Null Values in SQL

John Grant
Department of Mathematics, Towson University
Towson, MD 21252 and
Department of Computer Science, University of Maryland,
College Park, MD 20742

jgrant@towson.edu

ABSTRACT

In various writings over the past 20 years, such as [3],
Date has pointed out that SQL produces incorrect an-
swers to some queries where a null value is included in a
table. In a recent article in the ACM SIGMOD Record,
[8], Rubinson states that ”Date misinterprets the mean-
ing of his example query” and ”SQL returns the correct
answer to the query posed”. The purpose of this article
is to show that, contrary to Rubinson’s claim, Date’s
critique of query evaluation in the presence of null val-
ues in SQL is completely justified.

1. INTRODUCTION

In the past 20 years, in various writings Date pointed
out flaws in the method of query evaluation in SQL in
the presence of null values. The problem is due to the
way that a 3-valued logic is used in SQL to evaluate
such queries. Actually, there are various types of null
values; this article deals only with the type where the
value the null represents exists but is unknown.

In a recent article in the ACM SIGMOD Record, [8],
Rubinson claims that ”Date misinterprets the meaning
of his example query” and ”SQL returns the correct
answer to the query posed”. The purpose of this arti-
cle is to give some historical background to the evalua-
tion of queries in relational databases in the presence of
null values and to refute Rubinson’s claim. The fact is
that Date’s critique is correct and completely justified.
Section 2 reviews Date’s example, as given in [8]. Sec-
tion 3 provides a historical overview of the evaluation
of queries in relational databases involving null values.
Section 4 shows that various generalizations extending
null values also support Date’s critique. The paper ends
in Section 5 with a brief discussion.

SIGMOD Record, September 2008 (Vol. 37, No. 3)

2. DATE’S EXAMPLE

This material is taken directly from [8], copied from
Date’s example in [3], using a slightly different notation.
The example database has 2 tables: Suppliers(sno,city)
and Parts(pno,city). The primary keys are sno and pno
respectively. Each table contains a single row: Supplier
has < S1, London > and Parts has < P1, Null >. Part
P1 has a city whose identity is unknown, hence the null
value. Date’s query in English states ” Get sno-pno pairs
where either the supplier and parts cities are different
or the part city isn’t Paris (or both)”. In SQL this is
written as

Select sno, pno

From Suppliers, Parts

Where Suppliers.city <> Parts.city

Or Parts.city <> ’Paris’;

For this table and query SQL returns the empty table
as the result. However, as Date explains, the correct
answer is the tuple < S1, P1 >. Date considers 3 possi-
bilities for P1’s city: Paris, London, or some other city.
Actually, there are only 2 relevant cases: either P1’s
city is Paris or it is not Paris. In the former case the
Where condition is true because S1’s city is London and
London <> Paris is true. In the latter case the Where
condition is true because Parts.city <> ’Paris’ is
true. No matter what city the unknown Null value rep-
resents, the tuple < S1, P1 > satisfies the query and
should be in the answer. This simple example illus-
trates the flaw in SQL pointed out by Date.

3. HISTORICAL BACKGROUND

In the early 1970s in a series of highly influential papers
E. F. Codd introduced the relational database model in-
cluding the relational calculus, relational algebra, and
relational database normalization. He also had a col-
umn in the predecessor to the ACM SIGMOD Record,
called the FDT Bulletin of ACM-SIGMOD, where he
explained various relational database concepts in a se-
ries of installments.

In [1] he answered a question about handling queries
in the presence of null values in a relational database.
He used the relational calculus language for illustration.
Codd proposed a 3-valued logic with truth values "True’,
"False’, and "Unknown’. When a null value appears in

23



a table, its evaluation in a condition produces the 'Un-
known’ truth value. He gave truth values to complex
conditions by giving truth-tables for the connectives
‘and’, ’or’, and 'not’. For example, 'True or Unknown’
has the truth value 'True’ because a disjunction is true if
one of its disjuncts is true. Codd evaluated "Unknown
or Unknown’ to 'Unknown’. In Date’s example both
Suppliers.city <> Parts.city and Parts.city <>
’Paris’ are evaluated as "Unknown’ for P1’s row; hence
Codd’s method evaluates the combined condition to
"Unknown’.

I recall reading Codd’s article in the summer of 1976
when I was visiting at the University of Pennsylva-
nia. I immediately realized that I have already dealt
with this issue in a different context several years ear-
lier. In [4] using Kleene’s 3-valued logic I showed that
a truth-functional (i.e. the connectives are defined by
truth-tables) 3-valued logic, where the third truth value
stands for unknown”, will not give some formulas the
correct truth value, and proposed a non-truth-functional
3-valued logic that gives all formulas correct truth val-
ues. In the case of null values for a relational database
this means that the 3-valued logic truth tables used by
Codd (the same as in Kleene’s 3-valued logic) do not
always give correct answers to queries. First I wrote
to Dr. Codd explaining the problem and after his re-
ply I wrote a short article [5] pointing out the problem.
In fact I used as my example a Suppliers table and a
condition Suppliers.city = 'Paris’ taken from Date’s pio-
neering textbook [2] (the first edition!). I also proposed
the solution I gave in [4] translated appropriately to
relational database queries: for the correct evaluation
of a query in the presence of a null value, all different
cases must be considered. This is exactly what I did
for Date’s example in the previous section where there
were 2 cases: either the city is Paris or it is not Paris.
When all cases evaluate to 'True’ for a tuple, that tuple
should be in the answer. Incidentally, I also showed in
[5] how to handle the case where the null value stands
for an inapplicable attribute, such as the spouse of a
person who is not married.

In the late 1970s null values were generalized by sev-
eral researchers (including me) to the concept of incom-
plete or partial information (a concept I investigated
in the early 1970s in a logic context). By the early
1980s in his pioneering textbook on database theory,
[7], Maier devoted a whole chapter to this topic. The
first standard for SQL was published several years later,
in 1986, by the American National Standards Institute.
In spite of my work 10 years earlier, Codd’s proposal,
suitable modified from the relational calculus to SQL,
was adopted for standard SQL. After the standard was
established Date began to criticize it for various reasons,
including its handling of null values.

24

4. EXTENSIONS OF RELATIONAL
DATABASES

Database researchers have done a tremendous amount
of work over the past 30 years adding various capabili-
ties to relational databases. Some of these efforts gen-
eralize the concept of null values in various ways. This
section considers two such generalizations: disjunctive
databases and probabilistic databases, considering how
Date’s example would be treated.

A disjunctive database, [6], allows disjunctive facts such
as, for Date’s example,

Pl.city = ’Paris’ or Pl.city = ’London’ or Pl.city =
'New York’. If these are all the allowed cities then the
meaning of the statement is the same as P1.city = Null,
but if there are more cities then the former statement
is stronger because it restricts P1’s city to be one of the
above 3 values. The facts can be written as follows:
Suppliers(sl,london) «—

Parts(pl, paris)VParts(pl,london)V Parts(pl, newyork) «—

The query is written as 2 definitions for the query pred-
icate @) because of the disjunction:

Q(Sno, Pno) «— Suppliers(Sno, Cityl), Parts(Pno, City2),

Cityl # Clity2

Q(Sno, Pno) « Suppliers(Sno, Cityl), Parts(Pno, City2),

City2 # paris
A disjunctive database will then give < s1,pl > as the
answer to the query <« Q(Sno, Pno).

A probabilistic database can be defined as a probability
distribution on the set of instances [9]. In this case the
information about the identity of the null value is prob-
abilistic. Suppose, for instance that in Date’s example
there are 3 possible worlds: all 3 have Supplier(S1,London),
but for Parts, let the probabilities be assigned as follows,
Pr(Parts(P1,London)) = .5, Pr(Parts(P1,Paris)) = .3,
Pr(Parts(P1, New York)) = .2. Consider now Date’s
query. Both the possible answers semantics and the
possible tuples semantics give the value Pr(< S1, P1 >)
= 1. That is, again, < S1, P1 > is in the answer with
probability 1. The same answer is obtained no matter
how many cities there are or how the probabilities are
distributed among the cities for part P1.

5. DISCUSSION

Over many years Date criticized the evaluation of queries
in SQL involving null values. This article explained that
the SQL evaluation of such queries follows a proposal
made by Codd that I showed incorrect (in some cases)
over 30 years ago. The semantics of various extensions
to relational databases proposed by researchers over the
past 30 years agree with the meaning of the example
query as given by Date. Rubinson’s claim that ”Date
is mistaken” is incorrect.

It is appropriate to end this article refuting Rubin-
son’s article by one more quotation that clearly illus-
trates his misunderstanding of the issue: ”Date’s query
cannot properly be translated into SQL because it as-
sumes conventional, two-valued logic while SQL oper-

SIGMOD Record, September 2008 (Vol. 37, No. 3)



ates with three-valued logic.” Of course, Date’s query
can be translated into SQL, just as Date did it (see
Section 2). Rubinson appears to assume that the eval-
uation method used in SQL is intrinsic to the language,
but that is not the case. As I explained in Section 3, the
query evaluation method used in SQL is not intrinsic to
relational databases in general, or SQL in particular; it
is just a choice made by the committee that standard-
ized the language. So the problem is not that SQL uses
three logic values rather than two; the problem is in
the way that SQL uses the three-valued logic in query
evaluation.

6. REFERENCES

[1] E. F. Codd. Understanding relations (installment
#7). FDT Bulletin of ACM-SIGMOD,
7(3-4):23-28, 1975.

[2] C. J. Date. An Introduction to Database Systems.
Addison-Wesley Publishing Co., Reading, MA,
1975.

[3] C. J. Date. An Introduction to Database Systems,
7th Edition. Addison-Wesley Publishing Co.,
Reading, MA, 2000.

[4] J. Grant. A non-truth-functional 3-valued logic.
Mathematics Magazine, 47(4):221-223,
September-October 1974.

[5] J. Grant. Null values in a relational data base.
Information Processing Letters, 6(5):156-157,
October 1977.

[6] J. Lobo, J. Minker, and A. Rajasekar. Foundations
of Disjunctive Logic Programming. The MIT Press,
Cambridge, MA, 1992.

[7] D. Maier. The Theory of Relational Databases.
Computer Science Press, Rockville, MD, 1983.

[8] C. Rubinson. Nulls, three-valued logic, and
ambiguity in sql: Critiquing Date’s critique. ACM
SIGMOD Record, 36(4):13-17, December 2007.

[9] D. Suciu and N. Dalvi. Foundations of probabilistic
answers to queries. In Tutorial at SIGMOD 05,
2005.

http://www.cs.washington.edu/homes/suciu/tutorial-sigmod2005. pdf.

SIGMOD Record, September 2008 (Vol. 37, No. 3)

25





