1.13b)

Theorem 11.1.3 (Curves of maximal slope coincide with gradient flows). Let
φ : Pp(X) → (−∞, +∞] be a regular functional, according to Definition 10.3.9
satisfying (11.1.13a,b). Then µt : (0, +∞) → Pp(X) is a p-curve of maximal slope
w.r.t. |∂φ| (according to Definition 1.3.2) iff µt is a gradient flow and t �→ φ(µt) is
L 1-a.e. equal to a function of bounded variation. In this case the tangent vector
field vt to µt satisfies the minimal selection principle

vt = −∂◦φ(µt) for L 1-a.e. t > 0. (11.1.14)

Proof. Assume first that µt is a p-curve of maximal slope w.r.t. |∂φ|. We know
that there exists a function of (locally) bounded variation ϕ : (0,+∞) → R such
that φ(µt) = ϕ(t) L 1-a.e. in (0,+∞) and

d

dt
ϕ(t) = −1

p
|µ′|p(t)− 1

q
|∂φ|p(t) L 1-a.e. in (0, +∞). (11.1.15)
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Indeed, the inequality ≤ follows by the definition of curve of maximal slope, while
the opposite inequality follows by the fact, proved in Theorem 1.2.5, that |∂φ| is
a weak upper gradient of φ.

Being φ regular, ∂φ(µt) �= ∅ for L 1-a.e. t > 0; thus the chain rule 10.3.18
shows that

d

dt
ϕ(t) =

∫
X2
〈x2, vt(x1)〉 dγt ∀γt ∈ ∂φ(µt) for L 1-a.e. t > 0. (11.1.16)

Choosing in particular γt = ∂◦φ(µt), since the equalities

|µ′|p(t) =
∫

X2
|vt(x1)|p dγt, |∂φ|q(t) =

∫
X2
|x2|q dγt,

hold for L 1-a.e. t > 0, we get∫
X2

(1
p
|vt(x1)|p +

1
q
|x2|q + 〈x2, vt(x1)〉

)
dγt(x1, x2) = 0. (11.1.17)

It follows that
x2 = −jp(vt(x1)) for γt a.e. (x1, x2),

i.e. (i× jp(−vt))#µt = ∂◦φ(µt) or, equivalently, jp(vt) = −∂◦φ(µt).
Conversely, if µt is a gradient flow in the sense of (11.1.1) and φ ◦ µ is a

function of (essential) bounded variation, by applying the chain rule once more,
we easily get that µt is a p-curve of maximal slope w.r.t. |∂φ|. �

One of the most interesting aspects of the previous characterization is to
force ∂◦φ(µt) to be concentrated on the graph of the transport map −jp(vt) for
L 1-a.e. t > 0, even if the measures µt do not satisfy any regularity assumption.

11.1.2 Gradient flows for λ-convex functionals

If the functional φ is λ-convex along geodesics, for flows µt : (0, +∞) → Pr
p (X)

with ‖vt‖p
Lp(µt)

locally integrable, Definition (11.1.1) reduces to the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tµt +∇ · (µt vt) = 0 in X × (0,+∞),

−
∫

X

〈jp(vt), tσ
µt
− i〉 dµt ≤ φ(σ)− φ(µt)− λ

2
W 2

p (σ, µt) ∀σ ∈ D(φ),

(11.1.18)

where the first equation is understood in a weak sense, in the duality with cylin-
drical functions in X × (0, +∞), and the second one holds for L 1-a.e. t > 0.

Notice that in the case p = 2 it is not necessary to assume that vt is tangent
in (11.1.18): indeed, projecting the velocity field onto the tangent space leaves the
continuity equation unchanged (by (8.4.4)) and does not affect the subdifferential
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inequality (by Proposition 8.5.2). However, whenever the norm of the velocity field
has to be minimized, it is natural to assume that the vector field is tangent.

The case p = 2 is particularly distinguished, since the left hand side of
(11.1.18) is also equal to the time derivative of 1

2W 2
2 (µt, ν); this simple fact is

the crucial ingredient of the following uniqueness result, which is known in the
case p = 2 only. This is not very surprising, as even in the “flat” Lp spaces,
p ∈ (1, +∞) \ {2}, uniqueness of gradient flows is not known.

Theorem 11.1.4 (Uniqueness of gradient flows in the case p = 2 and E.V.I.). Let
p = 2 and let φ : P2(X) → (−∞,+∞] be a l.s.c. λ-geodesically convex functional.
If µi

t : (0,+∞) → P2(X), i = 1, 2, are gradient flows satisfying µi
t → µi as t ↓ 0

in P2(X), then
W2(µ1

t , µ
2
t ) ≤ e−λtW2(µ1, µ2) ∀ t > 0. (11.1.19)

In particular, for any µ0 ∈ P2(X) there is at most one gradient flow µt satisfying
the initial Cauchy condition µt → µ0 as t ↓ 0 and it is also characterized by the
system of “Evolution Variational Inequalities”

1
2

d

dt
W 2

2 (µt, σ) +
λ

2
W 2

2 (µt, σ) ≤ φ(σ)− φ(µt) for L 1-a.e. t > 0, ∀σ ∈ D(φ).

(11.1.20)

Proof. Let σ ∈ D(φ) and let µt be a gradient flow satisfying µt → µ0 as t ↓ 0. De-
noting by vt the velocity vector of µt, and applying the definition of subdifferential
we obtain the existence of γt ∈ Γo(µt, σ) such that

φ(σ) ≥ φ(µt) +
∫

X2
〈vt(x2), x1 − x2〉 dγt +

λ

2
W 2

2 (µt, σ). (11.1.21)

On the other hand the differentiability of W 2
2 stated in Lemma 8.4.7 gives

1
2

d

dt
W 2

2 (µt, σ) =
∫

X2
〈vt(x1), x1 − x2〉 dγt for L 1-a.e. t ∈ (0,+∞),

and therefore (11.1.20).
Conversely, if µt is an absolutely continuous curve satisfying (11.1.20), it is

immediate to check that for every countable subset Σ ⊂ D(φ) we can find a L 1-
negligible set N ⊂ (0,+∞) such that the velocity vector vt satisfies (11.1.21)
for every σ ∈ Σ and t ∈ (0, +∞) \ N . We can choose now a countable set Σ
which is dense in D(φ) with respect to the distance W2(µ, ν) + |φ(µ)− φ(ν)| (see
Proposition 7.1.5): by a density argument based on Proposition 7.1.3 we conclude
that −vt ∈ ∂φ(µt) for t ∈ (0,+∞) \N .

Finally, if µ1
t , µ2

t are two gradient flows satisfying the initial Cauchy condition
µi

t → µi as t ↓ 0, i = 1, 2, it is easy to check that we can apply Lemma 4.3.4 with
the choices d(s, t) := W 2

2 (µ1
s, µ

2
t ), δ(t) := d(t, t), thus obtaining δ′ ≤ −2λδ. Since

δ(0+) = W 2
2 (µ1, µ2) we obtain (11.1.19). �
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11.1.3 The convergence of the “Minimizing Movement” scheme

The existence of solutions to (11.1.1) will be obtained as limit of the metric vari-
ational scheme we discussed in Chapter 2: let us briefly recall some notation we
will extensively use.

The discrete equation Here we consider (for simplicity: see Remark (2.0.1)) a
uniform partition Pτ of (0, +∞) by intervals In

τ of size τ > 0

Pτ :=
{
0 < t1τ = τ < t2τ = 2τ < · · · < tnτ = nτ < · · ·}, In

τ := ((n− 1)τ, nτ ];

for a given family of initial values M0
τ such that

M0
τ → µ0 in Pp(X), φ(M0

τ ) → φ(µ0) as τ ↓ 0, (11.1.22)

assuming that (11.1.13b) is satisfied, for every τ ∈ (0, τ∗) a corresponding family
of sequences (Mn

τ )n∈N recursively defined as

Mn
τ minimizes µ �→ Φ(τ, Mn−1

τ ; µ) (11.1.23)

always exists. We call “discrete solution” the piecewise constant interpolant

Mτ (t) :=Mn
τ if t ∈ ((n− 1)τ, nτ ], (11.1.24)

and we say that a curve µ is a Generalized Minimizing Movement of GMM(Φ;µ0)
if there exists a sequence (τk) ↓ 0 such that

Mτk
(t) → µt narrowly in P(X�) for every t > 0, as k →∞. (11.1.25)

It follows from Proposition 2.2.3 that if µ0 ∈ D(φ) then a generalized Min-
imizing Movement always exists and it is an absolutely continuous curve µ ∈
ACp

loc

(
[0, +∞);Pp(X)

)
.

The main problem is to characterize the equation satisfied by its tangent
velocity vector vt, or, equivalently, to pass to the limit in the “discrete gradient
flow” equation satisfied by the discrete solution M τ .

In order to clarify this point, let us first suppose for simplicity, as we did in
Section 10.1, that

D(|∂φ|) ⊂ Pr
p(X). (11.1.26)

If tn
τ is the optimal transport map pushing Mn

τ to Mn−1
τ , it is natural to define the

discrete velocity vector V n
τ as (i− tn

τ )/τ . By Lemma 10.1.2 and Theorem 10.4.12

−jp(V n
τ ) = jp

(tn
τ − i

τ

)
∈ ∂φ(Mn

τ ), (11.1.27)

which can be considered as an Euler implicit discretization of (11.1.1). By intro-
ducing the piecewise constant interpolant

Vτ (t) := V n
τ if t ∈ ((n− 1)τ, nτ ], (11.1.28)
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the identity (11.1.27) reads

−jp(Vτ (t)) ∈ ∂φ(M τ (t)) for t > 0. (11.1.29)

It is not difficult to show that, up to subsequences, Vτ ⇀ v in the distribution
sense in X × (0, +∞), for some vector field v satisfying

∂tµt +∇ · (µtvt) = 0 in X × (0, +∞), ‖vt‖Lp(µt;X) ∈ Lp
loc(0,+∞). (11.1.30)

A we already said, the main difficulty is to show that the (doubly, if p �= 2)
nonlinear equation (11.1.29) is preserved in the limit.

We shall see three different kinds of arguments which give some insights for
this problem and reflect different properties of the functional.

1. The first one is a direct development of the compactness method: passing to
the limit in the discrete equation satisfied at each step by the approximating
sequence Mn

τ , one tries to write a relaxed form of the limit differential equa-
tion, assuming only narrow convergences of weak type. It may happen that
under suitable closure and convexity assumptions on the sections of the sub-
differential, which should be checked in each particular situation, this relaxed
version coincides with the stronger one, and therefore one gets an effective
solution to (11.1.1).

In general, however, even under some simplifying assumptions (p = 2,
all the measures are regular), the results of this direct approach are not
completely satisfactory: it could be considered as a first basic step, which
should be common to each attempt to apply the Wasserstein formalism for
studying a gradient flow.

In order to clarify the basic arguments of this preliminary strategy, we
will try to explain it at the end of this section (in a simplified setting, to keep
the presentation easier) without invoking all the abstract results of the first
part of this book.

2. The second approach (see Section 11.3) involves the regularity of the func-
tional according to Definition 10.3.9, and works for every p > 1; in particular
it can applied to λ-convex functionals.

In this case, thanks to Theorem 11.1.3, the gradient flow equation is
equivalent to the maximal slope condition, which is of purely metric nature.
We can then apply the abstract theory we presented in Chapter 2 and there-
fore we can prove that any limit curve µ of (11.1.28) is a solution to (11.1.1).

The key ingredient, which allows to pass to the limit in the “doubly non-
linear” differential inclusion (without any restrictions on the regularity of µt)
and to gain a better insight on the limit than the previous simpler method,
is the refined discrete energy estimate (3.2.4) (related to De Giorgi’s varia-
tional interpolation (3.2.1)) and the lower semicontinuity of the slope, which
follows from the regularity of the functional.
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3. The last approach, presented in Section 11.2, is based on the general esti-
mates of Theorem 4.0.4 of Chapter 4: it can be performed only in P2(X)
and imposes on the functionals the strongest condition of λ-convexity along
generalized geodesics.

Despite the strong convexity requirements on φ, which are nevertheless
satisfied by all the examples of Section 10.4 in P2(X), this approach has
many nice features:

• it does not require compactness assumptions of the sublevels of φ in
P2(X): the convergence of the “Minimizing movement” scheme is
proved by a Cauchy-type estimate.

• The gradient flow equation (11.1.1) is satisfied in the limit, since Theo-
rem 4.0.4 provides directly the system of evolution variational inequal-
ities (11.1.20).

• It provides our strongest results in terms of regularity, asymptotic be-
haviour, and error estimates for the continuous solution, which can be
directly derived from the general metric setting.

• It allows for general initial data µ0 which belong to the closure of the
domain of φ: in particular, one can often directly consider a sort of “non-
linear fundamental solution” for initial values which are concentrated
in one point.

• The Γ-convergence of functionals, in the sense of Lemma 10.3.16, in-
duces the uniform convergence of the corresponding gradient flows.

Let us now present a brief sketch of the first approach: as in Section 10.1 we
are assuming p = 2 and (11.1.26). We also introduce a limiting version of the
subdifferential, modeled on the analogous one introduced by [90, 100] in linear
spaces (see also the monograph [113] and [114] for applications to gradient flows
in Hilbert spaces).

Definition 11.1.5 (Limiting subdifferentials). For µ ∈ D(φ), we say that a vector
ξ ∈ L2(µ; X) belongs to the limiting subdifferential ∂�φ(µ) of φ at µ if there exist
two sequences µk ∈ D(∂φ), ξk ∈ ∂φ(µk), ξk being strong subdifferentials, such
that

µk → µ narrowly in P(X�), ξk → ξ weakly, as in Definition 5.4.3,

sup
k

(
φ(µk),

∫
X

(|x|2 + |ξk(x)|2) dµk(x)
)

< +∞.

(11.1.31)

The following result has a simpler counterpart in the flat framework of Hilbert
spaces:

Theorem 11.1.6 (Relaxed gradient flow). Let us suppose that p = 2, the proper and
coercive functional φ : P2(X) → (−∞, +∞] is l.s.c. with respect to the narrow
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convergence of P(X�), and it satisfies D(|∂φ|) ⊂ Pr
2 (X).

If µ0 ∈ D(φ), then each sequence of discrete solutions (Mτh
) with vanishing time

steps admits a converging subsequence (still denoted by M τh
) such that:

(i) Mτh
(t) → µt in P(X�) ∀ t ∈ [0,+∞);

(ii) for any T > 0 we have V τh
→ v ∈ L2(µ;X) weakly in X× (0, T ), as in Defi-

nition 5.4.3, where T−1µ ∈ P(X × (0, T )) is the measure T−1
∫ T

0
µt dL 1(t).

The map t �→ µt belongs to AC2
loc([0,+∞);P2(X)), it satisfies the continuity

equation
∂tµ +∇ · (µv) = 0, (11.1.32)

and v satisfies the relaxed gradient flow

−vt ∈ Conv ∂�φ(µt) for L 1-a.e. t > 0. (11.1.33)

In other words, the limit vector field −vt belongs to the closed convex hull in
L2(µt; X) of the limiting subdifferential ∂�φ(µt). Before presenting the proof of this
theorem, let us show two easy corollaries and two related motivating applications:
the proof of the first statement follows from Lemma 10.1.3, providing the inclusion
of the limiting subdifferential into the standard subdifferential for coercive and λ-
convex functionals.

Corollary 11.1.7 (λ-convex functionals in Pr
2 (X)). Under the same assumptions of

the previous theorem, suppose that φ is a λ-geodesically convex functional satisfying
(11.1.26), whose sublevels are locally compact in P2(X); then µt is a solution of
the gradient flow equation (11.1.5).

Corollary 11.1.8 (Single–valued limiting subdifferential). Under the same assump-
tions of the above theorem, suppose that ∂�φ(µ) contains at most one vector. Then
µt is a solution of

∂tµ +∇ · (µv) = 0, −vt = ∂�φ(µt) for L 1-a.e. t > 0. (11.1.34)

Example 11.1.9 (Diffusion equations without geodesic convexity). Let F : [0, +∞)
→ R be a convex, doubling, differentiable functional with superlinear growth sat-
isfying (9.3.8) and let V : Rd → (−∞,+∞] be a l.s.c. potential. which is bounded
from below and locally Lipschitz in the (nonempty) interior Ω of its proper domain
D(V ), with L d(∂Ω) = 0. Even if the related functional

φ(µ) :=
∫

Ω

(
F (ρ) + ρ(x)V (x)

)
dx, µ = ρ ·L d, (11.1.35)

is not λ-geodesically convex in P2(Rd) (since we do not ask for (10.4.21) and
V could not satisfy any λ-convexity property), it is not difficult to check that φ
satisfies the assumptions of Theorem 11.1.6 and

w ∈ ∂�φ(µ) ⇒ LF (ρ) ∈ W 1,1
loc (Ω), ∇LF (ρ) = ρ(w −∇V ). (11.1.36)
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For, taking directional derivatives of φ along smooth transport vector fields t ∈
C∞

c (Ω; Rd) as in Section 10.4.1 (see also Lemma 10.4.4), we easily find that any
strong subdifferential wn ∈ ∂φ(µn) satisfies (11.1.36) and the same argument of
Proposition 10.4.14 shows that this relation holds for the limit w ∈ ∂�φ(µ).

Therefore, for every µ0 = ρ0L d ∈ D(φ) there exists a solution µt = ρtL d of
the equation{

∂tρt +∇ · (ρtvt) = 0 in D ′(Rd × (0,+∞)),

− ρtvt = ∇LF (ρt) + ρt∇V in Ω, for L 1-a.e. t > 0.
(11.1.37)

satisfying the initial condition ρt → ρ0 as t ↓ 0 weakly in L1(Rd) and having
(locally) finite energy∫ T

0

∫
Ω

|vt(x)|2 dµt(x) dt =
∫ T

0

∫
Ω

|∇LF (ρt) + ρt∇V |2
ρt

dx dt < +∞. (11.1.38)

Notice that, even if Ω is bounded, the first equation of (11.1.37) is still imposed
in Rd (in the distribution sense), and therefore it provides a weak formulation of
the Neumann boundary condition

∂n(LF (ρt) + ρtV ) = 0 on ∂Ω× (0,+∞). (11.1.39)

The main difference with the results we are going to show in the case of λ-
geodesically convex functionals is that we do not know if a solution of (11.1.38),
(11.1.39) is indeed a gradient flow in the variational sense or the differential sense.

Example 11.1.10 (The Quantum drift-diffusion equation as gradient flow of the
Fisher information). Let us consider the Fisher information functional (relative
to the Lebesgue measure), introduced in 10.4.16

I (µ) = I (µ|L d) :=
∫

Rd

|∇ρ(x)|2
ρ(x)

dx = 4
∫

Rd

∣∣∇√
ρ(x)

∣∣2 dx

if µ = ρ ·L d with
√

ρ ∈ W 1,2(Rd), +∞ otherwise.
(11.1.40)

It is an integral functional as in (11.1.7) corresponding to the (non smooth) La-
grangian

F (x, z, p) :=
|p|2
z

, with
δI (ρ)

δρ
= −4

∆
√

ρ√
ρ

= −4
√

ρ∆
√

ρ

ρ
. (11.1.41)

It is not known if I enjoys some λ-convexity or regularity property, but it is still
possible to prove [75] that if w ∈ L2(µ; Rd), µ = ρ ·L d ∈ P2(Rd), then

w ∈ ∂�I (µ) =⇒
⎧⎨⎩
√

ρ ∈ W 2,2(Rd),
√

ρ∆
√

ρ ∈ W 1,1(Rd),

ρw = −4
(
∇(√

ρ ∆
√

ρ
)− 2∇√ρ ∆

√
ρ
)
,

(11.1.42)
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which is an indirect way to write as in (10.2.1)

w = ∇
(
− 4

∆
√

ρ√
ρ

)
= ∇

(δI (ρ)
δρ

)
.

Thanks to (11.1.42) and to Corollary 11.1.8, for every µ0 = ρ0L d ∈ D(I ) there
exists a solution µt = ρtL d of the Quantum drift-diffusion equation

∂tρt + 4∇ ·
(
ρt∇

∆
√

ρt√
ρt

)
= 0 in Rd × (0,+∞) (11.1.43)

in the sense of (11.1.34) and (11.1.42), and satisfying the initial condition ρt → ρ0

as t ↓ 0 weakly in L1(Rd).
We refer to [24, 86] for a different approach to the above equation, and to [32, 87,
75] for further investigations and results.

Proof of Theorem 11.1.6. For the sake of simplicity, here we present the proof of
Corollary 11.1.8 for a nonnegative functional φ. The estimates for the general case
can be obtained as in Lemma 3.2.2 by means of the discrete Gronwall Lemma
3.2.4, whereas the relaxed inclusion (11.1.33) will follow from Lemma 12.2.2 in the
Appendix.
Step 1: a priori estimates. We easily have

τ

2

(W2(Mn
τ , Mn−1

τ )
τ

)2

+ φ(Mn
τ ) ≤ φ(Mn−1

τ ), (11.1.44)

which yields

φ(Mn
τ ) ≤ φ(M0

τ ) ∀n ∈ N,
+∞∑
n=1

τ

2

(W2(Mn
τ , Mn−1

τ )
τ

)2

≤ φ(M0
τ ); (11.1.45)

in terms of M τ it means that

sup
t≥0

φ(Mτ (t)) ≤ φ(M0
τ ) ∀ τ > 0. (11.1.46)

From the last inequality of (11.1.45) we get for 0 ≤ m ≤ n

W2(Mn
τ , Mm

τ ) ≤ τ
n∑

k=m+1

W2(Mk
τ , Mk−1

τ )
τ

≤
(

τ
n∑

k=1

W 2
2 (Mk

τ , Mk−1
τ )

τ

2
)1/2 (

(m− n)τ
)1/2

≤
(
2φ(M0

τ )
)1/2(

(m− n)τ
)1/2

. (11.1.47)
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Step 2: compactness and limit trajectory µt. (11.1.47) and (11.1.22) show that in
each bounded interval (0, T ) the values {M τ (t)}τ>0 are bounded in P2(X), thus
belong to a fixed compact set for the narrow topology of P(X�).

By connecting every pair of consecutive discrete values Mn−1
τ , Mn

τ with a con-
stant speed geodesic parametrized in the interval [tn−1

τ , tnτ ], we obtain by (11.1.47)
a family of Lipschitz curves M̂τ satisfying

W2(M̂τ (t), M̂τ (s)) ≤ C(t− s)1/2,

W2(M̂τ (t), Mτ (t)) ≤ C
√

τ ∀ t, s ∈ [0, T ],
(11.1.48)

where C is a constant independent of τ . Since the curves M̂τ are uniformly equicon-
tinuous w.r.t. the 2-Wasserstein distance, which induces a stronger convergence
than the narrow one of P(X�), Ascoli-Arzelà Theorem yields the relative com-
pactness of the family {M̂τh

}h∈N in C0([0, T ]; P(X�)) for each bounded interval
[0, T ]; we can therefore extract a vanishing subsequence (still denoted by τh) such
that statement (i) holds.
Step 3: space-time measures and construction of v. Recall that tn

τ is the optimal
transport map pushing Mn

τ to Mn−1
τ , and that the discrete velocity vector V n

τ is
defined by (i− tn

τ )/τ . Let us introduce the discrete rescaled optimal plans

γn
τ := (i× V n

τ )#Mn
τ (11.1.49)

and the piecewise constant interpolants

γτ (t) := γn
τ , tτ (t) := tn

τ if t ∈ ((n− 1)τ, nτ ]. (11.1.50)

For every bounded time interval IT := (0, T ], denoting by XT := X × IT , we
can canonically identify T−1Mτ , T−1µ to elements of P(XT ) and T−1γτ to an
element in P(XT × X), simply by integrating with respect to the (normalized)
Lebesgue measure T−1L 1 in IT . Therefore Vτ is a vector field in L2(M τ ;X) and
γτ is related to M τ by

γτ = (iT × Vτ )#Mτ , iT (x, t) := x being the projection of XT onto X .
(11.1.51)

Then (11.1.45) yields∫ T

0

∫
X

|Vτ (x, t)|2 d
(
M τ (t)

)
(x) dt =

∫
XT

|Vτ (x, t)|2 dM τ (x, t)

=
∫

XT ×X

|x2|2 dγτ ≤ 2φ(M0
τ ).

(11.1.52)

Hence, by Lemma 5.1.12(e), the family γτ is tight w.r.t. the narrow convergence
of P(X� × IT ×X�). Denoting by γ the narrow limit (up to the extraction of a
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further subsequence, not relabeled) of γτh
in P(X� × IT ×X�), passing to the

limit as h →∞ in the identity π1,2
# γτh

= M τh
we obtain

π1,2
# γ = µ. (11.1.53)

Therefore, we define

v(x, t) :=
∫

X

x2γx1,t(x2) (11.1.54)

where γx1,t is the disintegration of γ w.r.t. µ. Then, Theorem 5.4.4 and (11.1.52)
give∫

XT

|v(x, t)|2 dµ(x, t) ≤ lim inf
h→∞

∫
XT

|Vτh
(x, t)|2 dM τh

(x, t) ≤ 2φ(µ0). (11.1.55)

Step 4: the limits µ, v satisfy the continuity equation (11.1.32).
The following argument was introduced, in a simpler setting, in [83]. Let us first
observe that for every smooth cylindrical function ψ ∈ Cyl(X) we have∫

X

ψ(x) d
(
Mτ (t)

)
(x)−

∫
X

ψ(x) d
(
Mτ (t− τ )

)
(x)

=
∫

X

(
ψ(x)− ψ(tτ (x, t))

)
d
(
M τ (t)

)
(x)

=
∫

X

〈∇ψ(x), x− tτ (x, t)〉 d(M τ (t)
)
(x) + ε(τ, ψ, t)

= τ

∫
X×X

〈∇ψ(x1), x2〉 d
(
γτ (t)

)
(x1, x2) + ε(τ, ψ, t),

where, for a suitable constant Cψ depending only on the second derivatives of ψ

|ε(τ, ψ, t)| =
∣∣∣∣∫

X

(
ψ(x)− ψ(tτ (x, t))−∇ψ(x) · (x− tτ (x, t))

)
d
(
Mτ (t)

)
(x)

∣∣∣∣
≤ Cψ

∫
X

|x− tτ (x, t)|2 d
(
Mτ (t)

)
(x)=Cψτ 2

∫
X

∣∣Vτ (x, t)
∣∣2 d

(
Mτ (t)

)
(x).

Choosing now φ ∈ Cyl(XT ), applying the estimate above with ψ(·) = φ(t, ·) and
taking into account (11.1.52), we have

−
∫

XT

∂tφ(x, t) dµ(x, t) = lim
h→∞

−
∫

XT

∂tφ(x, t) dMτh
(x, t) =

= lim
h→∞

−τ−1
h

∫
XT

(
φ(x, t + τh)− φ(x, t)

)
dM τh

(x, t)

= lim
h→∞

∫
XT ×X

〈∇φ(x1, t), x2〉 dγτh
(x1, t, x2) + τ−1

h

∫ T

0

ε(τh, φ(t, ·), t) dt

=
∫

XT ×X

〈∇φ(x1, t), x2〉 dγ(x1, t, x2) =
∫

XT

〈∇φ(x1, t),v(x1, t)〉dµ(x1, t).
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Step 5: the limits µ, v satisfy the relaxed equation −vt ∈ ∂�φ(µt). By (11.1.55)
and Fatou’s Lemma, there exists a Borel set I0 ⊂ (0, T ) with L 1

(
(0, T ) \ I0

)
= 0

such that
lim inf
h→∞

∫
X

∣∣Vτh
(x, t)

∣∣2 d
(
Mτh

(t)
)
(x) < +∞ ∀ t ∈ I0.

Since −Vτh
(t, ·) is a strong subdifferential for every h ∈ N, t > 0, the definition of

limiting differential and the compactness Theorem 5.4.4 show that for any t ∈ I0

µt belongs to the domain of the limiting subdifferential; since ∂�φ(µt) contains at
most one vector, there exists a unique vector −ṽ(t) ∈ ∂�φ(µ(t)) for any t ∈ I0. We
have to show that ṽ(t) = v(t) L 1-a.e. in (0, T ).

The basic point here is that if t ∈ I0, ε > 0, ζ ∈ Cyl(X), and e ∈ X , then

lim inf
h→∞

∫
X

(
ζ(x)〈e, Vτh

(x, t)〉+ ε|Vτh
(x, t)|2

)
d
(
Mτh

(t)
)
(x)

≥
∫

X

ζ(x)〈e, ṽ(x, t)〉dµt(x).
(11.1.56)

For, if the left hand side is finite, by extracting a further subsequence we can
assume thanks to Theorem 5.4.4 that Vτh

(t, ·) is weakly converging in the sense
of Definition 5.4.3 and its limit is ṽ(t, ·), since this vector is the unique element of
∂�φ(µt).

Integrating (11.1.56) in time, against a test function η ∈ C∞
0 (0, T ) with

values in [0, 1], and choosing e among the vectors {ej}j∈N of an orthonormal basis
of X we have

lim inf
n→∞

∫ T

0

η(t)
(∫

X

ζ(x)〈ej , V τh
〉 d(M τh

(t)
)
(x)

)
dt + 2εφ(µ0)

≥ lim inf
n→∞

∫ T

0

η(t)
(∫

X

ζ(x)〈ej ,V τh
〉+ ε|V τh

|2d(M τh
(t)

)
(x)

)
dt

≥
∫ T

0

η(t)
(

lim inf
h→∞

∫
X

ζ(x)〈ej ,V τh
〉+ ε|V τh

|2d(M τh
(t)

)
(x)

)
dt

≥
∫ T

0

η(t)
(∫

X

ζ(x)〈ej , ṽ〉 dµt(x)
)

dt =
∫

XT

η(t)ζ(x)〈ej , ṽ〉 dµ.

On the other hand, the narrow convergence of γτh
to γ, Lemma 5.1.7 and the

definition of v yield

lim
h→∞

∫
XT

η(t)ζ(x)〈ej ,V τh
〉 dM τh

(x, t) = lim
h→∞

∫
XT ×X

η(t)ζ(x1)〈ej , x2〉 dγτh

=
∫

XT ×X

η(t)ζ(x1)〈ej , x2〉 dγ =
∫

XT

η(t)ζ(x)〈ej ,v〉 dµ(x, t).

Letting ε ↓ 0 and changing ζ with −ζ we eventually get∫
XT

η(t)ζ(x)〈ej , v〉 dµ =
∫

XT

η(t)ζ(x)〈ej , ṽ〉 dµ,
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Since η, ζ and j are arbitrary this proves that v = ṽ. �

11.2 Gradient flows in P2(X) for λ-convex functionals

along generalized geodesics

In this section we are considering the case of a

proper, l.s.c. and coercive functional φ : P2(X) → (−∞,∞],
which is λ-convex along generalized geodesics,

(11.2.1)

according to Definition 9.2.4; as usual, X is a separable Hilbert space. Thus we
are assuming that for every choice of µ1, µ2, µ3 ∈ D(φ) there exists a 3-plan
µ ∈ Γ(µ1, µ2, µ3) such that⎧⎪⎨⎪⎩

π1,2
# µ ∈ Γo(µ1, µ2), π1,3

# µ ∈ Γo(µ1, µ3),

φ(µ2→3
t ) ≤ (1− t)φ(µ2) + tφ(µ3)− λ

2
t(1− t)

∫
X3
|x2 − x3|2 dµ,

(11.2.1a)

where µ2→3
t is the interpolation between µ2 and µ3 induced by µ. By Lemma 2.4.8,

for λ-convex functionals the coercivity assumption can equivalently formulated as

∃ r∗ > 0 : inf
{
φ(µ) : µ ∈ P2(X),

∫
X

|x|2 dµ(x) ≤ r∗
}

> −∞. (11.2.1b)

We already observed in Lemma 9.2.7 that (11.2.1a,b) entails the main convexity
assumption 4.0.1 of Chapter 4, whereas (4.0.1) corresponds to (11.2.1). By The-
orem 4.1.2 the above conditions imply (11.1.13a,b), which are also the minimal
assumptions we adopted to develop the subdifferential theory of Chapter 10.

The following theorem reproduces in the Wasserstein setting the metric re-
sults of Chapters 2 and 4.

Theorem 11.2.1 (Existence and main properties of gradient flows). Let us suppose
that φ : P2(X) → (−∞,+∞] satisfies (11.2.1) and let µ0 ∈ D(φ).

Convergence. The discrete solution Mτ of (11.1.24) converges locally uniformly
to a locally Lipschitz curve µ := S[µ0] in P2(X) which is the unique gradient
flow of φ with µ(0+) = µ0.

λ-contractive semigroup. The map t �→ S[µ0](t) is a λ-contracting semigroup on
D(φ), i.e.

W2(S[µ0](t), S[ν0](t)) ≤ e−λtW2(µ0, ν0). (11.2.2)
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Regularizing effect. µt ∈ D(∂φ) ⊂ D(φ) for every t > 0 and the map t �→
eλt|∂φ|(µt) is non increasing. For λ ≥ 0 it satisfies the regularization es-
timates

φ(µt) ≤ 1
2t

W 2
2 (µ0, ν) + φ(ν) ∀ ν ∈ D(φ),

|∂φ|2(µt) ≤ |∂φ|2(ν) +
1
t2

W 2
2 (µ0, ν) ∀ ν ∈ D(|∂φ|).

(11.2.3)

Steepest descent and Evolution variational inequalities. µ = S[µ0] is a curve of
maximal slope, it satisfies the system of evolution variational inequalities
(11.1.20), and the energy identity∫ b

a

∫
X

|vt(x)|2 dµt(x) dt + φ(µb) = φ(µa) ∀ 0 ≤ a < b < +∞. (11.2.4)

Asymptotic behaviour. If λ > 0 then φ admits a unique minimum point µ and

W2(µ(t), µ) ≤ W2(µ(t0), µ)e−λ(t−t0),

φ(µ(t))− φ(µ) ≤
(
φ(µ(t0))− φ(µ)

)
e−2λ(t−t0)

|∂φ|(µ(t)) ≤ |∂φ|(µ(t0))e−λ(t−t0).

(11.2.5)

If λ = 0 and µ is a minimum point of φ then we have

|∂φ|(µ(t)) ≤ W2(µ0, µ)
t

, φ(µ(t))− φ(µ) ≤ W 2
2 (µ0, µ)

2t
,

the map t �→ W2(µ(t), µ) is not increasing.
(11.2.6)

Right limits and precise pointwise formulation of the equation. For every t, h >
0 and µ̂t,h ∈ Γo(µt, µt+h) the right limit

µt,0 := lim
h↓0

(
π1,

π1 − π2

h

)
#

µ̂t,h exists in P2(X ×X) (11.2.7)

and satisfies
µt,0 = ∂◦φ(µt) ∀ t > 0, (11.2.8)

d

dt+
φ(µ(t)) = −

∫
X2
|x2|2 dµt,0 = −|∂φ|2(µ(t)) = −|µ′|2(t) ∀ t > 0.

(11.2.9)
Moreover, (11.2.7), (11.2.8), and (11.2.9) hold at t = 0 iff µ0 ∈ D(∂φ) =
D(|∂φ|).

Optimal error estimate. If λ ≥ 0 and µ0 ∈ D(φ), for every t = kτ ∈ Pτ we have

W 2
2 (µ(t),Mτ (t)) ≤ τ

(
φ(µ0)− φτ (µ0)

) ≤ τ2

2
|∂φ|2(µ0). (11.2.10)
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Stability. Suppose that φh, φ are λ-convex functionals along generalized geodesics
and satisfy the assumption of Lemma!10.3.16, and let µh, µ : (0,+∞) →
P2(X) be the corresponding gradient flows satisfying the initial Cauchy con-
ditions lim

t↓0
µh(t) = µh,0, lim

t↓0
µ(t) = µ0 in P2(X). If

µh,0 → µ0 in P2(X) as h →∞, sup
h∈N

φh(µh,0) < +∞ (11.2.11)

then µh(t) converge to µ(t) in P2(X), locally uniformly in [0,+∞).

Proof. We already observed that we can apply Theorem 4.0.4; the convergence of
the variational scheme, the λ-contraction property of the induced semigroup, the
regularizing estimates (11.1.47), the formulation by evolution variational inequal-
ities (11.1.20), and the optimal error estimates (11.2.10) follow directly from that
statement.

Theorem 11.1.4 shows that the limit curve µ satisfies the gradient flow equa-
tion (11.1.3) and it is therefore a curve of maximal slope, by Theorem 11.1.3.

The energy identity (11.2.4) is then a direct consequence of the metric The-
orem 2.3.3 or of the Chain Rule 10.3.18.

Theorem 2.4.15 shows that the map t �→ eλt|∂φ|(µ(t)) is not increasing; this
proves the third formula of (11.2.5). The first one is a simple consequence of
(11.2.2), since a minimum point provides a constant solution to the gradient flow
equation. The second formula in (11.2.5) follows from Theorem 2.4.14, whereas
(11.2.6) corresponds to Corollary 4.0.6.

Let us consider now the right limit properties (11.2.7), (11.2.8), and (11.2.9).
We already know that ∂φ(µ(t)) is not empty for t > 0: we set γt = ∂◦φ(µ(t));
Theorem 2.4.15 and Theorem 10.3.11 yield

− d

dt+
φ(µ(t)) =

∫
X2
|x2|2 dγt = lim

h↓0
1
h2

∫
X2
|x2 − x1|2 dµ̂t,h. (11.2.12)

As in Proposition 10.3.18 we consider 3-plans γt,h such that

(π1,2)#γ̂t,h = γt, (π1,3)#γ̂t,h = µ̂t,h,

and we define γt,h :=
(
π1, π2, h−1(π1 − π3)

)
#

γ̂t,h; arguing as in (10.3.44) we get

d

dt+
φ(µ(t)) ≥ lim sup

h↓0
−

∫
X3
〈x2, x3〉 dγt,h,

while (11.2.12) gives

− d

dt+
φ(µ(t)) =

∫
X3
|x2|2 dγt,h = lim

h↓0

∫
X3
|x3|2 dγt,h.
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Combining these inequalities we get

lim sup
h↓0

∫
X3
|x2 − x3|2 dγt,h

≤ lim sup
h↓0

(∫
X3
|x2|2 dγt,h − 2

∫
X3
〈x2, x3〉 dγt,h +

∫
X3
|x2|2 dγt,h

)
= 0,

which shows that

π1,3
# γt,h =

(
π1, h−1(π1 − π2)

)
#

µ̂t,h → γt in P2(X ×X) as h ↓ 0. (11.2.13)

(11.2.9) then follows from (11.2.12).
Finally, we are proving the last stability property in a fixed time interval

[0, T ]. If Mh,τ is the piecewise constant discrete solution of the gradient flow of
φh associated to a fixed time step τ > 0, Lemma 10.3.17, the uniqueness of the
minimizers Mn

τ given by Lemma 4.1.1, and a simple induction argument show that

Mh,τ (t) → M τ (t) in P2(X) uniformly in [0, T ], ∀τ ∈ (0, 1/λ−) (11.2.14)

for the discrete solution Mτ (t) relative to φ. On the other hand, the optimal a
priori error estimates and the bound on the initial energy show that

sup
t∈[0,T ]

W2(Mh,τ (t), µh(t)) ≤ C
√

τ , sup
t∈[0,T ]

W2(Mτ (t), µ(t)) ≤ C
√

τ

for a constant C independent of τ . The triangle inequality then proves the uniform
convergence of µh to µ in [0, T ]. �

11.2.1 Applications to Evolution PDE’s

Here we illustrate some Evolution PDE’s arising from the examples of λ-convex
functionals given in Chapter 9, whose (minimal) subdifferential has been computed
in Chapter 10.

Example 11.2.2 (The linear transport equation for λ-convex potentials). Let V :
X → (−∞, +∞] be a proper, l.s.c. and λ-convex potential. We are looking for
curves t �→ µt ∈ P2(X) which solve the evolution equation

∂

∂t
µt +∇ · (µtvt) = 0, with −vt(x) ∈ ∂V (x) for µt-a.e. x ∈ X , (11.2.15)

which is the gradient flow in P2(X) of the potential energy functional discussed
in Example 9.3.1:

V(µ) :=
∫

X

V (x) dµ(x). (11.2.16)
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If V is differentiable, (11.2.15) can also be written as

∂

∂t
µt(x) = ∇ · (µt(x)∇V (x)) in the distribution sense. (11.2.17)

In the statement of the following theorem we denote by T the λ-contractive semi-
group on D(V ) ⊂ X induced by the differential inclusion

d

dt
Tt(x) ∈ −∂V (Tt(x)), T0(x) = x ∀x ∈ D(V ). (11.2.18)

Recall also that, according to Brezis theorem, d
dtTt(x) equals −∂◦V (Tt(x)) for

L 1-a.e. t > 0.

Theorem 11.2.3. For every µ0 ∈ P2(X) with suppµ0 ⊂ D(V ) there exists a unique
solution (µt, v) of (11.2.15) satisfying

lim
t↓0

µt = µ0,

∫
X

|vt(x)|2 dµt(x) ∈ L1
loc(0, +∞), (11.2.19)

and this solution satisfies all the properties stated in Theorem 11.2.1. In particular,
for every t > 0 we have the representation formulas µt = (Tt)#µ0 and

vt(x) = −∂◦V (x) for µt-a.e. x ∈ X. (11.2.20)

Proof. Proposition 9.3.2 shows that the functional V satisfies (11.2.1). In order
to show that µ0 ∈ D(V) we observe that, being supp µ0 ⊂ D(V ), we can find a
sequence (νh) ⊂ D(V) of convex combination of Dirac masses

νn :=
Kn∑
k=1

αn,kδxn,k
, αn,k ≥ 0,

Kn∑
k=1

αn,k = 1, xn,k ∈ D(V ), (11.2.21)

such that νn → µ0 in P2(X).
Therefore, we can apply Theorem 11.2.1 and the subdifferential characteri-

zation in Proposition 10.4.2 to get (11.2.15) and more precisely (11.2.20).
It is then immediate to check directly that if we choose µ0 = νn then

νn,t :=
Kn∑
k=1

αn,kδTt(xn,k) = (Tt)#νn (11.2.22)

solves (11.2.15) (see also Section 8.1, where the connection between characteristics
and solutions of the continuity equation is studied in detail), whereas (11.2.19)
follows by the energy identity∫ b

a

|∂◦V (Tt(x))|2 dt + φ(Tb(x)) = φ(Ta(x)) ∀x ∈ D(V ).

We thus have µt = νn,t = (Tt)#µ0 for every initial datum which is a convex
combination of Dirac masses in D(V ). A standard approximation argument via
(11.2.2) yields the representation formula µt = (Tt)#µ0 for every admissible initial
measure µ0. �
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Example 11.2.4 (Nonlinear diffusion equations). Let us consider a convex differen-
tiable function F : [0,+∞) → R which satisfies (10.4.15) with p = 2, (10.4.21) and
(10.4.23): F is the density of the internal energy functional F defined in (10.4.14).

Setting LF (z) := zF ′(z) − F (z), we are looking for nonnegative solution of
the evolution equation

∂

∂t
ρt −∆(LF (ρt)) = 0 in Rd × (0, +∞), (11.2.23)

satisfying the (normalized) mass conservation

ρt ∈ L1(Rd),
∫

Rd

ρt(x) dx = 1 ∀ t > 0, (11.2.24)

the finiteness of the quadratic moment

sup
t∈(0,T )

∫
Rd

|x|2ρt(x) dx < +∞ ∀T > 0, (11.2.25)

the integrability condition LF (ρ) ∈ L1
loc(R

d × (0, +∞)), and the initial Cauchy
condition

lim
t↓0

ρt ·L d = µ0 in P2(Rd). (11.2.26)

Therefore (11.2.23) has the usual distributional meaning∫ +∞

0

∫
Rd

(
− ρt(x)

∂

∂t
ζ(x, t) + LF (ρt(x))∆ζ(x, t)

)
dx dt = 0

for any ζ ∈ D(Rd × (0, +∞)).

Theorem 11.2.5. Suppose that either F has a superlinear growth or F satisfies
(10.4.34). Then for every µ0 ∈ P2(Rd) there exists a unique solution

ρ ∈ AC2
loc((0,+∞); P2(Rd))

of the above equation among those satisfying

LF (ρ) ∈ L1
loc((0, +∞);W 1,1

loc (Rd)),
∫

Rd

|∇LF (ρ)|2
ρ

dx ∈ L1
loc(0,+∞). (11.2.27)

It is the unique gradient flow in P2(Rd) of the (relaxed) functional F∗ defined in
(10.4.17), which is convex along generalized geodesics. In particular it satisfies all
the properties of Theorem 11.2.1 for λ = 0.

Proof. The proof is a simple combination of Theorem 11.2.1 and of the results of
Section 10.4.3 for the functional F∗, noticing that the domain of F is dense in
P2(Rd).
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Observe that, even if F has a sublinear growth and µ0 is not regular (e.g.
a Dirac mass), the regularizing effect of the Wasserstein semigroup and Theo-
rem 10.4.8 show that, because of (10.4.34), µt := S[µ0](t) is absolutely continuous
w.r.t. the Lebesgue measure L d for all t > 0: its density ρt w.r.t. L d is therefore
well defined and provides a solution of (11.2.23) in the above precised meaning. �
Remark 11.2.6. Equation (11.2.23) is a very classical problem: it has been studied
by many authors from different points of view, which is impossibile to recall in
detail here.
We only mention that in the case of homogeneous Dirichlet boundary conditions
in a bounded domain, H. Brézis showed that the equation is the gradient flow
(see [28]) of the convex functional (since LF is monotone)

ψ(ρ) :=
∫

Rd

GF (ρ) dx, where GF (ρ) :=
∫ ρ

0

LF (r) dr,

in the space H−1(Ω). We refer to the paper of Otto [107] for a detailed comparison
of the two notions of solutions and for a physical justification of the interest of the
Wasserstein approach. Notice that here we allow for more general initial data (an
arbitrary probability measure), whereas in the H−1 formulation Dirac masses are
not allowed (but see [110, 40]).

Example 11.2.7 (Drift diffusion equations with non local terms). Let us consider,
as in [37, 38], a functional φ which is the sum of internal, potential and interaction
energy:

φ(µ) :=
∫

Rd

F (ρ) dx +
∫

Rd

V dµ +
1
2

∫
Rd×Rd

W dµ× µ if µ = ρL d.

Here F, V, W satisfy the assumptions considered in Section 10.4.7; as usual we set
φ(µ) = +∞ if µ ∈ P2(Rd) \Pr

2 (Rd). The gradient flow of φ in P2(Rd) leads to
the equation

∂tρt −∇ ·
(
∇LF (ρt) + ρt∇V + ρt(∇W ) � ρt

)
= 0, (11.2.28)

coupled with conditions (11.2.24), (11.2.25), (11.2.26).

Theorem 11.2.8. For every µ0 ∈ P2(Rd) there exists a unique distributional so-
lution µt = ρtL d of (11.2.28) among those satisfying ρtL d → µ0 as t ↓ 0,
LF (ρt) ∈ L1

loc((0,+∞);W 1,1
loc (Rd)), and∥∥∥∥∇LF (ρt)

ρt
+∇V +

(∇W � ρt

)∥∥∥∥
L2(µt;Rd)

∈ L2
loc(0, +∞). (11.2.29)

Furthermore, this solution is the gradient flow in P2(Rd) of the functional φ and
therefore satisfies all the properties stated in Theorem 11.2.1.
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Proof. The existence of ρt follows by Theorem 11.2.1 and by the characterization,
given in Section 10.4.7, of the (minimal) subdifferential of φ. The same character-
ization proves that any ρt as in the statement of the theorem is a gradient flow;
therefore the uniqueness Theorem 11.1.4 can be applied. �

When F, V = 0 we find a model equation for the evolution of granular flows
(see e.g. [34]); when W = 0 and F is the entropy functional, we find the Fokker–
Planck equation with an arbitrary λ-convex potential: it is interesting to compare
our result with [26, 48]. Notice that we can also consider evolution equations in
convex (bounded or unbounded) domains Ω ⊂ Rd with homogeneous Neumann
boundary conditions, simply by setting V (x) ≡ +∞ for x ∈ Rd \ Ω.

Example 11.2.9 (Gradient flow of −W 2/2 and geodesics). For a fixed reference
measure σ ∈ P2(X), X being a separable Hilbert space, let us now consider the
functional φ(µ) := −1

2W 2
2 (µ, σ), as in Theorem 10.4.12. Being φ (−1)-convex along

generalized geodesics, we can apply Theorem 11.2.1 to show that φ generates an
evolution semigroup on P2(X).

When Γo(σ, µ0) contains a plan γ such that(
π1, π1 + T (π2 − π1)

)
#

γ is optimal for some T > 1, (11.2.30)

then the semigroup moves µ0 along the geodesics induced by γ. Lemma 7.2.1 shows
that in this case γ admits the representation γ = (r × i)#µ0 for some transport
map r and γ is the unique element of Γo(σ, µ0).

Theorem 11.2.10. Let be given two measures σ, µ0 ∈ P2(X) and suppose that
γ ∈ Γo(σ, µ0) satisfies (11.2.30), i.e. the constant speed geodesic

γ(s) :=
(
(1− s)π1 + sπ2

)
#

γ

can be extended to an interval [0, T ], with T > 1. Then the formula

t → µ(t) := γ(et), for 0 ≤ t ≤ log(T ), (11.2.31)

gives the gradient flow of µ �→ −1
2
W 2

2 (µ, σ) starting from µ0.

Proof. Lemma 7.2.1 shows that
(
(1− et)π1 + etπ2, π1

)
#

γ is the unique optimal
plan in Γo(µ(t), σ); therefore

W 2
2 (µ(t), µ(t)) = |et − et|2W 2

2 (µ0, σ), W 2
2 (µ(t), σ) = e2tW 2

2 (µ0, σ), (11.2.32)

so that
d

dt
φ(µ(t)) = −e2tW 2

2 (µ0, σ) = −|µ′|2(t). (11.2.33)

On the other hand, the characterization of |∂φ| given in (10.4.52) gives

|∂φ|2(µ(t)) = e2tW 2
2 (µ0, σ).

This shows that µ(t) is a curve of maximal slope; combining Theorem 11.1.3 with
the uniqueness Theorem 11.1.4, we conclude. �
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Example 11.2.11 (Fokker–Planck equation in infinite dimension). Let X be a sep-
arable Hilbert space and let γ be a reference probability measure which satisfies
the log-concavity assumption (9.4.19). The relative entropy functional defined as
in (9.4.1)

φ(µ) := H(µ|γ) (11.2.34)

is then convex along generalized geodesics, according to Theorem 9.4.11; since
it is nonnegative and l.s.c. in P2(X), its gradient flow generates a contraction
semigroup on D(φ), which satisfies all the properties stated in Theorem 11.2.1.

Is is not difficult to check that

D(φ) =
{

µ ∈ P2(X) : supp µ ⊂ supp γ
}
. (11.2.35)

For, D(φ) contains all the measures of the type

µx0,ρ :=
1

γ(Bρ(x0))
χBρ(x0) · γ with x0 ∈ supp γ, ρ > 0,

and their convex combinations, so that∑
i

αiδxi
∈ D(φ) if xi ∈ supp γ, αi ≥ 0,

∑
i

αi = 1.

Then, Remark 5.1.2 shows (11.2.35).
Let us now consider the particular case of a Gaussian measure γ induced

by a bounded, positive definite, symmetric operator Q of trace class, which was
considered in Section 10.4.4. Keeping the same notation, from the characterization
given in that section of the minimal subdifferential of the relative entropy in terms
of the Fisher information functional we obtain the following result (we refer to [49]
and to the references therein for a more detailed analysis of this kind of equations).

Theorem 11.2.12. For every µ0 ∈ P2(X) there exists a unique solution µt = ρt ·γ,
t > 0, of the equation

∂tµt −∇ · (γ∇ρt

)
= 0, lim

t↓0
µt = µ0, (11.2.36)

in the distributional sense according to (8.3.8), among those satisfying the local
integrability of the Fisher information∫

X

|∇ρt|2
ρt

dγ ∈ L1
loc(0,+∞). (11.2.37)

Here
∇ρt = ρt

(∇ρt

ρt

)
= ρt∂

◦φ(µ)

is defined in terms of the “logarithmic gradient” of µ according to Definition
10.4.16. µt is the gradient flow of the Relative Entropy functional (11.2.34) and
satisfies all the properties stated in Theorem 11.2.1.
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11.3 Gradient flows in Pp(X) for regular functionals

In this section we are considering the case of a

proper, coercive (2.1.2b), and l.s.c. functional φ : Pp(X) → (−∞, +∞],
(11.3.1)

which will satisfy a suitable regularity assumption like in Definition 10.3.9.
Our main examples will still concern λ-geodesically convex functionals: the

main difference with respect to the previous section is thus provided by the Wasser-
stein distance in Pp(X), p �= 2, which does not exhibit a sufficiently nice behaviour
along generalized geodesics. Thus, even if the functionals would be convex along
these more general interpolating curves, the abstract machinery of Chapter 4 could
not be applied.

Here we refer instead to the metric theory developed in Chapter 2; that more
general convergence proof uses the identity between curves of maximal slopes and
gradient flows, we established in Theorem 11.1.3. The crucial assumptions of that
approach result from a combination of the lower semicontinuity of the metric slope
|∂φ|(·) and the local compactness of the sublevels of φ. It follows that the choice
of the right topology becomes crucial.

For m ∈ (0, +∞) let us denote by Σm the sets

Σm :=
{

µ ∈ Pp(X) : φ(µ) ≤ m,

∫
X

|x|p dµ(x) ≤ m
}
. (11.3.2)

The sets Σm are bounded in Pp(X) and therefore relatively compact in P(X�),
by Lemma 5.1.12(e): we are assuming that

Assumption 11.3.1 (Weak lower semicontinuity). φ and |∂φ| are lower semicontin-
uous on Σm w.r.t. the narrow convergence of P(X�). Moreover, if µn, µ ∈ Σm,
µn → µ in P(X�) and supn |∂φ|(µn) < +∞, then φ(µn) → φ(µ).

Observe that Assumption 11.3.1 is surely satisfied if

φ is a regular functional according to Definition 10.3.9
and Σm are compact in Pp(X).

(11.3.3)

In particular, the assumption is satisfied if

φ is a λ-convex functional and Σm are compact in Pp(X), (11.3.4)

due to the fact that for λ-convex functionals |∂φ| is always lower semicontinuous
w.r.t. the narrow convergence of P(X).

When φ is λ-convex but Σm are not compact, then one has to check directly
on the particular form of |∂φ| the lower semicontinuity property with respect to
the narrow convergence in P(X�).
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Theorem 11.3.2 (Existence of gradient flows). Let φ : Pp(X) → (−∞,+∞] be
a proper and l.s.c. functional satisfying Assumption 11.3.1. For every initial da-
tum µ0 ∈ D(φ) each sequence of discrete solutions M̄τk

of the variational scheme
admits a (not relabeled) subsequence such that:

(i) Mτk
(t) narrowly converges in P(X�) to µt locally uniformly in [0,+∞),

with µ ∈ ACp
loc([0,+∞); Pp(X)).

(ii) µ is a solution of the gradient flow equation

jp(vt) = −∂◦φ(µt), ‖vt‖Lp(µt;X) = |µ′|(t), for L 1-a.e. t > 0, (11.3.5)

with µt → µ0 as t ↓ 0, where vt is the tangent vector to the curve µt.

(iii) The energy inequality∫ b

a

∫
X

|vt(x)|p dµt(x) dt + φ(µb) ≤ φ(µa), (11.3.6)

holds for every b ∈ [0,+∞) and a ∈ [0, b) \ N , N being a L 1-negligible
subset of (0, +∞).

Moreover, if φ is also λ-convex along geodesics, then we have:

Energy identity.∫ b

a

∫
X

|vt(x)|p dµt(x) dt + φ(µb) = φ(µa) ∀ 0 ≤ a < b < +∞. (11.3.7)

Regularizing effect. µt is locally Lipschitz in (0,+∞) (in [0,+∞) if µ0∈D(|∂φ|)),
µt ∈ D(∂φ) for every t > 0, t �→ eλt|∂φ|(µt) is right continuous, and satisfies
the bounds (2.4.27), (2.4.28).

Right limits and pointwise formulation of the equation. For every t, h > 0 and
µ̂t,h ∈ Γo(µt, µt+h) the right limit

µt,0 := lim
h↓0

(
π1, jp

(π1 − π2

h

))
#

µ̂t,h exists in Ppq(X ×X) (11.3.8)

and it satisfies
µt,0 = ∂◦φ(µt) (11.3.9)

and

d

dt+
φ(µt) = −

∫
X2
|x2|q dµt,0 = −|∂φ|q(µt) = −|µ′|p(t) (11.3.10)

for any t > 0. Finally, (11.3.8), (11.3.9), and (11.3.10) hold at t = 0 iff
µ0 ∈ D(∂φ) = D(|∂φ|).
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Proof. The first part of the statement is a simple transposition of Theorem 2.3.1:
σ is the topology of narrow convergence in P(X�).

The second part follows from Theorems 2.3.3, 2.4.12, and 2.4.15; the finer
pointwise properties can be proved by the same argument of Theorem 11.2.1. �

Example 11.3.3. Let us consider a functional φ which is the sum of internal, po-
tential and interaction energy

φ(µ) :=
∫

Rd

F (ρ) dx +
∫

Rd

V dµ +
1
2

∫
Rd×Rd

W dµ× µ if µ = ρL d,

where F, V, W satisfy the assumptions considered in Section 10.4.7; as usual we
set φ(µ) = +∞ if µ ∈ Pp(Rd) \Pr

p(Rd). The gradient flow of φ in Pp(Rd) leads
to the equation

∂tρ−∇ ·
(
ρjq

(∇LF (ρ)
ρ

+∇V + (∇W ) � ρ
))

= 0, (11.3.11)

coupled with conditions analogous to (11.2.24), (11.2.25), (11.2.26) for arbitrary
p ∈ (1,+∞). Arguing as in the proof of Theorem 11.2.8, but replacing 2 by a
general exponent p ∈ (1,+∞), we obtain the following existence result.

Theorem 11.3.4. For every µ0 ∈ D(φ) ⊂ Pp(Rd) there exists a distributional
solution µt = ρtL d of (11.3.11) with LF (ρt) ∈ L1

loc((0,+∞); W 1,1
loc (Rd)), ρtL d →

µ0 as t ↓ 0 and∥∥∥∥∇LF (ρt)
ρt

+∇V + (∇W ) � ρt

∥∥∥∥
Lq(µt;X)

∈ L∞
loc(0,+∞). (11.3.12)

Moreover, t �→ φ(µt) satisfies the energy identity and all the other properties stated
in Theorem 11.3.2.
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Appendix

12.1 Carathéodory and normal integrands

In this section we recall some standard facts about integrands depending on two
variables, measurable w.r.t. the first one, and more regular w.r.t. the second one.

Definition 12.1.1 (Carathéodory and normal integrands). Let X1, X2 be Polish
spaces, let µ ∈ P(X1) and let L be the Σ-algebra of µ-measurable subsets of X1.
We say that a L×B(X2)-measurable function f : X1×X2 → R is a Carathéodory
integrand if x2 �→ f(x1, x2) is continuous for µ-a.e. x1 ∈ X1.
We say that a L ×B(X2)-measurable function f : X1×X2 → [0, +∞] is a normal
integrand if x2 �→ f(x1, x2) is lower semicontinuous for µ-a.e. x1 ∈ X1.

In order to check that a given function f is a Carathéodory integrand the
following remark will often be useful.

Remark 12.1.2. Suppose that a function f : X1 ×X2 → R satisfies

x2 �→ f(x1, x2) is continuous for µ-a.e. x1 ∈ X1,

x1 �→ f(x1, x2) is L -measurable for each x2 ∈ X2.
(12.1.1)

Then f is a Carathéodory integrand. Indeed we can approximate f by the L ×
B(X2)-measurable functions

fε(x1, x2) :=
∑

i

fε(x1, yi)χV ε
i
(x2),

where {V ε
i } is a partition of X2 into (at most) countably many Borel sets with

diameter less than ε and yi ∈ V ε
i . By the first condition in (12.1.1) the functions

fε pointwise converge to u out of a set N × X2 with µ(N) = 0. Therefore f is
L ×B(X2)-measurable.
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For the proof of the following theorem, we refer to [23, Thm. 1, Cor. 1, Thm.
2((d) ⇒ (a))].

Theorem 12.1.3 (Scorza–Dragoni). Let X1, X2 be Polish spaces and let µ∈P(X1);
if f is defined in X1 ×X2 with values in R (resp. in [0,+∞]) is a Carathéodory
(resp. normal) integrand, then for every ε > 0 there exists a continuous (resp.
l.s.c. and bounded above by f) function fε such that

µ ({x1 ∈ X1 : f(x1, x2) �= fε(x1, x2) for some x2 ∈ X2}) ≤ ε. (12.1.2)

12.2 Weak convergence of plans and disintegrations

In this section we examine more closely the relation between narrow convergence
and disintegration for families of plans γn ∈ P(X1 ×X2) whose first marginal is
independent of n.

In the sequel we assume that X1 and X2 are Polish spaces, and µ1 ∈ P(X1).
We start by stating natural continuity and lower semicontinuity properties with
respect to narrow convergence of Carathéodory and normal integrands.

Theorem 12.2.1. Let γn ∈ P(X1 ×X2) narrowly converging to γ and such that
π1

#γn = µ1. Then for every normal integrand f we have

lim inf
n→∞

∫
X1×X2

f(x1, x2) dγn(x1, x2) ≥
∫

X1×X2

f(x1, x2) dγ(x1, x2), (12.2.1)

and for every bounded Carathéodory integrand we have

lim
n→∞

∫
X1×X2

f(x1, x2) dγn(x1, x2) =
∫

X1×X2

f(x1, x2) dγ(x1, x2). (12.2.2)

Proof. We simply apply Lemma 5.1.10 and the Scorza–Dragoni approximation
theorem of the previous section. �

If γn narrowly converge to γ in P(X1×X2) and π1
#γn is independent of n,

the following result provides a finer description of the limit γ.

Lemma 12.2.2. Let X1, X2 be Polish spaces and let γn ∈ P(X1 ×X2) narrowly
converging to γ and such that π1

#γn = µ1 is independent of n. If {γn
x1
}x1∈X1 ,

{γx1}x1∈X1 are the disintegrations of γn, γ w.r.t. µ1 and Gx1 ⊂ P(X2) is the
subset of all the narrow accumulation points of (γn

x1
)n∈N, then we have

γx1 ⊂ conv Gx1 for µ1-a.e. x1 ∈ X1. (12.2.3)

In particular

supp γx1 ⊂
⋃

γ∈Gx1

supp γ for µ1-a.e. x1 ∈ X1. (12.2.4)
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Proof. Taking into account Remark 5.1.5 we can find a function ϕ : X2 → [0,+∞]
with compact sublevels, such that∫

X1×X2

ϕ(x2) dγ(x1, x2) ≤ sup
n∈N

∫
X1×X2

ϕ(x2) dγn(x1, x2) = S < +∞. (12.2.5)

In particular, for any open set A ⊂ X1 and any continuous and bounded function
f : X2 → R we have∫

A×X2

f(x2) dγ(x1, x2) + εS ≥ lim
n→+∞

∫
A×X2

(
f(x2) + εϕ(x2)

)
dγn(x1, x2)

≥
∫

A

(
inf
ε>0

lim inf
n→∞

∫
X2

(
f(x2) + εϕ(x2)

)
dγn

x1
(x2)

)
dµ1(x1)

(12.2.6)
Passing to the limit as ε ↓ 0 and observing that A is arbitrary, we get∫

X2

f(x2) dγx1(x2) ≥ inf
ε>0

lim inf
n→∞

∫
X2

(
f(x2) + εϕ(x2)

)
dγn

x1
(x2) for µ-a.e. x1

and it is not difficult to show using Prokhorov theorem that

lim inf
n→∞

∫
X2

(
f(x2) + εϕ(x2)

)
dγn

x1
(x2) ≥ inf

γ∈Gx1

∫
X2

f(x2) dγ(x2) (12.2.7)

and ∫
X2

f(x2) dγx1(x2) ≥ inf
γ∈Gx1

∫
X2

f(x2) dγ(x2) (12.2.8)

for µ1-a.e. x1 ∈ X1. Choosing f in a countable set C0 satisfying (5.1.2a,b) we can
find a µ1-negligible subset N ⊂ X1 such that (12.2.8) holds for each f ∈ C and
x1 ∈ X1 \ N . In fact the approximation property (5.1.2a,b) shows that (12.2.8)
holds for each function f ∈ C0

b (X2) and therefore Hahn–Banach theorem yields
γx1 ∈ conv Gx1 for x1 ∈ X1 \N . �

We conclude this section with an useful convergence result:

Lemma 12.2.3. Let X1 be a Polish space, let X2 be a separable Hilbert space, and
let f : X2 → [0, +∞] be a l.s.c. strictly convex function. Suppose that (γn) ⊂
P(X1 × X2) narrowly converges to γ =

∫
X1

γx1
dµ1(x1), with µ1 = π1

#γ; if the
barycenter of γ γ̄(x1) =

∫
X2

x2 dγx1
(x2) exists and satisfies

lim inf
n→∞

∫
X1×X2

f(x2) dγn(x1, x2) =
∫

X1

f(γ̄x1
) dµ1(x1) ∈ R (12.2.9)

then γ = (i × γ̄)#µ1. The same result holds if π1
#γn = µ1 and f : X1 × X2 →

[0, +∞] is a normal integrand such that f(x1, ·) is strictly convex for µ1-a.e. x1 ∈
X1; in this case the barycenters γ̄n converge to γ̄ in µ1-measure.
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Proof. Equality (12.2.9) yields∫
X1

(∫
X2

f(x2) dγx1
(x2)

)
dµ1(x1) =

∫
X1×X2

f(x2) dγ(x1, x2)

≤ lim inf
n→+∞

∫
X1×X2

f(x2) dγn(x1, x2)

≤
∫

X1

f(γ̄(x1)) dγ1(x1),

so that Jensen inequality yields∫
X2

f(x2) dγx1
(x2) = f(γ̄(x1)) for µ1-a.e. x1 ∈ X1

and the strict convexity of f yields γx1
= δγ̄(x1). The second part of the statement

can be proved in an analogous way. �

12.3 PC metric spaces and their geometric tangent cone

In this section we review some basic general facts about positively curved (in short
PC) spaces in the sense of Aleksandrov [5, 30, 120], and we recall the related
notion of tangent cone; in the last section we will discuss its relationships with the
tangent space we introduced in Section 8.4 for the Wasserstein space P2(X).

Let (S , d) be a metric space; a constant speed geodesic x1→2 : t ∈ [0, T ] �→
xt ∈ S connecting x1 to x2 is a curve satisfying

x0 = x1, xT = x2, d(xt, xs) =
t− s

T
d(x1, x2) ∀ 0 ≤ s ≤ t ≤ T. (12.3.1)

In particular we are dealing with geodesics of minimal length whose metric deriva-
tive |x′|(t) is constant on [0, T ] and equal to T−1d(x1, x2).

We say that S is geodesically complete (or length space) if each couple of
points can be connected by a constant speed geodesic.

Definition 12.3.1 (PC-spaces). A geodesically complete metric space (S , d) is pos-
itively curved (a PC-space) if for every x0 ∈ S and every constant speed geodesic
x1→2 : t ∈ [0, 1] �→ x1→2

t connecting x1 to x2 it holds

d2(x1→2
t , x0) ≥ (1− t)d2(x1, x0) + td2(x2, x0)− t(1− t)d2(x1, x2). (12.3.2)

Observe that in an Hilbert space X (12.3.2) is in fact an identity, since for
x1→2

t = (1− t)x1 + tx2 we have

|x1→2
t − x0|2 = (1− t)|x1 − x0|2 + t|x2 − x0|2 − t(1− t)|x1 − x2|2. (12.3.3)

Therefore condition (12.3.2) can be considered as a sort of comparison property
for triangles: let us exploit this fact.
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Definition 12.3.2 (Triangles). A triangle x in S is a triple x=(x1→2, x2→3, x3→1)
of constant speed geodesics connecting (with obvious notation) three points x1, x2,
x3 in S . We denote by $ = $(x) ⊂ S the image of the curves x1→2, x2→3, x3→1.

To each triangle x in S we can consider a corresponding reference triangle
(unique, up to isometric transformation) x̂ = (x̂1→2, x̂2→3, x̂3→1) in R2 connecting
the points x̂1, x̂2, x̂3 ∈ R2 such that

|x̂i − x̂j | = d(xi, xj) i, j = 1, 2, 3. (12.3.4)

Two points x ∈ $, x̂ ∈ $̂ are correspondent if

x = xi→j
t , x̂ = x̂i→j

t for some t ∈ [0, 1], i, j ∈ {1, 2, 3}.

x1

x2

x3 x̂1

x̂2

x̂3

x1→2x2→3

x3→1

x̂1→2
x̂2→3

x̂3→1

Figure 12.1: on the left the triangle on the PC-space and on the right its euclidean
reference.

Proposition 12.3.3 (Triangle comparison). If S is a PC-space and $ ⊂ S , $̂ ⊂
R2 are two corresponding triangles, then for each couples of correspondent points
x, y ∈ $, x̂, ŷ ∈ $̂ we have

d(x, y) ≥ |x̂− ŷ|. (12.3.5)

Proof. When x or y is a vertex of the triangle, then (12.3.5) is just (12.3.2): thus we
have to examine the case (up to permutation of the indexes) x = x1→2

t , y = x1→3
s ,

t, s ∈ (0, 1). Denoting by x1→t the rescaled geodesic connecting x1 to x = x1→2
t

and by introducing a new geodesic xt→3 connecting x to x3, we can consider
the new triangle x′ = (x1→t, xt→3, x3→1) connecting x1, x, x3. The corresponding
euclidean reference x̂′ can be constructed keeping fixed x̂1 and x̂3 (and therefore
ŷ = x̂1→3

s ) and introducing a new point x̂′, which in general will be different from
x̂, such that |x̂′− x̂1| = d(x, x1), |x̂′− x̂3| = d(x, x3). Applying (12.3.2) we obtain

|x̂′ − x̂3| = d(x, x3) ≥ |x̂− x̂3|
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and applying the identity (12.3.3) we get

|x̂′ − ŷ|2 = (1− s)|x̂′ − x̂1|2 + s|x̂′ − x̂3|2 − s(1− s)|x̂3 − x̂1|2
≥ (1− s)|x̂− x̂1|2 + s|x̂− x̂3|2 − s(1− s)|x̂− x̂1|2 = |x̂− ŷ|2

therefore, applying (12.3.2) again to the triangles x′, x̂′ we obtain

d(x, y) ≥ |x̂′ − ŷ′| = |x̂′ − ŷ| ≥ |x̂− ŷ|. �

In a Hilbert space X the angle ∠(x̂1→2, x̂1→3) ∈ [0, π] between the two
segments joining x̂1 to x̂2 and x̂1 to x̂3 can be easily computed by the formula

cos(∠(x̂1→2, x̂1→3)) =
〈x̂2 − x̂1, x̂3 − x̂1〉
|x̂2 − x̂1| |x̂3 − x̂1| = α(x̂1; x̂2, x̂3), (12.3.6)

where

α(x̂1; x̂2, x̂3) =
|x̂2 − x̂1|2 + |x̂3 − x̂1|2 − |x̂3 − x̂2|2

2|x̂2 − x̂1| |x̂3 − x̂1| . (12.3.7)

In particular, if x̂1→2
t := (1− t)x̂1 + tx̂2 and x̂1→3

s := (1− s)x̂1 + sx̂3, we have

α(x̂1; x̂1→2
t , x̂1→3

s ) = α(x̂1; x̂2, x̂3) ∀ t, s ∈ (0, 1]. (12.3.8)

Taking into account of (12.3.7), in the case of a general PC-space, it is natural to
introduce the function

α(x1; x2, x3) :=
d(x2, x1)2 + d(x3, x1)2 − d(x3, x2)2

2d(x2, x1) d(x3, x1)
, x1 �= x2, x3 (12.3.9)

and we have the following monotonicity result.

Lemma 12.3.4 (Angle between geodesics). Let (S , d) be a PC-space and let x1→2,
x1→3 be constant speed geodesics starting from x1; then the function

t, s ∈ (0, 1] �→ α(x1; x1→2
t , x1→3

s ) is nondecreasing in s, t. (12.3.10)

The angle ∠(x1→2,x1→3) ∈ [0, π] between x1→2 and x1→3 is thus defined by the
formula

cos(∠(x1→2, x1→3)) := inf
s,t

α(x1;x1→2
t , x1→3

s ) = lim
s,t↓0

α(x1; x1→2
t , x1→3

s ).

(12.3.11)

Proof. It is sufficient to prove that α(x1; x2, x3) ≥ α(x1; x1→2
t , x1→3

s ) for s, t ∈
(0, 1]; if x̂ is a corresponding reference triangle with vertexes x̂1, x̂2, x̂3, we easily
have by Proposition 12.3.3 and (12.3.8)

α(x1; x1→2
t , x1→3

s ) ≤ α(x̂1; x̂1→2
t , x̂1→3

s ) = α(x̂1; x̂2, x̂3) = α(x1; x2, x3) �
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Remark 12.3.5. Notice that the separate limit as t ↓ 0 is given by

lim
t↓0

α(x1;x1→2
t , x1→3

s ) = lim
t↓0

t2d2(x1, x2) + d2(x1, x1→3
s )− d2(x1→2

t , x1→3
s )

2ts d(x1, x2) d(x1, x3)

= −(
2sd(x1, x2) d(x1, x3)

)−1 d

dt

(
d2(x1→2

t , x1→3
s )

)
|t=0+

and therefore

cos
(
∠(x1→2, x1→3)

)
= −(

2d(x1, x2) d(x1, x3)
)−1 ∂2

∂s∂t

(
d2(x1→2

t , x1→3
s )

)
|t,s=0+

For a fixed x ∈ S let us denote by G(x) the set of all constant speed geodesics
x starting from x and parametrized in some interval [0, Tx]; recall that the metric
velocity of x is |x′| = d(x(t), x)/t, t ∈ (0, T ]. We set

‖x‖x := |x′|, 〈x,y〉x := ‖x‖x ‖y‖x cos(∠(x,y)),

d2
x(x, y) := ‖x‖2x + ‖y‖2x − 2〈x,y〉x.

(12.3.12)

If x ∈ G(x) and λ > 0 we denote by λx the geodesic

(λx)t := xλt, Tλx = λ−1Tx, (12.3.13)

and we observe that for each x, y ∈ G(x), λ > 0, it holds

‖λx‖x = λ‖x‖x, 〈λx,y〉x = 〈x, λy〉x = λ〈x, y〉x (12.3.14)

Observe that the restriction of a geodesic is still a geodesic; we say that x ∼ y if
there exist ε > 0 such that x|[0,ε]

= y|[0,ε]
.

Theorem 12.3.6 (An abstract notion of Tangent cone). If x, y : [0, T ] → S are
two geodesics starting from x we have

dx(x,y) = lim
t↓0

d(xt, yt)
t

= sup
t∈(0,T ]

d(xt, yt)
t

. (12.3.15)

In particular, the function dx defined by (12.3.12) is a distance on the quotient
space G(x)/ ∼. The completion of G(x)/ ∼ is called the tangent cone TanxS at
the point x.

Proof. (12.3.15) follows by a simple computation since for each s > 0 (12.3.11)
yields

cos
(
∠(x, y)

)
= lim

t↓0
d2(xts, x) + d2(yts, x)− d2(xts,yts)

2d(xts, x)d(yts, x)

=
d2(xs, x) + d2(ys, x)

2d(xs, x)d(ys, x)
− lim

t↓0
d2(xts,yts)

2t2d(xs, x)d(ys, x)
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and therefore from (12.3.12) we have

d2
x(x,y) =

d2(xs, x) + d2(ys, x)
s2

− 2
d(xs, x)d(ys, x)

s2
cos(∠(x,y))

= lim
t↓0

d2(xts,yts)
2t2s2

.
�

Remark 12.3.7 (The tangent cone as Gromov-Hausdorff blow up of pointed
spaces). In the finite dimensional case TanxS can also be characterized as the
Gromov-Hasudorff limit of the sequence of pointed metric spaces (S , x, n · d) as
n →∞. [30, 7.8.1]

12.4 The geometric tangent spaces in P2(X)

Taking into account of the abstract definition of Tangent cone 12.3.6 for PC-
spaces and the fact proved in Section 7.3 that P2(X) is a PC-space, we want an
explicit representation of the abstract tangent space TanµP2(X) induced by the
2-Wasserstein distance.

First of all we want to determine a precise expression for the angle between
two geodesics. Observe that an optimal plan µ ∈ Γo(µ1, µ2) is associated to the
geodesic µ1→2 with µ1→2

t = (π1→2
t )#µ whose velocity is equal to the distance

between the end points |µ′|2 =
∫ |x2 − x1|2 dµ. If we want to represent each

constant speed geodesics, it is convenient to introduce the new “velocity” plans

γλ :=
(
π1, λ(π2 − π1)

)
#

µ, (12.4.1)

that can be used to provide a natural parametrizations for the rescaled geodesic
(λ · µ1→2)t := µ1→2

λt as follows:

µ1→2
λt =

(
(1− λt)π1 + λtπ2

)
#

µ = (π1 + tπ2)#γλ t ∈ [
0, λ−1

]
. (12.4.2)

Therefore we can identify constant speed geodesics parametrized in some interval
[0, λ−1] with transport plans γ of the type

γ =
(
π1, λ(π2 − π1)

)
#

µ for some optimal plan µ ∈ P2(X),

and therefore we set

G(µ) :=
{
γ ∈ P2(X2) :

(
π1, π1 + επ2

)
#

γ is optimal, for some ε > 0
}

. (12.4.3)

It easy to check that there is a one-to-one correspondence between G(µ) and the
quotient G(µ)/ ∼ introduced in the previous section: for, to each plan γ ∈ G(µ)
we associate the (equivalence class of the) geodesic

µt := (π1 + tπ2)#γ, 0 ≤ t ≤ ε, (12.4.4)
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where ε > 0 is chosen as in (12.4.3). Conversely, if µt, t ∈ [0, T ], is a curve such
that µ|[0,ε]

is a (minimal, constant speed) geodesic, then for every λ−1 ∈ (0, ε]
there exists a unique optimal plan µλ ∈ Γo(µ0, µλ−1) such that

µt =
(
π1 + λt(π2 − π1)

)
#

µλ t ∈ [0, λ−1];

by Theorem 7.2.2

0 < λ−1
1 < λ−1

2 ≤ ε =⇒ µλ1
=

(
π1, π1 + λ2/λ1(π2 − π1)

)
#

µλ2
,

so that

γ =
(
π1, λ(π2 − π1)

)
#

µλ is independent of λ, belongs to G(µ), (12.4.5)

and represents µt through (12.4.4).
Motivated by the above discussion, we introduce the following definition:

Definition 12.4.1 (Exponential map in P2(X)). For µ ∈ P(X) and γ ∈ G(µ) we
define

λ · γ :=
(
π1, λπ2

)
#

γ, expµ(γ) :=
(
π1 + π2

)
#

γ. (12.4.6)

The notation is justified by the fact that the curve

t �→ expµ(t · γ) is a constant speed geodesic in some interval [0, ε] (12.4.7)

whenever γ ∈ G(µ).
For γ1 2, γ1 3 ∈ P2(X2) with π1

#γ1 i = µ, i = 2, 3, we set

‖γ1 2‖2µ :=
∫

X2
|x2|2 dγ1 2(x1, x2), (12.4.8)

〈γ1 2, γ1 3〉µ = max
{∫

X3
〈x2, x3〉 dγ : γ ∈ Γ1(γ1 2, γ1 3)

}
, (12.4.9)

W 2
µ(γ1 2, γ1 3) = min

{∫
X3
|x2 − x3|2 dγ : γ ∈ Γ1(γ1 2, γ1 3)

}
, (12.4.10)

where Γ1(γ1 2, γ1 3) is the family of all 3-plans in γ ∈ P(X3) such that π1,2
# γ =

γ1 2 and π1,3
# γ = γ1 3.

Proposition 12.4.2. Suppose that γ1 2, γ1 3 belongs to G(µ) so that they can be
identified with the constant speed geodesics µ1→2, µ1→3 through (12.4.4). Then
the previous definitions coincide with the corresponding quantities introduced in
(12.3.12) for general PC-metric spaces.

Proof. The first identity of (12.4.8) is immediate. In order to prove the second
one we apply Proposition 7.3.6, by taking into account Remark 12.3.5: thus we
have

〈γ1 2, γ1 3〉µ = lim
s↓0

2s−1

∫
X3
〈x2 − x1, x3 − x1〉 dµs,
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where µ1→3
s = expµ(sγ1 3) and µs ∈ Γo(µ1 2, µ1→3

s ) is chosen among the minimiz-
ers of (7.3.15). It is easy to check that we can choose

µs =
(
π1, π1 + π2, π1 + sπ2

)
#

γ,

where γ ∈ Γ1(γ1 2, γ1 3) realizes the maximum in (12.4.9) (or equivalently the
minumum of (12.4.10)) and therefore

lim
s↓0

s−1

∫
X3
〈x2 − x1, x3 − x1〉 dµs = lim

s↓0
s−1

∫
X3
〈x2, x1 + sx3 − x1〉 dγ

=
∫

X3
〈x2, x3〉 dγ.

The last formula of (12.4.8) follows now directly by the definition (12.3.12). �
If either γ1 2 or γ1 3 are induced by a transport map t, e.g. γ1 2 =

(
i× t

)
#

µ,
then the previous formulae are considerably simpler, since

‖γ1 2‖2µ :=
∫

X2
|t(x1)|2 dµ(x1) = ‖t‖2L2(µ;X), (12.4.11)

〈γ1 2,γ1 3〉µ =
∫

X2
〈t(x1), x3〉 dγ1 3(x1, x3), (12.4.12)

W 2
µ(γ1,2, γ1 3) =

∫
X2
|t(x1)− x3|2 dγ1 3(x1, x3). (12.4.13)

Finally, if also γ1 3 =
(
i× s

)
#

µ, then (12.4.12) and (12.4.13) become

〈γ1 2,γ1 3〉µ =
∫

X

〈t(x1), s(x1)〉 dµ(x1) = (t, s)L2(µ;X), (12.4.14)

W 2
µ(γ1,2,γ1 3) =

∫
X

|t(x1)− s(x1)|2 dµ(x1) = ‖t− s‖2L2(µ;X). (12.4.15)

These results lead to the following definition.

Definition 12.4.3 (Geometric tangent cone). The geometric tangent cone
TanµP2(X) to P2(X) at µ is the closure of G(µ) in P2(X2) with respect to the
distance Wµ(·, ·).

In Section 8.4 we already introduced a notion of tangent space TanµP2(X)
and we showed in Theorem 8.5.1 its equivalent characterization in terms of optimal
transport maps

TanµP2(X) =
{
λ(r − i) : (i× r)#µ ∈ Γo(µ, r#µ), λ > 0

}L2(µ;X)
. (12.4.16)

In order to compare these two notions, let us recall the Definition 5.4.2 of barycen-
tric projection γ̄ of a plan γ ∈ P2(X2) with π1

#γ = µ:

t := γ̄ ⇔ t(x1) =
∫

X

x2 dγx1
(x2), t ∈ L2(µ;X), (12.4.17)
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which is a nonexpansive map from TanµP2(X) to L2(µ;X). Indeed choosing
γ ∈ Γ1(γ1,γ2) and denoting by γ1

x1
and γ2

x1
the disintegrations of γ1 and γ2

w.r.t. µ we have∫
X

|γ̄1 − γ̄2|2 dµ =
∫

X

∣∣∣∣∫
X2

(x2 − x3) dγx1

∣∣∣∣2 dµ ≤
∫

X3
|x2 − x3|2 dγ,

so that
‖γ̄1 − γ̄2‖L2(µ;X) ≤ Wµ(γ1, γ2). (12.4.18)

We have the following result:

Theorem 12.4.4. For every µ ∈ P2(X) the reduced tangent space is the image
of TanµP2(X) through the barycentric projection. Moreover, if µ ∈ Pr

2 (X),
then the barycentric projection is an isometric one-to-one correpondence between
TanµP2(X) and TanµP2(X).

Proof. Let us first prove that γ̄ ∈ TanµP2(X) for any γ ∈ TanµP2(X). By the
continuity of the barycentric projection and the identity (π1, π1 + επ2)#γ = i+εγ̄,
it suffices to show that (µ̄− i) ∈ TanµP2(X) for any optimal plan µ whose first
marginal is µ. We know that supp µ is contained in the graph of the subdifferential
of a convex and l.s.c. function ψ : X → (−∞,+∞], i.e.

y ∈ ∂ψ(x) for any (x, y) ∈ supp γ.

Since ∂ψ(x) is a closed convex subset of X for every x ∈ D(∂ψ), we obtain that
µ̄(x) =

∫
X

y dµx1
(y) ∈ ∂−ψ(x) for µ-a.e. x; therefore µ̄ is an optimal transport

map and (µ̄− i) ∈ TanµP2(X).
In order to show that the barycentric projection is onto it suffices to prove

that the map I : TanµP2(X) �→ P(X ×X) defined by I(v) := (i× v)#µ takes
its values in TanµP2(X) and to notice that it satisfies I(v) = v. Since the unique
plan in Γ1 (I(v), I(v′)) is (i× v × v′)#µ, we have

W 2
µ (I(v), I(v′)) =

∫
X

|v − v′|2 dµ,

so that our thesis follows if I(v) ∈ G(µ) for every v in the dense subset of
TanµP2(X) introduced in (12.4.16): this last property follows trivially by the
definition of G(µ) (12.4.3). Finally in the case when µ is regular all optimal trans-
port plans in G(µ) are induced by transports: therefore I is onto and it is the
inverse of the barycentric projection. �

Remark 12.4.5 (The exponential map and its inverse). Observe that the exponen-
tial map is a contraction since

W2(expµ(µ), expµ(σ)) ≤ Wµ(µ,σ), (12.4.19)
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but in general, it is not injective, even if it is restricted to the tangent space.
Nevertheless it admits a natural (multivalued) right inverse defined by

exp−1
µ (ν) :=

{
µ ∈ G(µ) :

(
π1, π1 + π2

)
#

µ ∈ Γo(µ, ν)
}
. (12.4.20)

We conclude this section with an explicit representation of the distance Wµ

defined by (12.4.10).

Proposition 12.4.6. Let γ1 2, γ1 3 be two plans in P2(X2) with the same first
marginal µ. Then γ ∈ Γ1(γ1 2, γ1 3) realizes the minimum in (12.4.8) if and only
if its disintegration w.r.t. µ satisfies

γx1
∈ Γo(γ1 2

x1
, γ1 3

x1
) for µ-a.e. x1 ∈ X. (12.4.21)

Moreover
W 2

µ(γ1 2, γ1 3) =
∫

X

W 2
2 (γ1 2

x1
, γ1 3

x1
) dµ(x1). (12.4.22)

Proof. For any γ ∈ Γ1(γ1 2, γ1 3) we clearly have∫
X3
|x2 − x3|2 dγ =

∫
X

∫
X2
|x2 − x3|2 dγx1

dµ(x1) ≥
∫

X

W 2
2 (µ1, 2

x1
, µ1, 3

x1
) dµ(x1).

Equality and the necessary and sufficient condition for optimality follows imme-
diately by Lemma 5.3.2 and by the next measurable selection result. �

Lemma 12.4.7. Suppose that (µ2
x1

)x1∈X1 , (µ
3
x1

)x1∈X1 are Borel families of measures
in Pp(X) defined in a Polish space X1.

The map
x1 �→ W p

p (µ2
x1

, µ3
x1

) is Borel (12.4.23)

and there exists a Borel family γx1
∈ Pp(X ×X) such that γx1

∈ Γo(µ2
x1

, µ3
x1

).

Proof. We show first that x �→ σx is a Borel map between X1 and Pp(X) whenever
x �→ σx is Borel in the sense used in Section 5.3. Indeed by assumption x �→ σx(A)
is a Borel map for any open set A ⊂ X and since∫

X

f dσx =
∫ ∞

0

σx({f > t}) dt−
∫ 0

−∞
σx({f < t}) dt

and the integral can be approximated by Riemann sums, we have also that x �→∫
X

f dσx is Borel for any f ∈ C0
b (X).

Let δ be the distance inducing the narrow convergence on P(X) introduced
in (5.1.6). It follows that x �→ δ(σx, σ) is Borel for any σ ∈ P(X). By (7.1.12) it
follows that the distance W̃ defined by

W̃ p(µ, σ) := δp(µ, σ) +
∣∣∣∣∫ |x|p dµ−

∫
|x|p dσ

∣∣∣∣
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induces the p-Wasserstein topology on Pp(X); we deduce that x �→ W̃ (σx, σ) is
Borel for any σ ∈ Pp(X), therefore x �→ σx is Borel, seen as a function with values
in Pp(X).

In order to prove the second part of the statement, let us observe that the
multivalued map µ2, µ3 ∈ Pp(X) �→ Γo(µ2, µ3) ⊂ Pp(X×X) is upper semicontin-
uous thanks to Proposition 7.1.3. In particular for each open set G ⊂ Pp(X ×X)
the set {

(µ2, µ3) : Γo(µ2, µ3) ∩G �= ∅

}
is open in Pp(X)×Pp(X). Therefore classical measurable selection theorems (see
for instance Theorem III.23 in [39]) give the thesis. �
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