
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

GDSL: A Generic Decoder Specification
Language for Interpreting Machine Language

Alexander Sepp, Julian Kranz and Axel Simon1;2

Technische Universität München
85748 Garching, Germany

Abstract

The analysis of executable code requires the reconstruction of instructions from a sequence of
bytes (or words) and a specification of their semantics. Most front-ends addressing this problem
only support a single architecture, are bound to a specific programming language, or are hard to
maintain. In this work, we present a domain specific language (DSL) called GDSL (Generic Decoder
Specification Language) for specifying maintainable instruction decoders and the translation of
instructions to a semantics. We motivate its design by illustrating its use for the Intel x86 platform.
A compiler is presented that generates C code that rivals hand-crafted decoder implementations.

Keywords: executable analysis, binary analysis, instruction decoder, program semantics

1 Introduction

The analysis of executable code has become a recent focus in program anal-
ysis in order to address the analysis of malware, closed-source software and
to tackle compiler-induced bugs. The reconstruction of assembler instructions
from an input (byte) sequence that comprise the program is the first step
towards these analyses. The second step is to map each statement to a mean-
ing which may be a value-, timing- or energy semantics, etc., depending on
the goal of the analysis. Both aspects are commonly addressed by writing
an architecture-specific decoder and a translator to some internal representa-
tion expressed in the implementation language of the analysis. The goal of
our work is to build an infrastructure to specify decoders and translations to

1 This work was supported by the DFG Emmy Noether programme SI 1579/1.
2 Email: firstname.lastname@in.tum.de

c2012 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Sepp

Opcode Instruction Description

00 /r ADD r/m8,r8 Add r8 to r/m8.
28 /r SUB r/m8,r8 Subtract r8 from r/m8.

Fig. 1. Two typical instructions in the Intel x86 manual.

semantics using a domain specific language (DSL) that can be compiled into
the programming language of existing analysis tools. To this end, we present
GDSL and motivate its design by the task of specifying decoders for Intel x86.

The incentive for creating a DSL to specify decoder and semantics of as-
sembler instructions was a discussion at a Dagstuhl seminar on the analysis of
executable code. Here, it was realized that many research groups implemented
prototypes analyses using an architecture specific decoder and a hand-written
semantic interpretation. Besides duplication of work, these approaches are
usually incomplete, are bound to one architecture and are hard to maintain
since their representation of instructions is geared towards a specific project.
In the presence of steadily increasing instruction sets and the need to adapt an
analysis to new targets such as virtual machines contained in malware, main-
tainability and simplicity of decoder specifications is of increasing importance.

To this end, it is desirable to group instructions logically or, when convert-
ing a manufacturer’s manual, in alphabetical order; we call this mnemonic-
centric specification. For the sake of efficiency, however, a decoder must make
a decision based on the next value from the input sequence (opcode-centric
dispatch) which precludes testing opcode patterns one after the other. While a
classic scanner generator like lex can convert a mnemonic-centric specification
to an opcode-centric decoder, it allows and encourages overlapping patterns.
Consider the following lex scanner specification:

while|do|switch|case { printf("keyword %s",yytext); }
[a-zA-Z][a-zA-Z0 -9]* { printf("ident %s",yytext); }

Here the patterns for the keywords and the identifier are overlapping: the
input while matches both rules. In this case, lex uses the rule that appears
first in the specification file. Thus, a keyword is returned. Overlapping pat-
terns are desirable in a scanner specification since they improve readability
and conciseness. In an instruction decoder, however, overlapping patterns are
undesirable since the sequence in which the rules are written starts to mat-
ter which, in turn, precludes a mnemonic-centric specification. Hence, a DSL
for maintainable decoder specifications must provide a concise way of writing
non-overlapping patterns to exactly match an instruction.

Another challenge is the processing of non-constant bits of an instruction
that are used to specify parameters. Since parameter bits often follow re-

2

Sepp

occurring patterns, an abstraction mechanism is required to keep the specifi-
cation concise. For example, the mod/rm-byte in Intel x86 instructions follows
many opcodes and determines which register to use. Figure 1 shows an excerpt
of the Intel manual where the first column shows the two bytes that together
form an instruction. The second byte /r is the mod/rm-byte that determines
which 8-bit registers r8 and which pointer r/m8 stand for. Within our decoder
specification language, we define functions r/m8 3 and r8 to generate the ar-
guments of an instruction. The content of the mod/rm-byte are read by a
sub-decoder named /r that stores the read byte in the internal decoder state.
This sub-decoder can be re-used in the decoder for ADD and SUB:
val main [0x00 /r] = binop ADD r/m8 r8
val main [0x28 /r] = binop SUB r/m8 r8

Here, the decoder main is declared as reading 0x00 (resp. 0x28) from the
input before running the sub-decoder /r. The binop function is a simple
wrapper that executes functions r/m8 and r8 (which access the values stored
by /r) and applies the results to the passed-in constructor (here ADD and SUB).
By using sub-decoders such as /r that communicate via the internal state, our
main decoder comes very close to the specification in Fig. 1 of the Intel manual.

Since our DSL is an ML-like functional language, it is powerful enough to
describe all parts of a decoder, even r/m8 and r8 that are often hand-coded
primitives in other decoder frameworks. This comprehensive approach enables
users to add instructions that have not been anticipated in the original design
of /r. In summary, GDSL improves over existing approaches as follows:
� Its abstraction mechanisms enable the definition of instruction decoders
that are very close to the syntax used in manufacturer’s manuals, thereby
ensuring maintainability even by the end users of the decoder framework.

� Our specification is type checked during compilation and overlapping pat-
terns are detected. This ensures high fidelity of the resulting decoder, espe-
cially in the presence of mistakes in the manufacturer’s manuals.

� The DSL is flexible enough to accommodate a variety of architectures. Due
to its general nature, it is possible to add translations from native instruc-
tions to some abstract semantics, which will enable binary analysis tools to
analyse code for any architecture that is described with our framework.

� We provide a prototype compiler that generates C code which is competitive
with other decoders. The specifications can be translated to other languages
or used for other purposes (e.g. test generation) by writing a new backend.

After the next section presents the design of GDSL, Sect. 3 illustrates its
expressiveness by detailing the decoding of Intel prefixes. Section 4 presents
an evaluation of our implementation before Sect. 5 presents related work.

3 We allow / as part of an identifier to accommodate the Intel nomenclature.

3

Sepp

Decl ::= granularity = num
�
lsbfirst

�
(1)

j export id� (2)
j datatype t-id = con

�
of Type

� �
| con

�
of Type

��
� (3)

j type t-id = Type (4)
j val id id� = Expr (5)
j val id [TokPat�] = Expr (6)
j val id [TokPat�]

�
| Expr = Expr

�+ (7)
Type ::= int j[num] j t-id (8)

j { field : Type
�
, field : Type

�
�} (9)

TokPat ::= hex-num j id j ’ BitPat� ’ (10)
BitPat ::= BitStr

�
| BitStr

�
� (11)

j id @ BitStr
�
| BitStr

�
� (12)

j id : num (13)
BitStr ::=

�
0 j 1 j .

�+ (14)
Expr ::= case Expr of Pat : Expr

�
| Pat : Expr

�
� (15)

j if Expr then Expr else Expr (16)
j let

�
val id = Expr

�+ in Expr (17)
j Expr Expr j num j ’ BitStr ’ j id j con (18)
j { field = Expr

�
, field = Expr

�
� } (19)

j $field j @{ field = Expr
�
, field = Expr

�
� } (20)

j do
�
Expr; j id <- Expr;

�
�

Expr end (21)
j update Expr j query Expr j return Expr (22)

Fig. 2. Syntax of the GDSL language.

2 General Language Overview

This section discusses the design of GDSL by illustrating the use of the var-
ious syntactic constructs. The general idea is that the decoder specification
is an executable functional program that consumes the input sequence and
produces a heap containing the abstract syntax tree (AST) that represents
the recognized instruction. After the AST in the heap has been processed, the
heap can be reused for decoding the next instruction, thereby avoiding the
need for a garbage collector or for allocating memory with each instruction.

The grammar of GDSL is shown in Fig. 2. A file consists of a sequence of
definitions given by Decl . The granularity statement can be given once and
defines the size of the tokens that the decoder consumes. A token is measured
in bits and is the smallest granularity that a processor reads from memory.

4

Sepp

1 granularity 8
2 export main
3 datatype instr = ADD of {op1:op, op2:op}
4

5 val binop cons giveOp1 giveOp2 = do
6 operand1 <- giveOp1;
7 operand2 <- giveOp2;
8 return (cons {op1=operand1 , op2=operand2 })
9 end

10

11 val /r [’mod:2 reg:3 rm:3’] =
12 update @{mod=mod , reg/opcode=reg , rm=rm}
13 val /0 [’mod:2 000 rm:3’] =
14 update @{mod=mod , reg/opcode=’000’, rm=rm}
15 val r/m8 = do
16 r <- query $rm;
17 return (case r of ’000’: Reg AL | ’001’: Reg BL)
18 end
19

20 val main [0x80 /0] = binop ADD r/m8 imm8
21 val main [0x00 /r] = binop ADD r/m8 r8
22 val main [0x01 /r] | $opndsz = binop ADD r/m16 r16
23 | $rexw = binop ADD r/m64 r64
24 | otherwise = binop ADD r/m32 r32

Fig. 3. Specification for decoding the Intel ADD instruction.

For Intel x86, the token size is 8 (and each instruction can have between one
and fifteen tokens). For standard ARM instructions, the token size is 32 (and
no instruction is longer than one token). Other processors are in between
these extremes, for instance, MicroChip’s PIC architecture has a token size
of 14. The optional lsbfirst keyword states that bit sequences in decoders
start with the least significant bit, a notation used for e.g. PowerPC.

The export keyword states which of the decoders are publicly visible to
the client code. Line 3 shows the production for algebraic data types that
introduce (or extend) the type t-id with constructors con. As in ML, each
constructor takes zero or one argument, allowing the definition of enumerations
such as datatype register = AX | BX | CX | DX or AST nodes such as
datatype op = Reg of register | Mem of {size : int, reg : op} |
Imm8 of [8]. Here, the argument to the Mem constructor is a record while
Imm8 takes a bit vector of 8 bits, written [8]. Bit vectors and int are the only
basic data types with singleton bit-vectors acting as Booleans. Abbreviations
for complex types can be introduced using the type keyword in line 4.

5

Sepp

Productions 5, 6, and 7 introduce functions, decoders and decoders with
guards, respectively. Functions and decoders differ in that functions take
arguments and have exactly one definition whereas decoders read from the
implicit input stream and definitions with the same name augment each other.
Consider the decoder snipped in Fig. 3. Here, binop and r/m8 in lines 5 and
15 are functions taking three and no arguments, respectively. In contrast,
lines 11, 13 and 20 define decoders whose right-hand-side is evaluated if the
token sequence in the square brackets matches the current input. Tokens can
be specified in three ways (Production 10): either as a hexadecimal number
(c.f. the first token of main), as a call to another decoder (c.f. the second token
of main) or as a bit pattern (as used in the /r and /0 decoders). Bit patterns,
in turn, are enclosed in ticks and are given by Productions 11, 12, and 13:
� strings of 0,1,. (c.f. 000 in /0); the dot acts as a wildcard; a set of bit strings
can be specified by separating them using a vertical bar, e.g. 00|01|10

� as above, with a leading variable separated by @; the variable is bound to
the actual bits in the input; for instance, /0 could have been written
val /0 [’mod:2 reg@000 rm:3’] =

update @{mod=mod , reg/opcode=reg , rm=rm}
� a variable with a width in bits; the notation v:3 is syntactic sugar for v@...;
examples are mod, reg and rm in the decoders /r and /0

The semantics of “calling” another decoder within a token sequence is that
the pattern of the called decoder is substituted where it appears and that
its body is prepended to the right-hand-side of the decoder. For instance,
main [0x80 /0] is translated internally as follows:

val main [0x80 ’mod:2 000 rm:3’] = do
update @{mod=mod , reg/opcode=’000’, rm=rm};
binop ADD r/m8 imm8

end

After this translation, the patterns are translated token-by-token into C
case-statements during which overlapping patterns are detected. For token
sizes larger than 8 bits, nested case-statements are generated.

The bodies of functions and decoders are given by the Expr production.
Here, Productions 15; : : : ;18 give the standard constructs found in a functional
language with Expr Expr in line 18 denoting function application. Our lan-
guage allows the creation of compound values using records which are collec-
tions of field names bound to a value. Productions 19 allows the construction
of new records (used in line 8 of Fig. 3). The value of a field foo is extracted
using $foo which itself is a function. Thus, $foo {foo=7} evaluates to 7.
Analogously, @{foo=x} is a function taking a record and setting the field foo
to x. For instance @{bar=’110’} {foo=7} evaluates to {bar=’110’,foo=7}.

6

Sepp

In order to allow for an internal state, each decoder is a monad, a concept
borrowed from the pure functional language Haskell [1]. A monad is an ab-
stract type containing a function from an input state to an output state and
a result. The motivation for monads is to chain together computations that
operate on a state without requiring side-effects in the language. Production
21 details the do-statement which threads together monadic actions whose
result can be bound to an identifier. The result of the do-statement is that
of the last action. Production 22 presents the three monadic actions of our
language: update f applies f to the internal state (and is usually a record
update); query f returns the result of applying f to the internal state (and
is usually a record field selector); and return x that returns x as a result.

Besides query, the internal state can also be accessed using guards: the
first guard of $opndsz, $rexw, and otherwise in line 22 that evaluates to ’1’
determines which right-hand-side is evaluated. Guards are functions taking
the internal state as argument. Thus, opndsz and rexw are record fields in
the internal state and otherwise is a function always returning ’1’.

3 Decoding x86 Prefixes

One challenge in decoding x86 instructions is the correct handling of prefixes:
they either serve to modify the following instruction or they are part of the fol-
lowing opcode (a so-called mandatory prefix). In the latter case, other prefixes
are allowed between the mandatory prefix and the actual opcode. For exam-
ple, both instruction sequences: 67 f3 45 0f 7e d1 and f3 67 45 0f 7e d1
encode movq xmm10,xmm9 where 67 is an ADDRSZ prefix and f3 is a REPNE
prefix, but used here as mandatory prefix to the opcode 0f 7e. Moreover, 45
is another “standard” REX prefix and d1 the mod/rm byte. Confusingly, the
REX prefix must immediately precede the opcode, otherwise it is ignored.

Certain instructions such as mulss, mulsd, and mulpd share the same op-
code, here 0f 59, but have different mandatory prefixes, namely f2, f3, and
66, respectively. As a consequence, the order in which prefixes occur becomes
important. Moreover, while the last occurrence of f2 and f3 determines the
mandatory prefix, an occurrence of 66 is only recognized as mandatory prefix
if f2 and f3 cannot start an instruction. A correct decoder recognizes:

66 f3 f2 0f 59 ff mulsd xmm7,xmm7 Mandatory prefix: 0xf2

66 f2 f3 0f 59 ff mulss xmm7,xmm7 Mandatory prefix: 0xf3

66 0f 59 ff mulpd xmm7,xmm7 Mandatory prefix: 0x66

f2 66 0f 59 ff mulsd xmm7,xmm7 Mandatory prefix: 0xf2

Mandatory prefixes can easily be handled in GDSL by using different de-
coders, depending on the last relevant prefix. We decode prefixes as follows:

7

Sepp

val prefixes [0x66] = p/66
val prefixes [0xf2] = p/f2
val prefixes [0xf3] = p/f3
val prefixes [] = main
val p/66 [0x66] = p/66
val p/66 [0xf2] = p/66/f2
val p/66 [0xf3] = p/66/f3
val p/66 [] = after /66 main
val p/f3 [0x66] = p/66/f3 # f3 dominates 66
val p/f3 [0xf2] = p/f3/f2
val p/f3 [0xf3] = p/f3
val p/f3 [] = after /f3 main
val p/f3/f2 [0x66] = p/66/f3/f2 # f3/f2 dominates 66
val p/f3/f2 [0xf2] = p/f3/f2
val p/f3/f2 [0xf3] = p/f2/f3
val p/f3/f2 [] = after /f2 (after /f3 main)
... # analogous for p/f2 , p/66/f2, p/66/f3, p/f2/f3,

p/66/f3/f2 , p/66/f2/f3
val /66 [] = continue
val /f2 [] = continue
val /f3 [] = continue
val /66 [0x0f 0x59 /r] = binop MULPD xmm xmm/m128
val /f2 [0x0f 0x59 /r] = binop MULSD xmm xmm/m64
val /f3 [0x0f 0x59 /r] = binop MULSS xmm xmm/m32
val main [...] = ...

The entry point that is exported to the user is prefixes. When reading
the sequence f3 f2 0f 59 ff, it dispatches to p/f3 which itself reads f2 and
enters the p/f3/f2. Since the next byte 0f has no match in p/f3/f2, the
expression after /f2 (after /f3 main) is executed. The after function
calls the decoder /f2 and, if it fails, continues with (after /f3 main). The
latter expression runs f3 and, if this decoder fails, runs main. On our example
byte sequence, the /f2 decoder succeeds in consuming the remaining bytes
0f 59 ff and returns the mulsd instruction. By construction of the prefix
decoders, at most four lookups can lead to failure: one prefix decoder, /66,
/f2, /f3. Thus, at most one byte of the sequence is examined more than once.

Observe that after and continue can be defined directly within GDSL:

val after fst snd = do update @{cont=snd}; fst end
val continue = do decoder <- query $cont; decoder end

Here, after stores its argument snd in the decoder state and executes
the decoder fst. The continue function retrieves the stored decoder and
dispatches to it. This completes the design of our prefix decoders.

8

Sepp

Framework Time #Instrs p/f2/f3 p/66/f2/f3 REX

BeaEngine 311ms 672207 � � �
distorm 362ms 671991 � � �
GDSL 1364ms 671991

p p p

IDA Pro / /
p � p

libopcodes 574ms 671991 � � �
metasm 4m21s / � � p

udis86 856ms 673965 � � �
xed2 795ms 671991

p p p

Fig. 4. Evaluation of different disassembler frameworks.

4 Evaluation

We have specified a substantial fraction of the Intel x86 instruction set in
GDSL as well as decoders for smaller architectures like MSP430. In this
section we compare the performance and correctness of the Intel x86 decoder.

4.1 Performance

We compare the performance of our generated code with several existing dis-
assembler projects. Table 4 shows the runtime for a linear sweep disassembly
of a binary consisting of 671991 instructions in the .text segment. The size of
the .text segment was 3032027 bytes. The binary is one of our earlier decoders
and is a statically linked x86_64 executable for Linux. Due to linking libc
statically, it included several SSE and VEX instructions. We used BeaEngine
[2], distorm [3], IDA Pro [4], libopcodes as shipped in a Debian package [5],
metasm [6], udis86 [7], and the xed2 disassembler library that comes with the
pintool [8] package. We ran all tests on an Intel Core i7 on Linux in 64-bit
mode. The discrepancy in the number of decoded instructions for BeaEngine
and udis86 is due to incorrectly decoded instructions which subsequently re-
sults in decoding further incorrect instructions due to different offsets.

We included the metasm package to complete the comparison with a dis-
assembler not written in C. A possible reason for the results of the metasm
package being slower is that it does not only do a linear sweep but also resolves
symbols and does some control-flow analyses using the decoded instructions.
Similarly, we were unable to run a linear-sweep disassembly using IDA Pro.

As can be seen from Table 4, the generated C code of GDSL is between
two to four times slower than that of the hand-written libraries. However,

9

Sepp

decoding is unlikely to be the bottleneck in program analysis so that we deem
the performance acceptable. Moreover, there are many standard compiler
optimizations that can improve (shorten) the generated code considerably
which would help performance. For example, the higher-order nature of GDSL
(partially applied functions may be passed as parameters) requires a process
called closure conversion [9]. After inlining, most functions are first order
and could be called more efficiently [10]. Furthermore, substituting available
expressions would eliminate many redundant calculations on bit-vectors.

4.2 Correctness

Due to the complications of decoding byte sequences that contain prefix bytes,
we compared the various disassemblers for correctness. Table 4 features three
columns, labelled p/f2/f3, p/66/f2/f3, and REX, which test various prefix
combinations as described in Sect. 3: p/f2/f3 states if the order of f2 and f3
is honoured, p/66/f2/f3 states if additionally 66 loses its mandatory prefix
status once f2 or f3 was read, and REX states if this prefix is correctly ignored
if not immediately preceding the opcode. A tick indicates a correct decoder.

According to the Intel manual, adding arbitrary prefixes may result in
unpredictable behavior for certain instructions. We created byte sequences
whose behaviour is unpredictable according to the manual and verified that
an Core i7 processor executes them as if the superfluous prefixes were absent.
While it could be argued that decoding sequences that are marked with un-
predictable behavior is undesirable for program analysis, such sequences are
routinely emitted by the gcc compiler who inserts prefixes in front of nop and
ret instructions for alignment purposes. As an example, consider the following
14-byte padding sequence that occurred in our test binary:

666666662 e0f1f840000000000:
nop WORD PTR cs:[rax+rax *1+0x0]

Here, four 66 prefixes precede a segment override prefix 2e before a nop op-
code f1 f8 follows which takes an elaborate argument. Furthermore, malware
may add spurious prefixes as additional code obfuscation technique. Thus, a
decoder has to recognize more than what the manual recommends.

On the contrary, certain applications, such as the search for gadgets (byte
sequences that form a specific instruction), require that a decoder only rec-
ognizes instructions common to all processors. Our GDSL language can use
guards from barring certain instructions from being recognized. Certain as-
pects, such as the difference between 32-bit and 64-bit mode can be imple-
mented using different prefix decoders (the REX prefix is a normal instruction
in 32-bit mode). We believe that an open-source implementation of a decoder
is likely to converge to a decoder that is correct under all such configurations.

10

Sepp

5 Related Work

Most decoder libraries for the Intel x86 instructions generate or use tables for
mapping opcodes to instructions, however, the decoding of prefixes and argu-
ments is usually hand-coded [5,2,3,6]. One notable exception is SLED [11],
a specification language for encoding and decoding, which is a comprehen-
sive specification language similar to GDSL. SLED specifies mnemonics using
opcode-centric tables, thereby assigning fixed values to mnemonics. Besides
mnemonics, it is possible to define pattern variables that associate names with
sequences of bits. The mnemonics and pattern variables are then used to de-
fine an instruction. The fields of a pattern variables in such a definition can
be specialized using constraints. Since these constraints are rather generic, it
is not clear to which extend they can check if the resulting instruction defini-
tions overlap (i.e. that the intersection of constraints is empty) and, thus, how
often it can be avoided that constraints must be tested in sequence in order
to find a matching pattern. Their approach is similar to regular expression
matching, but without allowing repetition. Since the x86 allows for multiple
and identical prefixes in many, but not arbitrary sequences, certain prefixed
instructions are difficult to specify. In particular, the padding example using a
nop in Sect. 4.2 is difficult to specify using SLED due to the inability to specify
repetition. In fact, to our understanding, the specification given in [11] for x86
would not accept any instruction with superfluous prefixes. Even then, the
ability of SLED to decode and encode instructions requires the specification
to be bi-directional and therefore becomes relatively hard to understand and
to maintain.

Another approach was taken by Fox et al. [12]. In their work they describe
a formal model of the complete ARMv7 instruction set encoded in the HOL4
proof system [13]. The model directly operates on word sequences, as even
the decoding logic is specified in the proof system. Besides mere decoding
logic, a full semantics of the ARMv7 instruction set is also provided whose
fidelity against an ARMv7 implementation was proved. Since the direct use of
the decoder that is written in the HOL4 proof system is difficult, a provably
correct translation to GDSL would be desirable.

Further afield is the specification of semantics for which many intermediate
representations have been suggested [14,15,16]. The expressed goal of GDSL is
to also specify how a processor instruction can be translated to an intermediate
representation that describes its semantics. Using a common framework can
help to make the various intermediate representations comparable and usable
in various analysis frameworks. Recently, Reps et al. have proposed to compile
an abstract transformer for each processor instruction in order to obtain more
a more efficient analysis [17]. Future work will address how a different backend
to our compiler can follow this setup.

11

Sepp

Our implementation of GDSL is available at https://bitbucket.org/
mb0/gdsl. It is written in SML/NJ v110.74 and released under a BSD license.

References

[1] S. Peyton Jones, Haskell 98 Language and Libraries: the Revised Report. Cambridge University
Press, 2003.

[2] “BeaEngine,” http://www.beaengine.org, 2012, version 4.1 rev 172. [Online]. Available:
http://www.beaengine.org

[3] “distorm,” http://www.ragestorm.net/distorm/, 2012, version 3.1. [Online]. Available:
http://www.ragestorm.net/distorm/

[4] Hex-Rays, “IDA Pro Disassembler,” http://www.hex-rays.com/idapro, 2012, version
6.0.101001. [Online]. Available: http://www.hex-rays.com/idapro

[5] “libopcodes,” http://packages.debian.org/testing, 2012, package binutils-dev-2.22-6. [Online].
Available: http://packages.debian.org/testing

[6] “metasm,” http://metasm.cr0.org/, 2012, retrieved on 2012/05/25. [Online]. Available:
http://metasm.cr0.org/

[7] “udis86,” http://udis86.sourceforge.net, 2012, version 1.7. [Online]. Available: http://udis86.
sourceforge.net

[8] “xed2,” http://www.pintool.org, 2012, version 2.11-49306. [Online]. Available: http:
//www.pintool.org

[9] A. W. Appel, Compiling with Continuations. New York, New York, USA: Cambridge
University Press, 1992.

[10] A. Kennedy, “Compiling with Continuations, Continued,” in International Conference on
Functional Programming. New York, New York, USA: ACM, 2007, pp. 177–190.

[11] N. Ramsey and M. F. Fernández, “Specifying Representations of Machine Instructions,”
Transactions of Programming Languages and Systems, vol. 19, no. 3, pp. 492–524, May 1997.

[12] A. Fox and M. O. Myreen, “A Trustworthy Monadic Formalization of the ARMv7 Instruction
Set Architecture,” in International Conference on Interactive Theorem Proving, ser. LNCS.
Springer, 2010, pp. 243–258.

[13] K. Slind and M. Norrish, “A Brief Overview of HOL4,” in International Conference on Theorem
Proving in Higher Order Logics, ser. LNCS. Springer, 2008, pp. 28–32.

[14] C. Cifuentes and S. Sendall, “Specifying the Semantics of Machine Instructions,” in
International Workshop on Program Comprehension, ser. IWPC ’98. Washington, Washington
DC, USA: IEEE Computer Society, 1998.

[15] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent, “The BINCOA
Framework for Binary Code Analysis,” in Computer Aided Verification, ser. LNCS. Springer,
2011, pp. 165–170.

[16] A. Sepp, B. Mihaila, and A. Simon, “Precise Static Analysis of Binaries by Extracting Relational
Information,” in Working Conference on Reverse Engineering, M.Pinzger and D. Poshyvanyk,
Eds. Limerick, Ireland: IEEE Computer Society, Oct. 2011.

[17] J. Lim and T. Reps, “A System for Generating Static Analyzers for Machine Instructions,” in
International Conference on Compiler Construction, ser. LNCS. Springer, 2008, pp. 36–52.

12

https://bitbucket.org/mb0/gdsl
https://bitbucket.org/mb0/gdsl
http://www.beaengine.org
http://www.beaengine.org
http://www.ragestorm.net/distorm/
http://www.ragestorm.net/distorm/
http://www.hex-rays.com/idapro
http://www.hex-rays.com/idapro
http://packages.debian.org/testing
http://packages.debian.org/testing
http://metasm.cr0.org/
http://metasm.cr0.org/
http://udis86.sourceforge.net
http://udis86.sourceforge.net
http://udis86.sourceforge.net
http://www.pintool.org
http://www.pintool.org
http://www.pintool.org

	Introduction
	General Language Overview
	Decoding x86 Prefixes
	Evaluation
	Performance
	Correctness

	Related Work
	References

