
Design of an Automatically Generated Retargetable Decompiler

Lukáš Ďurfina, Jakub Křoustek, Petr Zemek, Dušan Kolář, Tomáš Hruška, Karel Masařík, Alexander Meduna
Faculty of Information Technology, Brno University of Technology

Božetěchova 1/2, 612 66 Brno, Czech Republic
{idurfina, ikroustek, izemek, kolar, hruska, masarik, meduna}@fit.vutbr.cz

Abstract: This paper presents a concept of a retargetable reverse compiler (i.e. a decompiler). This tool translates
platform-specific binary applications into a high-level language (HLL) representation. A Python-like language was
chosen as the target language. Our unique solution is automatically generated from the target platform description
in the architecture description language (ADL) ISAC. The decompiler core is build on top of the LLVM Compiler
System. As can be seen from the proof of concept, we are able to automatically generate a decompiler producing
a highly readable HLL code for a Sony R⃝ PlayStation R⃝ Portable (PSP

TM
) platform while preserving the functional

equivalency with the original application.

Key–Words: decompilation, reverse engineering, malware, LLVM, Lissom, ISAC

1 Introduction
We can find several methods of decompilation (e.g.
decompilation of machine code or bytecode) as well
as their usage in reverse-engineering (e.g. source code
reconstruction, binary code migration from a particu-
lar processor architecture to another, malware analy-
sis). The most traditional is machine code decompi-
lation into a HLL code, which represents the topic of
the present paper.

The era of machine code decompilers was es-
tablished more than 50 years ago. From this pe-
riod, various kinds of decompilers have been created.
They used to differ in supported architectures or in
the format of input executables. The best known
decompilers of this time are the dcc decompiler [1]
from C. Cifuentes, the open source Boomerang de-
compiler [2], the REC Decompiler [3], and the Hex-
Rays Decompiler [4]. The first two decompilers are
not developed any more, but the second two are con-
stantly improving. The comparison of these applica-
tions can be found in [5].

The existing decompilers are more or less
bounded to a particular platform (i.e. instruction set
and operating system). Every additional platform has
to be manually implemented, because these decompil-
ers do not have any automated generic solution.

In this paper, we present an automatically gener-
ated retargetable decompiler, which is not bounded to
any particular target platform and it can be utilized for
source code recreation, static malware analysis, etc.

Our retargetable decompiler is based on exploit-
ing ADL ISAC [6], which is intended to be used for
designing new application-specific instruction set pro-
cessors (ASIPs). We use this formalism for describing

existing platforms. The front-end of the decompiler is
generated from this description. The decompiler core
is based on the LLVM Compiler System [7], which
we use for a reverse translation from a binary form
into a Python-like language.

The LLVM Compiler System was designed as
an innovative compiler framework. The key features
of LLVM include a language-independent instruction
set, many built-in optimization algorithms and passes,
intermediate representation (LLVM IR), and support
of several programming languages. For more infor-
mation, see [7] and the references given therein.

This paper extends the basic concept presented in
[5]. In comparison with the aforementioned paper, the
decompiler is now automatically generated, the stati-
cally linked code detection has been further improved
by function-type information, and our tool is now able
to decompile binary code of real-world platforms.

The proof of our concept is presented on a Sony
PSP handheld [8]. We chose this widespread device
to demonstrate the flexibility of our solution, since it
is not supported by any existing decompiler (except
some basic support in [3]). From the decompilation
point of view, the PSP is based on a non-classical pro-
cessor architecture (i.e. not Intel x86), but it still uses
some hard-to-decompile features like indirect jump
instructions, stack, and compiler-specific application
binary interface (ABI). Currently, we are able to auto-
matically generate a decompiler for this architecture.
This decompiler is capable to decompile applications
for this platform and it produces a highly-readable
HLL code, while still preserving the functional equiv-
alence of the code.

Organization of this paper is as follows. Sec-

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 199

RESOURCES { // HW resources
PC REGISTER bit[32] pc; // program counter
REGISTER bit[32] gprs[32];// register file
RAM bit[32] memory {ENDIAN(LITTLE);};

}
OPERATION reg REPRESENTS gprs

{ /* description of registers */ }
OPERATION op_add {// instruction description

INSTANCE gprs ALIAS {rd, rs, rt};
ASSEMBLER { "ADD" rd "," rs "," rt };
CODING { 0b000000 rs rt rd 0b000001...};

// instruction behavior
BEHAVIOR {gprs[rd] = gprs[rs]+gprs[rt];};

}

Figure 1: Example of an ISAC language source code.

tion 2 describes the ISAC language as well as other
ADLs. Then, Section 3 briefly discusses the Sony
PSP platform and its unofficial Software Development
Kit (SDK). The design of our decompiler is then pre-
sented in Section 4. Experimental results are given in
Section 5. Section 6 closes the paper by discussing
future research.

2 ISAC Language
We can find a whole scale of architecture description
languages. These languages are usually used within
projects focused on development of a complete in-
tegrated development environment for the processor
design, e.g. ArchC, SystemC, LISA, or nML. All of
these languages are primarily used for development of
a new processor architecture. However, we can also
find languages used for describing existing architec-
tures. The SLED language, developed within the New
Jersey Machine-Code Toolkit [9] project, is an exam-
ple of this language category. This project exploits
the SLED language [10] for intuitive description of in-
struction syntax and coding. However, this language
does not support description of instruction semantics.
Therefore, this language itself cannot be used for gen-
eration of tools like compilers or decompilers.

The ISAC language [6] is used for the descrip-
tion of Multiprocessor Systems-on-Chip. It was de-
veloped within the Lissom project at Brno University
of Technology [11]. The basic scope of this project is
a transformation of a processor models into advanced
software tools (e.g. a C compiler [12], a simulator),
or into a hardware realization of each processor. The
ISAC processor model consists of several parts. In the
resource part, processor resources, such as registers or
memory hierarchy, are declared. In the operation part,
processor instruction set with behavior of instructions
and processor micro-architecture is specified.

The assembler and coding sections capture the
format of instructions in the assembly and machine
language. For the behavioral model, the behavior sec-
tion is used. In this section, a subset of the ANSI C

language can be used. The behavior section defines
the semantics of each operation.

We chose the ISAC language for description of
architectures targeted by our decompiler. The main
reason is that it supports complete description of re-
sources and the instruction set, and it is well prepared
for instruction-semantics automated extraction [12].
The extracted semantics was initially used only for
an automatic generation of the C compiler, but we ex-
ploit such information also for an automatic genera-
tion of the retargetable decompiler (see details below).

3 Sony PSP
The PlayStation Portable (PSP) is a video-game hand-
held console manufactured by Sony Corporation since
2004. It has been remodeled three times, resulting in
the final version called PSP Go.

The PSP is powered by a dual-core processor
based on a RISC processor MIPS-4000 [13], which is
enhanced by several specialized registers and instruc-
tions. The first core is used for standard system func-
tions. The second core is utilized as Media Engine
Chip for multimedia processing [8].

Software for the PSP is created either as offi-
cial applications, which are distributed on Univer-
sal Media Disc (UMD) or over the PlayStation Net-
work (PSN), or as the so-called home-brew applica-
tions created by unofficial tools (e.g. PSP-SDK [14]).
The PSP is running proprietary plugin-based operat-
ing system from its firmware. Application code is
stored in the PRX format, which is based on the stan-
dard Unix ELF format, but differs in program head-
ers and it uses specific relocation types. The code is
stored along with other application resources in the
PBP file format.

The ISAC model of the PSP architecture has been
created for the purpose of decompilation. Since the
code of the second core is used only for visualization
of multimedia data and not for computation of main
program code, only the first core is described. The
model has approximately 2000 lines of code in the
ISAC language and additional 1100 lines in auxiliary
C++ source files describing mainly instruction seman-
tics. A simple instruction of the PSP architecture with
its behavior is shown in Figure 1 (instruction add).

4 Retargetable Decompiler
In this section, the concept of the retargetable de-
compiler is discussed. This tool converts platform-
dependent binary applications into a uniform HLL
code. This tool is automatically generated based on
the architecture model in the ISAC ADL.

The structure of the retargetable decompiler is
similar to a classical compiler. It consists of a front-
end, a middle-end, and a back-end (see Figure 2).

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 200

PE

ELF

...

C
O
N
V
E
R
T
E
R

ISAC

GENERATOR

F
R
O
N
T
-
E
N
D

M
I
D
D
L
E
-
E
N
D

B
A
C
K
-
E
N
D

LLVM
 IR

LLVM
 IR

DECOMPILER

C
O
F
F

HLL

Figure 2: The concept of the retargetable decompiler.

instr instr_add__gpregs__gpregs__gpregs,
//semantics
%tmp1 = i32 read_register(gpregs, 1);
%tmp2 = i32 read_register(gpregs, 2);
%i = add(%tmp2, %tmp1);
write_register(gpregs, 0) = %i;,
//syntax
"ADD" 0~"," 1~"," 2,
//coding
0b000000 1=b[5] 2=b[5] 0=b[5] 0b000001...

Figure 3: Example of an extracted semantics.

The only platform-specific part is the front-end. For
this purpose, the binary coding and semantics of each
processor instruction is extracted from the architec-
ture model in ISAC. This is a major difference against
other retargetable decompilers, because it is not nec-
essary to manually reconfigure the decompiler for
a new architecture. It should be noted that in present,
there is no other competitive method of automatically-
generated retargetable decompilation.

4.1 Front-end
The very first step of retargetable decompilation is
modeling the target architecture in the ISAC ADL.
The user has to describe processor resources and its
instruction set in this language. Afterwards, it is pos-
sible to extract the semantics and binary encoding of
each instruction via the semantics extractor [12]. The
semantics extractor transforms ANSI C code from the
behavior section of the instruction into a sequence of
LLVM IR-like instructions which properly describe
its behavior. Therefore, we are able to map instruc-
tion semantics to its machine code. An example is
depicted in Figure 3. This semantics is extracted from
the behavior section illustrated in Figure 1. The in-
struction decoder further converts this representation
into a proper LLVM IR form (see below).

The input file of a decompiled application is
stored in a platform-specific binary file format (e.g.
Windows PE, Sony PRX). Therefore, it is necessary
to convert it into a unified form of representation. An
internal COFF-based file format has been designed for

this purpose, together with several conversion algo-
rithms. The Binary File Descriptor library (BFD) [15]
is used for describing the platform-specific binary
file formats. Most of current binary file formats are
derivatives of Unix ELF or COFF formats; therefore,
those formats are supported by the BFD out of the
box. The description of non-standard file formats is
done via a plugin-based system, where the user im-
plements a few necessary functions. The conversion
uses this file format description and it transforms the
application in a uniform way. Currently, the Windows
PE, Unix ELF, Symbian E32, and Android DEX file
formats are supported.

In the next step, the instruction decoder for
the particular architecture is automatically generated
based on the extracted semantics and binary coding.
The instruction decoder is responsible for translating
architecture-specific binary machine code into an in-
ternal code representation as a sequence of low-level
LLVM IR instructions (i.e. a basic block with several
LLVM IR instructions for each input machine instruc-
tion). As we can see, its functionality is similar to
a disassembler, except that its output is not an assem-
bly language, but rather the semantics description of
each instruction. This part has to deal with platform-
specific features. For example, it has to support ar-
chitectures with different endianess or delay-slots. All
aforementioned features are supported in our solution.

The front-end of the decompiler has an ability to
recognize statically linked library code. Our solution
is inspired by FLIRT [16]. Due to this feature, we can
restrict the amount of code needed to be decompiled
and reach higher accuracy of the result. A precondi-
tion for such a detection is an exact description of that
library code. We have developed tools that are able
to create signatures of static libraries. Based on these
signatures, we are able to recognize which parts of an
executable belong to statically linked libraries.

Each static library consists of object module files
of some file format, such as PE or ELF. We use a con-
verter to transform these module files into our unified
object file format. In the next step, a pattern is ex-
tracted from each module. The pattern contains first
32 bytes of a module, CRC code, total length, and
the names and addresses of exported public symbols
and relocations. The relocations dictate the positions
which will be updated by a linker. Therefore, we have
to mark such bytes with a special sign as variable.
These bytes will be skipped in comparison. More-
over, these bytes cannot form a part of a module used
for CRC code calculation. Therefore, CRC code is
calculated for various long parts, this part starts af-
ter the first 32 bytes and ends on the first relocation,
note that the part can have zero length, when module
is smaller then 32 bytes or also if there is a relocation

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 201

immediately after the first 32 bytes.
It may seem that these patterns can be sufficient

for searching for the library code, but this presumption
is false. The main problem of patterns is that they can
be ambiguous. For example, they can have the same
bytes at the beginning, the same length and the same
CRC code, and they are just different in the names of
relocations. Unfortunately, our system is not able to
distinguish code which is described by such patterns
and, therefore, these patterns are not included in sig-
natures. An exclusion of such patterns is made when
patterns are processed into a signature. In that process
we build a tree where each collision is easily detected
and patterns are excluded.

Another reason for creating a more precise level
of description is efficiency. In patterns, some parts of
the bytes at the beginning of modules use to be iden-
tical. If we unite these same prefixes, we can save
memory and make searching faster. To remove these
prefixes, we utilize a tree, where the same prefixes are
joined into a single node. A tree can be branched
into more levels and nodes can have more than two
children. Also, the lengths of prefixes can be vari-
able. The length of compared prefixes depends on the
length of the shortest instruction size on the used ar-
chitecture, e.g. on i386, it is a single byte, but on PSP
(i.e. MIPS), it is four bytes.

The successfulness of a signature can be influ-
enced by the order of patterns in it. Imagine a situation
where there are two patterns in a signature. The first
one for a bigger module with CRC code for a dozens
of bytes, and the second for a small module, which
is described only by bytes at its beginning and also
contains variable bytes due to relocation. It is more
possible to get false positives with the second pattern
because it is less descriptive. This potential problem
is eliminated by assigning a score to patterns accord-
ing to the quantity of information provided by the pat-
tern. Quantity of information is influenced mainly by
the length of code, which is used for calculating CRC
code and for cases with zero length of this part the
number of relocations in the first 32 bytes is taken
into account. The score is used for pattern sorting
in the signatures and, therefore, the most descriptive
patterns are used first.

After the recognition of a library code, we know
the addresses and the names of functions, but we do
not know what is the return value type, the number
of arguments, and the types of these arguments. This
information is stored in the header files of libraries.
We have created a tool which is able to extract these
data and prepare them in a suitable format for our de-
compiler. Header files contain usual C types, such as
int, double, or float, but also type aliases intro-
duced by typedef. We have to transform all these

Header file

Library Patterns Signature

Type information

Decompiler

Figure 4: The toolchain for recognizing statically
linked code

types into LLVM IR types. These requirements re-
sulted into a use of the Clang library [17] as a base for
this tool. This library provides a complete front-end
for the C and C++ languages, and it is straightforward
to integrate the code from the Clang compiler for the
transformation of C types into LLVM IR types.

As an example, consider the following ex-
tracted type information: sum i32 2 i32, i32
int sum (int, int). First, there is a func-
tion name followed by its return type. After that, there
is the number of arguments with comma separated
types. This is enough for the decompilation process,
but to enhance the readability of the output code, we
also store the original declaration of the function. This
piece of information is then present in the decompiled
code. The statically linked code recognition is shown
in Figure 4. Library and a header file with an interface
for this library are in the dashed box.

In the final part of the front-end, a static analysis
of the emitted LLVM IR code is performed. This anal-
ysis is focused on transforming the LLVM IR code to
produce more suitable and annotated code for the fol-
lowing parts of the decompiler. As an example of this
part, we can mention the elimination of J $31 in-
structions, which mean indirect jump to the address
stored in register $31. This instruction is typically
used for returning from a function. Another exam-
ple is an application of detected ABI to function calls.
With properly detected ABI, it is possible to remove
boilerplate code related to function arguments pass-
ing and returning of function result. It should be
mentioned that automatic ABI detection is not imple-
mented yet, and more intensive research in this direc-
tion is necessary.

4.2 Middle-end
In this stage, we have a very low-level LLVM IR of
the input binary. Each basic block represents a sin-
gle assembly instruction, there may be many redun-
dant instructions (recall that each assembly instruc-
tion is decompiled in isolation), and there is no ev-
idence of high-level constructs, such as loops. The
key role of the middle-end part of our decompiler
is to improve the properties of the generated LLVM
IR code and prepare it for the final emission of the
output HLL. The following three types of passes are
performed over the LLVM IR code. (1) Search for
idioms. These are sequences of code whose com-

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 202

bined semantics is not immediately apparent from the
instructions’ individual semantics. (2) Retrieval of
high-level constructs, such as if/else statements
and loops. (3) Optimization of the code using many
built-in optimizations available in LLVM and our own
passes (e.g. reassociation of expressions, optimiza-
tions of loops, renaming of variables).

4.3 Back-end
In this final decompilation stage, we transform the
optimized LLVM IR into a HLL. We currently use
a Python-like language as the target language, briefly
described next. However, a support for different back-
ends is planned.

Our HLL is non-typed, block structured, and uses
whitespace indentation, rather than curly braces or
keywords, to delimit blocks. Since we focus on code
analysis by humans, the used language emphasises
code readability. Whenever there is no support in
Python for a specific construction, we use C-like con-
structs. Instead of arrays, we use lists, and instead
of structures, we utilize dictionaries. We also use the
address and dereference operators from C. As there
are cases when the code cannot be structured by high-
level constructs only (e.g., an irreducible subgraph
of the control-flow graph is detected, see [1], which
means that goto is needed), an explicit goto rep-
resents a necessary addition to our language. Even
though our decompiler has partial access to type in-
formation, it is not yet utilized to its fullness for sim-
plicity and readability reasons. However, type support
is planned for back-ends producing typed HLLs, such
as C.

After the generation is completed, an additional
post-processing phase is done to further improve the
readability of the code. These modifications are done
on the textual level, and include the elimination of re-
dundant brackets and expressions introduced by the
back-end and simplification of conditions (e.g., “if
not (a == b):” is simplified into “if a !=
b:”).

5 Experimental Results
To demonstrate the abilities and advantages of our so-
lution, we now present a decompilation of a simple
program for Sony PSP. The C source code for this pro-
gram is given in Figure 5. It was compiled using gcc
(version 4.3.2) from the PSP-SDK [14] with enabled
optimizations (-O2).

First, we transform the executable from the PRX
file format into our unified COFF file format. Then,
the detections of a statically linked code and used
compiler are utilized to eliminate boilerplate code
(i.e. startup code and statically linked libraries
libc and psplibc. In our example, the executable

#include <pspkernel.h>
#include "sum.h"
/* Initialization */
PSP_MODULE_INFO("template", 0, 1, 1);
PSP_MAIN_THREAD_ATTR(0x80004000);
int main(void) {

volatile int a = 3;
int b;
for (b = 1; b < 100; b++)

a = sum(a, b);
return a;

}

Figure 5: The source code of the input program.

COFF

#declaration
#int sum()

def main

analyzed
executable

HLL
code

converted
executable

main

libsum

libc

psplibc

startup

Figure 6: The decompilation process.
has 10KB, while the stripped version of it has only
3KB. After that, we disassembly the rest of the exe-
cutable into LLVM IR using extracted semantics for
the PSP description in the ISAC ADL. The disas-
sembled code then undergoes several statical analy-
ses, which transform platform-specific and hard-to-
decompile constructs, such as function calls and argu-
ment passings, into more suitable forms. These analy-
ses are followed by optimizations done in the middle-
end. Finally, the back-end emits the HLL code, which
is then optimized by the post-processor. The decom-
pilation process is illustrated in Figure 6.

The resulting HLL code generated by our back-
end can be seen in Figure 7. Observe the follow-
ing key aspects of the resulting code. (1) Statically
linked code (the sum() function in this example is
from a static library) is removed. Startup code and
other compiler-dependent parts of the code are also
removed. (2) When known, we emit declarations of
detected statically linked functions from header files
to help analysts understand the code. (3) ABI descrip-
tion, specified in the ISAC model, is used to properly
detect function calls, including argument passing and
assignment of return values. (4) Variables are given
more readable names. Clearly, banana is more read-
able than gpregs_0x02. Also, whenever possible,
the variable containing the result of the current func-
tion is named result. (5) The for loop, includ-
ing its induction variable, is successfully detected and
transformed into a readable form. Furthermore, the
induction variable is given a familiar name.

Finally, it should be noted, that decompilation
of compiler-optimized applications can produce more

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 203

---------- Global Variables ----------
orange = 0
banana = 0
lemon = 0
----------- Declarations -------------
int sum(int, int)
-------- Defined Functions -----------
def main():

global orange
global banana
global lemon
orange = 3
result = orange
for i in range(0, 99):

banana = result
lemon = i + 1
result = sum(banana, lemon)

return result

Figure 7: The output from our decompiler.

readable code than decompilation of non-optimized
code in some aspects. For example, compilers usu-
ally optimize frequent memory load and store of the
same variable into its storage in register. This is much
better for the decompiler, since it is easier to track the
value of this variable in data-flow analyses.

6 Conclusion
This paper further extended the basic concept [5]
and presented the implementation of our automati-
cally generated retargetable decompiler of platform-
specific machine code. The proof of the concept is
presented on the Sony PSP handheld. Currently, we
are able to decompile applications for this platform
into a highly-readable HLL code.

However, there is still a lot of space for improve-
ments. The output of the front-end can be further en-
hanced by the automatic detection of function bound-
aries and used ABI. With such information, it will be
possible to automatically remove boilerplate code of
functions and their callings.

As for the back-end, emission of some HLL
constructs can be improved. For example, loops
with no induction variable are currently emitted as
while True loops. Furthermore, other HLLs can
be considered, possibly including type information
and conversions between types. Also, more complex
dataflow analyses are required, since, for example, the
banana variable in Figure 7 is not needed. This is
planned to be improved in the future.

Due to space requirements, we were unable to
present a more comprehensive example. Our solu-
tion properly decompiles most of commonly occur-
ring HLL constructs. As mentioned earlier in this sec-
tion, the main space for improvements lies in the de-
tection and decompilation of functions.

Acknowledgements: This work was supported
by the research funding TAČR, No. TA01010667, by
the BUT FIT grant FIT-S-11-2, by the Research Plan
MSM 0021630528, and by the IT4Innovations Centre
of Excellence project CZ.1.05/1.1.00/02.0070.

References:

[1] C. Cifuentes, “Reverse compilation techniques,”
Ph.D. dissertation, School of Computing Science,
Queensland University of Technology, Brisbane, AU-
QLD, 1994.

[2] Boomerang, http://boomerang.source
forge.net/.

[3] Reverse Engineering Compiler,
http://www.backerstreet.com/rec/.

[4] Hex-Rays Decompiler, http://www.hex-
rays.com/decompiler.shtml.

[5] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář,
K. Masařík, T. Hruška, and A. Meduna, “Design
of a Retargetable Decompiler for a Static Platform-
Independent Malware Analysis,” in 5th International
Conference on Information Security and Assurance,
Brno, CZ, 2011, pp. 72–86.

[6] K. Masařík, System for Hardware-Software Co-
Design, 1st ed. Brno, CZ: Faculty of Information
Technology BUT, 2008.

[7] The LLVM Compiler System,
http://llvm.org/.

[8] A. Rahimzadeh, Hacking the PSP
TM

: Cool
Hacks, Mods, and Customizations for the Sony R⃝

PlayStation R⃝ Portable. New York: Wiley, 2006.
[9] N. Ramsey and M. F. Fernandez, “The new jersey

machine-code toolkit,” in In Proceedings of the 1995
USENIX Technical Conference, 1995, pp. 289–302.

[10] N. Ramsey and M. Fernández, “Specifying represen-
tations of machine instructions,” ACM Transactions
on Programming Languages and Systems, vol. 19, pp.
492–524, May 1997.

[11] Lissom Project, http://www.fit.vutbr.cz/
research/groups/lissom/.

[12] A. Husár, M. Trmač, J. Hranáč, T. Hruška,
K. Masařík, D. Kolář, and Z. Přikryl, “Automatic
C compiler generation from architecture description
language ISAC,” in MEMICS 2010. Brno, CZ:
Masaryk University, 2010, pp. 84–91.

[13] MIPS Technologies Inc., MIPS32 Architecture for
Programmers Volume II: The MIPS32 Instruction Set,
March 2010.

[14] Minimalist PSPSDK, http://source
forge.net/projects/minpspw/.

[15] GNU Binutils, http://www.gnu.org/soft
ware/binutils/.

[16] Fast Library Identification and Recognition Technol-
ogy, http://www.hex-rays.com/idapro/
flirt.htm.

[17] Clang, http://clang.llvm.org/.

Recent Researches in Circuits, Systems, Communications and Computers

ISBN: 978-1-61804-056-5 204

